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1. INTRODUCTION

Extension and substitution are concepts studied in proof complexity of propositional
classical logic. The basic idea behind both concepts is that complex formulas can be
abbreviated by propositional variables in order to shorten a proof. So far, extension and
substitution have mostly been investigated together with Frege systems, which, for a
long time, have been the main tool for studying proof complexity. In [Cook and Reckhow
1979], Cook and Reckhow have shown that Frege systems with substitution can p-
simulate Frege systems with extension. Several years later, Dowd in [Dowd 1985] and
Krajı́ček and Pudlák in [Krajı́ček and Pudlák 1989] have shown that Frege systems
with extension can also p-simulate Frege systems with substitution. It is still an open
problem whether Frege systems without extension/substitution can p-simulate Frege
systems with extension/substitution.

Only recently, Bruscoli and Guglielmi [Bruscoli and Guglielmi 2009] have shown
that also deep inference proof systems, like the calculus of structures (CoS) [Guglielmi
2007; Brünnler and Tiu 2001; Guglielmi and Straßburger 2001], can provide a nat-
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A:2 N. Novaković and L. Straßburger

ural framework for studying extension and substitution. As shown in [Bruscoli and
Guglielmi 2009], Frege systems and calculus of structures (with cut) p-simulate each
other and are therefore equally powerful with respect to proof complexity. However,
unlike Frege systems, the calculus of structures is a proof formalism that comes with
methods for proof search [Kahramanoğulları 2006; Chaudhuri et al. 2011; Chaud-
huri 2013b] and proof normalization [Brünnler 2003a; Brünnler 2006; Straßburger
and Guglielmi 2011; Guglielmi and Straßburger 2011]. This means that we can now
study cut-free proof systems with extension and substitution [Straßburger 2012]. Some
research in that direction has already been done by Arai in [Arai 1996].

The purpose of this paper is to fill two gaps that have been left open in the previous
work [Bruscoli and Guglielmi 2009; Straßburger 2012] investigating the concepts of
extension and substitution within the calculus of structures.

(1) There is a straightforward translation between proofs in Frege systems and proofs
in the calculus of structures [Bruscoli and Guglielmi 2009], leading only to a poly-
nomial increase in the size of proofs in both directions, and thus establishing the
p-equivalence of Frege systems and CoS. This translation carries over to the case
where extension is present. But when substitution is present, the naive translation
of Frege proofs into calculus of structures proofs breaks down. This might cause the
belief that substitution in the calculus of structures is a priori a weaker concept
than substitution in Frege systems [Guglielmi 2010]. However, in this paper we
show that this is not justified. We show that, with a subtle modification, the naive
translation carries over to the case with substitution. This properly establishes the
correspondence between Frege systems with substitution and CoS with substitu-
tion. As a consequence, the construction used in [Straßburger 2012] for showing
that CoS with extension p-simulates CoS with substitution can now be seen as
alternative proof of the result by Krajı́ček and Pudlák [Krajı́ček and Pudlák 1989].

(2) In [Straßburger 2012], it has been shown that also in the cut-free case CoS with
extension p-simulates CoS with substitution, but it was left open whether the
converse also holds. In this paper we show that cut-free CoS with substitution
p-simulates cut-free CoS with extension. This establishes the p-equivalence of ex-
tension and substitution also in the cut-free case.

The whole picture is summarized in Figure 1, where an arrow from one system to the
other means that the first system p-simulates the second. The label indicates the place
where this has been proven first. The dotted arrows refer to open problems and the
double arrows to the results of this paper, which is organized as follows: Sections 2
and 3 present preliminaries on Frege systems and calculus of structures, Section 4
corresponds to the first point above, and Section 5 to the second point above.

2. PRELIMINARIES ON FREGE SYSTEMS

Formulas. Let At = {a, b, c, . . . } be a countable set of propositional variables, also
called atoms, and let At = {ā, b̄, c̄, . . . } be the assigned set of negated atoms. We re-
fer to elements of At and At as literals. The set of Boolean propositional formulas
Form whose elements are denoted by capital Latin letters (A,B,C, . . . ) is the smallest
language over the alphabet At ∪ At ∪ {∧, ∨, (, ), [, ]}, such that At ,At ⊂ Form, and if
A,B ∈ Form, then (A ∧B) ∈ Form and [A ∨B] ∈ Form. Notice the use of (−) and [−]
brackets for conjunction and disjunction formulas, respectively. Technically speaking,
this is redundant, but we think it improves readability for larger formulas. Further-
more, outermost brackets are always omitted. For reasons of convenience, we think of
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Frege + extension CoS + extension cut-free CoS + extension

Frege + substitution CoS + substitution cut-free CoS + substitution

(1) (2) (3) (4) (7) this paper

(5)

(6)

this paper

trivial

?

trivial

?

Fig. 1. Relation between Frege systems and calculus of structures. An arrow denotes that the source system
p-simulates the target system. Dotted arrows denote open problems, while double arrows stand for results
of this paper. (1) has been shown in [Cook and Reckhow 1979], (2) in [Krajı́ček and Pudlák 1989] and [Dowd
1985], (3) and (6) in [Bruscoli and Guglielmi 2009], (4) and (7) in [Straßburger 2012], and (5) in [Bruscoli
and Guglielmi 2009] and [Straßburger 2012].

the Boolean negation as non-primitive. For an atom a, its negation is defined as its
assigned negated atom ā. Then the definition is extended to arbitrary formulas by de
Morgan laws: ¯̄a = a and A ∧B = Ā ∨ B̄ and A ∨B = Ā ∧ B̄. This entails ¯̄A = A for all A.
Implication A⇒B is defined as Ā ∨B and equivalence A⇔B as [Ā ∨B] ∧ [B̄ ∨A].

Proof systems. We adopt a general view of proof systems as presented in [Cook and
Reckhow 1979]. A proof system is defined as a surjective PTIME function S : Σ∗ →
T , from a set of finite words Σ∗ over a signature Σ to the set T of all propositional
tautologies. The assignment S : Π 7→ S(Π) assigns to an element of Σ∗, called a proof,
its conclusion. A size of a proof is a function |−| : Σ∗ → N, assigning to a proof Π the
number |Π| of symbols in Π. For proof systems S1 : Σ∗1 → T and S2 : Σ∗2 → T we say
that S2 p-simulates S1 if there is a polynomial p such that for every proof Π1 ∈ Σ∗1
there is a proof Π2 ∈ Σ∗2 such that S1(Π1) = S2(Π2) and |Π2| ≤ p(|Π1|), i.e. proofs of
Σ∗1 can be assigned proofs Σ∗2 of same conclusions whose size is dominated by a fixed
polynomial in the size of Σ∗1 proofs. Systems which p-simulate each other are said to
be p-equivalent.

Frege systems. A (general) Frege system is defined by a set Ax of formulas called
axioms and a set R of (general) inference rule schemata, where a schema r ∈ R is of
the form

B1, . . . , Bn
r −−−−−−−−−−−−

B
,

whereB1, . . . , Bn, B are formula variables, i.e., meta variables, denotations of arbitrary
formulas. A derivation of a formula A in a Frege system from a given set of axioms and
a collection of inference rules is a sequence of formulas A1, . . . , Am such that Am = A,
and every Ak is either an axiom, or it is derived from some of the formulas Ai, i < k,
as an instance of a rule from R.

These systems are named after Gottlob Frege in [Cook and Reckhow 1979], but they
also appear in literature as Hilbert-Frege, Hilbert or Hilbert-Ackermann systems. For
the case of classical propositional logic, there are numerous possible axiomatizations
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of Frege systems, and an example system consists of the following axioms (usually
expressed in the implication/negation language):

AX-1: Ā ∨ [B̄ ∨A]
AX-2: (A ∧ (B ∧ C̄)) ∨ [(A ∧ B̄) ∨ [Ā ∨ C]]
AX-3: (B̄ ∧A) ∨ [(B̄ ∧ Ā) ∨B]

(2.1)

where A, B, and C are formula variables, and a single inference rule modus ponens,
MP:

A Ā ∨B
MP −−−−−−−−−−−−−− .

B

Besides the essential properties of soundness and completeness of the Frege system
for classical propositional logic, it has been shown in [Cook and Reckhow 1979] that
all Frege systems for this logic p-simulate each other. That allows us to think of the
system F defined by the set of axioms (2.1) as ‘the’ Frege system, since all of the proof
complexity results we may have on a specific system translate to the entire formalism.
Also,

THEOREM 2.1. [Cook and Reckhow 1979] Every Frege system is p-equivalent to se-
quent calculus for classical propositional logic with cut.

Extension. The notion of extension in Frege systems, due to Tseitin [Tseitin 1968],
comes from the idea of using abbreviations in a proof. The concept can be formalized
in as follows. An extended Frege system is a Frege system whose set of axioms Ax is
augmented by the extension axioms of the form

ai ⇔Ai, 1 ≤ i ≤ k; (2.2)

where ai are fresh propositional variables which abbreviate formulas Ai, subject to the
condition that a variable ai does neither occur in the conclusion of the proof nor in
any of the A1, . . . , Aj , for j ≤ i. We call the ai extension variables and the Ai extension
formulas. We write eF for an extended Frege system.

Substitution. The notion of substitution comes from a slightly different principle
than extension, a widely used technique of replacing propositional variables by for-
mulas. Formally, a substitution is a map σ : At → Form from the set of atoms to the
set of formulas, such that σ(a) = a holds on all but finitely many atoms in At . The
reader should notice that there is no constraint put on the nature of the map σ, as it is
the case with extension. To have substitution in a Frege system amounts to adding an
inference rule, called the substitution rule

A
sub↓ −−−

σA
(2.3)

to the system, where σA denotes the result of applying the substitution σ to the for-
mula A, i.e., replacing every atom a by σ(a) and every negated atom ā by σ(a). We refer
to F augmented by the substitution rule as sF.

THEOREM 2.2. [Cook and Reckhow 1979] sF p-simulates eF.

THEOREM 2.3. [Krajı́ček and Pudlák 1989; Dowd 1985] eF p-simulates sF.
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3. PRELIMINARIES ON CALCULUS OF STRUCTURES

Inference rules. The principle of deep inference, as used in the calculus of struc-
tures [Brünnler and Tiu 2001; Guglielmi 2007; Guglielmi and Straßburger 2001],
means that one is allowed to apply inference rules arbitrarily deep inside a formula,
to the contrast with sequent calculus or natural deduction [Gentzen 1934] where rules
are always applied on the outermost connectives. In this paper we follow the formula-
tions as given in [Straßburger 2012]. We use the following rule schemata:

F{B}
ai↓ −−−−−−−−−−−−−−−− , F{B} is allowed to be empty

F{B ∧ [ā ∨ a]}
F{[A ∨B] ∧ C}

s −−−−−−−−−−−−−−−−−−
F{(A ∧ C) ∨B}

F{(A ∧B) ∨ (C ∧D)}
m −−−−−−−−−−−−−−−−−−−−−−−−−−

F{[A ∨ C] ∧ [B ∨D]}
F{B}

w↓ −−−−−−−−−−−
F{B ∨A}

F{a ∨ a}
ac↓ −−−−−−−−−− .

F{a}

(3.1)

where A,B,C,D are meta variables denoting formulas, while a is a meta variable for
a literal (i.e., an atom or a negated atom). The notation F{ } is used for a formula
context. We write F{B} for the formula that is obtained from filling the hole of F{ }
with B.

The rules in 3.1 are called (atomic) identity, switch, medial, weakening and (atomic)
contraction, respectively. Rule ai↓ is the only rule that need not have a premise, i.e.
allowing F{B} to be the empty word over the formula alphabet in the definition of ai↓
means that ā ∨ a can be derived without premise, as an instance of the rule. Notice
that in every rules the context is monotone with respect to the subformula that is
manipulated.

On the set Form of formulas we define the relation = to be the smallest congruence
generated by

A ∧ (B ∧ C) = (A ∧B) ∧ C A ∧B = B ∧A
A ∨ [B ∨ C] = [A ∨B] ∨ C A ∨B = B ∨A

(3.2)

Then, we add another inference rule
F{A}

= −−−−−−−
F{B}

(3.3)

with the side condition that A = B.

Derivations. A derivation in the calculus of structures is a rewriting sequence using
the inference rules of a given system. There can be at most one instance of an inference
rule with empty premise in a derivation. If there is no such instance then we use the
notation

A

S
∥∥∥∥∥Π

B

for saying that the derivation Π has premise A, conclusion B, and uses only inference
rules in the system S. If a derivation contains a rule with an empty formula in its
premise then this must be the topmost rule, and we use the notation

−
S
∥∥∥∥∥Π

B

for a derivation in the system S with no premise and with conclusion B. In this case
we also say that Π is a proof of B. The length of a derivation (or proof) Π is the number
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of lines in Π. The width of Π is the largest number of literals in a formula occurring
in Π.

System KS. The deep inference proof system defined as above by the set of rules (3.1)
and (3.3) is called KS. Strictly speaking, the original presentation of the system with
the same name in [Brünnler and Tiu 2001] differs from ours; it relies on the presence
of units for disjunction and conjunction in syntax, f and t, respectively. It is argued
in [Straßburger 2012] how our presentation is only a mild variation to the presentation
of KS in [Brünnler and Tiu 2001], and that the two versions of KS p-simulate each
other. Later, we will make use of the following properties of KS.

PROPOSITION 3.1. [Brünnler and Tiu 2001] The system KS is sound and complete
for classical logic, i.e., a propositional formula is a tautology iff there is a KS proof of it.

PROPOSITION 3.2. [Brünnler and Tiu 2001] The inference rules

F{B}
i↓ −−−−−−−−−−−−−−−−−−
F{B ∧ [Ā ∨A]}

and
F{A ∨A}

c↓ −−−−−−−−−−−
F{A}

are derivable in KS, where in i↓ the premise F{B} is allowed to be empty. Moreover, KS
p-simulates KS ∪ {i↓, c↓}.

The rules i↓ and c↓ are the non-atomic versions of identity and contraction rules,
respectively.

PROPOSITION 3.3. [Brünnler and Tiu 2001; Bruscoli and Guglielmi 2009] The sys-
tem KS p-simulates cut-free sequent calculus. But the opposite does not hold.

Cut and system SKS. The (atomic) cut rule in deep inference systems is dual to the
(atomic) identity

F{B ∨ (ā ∧ a)}
ai↑ −−−−−−−−−−−−−−−−− .

F{B}
(3.4)

We refer to the system KS ∪{ai↑} as SKS.

Again, this definition of the system SKS is a mild modification of the original defi-
nition of SKS found in [Brünnler and Tiu 2001]. The same paper shows that adding
atomic cut yields the non-atomic version of cut, co-contraction, and co-weakening, rules
dual to the contraction and weakening, respectively:

PROPOSITION 3.4. [Brünnler and Tiu 2001] The following rules are derivable in
SKS

F{B ∧ (Ā ∧A)}
i↑ −−−−−−−−−−−−−−−−−−

F{B}
F{A}

c↑ −−−−−−−−−−−
F{A ∧A}

F{A ∧B}
w↑ −−−−−−−−−−−

F{B}

Moreover, SKS p-simulates SKS ∪ {i↑, c↑,w↑}.

PROPOSITION 3.5. [Brünnler and Tiu 2001] There is an SKS derivation from A to
B if and only if A⇒B is a tautology.

THEOREM 3.6. [Bruscoli and Guglielmi 2009] SKS and F are p-equivalent.
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Note that this follows from Theorem 2.1 and the p-equivalence of SKS and sequent
calculus. But Bruscoli and Guglielmi give in [Bruscoli and Guglielmi 2009] a direct
construction. To show how SKS can be p-simulated in F, it suffices to first exhibit an

F proof of A ⇒ B for every SKS rule
F{A}

r −−−−−−−
F{B}

. Then, it can be shown by induction on

the size of the context F{} that there is an F derivation of (A ⇒ B) ⇒ (F{A}⇒ F{B})
whose size is polynomial in |F{A}⇒ F{B}|. so an entire SKS proof can be simulated
by consecutive applications of MP, whose number is linear in the size of the SKS proof.
The other direction, i.e., the p-simulation of F in SKS will be discussed in detail in
Section 4.

Extension. There are two ways of adding extension to the calculus of structures.
First, on can do the same as in Frege systems and simply add additional axioms. This
has been done in [Bruscoli and Guglielmi 2009] in the following way: A proof in xSKS
of conclusion B is an SKS derivation whose conclusion is B and whose premise is the
conjunction of the extension axioms (2.2). Then, the proof of Theorem 3.6 can be used
to prove the following:

THEOREM 3.7. [Bruscoli and Guglielmi 2009] xSKS and eF are p-equivalent.

The second way of adding extension to SKS, proposed in [Straßburger 2012], is to
add for every extension axiom ai ⇔Ai the two rules

F{ai}ext↓ −−−−−−−
F{Ai}

and
F{āi}ext↓ −−−−−−−
F{Āi}

(3.5)

This allows us to use extension in the absence of cut (or modus ponens). We write eKS
for KS ∪ {ext↓}, and eSKS for SKS ∪ {ext↓}.

THEOREM 3.8. [Straßburger 2012] xSKS and eSKS are p-equivalent.

Substitution. Substitution is added to the calculus of structures in exactly the same
way as it is added to Frege systems: by adding the inference rule

A
sub↓ −−−

σA
(3.6)

for a given a substitution σ : At → Form. However, note that this rule cannot be
applied deeply, even if it is added to a deep inference system. The rule in 3.6 is only
sound when applied to the whole formula, and not just to a selected subformula. We
define sKS to be KS ∪ {sub↓}, and sSKS to be SKS ∪ {sub↓}. The following have been
shown previously via simple direct constructions:

THEOREM 3.9. [Bruscoli and Guglielmi 2009] sSKS p-simulates xSKS.

THEOREM 3.10. [Straßburger 2012] eSKS p-simulates sSKS.

Together with Theorem 3.8 (which is also shown via rather simple direct transla-
tions) these two results show that in the calculus of structures extension and sub-
stitution are p-equivalent, and their proofs show that this fact is almost a triviality.
Furthermore, we have the following (again, with a rather simple proof):

THEOREM 3.11. [Bruscoli and Guglielmi 2009] sF p-simulates sSKS.
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On the one hand, this shows (together with Theorems 2.2, 2.3, and 3.7) that exten-
sion and substitution are p-equivalent in Frege systems and in the calculus of struc-
tures:

COROLLARY 3.12. sF, eF, sSKS, xSKS, and eSKS are all p-equivalent.

On the other hand, this fact relies (so far), on Theorem 2.3 whose proof is much
more involved than the others. The reason is that (so far) there is no simple simu-
lation of sF in any of sSKS, xSKS, or eSKS. In the following section we show that
sSKS p-simulates sF by giving a direct construction which follows the scheme of the
p-simulation of F in SKS (Theorem 3.6).

4. SUBSTITUTION IN FREGE AND COS

In this section we show that CoS with substitution p-simulates Frege systems
with substitution. Let us start by recalling the simple construction by Bruscoli and
Guglielmi [Bruscoli and Guglielmi 2009] for translating a (substitution-free) F-proof
into an SKS-proof, with a polynomial blow-up. This is a rather standard construction
(see e.g. [Krajı́ček 1996]), and it is done in three steps. First, we observe that every ax-
iom A in the Frege system has an SKS-proof ΠA of size O(|A|2). Second, from a given
F-proof A1, A2, . . . , An, we proceed by induction on n to produce an SKS-proof Π of the
conjunction A1 ∧A2 ∧ · · · ∧An. This is done as follows. Assume by induction hypothesis
an SKS-proof Π′ of the conjunction A1 ∧A2 ∧ · · · ∧An−1. If An is an axiom, we immedi-
ately obtain Π by combining Π′ and the proof ΠAn

of An. If An is obtained by applying
modus ponens to some Ai and Aj , where Aj is Ai ⇒An and 0 < i, j < n, then we obtain
Π from Π′ as follows:

−∥∥∥∥∥Π′

A1 ∧ · · · ∧Ai ∧ · · · ∧ [Āi ∨An] ∧ · · · ∧An−1
2∗c↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A1 ∧ · · · ∧Ai ∧Ai ∧ · · · ∧ [Āi ∨An] ∧ [Āi ∨An] ∧ · · · ∧An−1
= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A1 ∧ · · · ∧Ai ∧ · · · ∧ [Āi ∨An] ∧ · · · ∧An−1 ∧Ai ∧ [Āi ∨An]

s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A1 ∧ · · · ∧Ai ∧ · · · ∧ [Āi ∨An] ∧ · · · ∧An−1 ∧ [(Ai ∧ Āi) ∨An]

i↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A1 ∧ · · · ∧Ai ∧ · · · ∧ [Āi ∨An] ∧ · · · ∧An−1 ∧An

(4.1)

In the third step, the proof of A1 ∧A2 ∧ · · · ∧An is transformed into a proof of An by an
application of the rule w↑.

It has been shown in [Bruscoli and Guglielmi 2009] (for xSKS) and [Straßburger
2012] (for eSKS), how this argument easily carries over when extension is present.
However, as observed by Bruscoli [Guglielmi 2010], the same cannot be used when
substitution is present: If in the argument above the formula An is obtained by apply-
ing the substitution rule to some Ai with 0 < i < n, i.e., An = σAi for some substi-
tution σ, then in the sF-proof, the formula Ai is still available for later use. However,
in sSKS, the substitution rule cannot be applied deeply. So, the whole conjunction
A1 ∧ · · · ∧Ai ∧Ai ∧ · · · ∧An−1 is subject to the substitution, and a simple use of the c↑-
rule is not enough to keep Ai for later reuse. Furthermore, all formulas in the chain
are destroyed.

In order to make the argument work again, we have to find a way to apply the
substitution such that both, Ai and σAi, are subformulas of the resulting formula. To
see how this can be achieved, consider first the substitution σ′, that is obtained from σ
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as follows:

σ′ = { a 7→ a ∧B | a 7→ B ∈ σ }
When we apply σ′ to Ai we get a “merge” of Ai and An = σAi, and we would like to get
two derivations

σ′Ai∥∥∥∥∥
Ai

and
σ′Ai∥∥∥∥∥
σAi

(4.2)

by using a series of w↑-applications. Depending on whether we chose to delete the new
B-occurrences, or the superfluous a-occurrences, we can get

F{a ∧B}
w↑ −−−−−−−−−−−

F{a}
or

F{a ∧B}
w↑ −−−−−−−−−−−

F{B}
.

Of course this does not work because σ′ sends ā to ā ∨ B̄, and there is no way of getting
back ā nor B̄ by a w↑ or any other sound inference rule. To overcome this problem,
we construct now a slightly more complicated substitution σ∗, for which we can obtain
something similar to (4.2). For every substitution σ used in the sF-proof we pick a fresh
propositional variable xσ, and we assign to σ the substitution σ∗ as follows:

σ∗ = { a 7→ [x̄σ ∨ a] ∧ [xσ ∨B] | a 7→ B ∈ σ } (4.3)

This has the following crucial property:

LEMMA 4.1. Let A be a formula and σ be a substitution and let xσ be a fresh propo-
sitional variable. Then there are two SKS-derivations

σ∗A ∧ xσ∥∥∥∥∥
A ∧ xσ

and
σ∗A ∧ x̄σ∥∥∥∥∥
σA ∧ x̄σ

(4.4)

of length O(|A|2) and width O(|σ∗A|).

PROOF. First note that σ∗ sends a to [x̄σ ∨ a] ∧ [xσ ∨B] and ā to (xσ ∧ ā) ∨ (x̄σ ∧ B̄) if
a 7→ B is in σ. The heart of our proof consists of the following four derivations:

[x̄σ ∨ a] ∧ [xσ ∨B] ∧ xσw↑ −−−−−−−−−−−−−−−−−−−−−−−−−−
[x̄σ ∨ a] ∧ xσs −−−−−−−−−−−−−−−
(x̄σ ∧ xσ) ∨ a

ai↑ −−−−−−−−−−−−−−−
a

and

[x̄σ ∨ a] ∧ [xσ ∨B] ∧ x̄σw↑ −−−−−−−−−−−−−−−−−−−−−−−−−−
[xσ ∨B] ∧ x̄σs −−−−−−−−−−−−−−−
(xσ ∧ x̄σ) ∨B

ai↑ −−−−−−−−−−−−−−−
B

(4.5)

and

[(xσ ∧ ā) ∨ (x̄σ ∧ B̄)] ∧ xσw↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[ā ∨ (B̄ ∧ x̄σ)] ∧ xσw↑ −−−−−−−−−−−−−−−−−−−−−

[ā ∨ x̄σ] ∧ xσs −−−−−−−−−−−−−−−
ā ∨ (x̄σ ∧ xσ)

ai↑ −−−−−−−−−−−−−−−
ā

and

[(xσ ∧ ā) ∨ (x̄σ ∧ B̄)] ∧ x̄σw↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[(xσ ∧ ā) ∨ B̄] ∧ x̄σw↑ −−−−−−−−−−−−−−−−−−−−−

[xσ ∨ B̄] ∧ x̄σs −−−−−−−−−−−−−−−
(xσ ∧ x̄σ) ∨ B̄

ai↑ −−−−−−−−−−−−−−−
B̄

(4.6)

Note how the structure of the formula after substitution allows us in (4.6) to overcome
the problem of the naive approach using σ′ mentioned above. The derivations in (4.4)
are now obtained by plugging the derivations in (4.5) and (4.6) into each place in A
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A:10 N. Novaković and L. Straßburger

where a variable is affected by σ. The additional occurrence of xσ (resp. x̄σ) is provided
by the following derivation, which exists for every formula D and context C{ }:

C{D} ∧ x
c↑ −−−−−−−−−−−−−−−
C{D} ∧ x ∧ x
{s}

∥∥∥∥∥Πs

C{D ∧ x} ∧ x

(4.7)

where x is either xσ or x̄σ, and where Πs consists only of instances of s, and its length is
linear in the depth of D in C{ }. In our case, this is O(|A|). The existence of Πs can be
shown by a straightforward induction on the structure of C{ } (see, e.g., [Straßburger
2003; Brünnler 2003b]). Furthermore, since the number of variables affected by σ in
A is smaller than |A|, we have that the length of the overall derivations is O(|A|2).
Finally, the width of the overall derivation is smaller than or equal to |σ∗A|+ 2.

We can now use this lemma to perform the inductive step that has been done for the
rule of modus ponens in (4.1) above, also for the substitution rule. We obtain Π from Π′

as follows (where An is obtained from Ai by applying σ):
−∥∥∥∥∥Π′

A1 ∧ · · · ∧Ai ∧ · · · ∧An−1c↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A1 ∧ · · · ∧Ai ∧Ai ∧ · · · ∧An−1

= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A1 ∧ · · · ∧Ai ∧ · · · ∧An−1 ∧Aisub↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

σ∗(A1 ∧ · · · ∧Ai ∧ · · · ∧An−1) ∧ σ∗Aiai↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
σ∗(A1 ∧ · · · ∧Ai ∧ · · · ∧An−1) ∧ σ∗Ai ∧ [xσ ∨ x̄σ]

2∗s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(σ∗(A1 ∧ · · · ∧Ai ∧ · · · ∧An−1) ∧ xσ) ∨ (σ∗Ai ∧ x̄σ)

SKS
∥∥∥∥∥Lemma 4.1

(A1 ∧ · · · ∧Ai ∧ · · · ∧An−1 ∧ xσ) ∨ (σAi ∧ x̄σ)
sub↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(A1 ∧ · · · ∧Ai ∧ · · · ∧An−1 ∧ σAi) ∨ (σAi ∧ σAi)i↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A1 ∧ · · · ∧Ai ∧ · · · ∧An−1 ∧ σAi

= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A1 ∧ · · · ∧Ai ∧ · · · ∧An−1 ∧An

(4.8)

where in the first instance of sub↓ we use σ∗ as substitution, as defined in (4.3), and
in the second instance of sub↓, we use {xσ 7→ σAi} as substitution, observing that xσ
occurs nowhere else.

We now have a direct proof of the following:

THEOREM 4.2. sSKS p-simulates sF.

PROOF. Given an sF-proof A1, A2, . . . , An, where each Ak is either an axiom, or ob-
tained via the substitution rule from some Ai with 1 6 i < k, or obtained via modus
ponens from some Ai and Aj , where Aj is Ai ⇒ Ak with 1 6 i, j < k. We construct an
sSKS-proof Π of An of the following shape:

−∥∥∥∥∥Π

A1 ∧A2 ∧ · · · ∧Anw↑ −−−−−−−−−−−−−−−−−−−−−
An

where Π is obtained by induction on n, following the construction above. The overall
size of the constructed sSKS derivation can be assessed as follows. Let m be the size of
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the sF-proof. The total length of the sSKS-derivation (using general rules) is bounded
by a quadratic function in m, while width is O(m2), due to the substitution. This gives
the combined estimate of size of O(m4). Abandoning general rules, i.e., replacing i↑,
i↓, c↑, and c↓ by their atomic versions ai↑, ai↓, ac↑, and ac↓, respectively, increases the
estimate for the size to O(m8). Removing all instances of ac↑ (i.e., replacing them by
derivations consisting of ai↓, ai↑, ac↓, s) does not increase that estimate.

In Lemma 4.1 and its corollary Theorem 4.2 the goal is to derive B = σA by a substi-
tution from A, while keeping A. The main idea there is the essential use of substitution

{xσ 7→ σA} ◦ σ∗ = { a 7→ (B ⇒ a) ∧ (B̄ ⇒ σa) | a positive}
that encompasses the following reasoning: if B is true, map a to a, i.e. do nothing, keep
A. If B is false, map a to whatever it is turned to by σ, to get B. The rest of the trick is
suitable use of co-weakenings, as in (4.5) and (4.6), which is something we have tried
to do with σ′, but which fails for negative polarities. This time, the substitution works
for negative polarities, since it maps

ā 7→ (B ∧ ā) ∨ (B̄ ∧ σa), for a positive,
and the result entails (B ⇒ ā) ∧ (B̄ ⇒ σa), as can be seen by a single instance of the
medial rule:

(ā ∧B) ∨ (B̄ ∧ σa)
m −−−−−−−−−−−−−−−−−−−−−

[ā ∨ B̄] ∧ [B ∨ σa]

This gives an alternative way of obtaining the the two derivations in (4.6) by using an
instance of medial (and commutativity of ∧ and ∨):

[(xσ ∧ ā) ∨ (x̄σ ∧ B̄)] ∧ xσm −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[x̄σ ∨ ā] ∧ [xσ ∨ B̄] ∧ xσ

followed by derivations of the same shape as the ones in (4.5).

Note how the described construction can be carried out in one substitution step in-
stead of two, by using { a 7→ [σ̄A ∨ a] ∧ [σA ∨B] | a 7→ B ∈ σ }. We present it in two
separate steps for the sake of simpler exposition.

5. EXTENSION AND SUBSTITUTION IN CUT-FREE SYSTEMS

The work in [Straßburger 2012] has shown how extension and substitution can be used
in cut-free systems. Furthermore, Theorem 3.10 immediately lifts to the cut-free case:

THEOREM 5.1. [Straßburger 2012] eKS p-simulates sKS.

However, the other direction remained open in [Straßburger 2012]. The reason is
that xSKS was used to show that sSKS p-simulates eSKS, and thus, the cut played a
crucial role.

In this section we give a direct proof showing that sKS also p-simulates eKS. The
actual difficulty is that if we naively replace an instance of ext↓ by an instance of sub↓:

F{a}
ext↓ −−−−−−

F{A}
;

F{a}
sub↓ −−−−−−−−

σF{a}
(5.1)

with σ = {a 7→ A}, all occurrences of a in F{ } are replaced by A. This can lead to
an exponential blow-up, due to the presence of contraction, as shown in the following
example.
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a1 ⇔ a2 ∨ a2, a2 ⇔ a3 ∨ a3, . . . , an ⇔A

S{a1 ∨ a1}
ext↓ −−−−−−−−−−−−−−−−−−

S{a1 ∨ a2 ∨ a2}
c↓ −−−−−−−−−−−−−−−−−−

S{a1 ∨ a2}
ext↓ −−−−−−−−−−−−−−−−−−

S{a1 ∨ a3 ∨ a3}
c↓ −−−−−−−−−−−−−−−−−−

S{a1 ∨ a3}∥∥∥∥∥∥∥
S{a1 ∨ an ∨ an}

c↓ −−−−−−−−−−−−−−−−−−
S{a1 ∨ an}

ext↓ −−−−−−−−−−−−
S{a1 ∨A}∥∥∥∥∥∥∥
S{A ∨A}

c↓ −−−−−−−−−−−
S{A}

;

S{a1 ∨ a1}
sub↓ −−−−−−−−−−−−−−−−−−−−−−−

S{a2 ∨ a2 ∨ a2 ∨ a2}
c↓ −−−−−−−−−−−−−−−−−−−−−−−

S{a2 ∨ a2 ∨ a2}
sub↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

S{a3 ∨ a3 ∨ a3 ∨ a3 ∨ a3 ∨ a3}
c↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

S{a3 ∨ a3 ∨ a3 ∨ a3 ∨ a3}∥∥∥∥∥∥∥
S{an ∨ an ∨ . . . ∨ an ∨ an ∨ an}

c↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
S{an ∨ an ∨ . . . ∨ an ∨ an}

sub↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
S{A ∨A ∨ · · · ∨A ∨A}∥∥∥∥∥∥∥

S{A ∨A}
c↓ −−−−−−−−−−−

S{A}

Fig. 2. An example of an eKS derivation and a naive translation to sKS resulting in an exponential blow-up
in size.

Example 5.2. Let a1 ⇔ a2 ∨ a2, a2 ⇔ a3 ∨ a3, . . . , an ⇔ A be the extension axioms in
the eKS derivation depicted in the left part of Figure 2, whose size is is linear in n. The
naive attempt to simply replace all the instances of extension by substitutions results
in an exponential increase in size, as depicted on the right of that figure.

To overcome the problem of the exponential blow-up exhibited in Figure 2, we trans-
form the whole derivation in a first step into a derivation with the property that when-
ever we encounter an instance of extension (3.5) with extension variable a, there is
at most one other occurrence of a in the formula (namely as ā), so that the replace-
ment (5.1) — done in the second step — causes only a limited increase of the size of
the proof.

The first transformation is achieved by a rather aggressive renaming of extension
variable occurrences in the derivation. Informally, this can be described using the no-
tion of atomic flows [Guglielmi and Gundersen 2008; Guglielmi et al. 2010], which are
similar to logical flow-graphs [Buss 1991], but which only trace occurrences of literals
in the derivation: The vertices of the graph are the instances of the inference rules
— except s and m, which are ignored by atomic flows. Then, the first transformation
of our p-simulation consists of two sub-steps: first, we integrate all contraction nodes
on extension variables into the corresponding extension rule node (done in Lemma 5.3
below). This does not change the size of the atomic flow (when size is counted as num-
ber of paths), but can cause a quadratic increase in the size of the derivation. Then
we do the actual renaming that does not change the structure of the atomic flow. But
after this renaming, every extension variable labels exactly two edges in the graph,
one positively and one in negated form. This is done in Lemma 5.6.

We do not go into further details on atomic flows here, because first, they are not
needed for the formal construction, second, they are only developed for the extension-
free case and developing the theory of atomic flows for systems with extension would
go beyond the scope of this paper, and third, atomic flows do not help at all in un-
derstanding the second transformation of our simulation (done in Lemma 5.8) which
essentially performs steps of the form (5.1) and reintroduces contractions that have
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been deleted before. This has to be done in the right order to avoid the exponential
blow-up shown in Figure 2 above.

For making the first transformation mentioned above formally correct, we need to
generalize the extension rule. In particular, we need to allow extension variables to
abbreviate more than one extension formula. We clearly have to take some precautions
to avoid inconsistency.

Let E be a set of propositional variables. A variable preorder - is a a transitive and
reflexive relation on E . We write a ∼ b iff a - b and b - a. We call a substitution σ
banal if for all variables a /∈ E we have σa = a, and for all a ∈ E we have σa = b for
some b ∼ a. Note that ∼ is an equivalence relation that we can extend to all formulas
as follows: We say B ∼ C iff there is a banal σ such that σB = σC.

Now, we define a set of generalized extension axioms to be a finite set of statements

ai
∼⇔Ai, 1 ≤ i ≤ k; (5.2)

where the set {a1, . . . , ak} is equipped with a variable preorder, such that the following
conditions are fulfilled:

(1) For all i ∈ {1, . . . , k}, the variable ai must not occur in the conclusion of a proof nor
in any Aj with aj - ai, and

(2) for all i, j ∈ {1, . . . , k}, if ai ∼ aj then Ai ∼ Aj .

As before, we call the ai extension variables and the Ai extension formulas.

Notice how the standard definition of the set of extension axioms, which we now call
strict, is a special case where every equivalence class in ∼ is singleton. Also, notice how
the generalized definition allows simultaneous presence of a ∼⇔B and a ∼⇔C, as long as
B and C are in a same equivalence class under ∼.

We can now define a generalization of the extension rule given in (3.5):

F{b1 ∨ b2 ∨ · · · ∨ bk ∨B1 ∨B2 ∨ · · · ∨Bm}ẽxtext↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F{A}

(5.3)

where m, k > 0 and

— for all i ∈ {1, . . . , k} we have either bi
∼⇔ A or b̄i

∼⇔ Ā is among the (generalized)
extension axioms,

— either all b1, . . . , bk are positive atoms or all b1, . . . , bk are negated atoms,
— for all i, j ∈ {1, . . . , k}, we have bi ∼ bj ,
— for all i, j ∈ {1, . . . ,m} we have Bi ∼ Bj ,
— there is a banal substitution σ such that for all j ∈ {1, . . . ,m} we have σBj = A.

An instance of ẽxtext↓ is said to be naive if m = 0 and all bi in (5.3) are equal to each
other. We call an instance of ẽxtext↓ clever if m = 0, all bi in (5.3) are pairwise distinct,
no extension variable in A occurs above the ẽxtext↓-instance in the proof, and A does not
contain two different occurrences of a same extension variable.

We define ẽsKS to be the system obtained from sKS by adding the ẽxtext↓-rule and
allowing a set of generalized extension axioms. We call a derivation Π in ẽsKS

— naive if all instances of ẽxtext↓ in Π are naive, the set of extension axioms is strict, and
there is no instance of sub↓ in Π, and
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— clever if
(1) every instance of ẽxtext↓ in Π is clever,
(2) there is no instance of sub↓ in Π, and
(3) every extension variable occurs at most twice in each line of Π, once in posi-

tive form, and at most once in negated form, and if this is the case, the posi-
tive/negative pair can be traced up in Π to an instance of ai↓.

Clearly, every eKS-proof is at the same time also a naive ẽsKS-proof, because ext↓
is just a special case of naive ẽxtext↓. Furthermore, every naive ẽsKS-proof can trivially
be transformed into an eKS-proof by replacing all ẽxtext↓-instances by a derivation of ac↓
and ext↓.

LEMMA 5.3. Let Π be a naive ẽsKS proof with conclusion B. Then there is a naive
ẽsKS proof Π′ with conclusion B such that the rule ac↓ is never applied to an extension
variable, and such that the size of Π′ is O(|Π|2). Furthermore, Π′ has the same extension
axioms as Π.

PROOF. To obtain Π′, we iteratively permute the lowest ac↓ on an extension variable
(or a negated extension variable) down in the derivation until it vanishes. This is done
as follows (see also [Brünnler 2003b]): Consider the rule instance r immediately below
such a contraction, where r is some rule in ẽsKS. There are two cases. If r is ẽxtext↓ applied
on the freshly obtained literal in the conclusion of the contraction then our instance of
ac↓ can be removed as follows:

F{a ∨ · · · ∨ a ∨ a ∨ · · · ∨ a}
ac↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

F{a ∨ · · · ∨ a ∨ · · · ∨ a}
ẽxtext↓ −−−−−−−−−−−−−−−−−−−−−−−−−−

F{A}
;

F{a ∨ · · · ∨ a ∨ a ∨ · · · ∨ a}
ẽxtext↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

F{A}

In all other cases we can trivially permute r and ac↓:
F{a ∨ a}

ac↓ −−−−−−−−−−
F{a}

r −−−−−−−
F ′{a}

;

F{a ∨ a}
r −−−−−−−−−−−
F ′{a ∨ a}

ac↓ −−−−−−−−−−−
F ′{a}

Since the conclusion of the proof does not contain any extension variables, all ac↓ on
extension variables must eventually disappear. Now notice that the size increasing
step is permuting the contraction with non-ẽxtext↓ rules. One contraction on its way down
can increase the size of the proof by at most the height h of the derivation. Thus, if c is
the number of contractions in Π, then we have h, c ≤ |Π|, and the size of Π′ is dominated
by |Π|+ c · h, which is O(|Π|2).

Example 5.4. Figure 3 shows an example of our construction. The first derivation
in that figure is a proof in eKS and the second one is the result of applying Lemma 5.3
to it.

Remark 5.5. Note that the proof of Lemma 5.3 relies on the fact that we are cut-
free. It would not work for ẽsSKS (which is sSKS extended with ẽxtext↓) because in the
presence of cocontraction

F{A}
c↑ −−−−−−−−−−−
F{A ∧A}

or
F{a}

ac↑ −−−−−−−−−−
F{a ∧ a}

permuting down ac↓ leads to an exponential blow-up of the size of the proof.
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a1
∼⇔ b1, a3

∼⇔ b1, a1
∼⇔ b1, a3

∼⇔ b1, a1
∼⇔ b1, a3

∼⇔ b1,
a2
∼⇔ b2, a1

∼⇔ b3, a2
∼⇔ b2, a1

∼⇔ b3, a2
∼⇔ b2, a1

∼⇔ b3,
a
∼⇔ b, b

∼⇔ C a
∼⇔ b, b

∼⇔ C b1
∼⇔ C, b2

∼⇔ C, a
∼⇔ b, b

∼⇔ C a
∼⇔ b, b

∼⇔ C
b3
∼⇔ C; b3

∼⇔ C; b3
∼⇔ C;

a1 ∼ a2 ∼ a3, a1 ∼ a2 ∼ a3, a1 ∼ a2 ∼ a3,
b1 ∼ b2 ∼ b3. b1 ∼ b2 ∼ b3. b1 ∼ b2 ∼ b3.

i↓ −−−−−
a ∨ ā

w↓ −−−−−−−−−−−−−
a ∨ a ∨ ā ∨ ā

ac↓ −−−−−−−−−−−−−
a ∨ a ∨ ā

ext↓ −−−−−−−−−
a ∨ a ∨ b̄

ext↓ −−−−−−−−−
a ∨ b ∨ b̄

ext↓ −−−−−−−−−
b ∨ b ∨ b̄

ac↓ −−−−−−−−
b ∨ b̄

ext↓ −−−−−
C ∨ b̄

ext↓ −−−−−−
C ∨ C̄

i↓ −−−−−
a ∨ ā

w↓ −−−−−−−−−−−−−
a ∨ a ∨ ā ∨ ā

ẽxtext↓ −−−−−−−−−−−−−
a ∨ a ∨ b̄

ẽxtext↓ −−−−−−−−−
a ∨ b ∨ b̄

ẽxtext↓ −−−−−−−−−
b ∨ b ∨ b̄

ẽxtext↓ −−−−−−−−
C ∨ b̄

ẽxtext↓ −−−−−−
C ∨ C̄

i↓ −−−−−−−−
a1 ∨ ā1

w↓ −−−−−−−−−−−−−−−−−−−
a1 ∨ a2 ∨ ā3 ∨ ā1

ẽxtext↓ −−−−−−−−−−−−−−−−−−−
a1 ∨ a2 ∨ b̄1

ẽxtext↓ −−−−−−−−−−−−−
a1 ∨ b2 ∨ b̄1

ẽxtext↓ −−−−−−−−−−−−−
b3 ∨ b2 ∨ b̄1

ẽxtext↓ −−−−−−−−−−−−
C ∨ b̄1

ẽxtext↓ −−−−−−−
C ∨ C̄

i↓ −−−−−−−−
a1 ∨ ā1

w↓ −−−−−−−−−−−−−−−−−−−
a1 ∨ a2 ∨ ā3 ∨ ā1

sub↓ −−−−−−−−−−−−−−−−−−−
b1 ∨ a2 ∨ b̄1 ∨ b̄1

ẽxtext↓ −−−−−−−−−−−−−−−−−−
b1 ∨ a2 ∨ b̄1

sub↓ −−−−−−−−−−−−−
b1 ∨ b2 ∨ b̄1

ẽxtext↓ −−−−−−−−−−−−
b1 ∨ b2 ∨ b̄1

sub↓ −−−−−−−−−−−−
b3 ∨ b2 ∨ b̄3

ẽxtext↓ −−−−−−−−−−−−
b3 ∨ b2 ∨ b̄3

sub↓ −−−−−−−−−−−−
C ∨ C ∨ C̄

ẽxtext↓ −−−−−−−−−−−
C ∨ C̄

i↓ −−−−−−−−
a1 ∨ ā1

w↓ −−−−−−−−−−−−−−−−−−−
a1 ∨ a2 ∨ ā3 ∨ ā1

sub↓ −−−−−−−−−−−−−−−−−−−
b1 ∨ a2 ∨ b̄1 ∨ b̄1

c↓ −−−−−−−−−−−−−−−−−−
b1 ∨ a2 ∨ b̄1

sub↓ −−−−−−−−−−−−−
b1 ∨ b2 ∨ b̄1

sub↓ −−−−−−−−−−−−
b3 ∨ b2 ∨ b̄3

sub↓ −−−−−−−−−−−−
C ∨ C ∨ C̄

c↓ −−−−−−−−−−−
C ∨ C̄

Fig. 3. Left to right: An example of an eKS derivation and constructions of Lemmas 5.3, 5.6, and reduc-
tions (5.5) and (5.6) of Lemma 5.8, resulting in an ẽsKS derivation without contractions on extension vari-
ables, a clever ẽsKS derivation, an intermediate ẽsKS derivation, and a sKS derivation, respectively. The
upper row contains respectively strict or generalized extension axioms.

The next lemma says that every naive ẽKS proof with no contractions on extension
variables can be transformed into a clever one of the same size. This time, however,
the assigned set of extension axioms has to be transformed into a set of generalized
ones.

LEMMA 5.6. Let Π be a naive ẽsKS proof with conclusion B and with no contrac-
tions on extension variables. Then there is a clever ẽsKS proof Π′ of size |Π′| = |Π| with
conclusion B and with no contractions on extension variables. The number of extension
axioms of Π′ is linear in |Π|.

PROOF. In the given proof Π we proceed from top to bottom and whenever an ex-
tension variable occurrence a is introduced—this can happen in the conclusion of ai↓,
or w↓, or ẽxtext↓—we replace it by a fresh variable a′. In order to keep the proof a valid
ẽsKS proof, we have to do two things:

(1) We have to trace this occurrence of a down in the proof and replace it everywhere
by a′. Eventually this must reach the premise of an ẽxtext↓-instance because a cannot
occur in the conclusion of the proof. Since there is no contraction duplicating a,
every rule instance remains valid, except for the ẽxtext↓-instance in whose premise a′
now occurs.

(2) In order to make this ẽxtext↓-instance
H{a1 ∨ a2 ∨ · · · ∨ al ∨ a′ ∨ a ∨ a ∨ · · · ∨ a}ẽxtext↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

H{A}
valid again, where a1, a2, · · · , al are already renamed variables, we have to add an
extension axiom. If a and a′ are positive atoms, we add the axiom a′

∼⇔ A and the
equivalence a′ ∼ a. If a and a′ are negative atoms, then we add ā′

∼⇔ Ā and the
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equivalence ā′ ∼ ā. This does not violate the conditions on sets of generalized
extension axioms. If there are no occurrences of a left in the proof, we can remove
a
∼⇔A (or ā ∼⇔ Ā) from the set of extension axioms.

Now we have three cases.

— If we encounter an ai↓-instance with conclusion F{B ∧ [ā ∨ a]} where a is an exten-
sion variable, we replace it by an ai↓-rule with conclusion F{B ∧ [ā′ ∨ a′]}, where a′
is fresh. Then we perform Steps 1 and 2 above for the new occurrence of ā′ and the
new occurrence of a′.

— If we encounter a w↓-instance with premise F{B} and a conclusion F{B ∨ C}, we
perform Steps 1 and 2 above for each occurrence of an extension variable in C. In
particular, if the same extension variable a appears more than once in C, then each
occurrence is replaced by a new fresh variable.

— If we encounter an instance of ẽxtext↓, then all extension variables in the premise of
ẽxtext↓ must already have been renamed (since we proceed from top to bottom in the
proof) and belong to the same equivalence class of ∼. So, assume it is

F{b1 ∨ b2 ∨ · · · ∨ bk}ẽxtext↓ −−−−−−−−−−−−−−−−−−−−−−−
F{C}

(5.4)

As in the case for w↓, we have to perform Steps 1 and 2 above for each occurrence
of an extension variable in C. As a consequence, the C in the conclusion is replaced
by some formula C ′, whose extension variables are all fresh and mutually distinct.
But this makes the instance (5.4) of ẽxtext↓ invalid. In order to make it valid again, we
have to add for every i ∈ {1, . . . , k} the extension axiom bi

∼⇔ C ′ (or b̄i
∼⇔ C̄ ′). Again,

this preserves the two conditions for sets of generalized extension axioms.

Then, the resulting proof Π′ is clever, and clearly, no renaming changes the size of
the proof, so that |Π′| = |Π|. The total number of new extension axioms is bounded by
2 ·nai↓+ sw↓+ sext↓, where nai↓ is the total number of ai↓ rules in Π, and sw↓ and sext↓
are the total size of the formulas introduced in conclusions of w↓ and ẽxtext↓, respectively.
Clearly, the sum is O(|Π|).

Example 5.7. To continue Example 5.4, the third derivation in Figure 3 shows the
result of applying Lemma 5.6.

LEMMA 5.8. Let Π be a clever ẽsKS proof with conclusion B. Then there is an sKS
proof Π′ with conclusion B and size O(|Π|12

).

PROOF. This transformation is done in two steps. In the first one, we proceed from
top to bottom and replace every instance of ẽxtext↓ in Π, to obtain an intermediary ẽsKS
proof Π∗, as follows:

F{b1 ∨ · · · ∨ bk ∨B1 ∨ · · · ∨Bm}ẽxtext↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F{A}

;

F{b1 ∨ · · · ∨ bk ∨B1 ∨ · · · ∨Bm}sub↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F ′{A ∨ · · · ∨A ∨B1 ∨ · · · ∨Bm}ẽxtext↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

F ′{A}
(5.5)

where the used substitution is {b1 7→ A, . . . , bk 7→ A}, and F ′{ } is obtained from F{ }
by applying this substitution. Since Π is clever, each bi occurs at most once (in the form
of b̄i) in F{ } and the path of this b̄i ends in another ẽxtext↓, which has as conclusion a
formula from which Ā can be obtained by renaming extension variables occurring in A.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



On the Power of Substitution in the Calculus of Structures A:17

In particular, we have Bi ∼ Bj and Bi ∼ A, for all i, j ∈ {1, . . . ,m}. Thus the instance
of ẽxtext↓ remains valid. Furthermore, in Π∗, all instances of ẽxtext↓ are such that k = 0 and
A does not contain two different occurrences of a same extension variable.

The transformation from Π to Π∗ can increase the size of the proof. The length of Π∗

is bound by 2 · l where l is the length of Π, and the width of Π∗ is bound by w ·e ·f where
w is the width of Π, and e is the maximal number of extension variables in a single
formula in Π, and f is the maximal size of an extension formula appearing in Π. Since
we have e, f 6 w, that entails |Π∗| is O(|Π|3).

In the second step of our transformation, we remove all the resulting ẽxtext↓-instances
in Π∗ as follows, again proceeding from top to bottom:

F{B1 ∨B2 ∨ · · · ∨Bm}ẽxtext↓ −−−−−−−−−−−−−−−−−−−−−−−−−−
F{A}

;

F{B1 ∨B2 ∨ · · · ∨Bm}sub↓ −−−−−−−−−−−−−−−−−−−−−−−−−−
F ′{A ∨A ∨ · · · ∨A}

{c↓}
∥∥∥∥∥

F ′{A}

(5.6)

where the used substitution σ in the sub↓ is a renaming of extension variables that
must exist by definition of ẽxtext↓. Since σ changes the context F{ } into F ′{ } it has an
effect on the instances of ẽxtext↓ below in the derivation:

G{C1 ∨ C2 ∨ · · · ∨ Cl}ẽxtext↓ −−−−−−−−−−−−−−−−−−−−−−−−−
G{D}

;
G′{C ′1 ∨ C ′2 ∨ · · · ∨ C ′l}ẽxtext↓ −−−−−−−−−−−−−−−−−−−−−−−−−−

G′{D}
(5.7)

It remains to show that each of them remains a valid instance—the validity of the
other rules is clearly not affected by the substitution. Now, note that σ is banal, i.e., just
a renaming of extension variables occurring in some extension formulas. In particular,
the image of such an extension formula under σ is another extension formula in the
same equivalence class of ∼. Thus, every C ′i can still be substituted to D. Furthermore,
if C ′i, C ′j share an extension variable, they must be the same, since every extension
formula is fresh when introduced in Π. This means there is a substitution that can
rewrite all C ′i into D. Thus, the instance of ẽxtext↓ in the right of (5.7) remains valid if
the one on the left is valid. This guarantees that we can perform (5.6) for all instances
of ẽxtext↓ in Π∗, and the resulting proof Π′ is well defined.

The transformation Π∗ 7→ Π′ yields an increase in size which is the consequence
of the increase in length alone, since all of the substitutions in (5.6) do not increase
size. They are simply renamings of extension variables. The increase in length (using
general contraction) is bounded by e · w, where e stands for the number of ẽxtext↓ rules
in Π∗, and w for width of Π∗. With e, w ≤ |Π∗|, one gets that the size of the derivation
with ẽxtext↓ removed is O(|Π∗|+ e · w), that is, O(|Π∗|2).

Finally we can apply Proposition 3.2 to get a derivation in sKS. It is well known
that this yields another quadratic increase in size of the derivation, [Brünnler and Tiu
2001], thus the overall size of Π′ is O(|Π∗|4), and combined with the previous step,
O(|Π|12

).

Example 5.9. The fourth derivation in Figure 3 shows the result of exhaustively
applying the reduction in (5.5) to the third derivation in that figure. Finally, the last
derivation in that figure shows the result of the exhaustive application of (5.6). The
full sequence of derivations in Figure 3 depicts the construction of an sKS proof from
an eKS one.
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THEOREM 5.10. sKS p-simulates eKS.

PROOF. As observed before, a given eKS proof Π is a naive ẽsKS proof. Now, we
apply Lemmas 5.3, 5.6, and 5.8, giving us a sKS proof Π′ with the same conclusion as
Π and with size of O(|Π|24

).

The main idea of the construction in this section is rather simple: diversify extension
variables as much as possible, i.e. whenever two extension variables do not ‘communi-
cate’ via structural rules, which is to say that they do not belong to a same connected
component in the assigned proof net or atomic flow (graph) [Guglielmi and Gundersen
2008; Guglielmi et al. 2010], they should be named differently. We show that such a
construction is possible, and we give sharp bounds on complexity. However, there is a
simpler way to convince oneself that the construction is polynomial, since there is an
important invariant in the construction: if Π is an eKS proof of A, every formula in
every step of the transformation of Π to an sKS proof contains at most |Π|2 occurrences
of a same extension variable. In the same time, the total number of the extension vari-
ables introduced in the construction is polynomial (quadratic) in the size of Π.

6. FINAL REMARKS

In this paper we show a direct polynomial simulation of Frege systems with substitu-
tion in CoS with substitution, and we show that analytic CoS systems eKS and sKS
with extension and substitution are p-equivalent. The Calculus of Structures is in fo-
cus of this work, as it is a first-class citizen for systems with both normalization and
proof search. In fact, it is used as the basis of the Profound prover [Chaudhuri 2013a],
which is an interactive theorem prover using subformula linking as an interaction
method [Chaudhuri 2013b].

Moreover, in analytic systems, extension is naturally deep, reflecting the original
Tseitin’s transformation, making CoS the adequate framework for our discussion. Still,
we note that both techniques demonstrated in our two proofs can be, mutatis mutandis,
repeated in context of the prototypical representative of structural proof systems -
Gentzen’s LK, provided one allows extension rule to act deep inside a formula. We
believe this fact to be a confirmation that both our results rely on features of structural
systems in general.

Our result of direct simulation of sF in sSKS shows how substitution has the same
power as extension in the presence of cut using the techniques of structural systems
alone. Not only that it also gives a new proof of the p-equivalence of sF and eF using
the simple, elegant steps from structural proof theory, it remedies a somewhat inferior
status of structural proof theory, where facts about its complexity rely on results in
other formalisms. Furthermore, while the result of polynomial simulation is not new,
the fact that there is a polynomial transformation of sF in sSKS doesn’t say anything
about the simulation itself. In particular, it is possible that a polynomial transforma-
tion involves global transformation steps, as it is the case in Section 5. What we have
shown is that the destructive effect of substitution in structural systems where it acts
on entire sequents and prevents us from having access to the substituted formula,
can be fixed by devising a clever substitution that can preserve access to the original
formula. Furthermore, this is a local transformation of polynomial price.

The construction showing that SKS p-simulates Frege systems is very similar
to the one showing that tree-like Frege systems p-simulate (dag-like) Frege sys-
tems [Krajı́ček 1996]. To show that SKS and tree-like Frege systems p-simulate each
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other is as straightforward as showing that SKS and Gentzen systems p-simulate each
other [Brünnler and Tiu 2001]. This means that our construction of simulating sF in
sSKS can also be used to give a direct proof that tree-like Frege systems with substitu-
tion can p-simulate dag-like Frege systems with substitution, which has been shown
by other means in [Bonet and Galesi 1997].

One of the most important and very hard open problems in proof complexity is es-
tablishing the relation between cut and extension/substitution, usually formulated by
asking if Frege systems p-simulate Frege systems with substitution. We already know
that in the presence of cut, systems with extension and substitution are p-equivalent,
and since [Straßburger 2012], we can ask the same question in cut-free systems. This
is precisely the result of Section 5, pointing to the conclusion that the substitution vs.
extension result is orthogonal to the presence of cut, and is not simply a consequence
of a possible situation that Frege is the most economic proof system we have, i.e. as
economical as eF or sF.

Assume for a second the opposite conclusion from what we have shown in Section 5,
i.e., assume that substitution does not p-simulate extension in an analytic calculus of
structures. In that case, cut would act as a p-equalizer for systems with extension and
substitution, and would be capable of bridging the gap between the two in the absence
of cut. Such a result would perhaps point to the possibility that Frege p-simulates
Frege with substitution. However, the actual result of Section 5, provides no evidence
in support of such claim.

In addition to the well-known and hard open problem of Frege vs. Frege with ex-
tension, there are others. In particular, one can formulate an analytic version of the
problem: does KS p-simulate sKS or is there a class of tautologies witnessing separa-
tion? We strongly suspect latter to be the case, but negative complexity results in deep
inference appear to be difficult, in general. One exception to that is a known fact [Br-
uscoli and Guglielmi 2009] that Statman tautologies [Statman 1978] have polynomial
proofs in KS but no polynomial proof in cut-free LK. Another open problem is whether
the separation of the two systems lifts to the case of sKS and LK with substitution.

Finally, a more pressing and maybe more delicate issue is robustness [Cook and
Reckhow 1979], which says that any two Frege systems p-simulate each other, and
therefore we are able to speak of the Frege system for classical logic. Robustness is
enjoyed by any system where composition of derivations can be done at polynomial
price, as it is the case with formalisms with cut. In particular, one can establish p-
simulation results between Frege and calculus of structures as formalisms, relying on
their robustness to abstract away from specific proof systems and axiomatizations of
rules. However, systems without cut do not come equipped with a pre-defined notion of
robustness, and it is not clear how such a notion should be formulated. The reason is
that one has to define what it means to have an analytic proof system or even a cut-free
system in the broadest sense. For example, it is well known that different cut-free se-
quent calculi do not p-simulate each other, not to speak of analytic tableaux, resolution,
or truth tables, which are all incomparable with respect to p-simulation [D’Agostino
1992; Brünnler 2003b]. However, it has long been known [Guglielmi 2003; Brünnler
and Tiu 2001], and recently been investigated in a systematic way [Das 2012], that KS
can p-simulate truth tables, analytic tableaux, tree-like resolution, and tree-like cut-
free sequent calculi. It is conjectured that it also p-simulates dag-like sequent calculi
and dag-like resolution.

This makes KS a good candidate for the cut-free system. In particular the formu-
lation of KS is independent of the presence of the constants t and f for truth and fal-
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sum, respectively. This has first been observed in [Straßburger 2012] and formally
proved in [Das 2013]. This proof can easily be extended to the presence of exten-
sion/substitution: the only critical case is when the extension formula is a constant,
i.e., we have extension axioms ai ⇔ t or ai ⇔ f. But in that pathological case the naı̈ve
method of eliminating extension can be applied without the exponential blow-up that
happens in the general case.

Another important observation is related to the co-contraction rule c↑ of SKS which
is analytic in the sense that all of the ingredients of the premise are present in the
conclusion, but when added to KS, it allows for quasi-polynomial simulation of Frege
systems [Jeřábek 2009; Bruscoli et al. 2010]. This gives us, a priori, four inference rules
for proof compression by which KS can be augmented: cut, co-contraction, extension,
and substitution. The contribution of this paper is to show that there is no difference
between extension and substitution, with respect to p-simulation. As observed by Das1,
substitution can p-simulate atomic co-contraction ac↑ when co-weakening is present:
just use the substitution σ = {a 7→ a ∧ a} (respectively σ = {a 7→ a ∨ a}), and then use
a series of contractions and co-weakenings to undo the substitution in the context of
the ac↑-instance to be simulated. However, it is not clear whether such a result can be
obtained in the absence of co-weakening.

Finally, the relation between cut and substitution remains the most prominent open
problem in this area.
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Kai Brünnler and Alwen Fernanto Tiu. 2001. A Local System for Classical Logic. In LPAR 2001 (LNAI),
R. Nieuwenhuis and A. Voronkov (Eds.), Vol. 2250. Springer, 347–361.

Paola Bruscoli and Alessio Guglielmi. 2009. On the Proof Complexity of Deep Inference. ACM Transactions
on Computational Logic 10, 2 (2009), 1–34. Article 14.

Paola Bruscoli, Alessio Guglielmi, Tom Gundersen, and Michel Parigot. 2010. A Quasipolynomial Cut-
Elimination Procedure in Deep Inference via Atomic Flows and Threshold Formulae. In LPAR-16
(LNCS), Vol. 6355. Springer-Verlag, 136–153.

Samuel R. Buss. 1991. The undecidability of k-provability. Annals of Pure and Applied Logic 53 (1991),
72–102.

Kaustuv Chaudhuri. 2013a. Profound: a linking-based interactive prover. (2013). Available at: http://
chaudhuri.info/software/profound/.

1Personal communication.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

http://chaudhuri.info/software/profound/
http://chaudhuri.info/software/profound/


On the Power of Substitution in the Calculus of Structures A:21

Kaustuv Chaudhuri. 2013b. Subformula Linking as an Interaction Method. In Proceedings of the 4th Confer-
ence on Interactive Theorem Proving (ITP) (Lecture Notes in Computer Science), Sandrine Blazy, Chris-
tine Paulin-Mohring, and David Pichardie (Eds.), Vol. 7998. Springer, 386–401.

Kaustuv Chaudhuri, Nicolas Guenot, and Lutz Straßburger. 2011. The Focused Calculus of Structures. In
CSL’11 (LIPIcs), Marc Bezem (Ed.), Vol. 12. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 159–
173.

Stephen A. Cook and Robert A. Reckhow. 1979. The Relative Efficiency of Propositional Proof Systems. The
Journal of Symbolic Logic 44, 1 (1979), 36–50.

Marcello D’Agostino. 1992. Are tableaux an improvement on truth-tables? Journal of Logic, Language and
Information 1 (1992), 235–252.

Anupam Das. 2012. Complexity of Deep Inference via Atomic Flows. In Computability in Europe (LNCS),
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Jan Krajı́ček. 1996. Bounded Arithmetic, Propositional Logic and Complexity Theory. Cambridge University
Press.
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