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Abstract. We investigate the question of what constitutes a proof whenquanti-
fiers and multiplicative units are both present. On the technical level this paper
provides two new aspects of the proof theory of MLL2 with units. First, we give
a novel proof system in the framework of the calculus of structures. The main
feature of the new system is the consequent use of deep inference, which allows
us to observe a decomposition which is a version of Herbrand’s theorem that is
not visible in the sequent calculus. Second, we show a new notion of proof nets
which is independent from any deductive system. We have “sequentialisation”
into the calculus of structures as well as into the sequent calculus. Since cut elim-
ination is terminating and confluent, we have a category of MLL2 proof nets. The
treatment of the units is such that this category is star-autonomous.

1 Introduction

The question of when two proofs are the same is important for proof theory and its
applications. It comes down to the question of which information contained in a proof
is essential, and which information is purely bureaucratic, due to the chosen deductive
system. One of the first results in that direction is Herbrand’s theorem which allows a
separation between the quantifiers and the propositional fragment of first order classical
predicate logic. The work on expansion trees by Miller [19] shows how Herbrand’s
result can be generalized to higher order. In this paper we present a similar result for
linear logic. Our work is motivated by the desire to find eventually a general treatment
for the quantifiers, independent from the propositional fragment of the logic (see the
related work by McKinley [18]).

The first contribution of this paper is a presentation ofMLL2 in the calculus of
structures, which is a new deductive formalism usingdeep inference. That means that
inferences are allowed anywhere deep inside a formula, verysimilar to what happens
in term rewriting. As a consequence of this freedom we can show a decomposition the-
orem, which is not possible in the sequent calculus, and which can be seen as a version
of Herbrand’s Theorem forMLL2. Secondly, we give a combinatorial presentation of
MLL2 proofs that we call hereproof nets(following the tradition) and that quotient
away irrelevant rule permutations in the deductive systems(sequent calculus and cal-
culus of structures). The identifications made by these proof nets are consistent with
ones forMLL (with units) made by star-autonomous categories [1, 16, 17]. The main
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Fig. 1. Sequent calculus system for MLL2

motivation for these proof nets is to exhibit the precise relation between deep inference
and the existing presentations ofMLL2-proofs: sequent calculus, Girard’s proof nets
with boxes [9], and Girard’s proof nets with jumps [10]. Our proof nets are the first to
accomodate the quantifiers and the multiplicative units together without boxes. Further-
more, the proof nets proposed here are independent from the deductive system, i.e., we
do not have the strong connection between links in the proof net and rule applications in
the sequent calculus. However, we have “sequentialization” into the sequent calculus as
well as into the calculus of structures. As expected, there is a confluent and terminating
cut elimination procedure, and thus, the two conclusion proof nets form a category.

2 MLL2 in the sequent calculus

Let us recall howMLL2 is presented in the sequent calculus. LetA = {a, b, c, . . .} be
a countable set ofpropositional variables. Then the setF of formulasis generated by

F ::= ⊥ | 1 | A | A ⊥ | [F OF ] | (F �F ) | ∀A. F | ∃A. F

Formulas are denoted by capital Latin letters (A, B, C, . . .). Linear negation(−)⊥ is
defined for all formulas by the De Morgan laws.Sequentsare finite lists of formulas,
separated by comma, and are denoted by capital Greek letters(Γ, ∆, . . .). The notions
of free andbound variableare defined in the usual way, and we can always rename
bound variables. In view of the later parts of the paper, and in order to avoid changing
syntax all the time, we use the following syntactic conventions:

(i) We always put parentheses around binary connectives. For readability we use
[. . .] for O and(. . .) for �.

(ii) We omit parentheses if they are superfluous under the assumption thatO and�
associate to the left, e.g.,[AO B OC O D] abbreviates[[[AO B] OC] O D].

(iii) The scope of a quantifier ends at the earliest possible place (and not at the latest
possible place as usual). This helps saving unnecessary parentheses. For example,
in [∀a.(a � b)O∃c.c O a], the scope of∀a is (a � b), and the scope of∃c is justc.
In particular, thea at the end is free.

The inference rules forMLL2 are shown in Figure 1. In the following, we will call this
systemMLL2Seq. As shown in [9], it has the cut elimination property:

2.1 Theorem The cut rule
⊢ Γ, A ⊢ A⊥, ∆

cut
⊢ Γ, ∆

is admissible forMLL2Seq.
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in A.

Fig. 2. Deep inference system for MLL2

3 MLL2 in the calculus of structures

We now present a deductive system forMLL2 based on deep inference. We use the cal-
culus of structures, in which the distinction between formulas and sequents disappears.
This is the reason for the syntactic conventions introducedabove.1

The inference rules work directly (as rewriting rules) on the formulas. The system
for MLL2 is shown in Figure 2. There,S{ } stands for an arbitrary (positive) formula
context. We omit the braces if the structural parentheses fill the hole. E.g.,S[AOB] ab-
breviatesS{[AOB]}. The system in Figure 2 is calledMLL2DI↓. We consider here only
the so-calleddown fragmentof the system, which corresponds to the cut-free system
in the sequent calculus.2 Note that the∀-rule of MLL2Seq is in MLL2DI↓ decomposed
into three pieces, namely,e↓, u↓, andf↓. We also need an explicit rule for associativity
which is “built in” the sequent calculus. The relation between the�-rule and the rules
ls andrs (calledleft switchandright switch) has already in detail been investigated by
several authors [20, 3, 8, 11]. The following theorem ensures thatMLL2DI↓ is indeed a
deductive system forMLL2.

3.1 Theorem For every proof of ⊢ A1, . . . , An in MLL2Seq, there is a proof of
[A1 O · · ·OAn] in MLL2DI↓, and vice versa.

As for MLL2Seq, we also have forMLL2DI↓ the cut elimination property, which can
be stated as follows:

3.2 Theorem The cut rule
S(A�A⊥)

i↑
S{⊥}

is admissible forMLL2DI↓.

1 In the literature on deep inference, e.g., [5, 11], the formula (a�[b O(a⊥
� c)]) would be writ-

ten as(a, [b, (a⊥, c)]), while without our convention it would be written asa�(b O(a⊥
� c)).

Our convention can therefore be seen as an attempt to please both communities. In particular,
note that the motivation for the syntactic convention (iii)above is the collapse of theO on the
formula level and the comma on the sequent level, e.g.,[∀a.(a� b) O ∃c.c O a] is the same as
[∀a.(a, b),∃c.c, a].

2 Theup fragment(which corresponds to the cut in the sequent calculus) is obtained by dualizing
the rules in the down fragment, i.e., by negating and exchanging premise and conclusion. See,
e.g., [21, 4, 5, 13] for details.
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S{∃a.∀b.A}
x

S{∀b.∃a.A}
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S{1}

S{∃a.⊥}
⊥f↓

S{⊥}

S{∃a.b}
af↓

S{b}

S{∃a.b⊥}
âf↓

S{b⊥}
in af↓ andâf↓,
a is different fromb

Fig. 3. Towards a local system for MLL2

We write

A

MLL2DI↓
‖
‖ D

B

for denoting a derivationD in MLL2DI↓ with premiseA

and conclusionB. The following decomposition theorem forMLL2DI↓ can be seen as a
version of Herbrand’s theorem forMLL2 and has no counterpart in the sequent calculus.

3.3 Theorem

Every derivation

1

MLL2DI↓
‖
‖ D

C

can be transformed into

1

{ai↓,⊥↓, 1↓, e↓} ‖
‖ D1

A

{α↓, σ↓, ls, rs, u↓} ‖
‖ D2

B

{n↓, f↓} ‖
‖ D3

C

.

This decomposition is obtained by permuting all instances of ai↓,⊥↓, 1↓, e↓ up
and permuting all instances ofn↓, f↓ down. There are two versions of the “switch” in
MLL2DI↓, the left switchls, and theright switchrs. For Thm. 3.1, thels-rule would be
sufficient, but for obtaining the decomposition in Thm. 3.3 we also need thers-rule.

If a derivationD uses only the rulesα↓, σ↓, ls, rs, u↓, then premise and conclusion
of D (and every formula in between the two) must contain the same atom occurrences.
Hence, theatomic flow-graph[6, 12] of the derivationD defines a bijection between the
atom occurrences of premise and conclusion ofD . Here is an example of a derivation
together with its flow-graph. (We left some some applications ofα↓ andσ↓ implicit.)

∀a.∀c.([ ⊥
O ] �[ ⊥

O ])
ls

∀a.∀c.[ ⊥
O( �[ ⊥

O ])]
rs

∀a.∀c.[ ⊥
O[( �

⊥) O ]]
u↓

∀a.[∃c. ⊥
O ∀c.[( �

⊥) O ]]
u↓

∀a.[∃c. ⊥
O[∃c.( �

⊥) O ∀c. ]]
u↓

[∀a.∃c. ⊥
O ∃a.[∃c.( �

⊥) O∀c. ]]

∀a.∀c.([a⊥
O a] �[c⊥ O c])

ls
∀a.∀c.[a⊥

O(a �[c⊥ O c])]
rs

∀a.∀c.[a⊥
O[(a � c⊥) O c]]

u↓
∀a.[∃c.a⊥

O ∀c.[(a � c⊥) O c]]
u↓

∀a.[∃c.a⊥
O[∃c.(a � c⊥) O ∀c.c]]

u↓
[∀a.∃c.a⊥

O ∃a.[∃c.(a� c⊥) O∀c.c]]

(1)

In the sequent calculus the∀-rule has a non-local behavior, in the sense that for applying
the rule we need some global knowledge about the contextΓ , namely, that the variable
a does not appear freely in it. This is the reason for the boxes in [9] and the jumps
in [10]. In the calculus of structures this “checking” whether a variable appears freely is
done in the rulef↓, which is as non-local as the∀-rule in the sequent calculus. However,
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with deep inference, this rule can be made local, i.e., reduced to an atomic version (in
the same sense as the identity axiom can be reduced to an atomic version). For this,
we need an additional set of rules which is shown in Figure 3 (again, we show only
the down fragment), and which is calledLf↓. Clearly, all rules are sound, i.e., proper
implications ofMLL2. Now we have the following:

3.4 Theorem

Every derivation

B

{n↓, f↓} ‖
‖ D

C

can be transformed into

B

{n↓} ∪ Lf↓ ‖
‖ D

′

C

, and vice versa.

4 Proof nets for MLL2

For defining proof nets forMLL2, we follow the ideas presented in [23, 17] where the
axiom linking of multiplicative proof nets has been replaced by a linking formula to
accommodate the units1 and⊥. In such a linking formula, the ordinary axiom links are
replaced by�-nodes, which are then connected byOs. A unit can then be attached to a
sublinking by another�, and so on. Here we extend the syntax for the linking formula
by an additional construct to accommodate the quantifiers. Now, the setL of linking
formulasis generated by the grammar

L ::= ⊥ | (A �A
⊥) | (1 �L ) | [L OL ] | ∃A. L

In [23, 17] a proof net consists of the sequent forest and the linking formula. The
presence of the quantifiers, in particular, the presence of instantiation and substitution,
makes it necessary to expand the structure of the sequent in the proof net. The setE of
expanded formulas3 is generated by

E ::= ⊥ | 1 | A | A ⊥ | [E O E ] | (E � E ) | ∀A. E | ∃A. E | EA. E | ∃∃∃∃∃∃∃∃∃A. E

There are only two additional syntactic primitives: theE, calledvirtual existential quan-
tifier, and the∃∃∃∃∃∃∃∃∃, calledbold existential quantifier. An expanded sequentis a finite list
of expanded formulas, separated by comma. We denote expanded sequents by capi-
tal Greek letters (Γ , ∆, . . . ). For disambiguation, the formulas/sequents introduced in
Section 2 (i.e., those withoutEand∃∃∃∃∃∃∃∃∃) will also be calledsimple formulas/sequents.

In the following we will identify formulas with their syntaxtrees, where the leaves
are decorated by elements ofA ∪ A ⊥ ∪ {1,⊥}. We can think of the inner nodes as
decorated either with the connectives/quantifiers�, O, ∀a, ∃a, ∃∃∃∃∃∃∃∃∃a, Ea, or with the
whole subformula rooted at that node. For this reason we willuse capital Latin letters
(A, B, C, . . . ) to denote nodes in a formula tree. We writeA ¤ B if A is a (not
necessarily proper) ancestor ofB, i.e., B is a subformula occurrence inA. We writelΓ (resp.lA) for denoting the set of leaves of a sequentΓ (resp. formulaA).

4.1 Definition A stretchingσ for a sequentΓ consists of two binary relationsñσ+
andñσ− on the set of nodes ofΓ (i.e., its subformula occurrences) such thatñσ+ andñσ−
are disjoint, and wheneverAñσ+ B or Añσ− B thenA = ∃∃∃∃∃∃∃∃∃a.A′ with A′ ¤ B in Γ .

3 This is almost the same structure as Miller’sexpansion trees[19]. The idea is to code a formula
and its “expansion” together in the same syntactic object. But our case is simpler than in [19]
because we do not have to deal with duplication.
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Fig. 4. Two ways of writing a proof graph

A stretching consists of edges connecting∃∃∃∃∃∃∃∃∃-nodes with some of its subformulas,
and these edges can be positive or negative. Their purpose isto mark the places of the
substitution of the atoms quantified by the∃∃∃∃∃∃∃∃∃. When writing an expanded sequentΓ with
a stretchingσ, denoted byΓ � σ, we will draw these edges either insideΓ when it is
written as a tree, or belowΓ when it is written as string. The positive edges are dotted
and the negative ones are dashed. Examples are shown in Figures 4, 6 and 7 below.

4.2 Definition A pre-proof graph4 is a quadruple, denoted byP
ν
⊲ Γ �σ, whereP a

linking formula,Γ is an expanded sequent,σ is a stretching forΓ , andν is a bijectionlΓ
ν
→ lP such that only dual atoms/units are paired up. IfΓ is simple, we say that

the pre-proof graph issimple. In this caseσ is empty, and we can simply writeP
ν
⊲ Γ .

ForB ∈ lΓ we writeBν for its image underν inlP . When we draw a pre-proof
graphP

ν
⊲ Γ � σ, then we writeP aboveΓ (as trees or as strings) and the leaves are

connected by edges according toν. Figure 4 shows an example written in both ways.

4.3 Definition A switchings of a pre-proof graphP
ν
⊲ Γ � σ is the graph that is

obtained by removing all stretching edges and by removing for eachO-node one of the
two edges connecting it to its children. A pre-proof graphP

ν
⊲ Γ � σ is multiplicatively

correct if all its switchings are acyclic and connected [7].

4 The “pre-” means that we do not yet know whether it really comes from an actual proof. The
concept of a “not yet proof” is in the literature (e.g., [7]) also called “proof structure”.
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(1)
∃a.∃c.[(a � a⊥) O(c � c⊥)]

∃c.a⊥,∀a.[∃c.(a � c⊥) O ∀c.c]

(2)
∃a.∃c.[(a� a⊥)O(c � c⊥)]

∀a.∃b.a⊥, ∃a.[∃d.(a� c⊥)O ∀c.c]

(3)
∃a.[∃c.(a � a⊥) O∃c.(c � c⊥)]

∀a.∃c.a⊥,∃a.[∃c.(a � c⊥)O ∀c.c]

(4)
∃a.∃c.[(a� a⊥)O(c � c⊥)]

∃a.∀c.a⊥,∃a.[∃c.(a � c⊥) O ∀c.c]

(5)
∃a.∃c.[(a � a⊥) O(c � c⊥)]

∀a.∃c.a⊥,∃a.[(∃c.a� ∃c.c⊥) O ∀c.c]

(6)
∃a.∃c.[(a� a⊥)O(c � c⊥)]

∀a.∃c.a⊥,∃a.[∃c.(a � c⊥) O ∀c.c]

Fig. 5.Examples (1)–(5) are not well-nested, only (6) is well-nested

For multiplicative correctness the quantifiers are treatedas unary connectives and
are therefore completely irrelevant. The example in Figure4 is multiplicatively correct.
For involving the quantifiers into a correctness criterion,we need some more conditions.

Let s be a switching forP
ν
⊲ Γ , and letA andB be two nodes inΓ . We write

A ��s����������B if there is a path ins from A to B, starting fromA by going down to its parent
and coming intoB from below. Similarly, one can define the notationsA ��s����������B and
A ��s����������B andA ��s����������B.

Let A andB be nodes inΓ with A ¤ B. Thequantifier depthof B in A, denoted
by

`
AB, is the number of quantifier nodes on the path fromA to B (includingA if it

happens to be an∀ or an∃, but not includingB). Similarly we define
`

Γ B. For quan-

tifier nodesA′ in P andA in Γ , we sayA andA′ arepartners, denoted byA′ ←→P Γ A, if
there is a leafB ∈lΓ with A ¤ B in Γ , andA′ ¤ Bν in P , and

`
AB =

`
A′Bν .

4.4 Definition We say a simple pre-proof graphP
ν
⊲ Γ is well-nestedif the follow-

ing five conditions are satisfied:
1. For everyB ∈lΓ , we have

`
Γ B =

`
P Bν .

2. If A′ ←→P Γ A, thenA′ andA quantify the same variable.

3. For every quantifier nodeA in Γ there is exactly one∃-nodeA′ in P with A′ ←→P Γ A.

4. For every∃-nodeA′ in P there is exactly one∀-nodeA in Γ with A′ ←→P Γ A.

5. If A′ ←→P Γ A1 andA′ ←→P Γ A2, then there is no switchings with A1
��s����������A2.

Every quantifier node inP must be an∃, and every quantifier node inΓ has exactly
one of them as partner. On the other hand, an∃ in P can have many partners inΓ , but
exactly one of them has to be an∀. Following Girard [9], we can call an∃ in P together
with its partners inΓ the doors of an∀-box and the sub-graph induced by the nodes
that have such a door as ancestor is called the∀-boxassociated to the unique∀-door.
Even if the boxes are not really present, we can use the terminology to relate our work
to Girard’s. In order to help the reader to understand these five conditions, we show in
Figure 5 six simple pre-proof graphs, where the first fails Condition 1, the second one
fails Condition 2, and so on; only the sixth one is well-nested.
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4.5 Definition A simple pre-proof graphP
ν
⊲ Γ is correct if it is well-nested and

multiplicatively correct. In this case we will also speak ofa simple proof graph.

Let us now turn our attention towards substitution, which istheraison d’̂etrefor the
expansion with∃∃∃∃∃∃∃∃∃ and E.
4.6 Definition For an expanded formulaE and a stretchingσ, we define theceiling
and thefloor5, denoted by⌈E � σ⌉ and⌊E � σ⌋, respectively, to be simple formulas,
which are inductively defined as follows:
⌈1 � ∅⌉ = 1 ⌈AOB � σ⌉ = ⌈A � σ′⌉O⌈B � σ′′⌉
⌈⊥ � ∅⌉ = ⊥ ⌈A�B � σ⌉ = ⌈A � σ′⌉�⌈B � σ′′⌉
⌈a � ∅⌉ = a ⌈∀a.A � σ⌉ = ∀a.⌈A � σ⌉ ⌈ Ea.A � σ⌉ = ∃a.⌈A � σ⌉
⌈a⊥ � ∅⌉ = a⊥ ⌈∃a.A � σ⌉ = ∃a.⌈A � σ⌉ ⌈∃∃∃∃∃∃∃∃∃a.A � σ⌉ = ⌈A � σ′⌉

⌊1 � ∅⌋ = 1 ⌊AOB � σ⌋ = ⌊A � σ′⌋O⌊B � σ′′⌋
⌊⊥ � ∅⌋ = ⊥ ⌊A�B � σ⌋ = ⌊A � σ′⌋�⌊B � σ′′⌋
⌊a � ∅⌋ = a ⌊∀a.A � σ⌋ = ∀a.⌊A � σ⌋ ⌊ Ea.A � σ⌋ = ⌊A � σ⌋
⌊a⊥ � ∅⌋ = a⊥ ⌊∃a.A � σ⌋ = ∃a.⌊A � σ⌋ ⌊∃∃∃∃∃∃∃∃∃a.A � σ⌋ = ∃a.⌊Ã � σ̃⌋

whereσ′ is the restriction ofσ to A, andσ′′ is the restriction ofσ to B. The expanded
formulaÃ is obtained fromA as follows: For every nodeB with A ¤ B and∃∃∃∃∃∃∃∃∃a.Añσ+ B

remove the whole subtreeB and replace it bya, and for everyB with ∃∃∃∃∃∃∃∃∃a.Añσ− B replace
B by a⊥. The stretching̃σ is the restriction ofσ to Ã.

Note that ceiling and floor of an expanded sequentΓ differ from Γ only on∃∃∃∃∃∃∃∃∃ andE. In the ceiling, the Eis treated as ordinary∃, and the∃∃∃∃∃∃∃∃∃ is completely ignored. In the
floor, the Eis ignored, and the∃∃∃∃∃∃∃∃∃ uses the information of the stretching to “undo the
substitution”. To provide this information on the locationis the purpose of the stretch-
ing. To ensure that we really only “undo the substitution” instead of doing something
weird, we need some further constraints, which are given by Definition 4.7 below.

We writeAñB if A is a∃∃∃∃∃∃∃∃∃-node and there is a stretching edge fromA to B, or A
is an ordinary quantifier node andB is the variable (or its negation) that is bound inA
andA ¤ B.

4.7 Definition A pair Γ � σ is appropriate, if the following three conditions hold:
1. If Añσ+ B1 andAñσ+ B2, then⌊B1 � σ1⌋ = ⌊B2 � σ2⌋,

if Añσ− B1 andAñσ− B2, then⌊B1 � σ1⌋ = ⌊B2 � σ2⌋,

if Añσ+ B1 andAñσ− B2, then⌊B1 � σ1⌋ = ⌊B2 � σ2⌋⊥, (whereσ1 andσ2 are the
restrictions ofσ to B1 andB2, respectively).

2. If A1ñB1 andA2ñB2 andA1 ¤ A2 andB1 ¤ B2, thenB1 ¤ A2.
3. For all Ea.A, the variablea must not occur free in the formula⌊A � σ′⌋ (whereσ′

is the restriction ofσ to A).

The first condition above says that in a substitution a variable is instantiated every-
where by the same formulaB. The second condition ensures that there is no variable
capturing in such a substitution step. The third condition is exactly the side condition
of the rulef↓ in Figure 2. For better explaining the three conditions above, we show in

5 Note the close correspondece to Miller’s expansion trees [19], where these two functions are
calledDeepandShallow, respectively.
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a b a⊥

�

O

∃∃∃∃∃∃∃∃∃c

b⊥ b

O

∀b

∃∃∃∃∃∃∃∃∃a

a a⊥ b⊥

O

�Ea
∃∃∃∃∃∃∃∃∃c

∃∃∃∃∃∃∃∃∃c.[(a�b)Oa⊥] ∃∃∃∃∃∃∃∃∃a.∀b.[b⊥Ob] ∃∃∃∃∃∃∃∃∃c. Ea.([aOa⊥]�b⊥)

Fig. 6. Examples of expanded sequents with stretchings that are notappropriate

a b a⊥

�

O

∃∃∃∃∃∃∃∃∃c

b⊥ b

O

∃∃∃∃∃∃∃∃∃a

∀b

a a⊥ b⊥

O

�

∃∃∃∃∃∃∃∃∃cEa
∃∃∃∃∃∃∃∃∃c.[(a�b)Oa⊥] ∀b.∃∃∃∃∃∃∃∃∃a.[b⊥Ob] Ea.∃∃∃∃∃∃∃∃∃c.([aOa⊥]�b⊥)

Fig. 7.Appropriate examples of expanded sequents with stretchings

Figure 6 three examples of pairsΓ � σ that are not appropriate: the first fails Condi-
tion 1, the second fails Condition 2, and the third fails Condition 3. In Figure 7 all three
examples are appropriate. The example in Figure 4 is also appropriate.

In [9] and [10], the first two conditions of Definition 4.7 appear only implicitly
without being mentioned in the treatment of the∃-rule. But for capturing the essence of
a proof independently of a deductive system, we have to make everything explicit.

4.8 Definition We say that a pre-proof graphP
ν
⊲ Γ � σ is correct if the simple

pre-proof graphP
ν
⊲ ⌈Γ �σ⌉ is correct and the pairΓ �σ is appropriate. In this case we

say thatP
ν
⊲ Γ � σ is aproof graphand⌊Γ � σ⌋ is its conclusion.

The example in Figure 4 is correct. There we have that⌈Γ � σ⌉ is the simple se-
quent ⊢ ∃c.(c⊥ � c⊥), (∀c.[c O c] �(a⊥ � a⊥)�⊥), [a O a O[a⊥ O a]] and the con-
clusion⌊Γ � σ⌋ is ⊢ ∃d.(d � d), ∃a.(a⊥ � a �⊥), [a O a O[a⊥ O a]] .

Due to the presence of the multiplicative units (see [23, 17]), we need to enforce an
equivalence relation on proof graphs.

4.9 Definition Let∼ be the smallest equivalence on proof graphs satisfying

P [QO R]
ν

⊲ Γ � σ ∼ P [R O Q]
ν

⊲ Γ � σ

P [[QO R] OS]
ν

⊲ Γ � σ ∼ P [QO[R O S]]
ν

⊲ Γ � σ

P (1�(1�Q))
ν

⊲ Γ � σ ∼ P (1�(1� Q))
ν
′

⊲ Γ � σ

P (1�[QO R])
ν

⊲ Γ � σ ∼ P [(1�Q)O R]
ν

⊲ Γ � σ

P (1�∃a.Q)
ν

⊲ Γ{⊥} � σ ∼ P{∃a.(1� Q)}
ν

⊲ Γ{ Ea.⊥} � σ

9



id
a� a⊥ ν0

⊲ a⊥, a � ∅ P
ν

⊲ Γ � σ
⊥

(1� P )
ν⊥

⊲ Γ,⊥ � σ

1
⊥

ν1

⊲ 1 � ∅
P

ν

⊲ Γ, A,B, ∆ � σ
exch

P
ν

⊲ Γ, B, A,∆ � σ

P
ν

⊲ A, B, Γ � σ
O

P
ν

⊲ [A O B], Γ � σ

P
ν

⊲ Γ, A � σ Q
ν
′

⊲ B, ∆ � τ
�

[P O Q]
ν∪ν

′

⊲ Γ, (A� B), ∆ � σ ∪ τ

P
ν

⊲ A, B1, . . . , Bn � σ
∀
∃a.P

ν

⊲ ∀a.A, Ea.B1, . . . , Ea.Bn � σ

P
ν

⊲ Γ, A〈a\B〉 � σ
∃

P
ν

⊲ Γ, ∃∃∃∃∃∃∃∃∃a.A〈a\B〉 � σ′

P
ν

⊲ Γ, A � σ Q
ν
′

⊲ A⊥, ∆ � τ
cut

[P O Q]
ν∪ν

′

⊲ Γ, (A� A⊥), ∆ � σ ∪ τ

Fig. 8. Translating sequent calculus proofs into proof nets

where in the third lineν′ is obtained fromν by exchanging the preimages of the two
1s. In all other equations the bijectionν does not change. In the last lineν must match
the1 and⊥. A proof netis an equivalence class of∼.

The first two equations in Definition 4.9 are simply associativity and commutativity
of O inside the linking. The third is a version of associativity of �. The fourth equation
could destroy multiplicative correctness, but since we defined∼ only on proof graphs
we do not need to worry about that.6 The last equation says that a⊥ can freely tunnel
through the borders of a box. Let us emphasize that this quotienting via an equivalence
is due to the multiplicative units. If one wishes to use a system without units, one could
completely dispose the equivalence by usingn-aryOs in the linking.

5 Sequentialisation

In this section we will discuss how we can translate proofs inthe sequent calculus and
the calculus of structures into proof nets and back.

Let us begin with the sequent calculus. The translation fromMLL2Seq proofs into
proof graphs is done inductively on the structure of the sequent proof as shown in Fig-
ure 8. For the rulesid and1, this is trivial (ν0 andν1 are uniquely determined and the
stretching is empty). In the rule⊥, theν⊥ is obtained fromν by adding an edge be-
tween the new1 and⊥. Theexch andO-rules are also rather trivial (P , ν, andσ remain
unchanged). For the� rule, the two linkings are connected by a newO-node, and the
two principal formulas are connected by a� in the sequent forest. The same is done for
the cut rule, where we use a special cut connective�. The two interesting rules are the
ones for∀ and∃. In the∀-rule, to every root node of the proof graph for the premise a
quantifier node is attached. This is what ensures the well-nestedness condition. It can
be compared to Girard’s putting a box around a proof net. The purpose of the Ecan
be interpreted as simulating the border of the box. The∃-rule is the only one where

6 In [23, 17] the relation∼ is defined on pre-proof graphs, and therefore a side condition had to
be given to that equation (see also [14]).
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the stretchingσ is changed. As shown in Figure 1, in the conclusion of that rule, the
subformulaB of A is replaced by the quantified variablea. When translating this rule
into proof graphs, we keep theB, but to every place where it has to be substituted we
add a positive stretching edge from the new∃∃∃∃∃∃∃∃∃a. Similarly, whenever aB⊥ should be
replaced bya⊥, we add a negative stretching edge. The new stretching isσ′.

A pre-proof graph isSC-sequentializableif it can be obtained from a sequent proof
as described above. If a pre-proof graphP

ν
⊲ Γ � σ is obtained this way then the simple

sequent⌊Γ � σ⌋ is exactly the conclusion of the sequent proof we started from.

5.1 Theorem Every SC-sequentializable pre-proof graph is a proof graph.

For the other direction, i.e, for going from proof graphs toMLL2Seq proofs we need
to consider two linking formulasP1 andP2 to be equivalent modulo associativity and

commutativity ofO. We write this asP1

O
∼ P2. Then, we have to remove all∃-nodes

from Γ in order to get a sequentialization theorem because the translation shown in
Figure 8 never introduces an∃-node inΓ . For this we replace inΓ every∃a.A withEa.∃∃∃∃∃∃∃∃∃a.A and by adding a stretching edge between the new∃∃∃∃∃∃∃∃∃a and everya anda⊥ that
was previously bound by∃a (i.e, is free inA). Let us writeΓ̂ � σ for the result of this
modification applied toΓ � σ.

5.2 Theorem If P
ν
⊲ Γ � σ is correct, then there is aP ′ O

∼ P , such thatP ′ ν
⊲ Γ̂ � σ

is SC-sequentializable.

The proof works in the usual way by induction on the size ofP
ν
⊲ Γ � σ. It is a

combination of the sequentialization proofs in [17] and [9], and it makes crucial use of
the “splitting tensor lemma” which in our case also needs well-nestedness.

Let us now discuss the translation between proof nets and derivations in the calculus
of structures. This can be done in a more modular way than for the sequent calculus.

5.3 Proposition An MLL2 formulaP is a linking formula if and only if there is a
derivation 1

{ai↓,⊥↓, 1↓, e↓} ‖‖ D .

P⊥

(2)

5.4 Lemma LetP1 andP2 be two linkings. Then there is a derivation
P1

{α↓, σ↓, rs} ‖‖ D

P2

if and only if the simple pre-proof graphP2 ⊲ P⊥
1 is correct.

If P1 andP2 have this property, we say thatP1 is weaker thanP2, and denote it as
P1 . P2. We can now characterize simple proof graphs in terms of deepinference:

5.5 Proposition A simple pre-proof graphP
ν
⊲ Γ is correct if and only if there is a

linking P ′ with P ′ . P and a derivation
P ′⊥

{α↓, σ↓, ls, rs, u↓} ‖‖ D

Γ

, (3)

11



such thatν coincides with the bijection induced by the flow graph ofD .

As an example, consider the derivation in (1) which corresponds to (6) in Figure 5.
Finally, we characterize appropriate pairsΓ � σ in terms of deep inference.

5.6 Proposition For every derivation
D

{n↓, f↓} ‖‖ D

C

(4)

there is an appropriate pairΓ � σ with
D = ⌈Γ � σ⌉ and C = ⌊Γ � σ⌋ . (5)

Conversely, ifΓ � σ is appropriate, then there is a derivation(4) with (5).

We can explain the idea of this proposition by considering again the examples in
Figures 6 and 7. To the non-appropriate examples in Figure 6 would correspond the
following incorrect derivations:

[(a � b) O a⊥]
n↓

∃c.[c O c⊥]

∀b.[b⊥ O b]
n↓

∃a.∀b.[aO b]

∃a.([aO a⊥] � b⊥)
f↓

([a O a⊥] � b⊥)
n↓

∃c.(c � b⊥)

And to the appropriate examples in Figure 7 correspond the following correct deriva-
tions:

[(a� b)O a⊥]
n↓

∃c.[(c � b) O c⊥]

∀b.[b⊥ O b]
n↓

∀b.∃a.[a O b]

∃a.([a O a⊥] � b⊥)
n↓

∃a.∃c.(c � b⊥)
f↓

∃c.(c � b⊥)

We can now easily translate aMLL2DI↓ proof into a pre-proof graph by first decompos-
ing it via Theorem 3.3 and then applying Propositions 5.3, 5.5, and 5.6. Let us call a
pre-proof graphDI-sequentializableif is obtained in this way from aMLL2DI↓ proof.

5.7 Theorem Every DI-sequentializable pre-proof graph is a proof graph.

By the method presented in [22], it is also possible to translate aMLL2DI↓ directly
into a proof graph without prior decomposition. However, the decomposition is the key
for the translation from proof graphs intoMLL2DI↓ proofs (i.e., “sequentialization” into
the calculus of structures). Propositions 5.3, 5.5, and 5.6give us the following:

5.8 Theorem If P
ν
⊲ Γ � σ is correct, then there is aP ′ . P , such thatP ′ ν

⊲ Γ � σ
is DI-sequentializable.

There is an important difference between the two sequentializations. While for the
sequent calculus we have a monolithic procedure reducing the proof graph node by
node, we have for the calculus of structures a modular procedure that treats the different
parts of the proof graph (which correspond to the three different aspects of the logic)
separately. The core is Proposition 5.5 which deals with thepurely multiplicative part.
Then comes Proposition 5.6 which only deals with instantiation and substitution, i.e,
the second-order aspect. Finally, Proposition 5.3 takes care of the linking, whose task
is to describe the role of the units in the proof. Therefore the equivalence in 4.9, which
is due to the mobility if the⊥, only deals with the linkings. This modularity in the
sequentialization is possible because of the decomposition in Theorem 3.3. Because of
this modularity we treated the units via the linking formulas [23, 17] instead of a linking
function as done by Hughes in [15, 14].
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6 Comparison to Girard’s proof nets for MLL2

Such a comparison can only make sense forMLL2−, i.e., the logic without the units
1 and⊥. In [10] the units are not considered, and in [9] the units aretreated in a way
that is completely different from the one suggested here. Consequently, in this section
we consider only proof nets without any occurrences of1 and⊥. For simplicity, we
will allow n-ary Os in the linkings, so that we can discard the equivalence relation of
Definition 4.9 and identify proof graphs and proof nets.

The translation from our proof nets to Girard’s boxed proof nets of [9] is immediate:
If P

ν
⊲ Γ � σ is a given proof net, then (1) for each∃ in P draw a box around the sub-

proof net which has as doors this∃ and its partners inΓ ; (2) replace inΓ every nodeA
that is not a Eby its floor⌊A �σ⌋, and remove all stretching edges and allE-nodes, and
finally (3) remove all∃- and allO-nodes inP , and replace the�-nodes inP by axiom
links. For the converse translation we proceed in the opposite order. It is clear that in
both directions correctness is preserved, i.e., the two criteria are equivalent. Both data
structures contain the same information. However, Girard’s boxed proof nets depend on
the deductive structure of the sequent calculus. A box stands for the global view that
the∀-rule has in the sequent calculus, and the∃-link is attached to it full premise and
conclusion that are subject to the same side conditions as inthe sequent calculus. The
new proof nets presented in this paper make these side conditions explicit in the data
structure, which is the reason why our definitions are a bit longer than Girard’s.

The proof nets of [10] are obtained from the box proof nets by simply removing the
boxes. In our setting this is equivalent to removing all∃-nodes inP and all E-nodes
in Γ . Hence, this new data structure contains less information.This raises the question
whether the other two representations contain reduntant data or whether Girard’s box-
free proof nets make more identifications, and whether the missing data can be recov-
ered. The answer is that the proof nets of [10] make indeed more proof identifications.
For example the following proofs of⊢ ∀a.a, (∃b.b �[c O c⊥]) would be identified:

∃a.[(a⊥
� a) O(c⊥ � c)]

∀a.a, Ea.(∃∃∃∃∃∃∃∃∃b.a⊥
�[c O c⊥])

and
[∃a.(a⊥

� a) O(c⊥ � c)]

∀a.a, ( Ea.∃∃∃∃∃∃∃∃∃b.a⊥
�[c O c⊥])

(6)

When translating back to box-nets, we must for each∀-link introduce a box around its
whole empire. This can be done because a proof net does not lose its correctness if a∀-
box is extended to a larger (correct) subnet, provided the bound variable does not occur
freely in the new scope. In [10], Girard avoids this by variable renaming. The reason
why this gives unique representants is the stability and uniqueness of empires inMLL−

proof nets. However, as already noted in [17], under the presence of the units, empires
are no longer stable, i.e., due to the mobility of the⊥ the empire of an∀-node might be
different in different proof graphs, representing the sameproof net.

Another reason for not using the solution of [10] is the desire to find a treatment
for the quantifiers that is independent from the underlying propositional structure, i.e.,
that is also applicable to classical logic. While Girard’s nets are tightly connected to
the structure ofMLL−-proof nets, our presentation is closely related to Miller’s expan-
sion trees [19] and the recent development by McKinley [18].Thus, we can hope for a
unified treatment of quantifiers in classical and linear logic.
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7 Concluding Remarks

We have investigated the relation between deep inference and proof nets and the se-
quent calculus forMLL2, and we have shown that this relation is much closer than one
might expect. We did not go into the details of cut elimination because from the previ-
ous sections it should be clear that everything works as laidout in [9, 10] and [17, 23].
There are no technical surprises, and we have a confluent and terminating cut elimina-
tion procedure for our proof nets. An important consequenceis that we have a category
of proof nets: the objects are (simple) formulas and a mapA → B is a proof net with
conclusion⊢ A⊥, B , where the composition of maps is defined by cut elimination.A
detailed investigation of this category (which is *-autonomous [17]) has to be postponed
to future research. The proof identifications made in this paper are motivated by the in-
terplay between proof nets, calculus of structures, and sequent calculus. They should
not be considered to be the final word. For example the proof nets by Girard [10] make
more identifications, and the ones by Hughes [15] make less identifications. However,
there are some observations about the units to be made here. The units can be expressed
with the second-order quantifiers via1 ≡ ∀a.[a⊥ O a] and⊥ ≡ ∃a.(a � a⊥). An inter-
esting question to ask is whether these logical equivalences should be isomorphisms in
the categorification of the logic. In the category of coherent spaces [9] they are, but in
our category of proof nets they are not: The two canonical maps∀a.[a⊥ O a] → 1 and
1→ ∀a.[a⊥ O a] are given by:

[⊥O(1�⊥)]

∃∃∃∃∃∃∃∃∃a.(1�⊥) , 1
and

(1 �∃a.(a� a⊥))

⊥ , ∀a.[a⊥
O a]

(7)

respectively. Composing them means performing this cut eliminating:

[⊥O(1�⊥)O(1� ∃a.(a� a⊥))]

∃∃∃∃∃∃∃∃∃a.(1�⊥) , 1�⊥ , ∀a.[a⊥
O a]

→
[⊥O(1�∃a.(a � a⊥))]

∃∃∃∃∃∃∃∃∃a.(1�⊥) , ∀a.[a⊥
O a]

(8)

If the two maps in (7) where isos, the result of (8) must be the same as the identity map
∀a.[a⊥ O a]→ ∀a.[a⊥ O a] which is represented by the proof net

∃a.[(a⊥
� a) O(a� a⊥)]

∃a.(a� a⊥) , ∀a.[a⊥
O a]

(9)

This is obviously not the case (even if we replaced∃a by Ea.∃∃∃∃∃∃∃∃∃a as for Theorem 5.2).
A similar situation occurs with the additive units, for which we have0 ≡ ∀a.a and
⊤ ≡ ∃a.a. Since we do not have0 and⊤ in the language, we cannot check whether
we have these isos in our category. However, since0 and⊤ are commonly understood
as initial and terminal objects of the category of proofs, wecould ask whether∀a.a and
∃a.a have this property: We clearly have a canonical proof for∀a.a → A for every
formulaA, but it is not necessarily unique. The correct treatment of additive units in
proof nets is still an open problem for future research.
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A Proofs

Proof of Theorem 3.1: We proceed by structural induction on the sequent proof to
construct the deep inference proof. The only non-trivial cases are the rules for� and
∀. If the last rule application in the sequent proof is a�, then we have by induction
hypothesis two proofs

1

MLL2DI↓
‖
‖ D1

[Γ OA]

and

1

MLL2DI↓
‖
‖ D2

[B O ∆]

From these we can built
1

MLL2DI↓
‖
‖ D2

[B O∆]
1↓

[(1 �B)O ∆]

MLL2DI↓
‖
‖ D1

[([Γ O A] �B)O ∆]
ls

[Γ O(A�B)O ∆]

In case of the∀-rule, we have by induction hypothesis a proof

1

MLL2DI↓
‖
‖ D

[AO Γ ]

from which we get

1
e↓
∀a.1

MLL2DI↓
‖
‖ D

∀a.[AO Γ ]
u↓

[∀a.AO∃a.Γ ]
f↓

[∀a.AO Γ ]

Conversely, for translating aMLL2DI↓ proof D into the sequent calculus, we proceed
by induction on the length ofD . We then translate

1

MLL2DI↓
‖
‖ D ′

A
ρ

B
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into

��
��

��
??????

D1

⊢ A
��

��
��

??????
D2

⊢ A⊥, B
cut

⊢ B

(10)

whereD1 exists by induction hypothesis andD2 exists because every ruleρ of MLL2DI↓

is a valid implication ofMLL2. Finally, we apply cut elimination (Theorem 2.1). Re-
mark: By using the proof nets introduced in this paper, this translation can be done
without using cut elimination. ⊓⊔

Proof of Theorem 3.2: Given a proof inMLL2DI↓∪{i↑}, we translate it intoMLL2Seq

as done in the proof of Theorem 3.1, eliminate the cut (Theorem 2.1), and translate the
result back intoMLL2DI↓. When translating a sequent calculus proof with cuts into the
calculus of structures as described in the proof of Theorem 3.1, then the sequent cut

rule
⊢ Γ, A ⊢ A⊥, ∆

cut
⊢ Γ, ∆

is simulated exactly by the rule
S(A� A⊥)

i↑
S{⊥}

. ⊓⊔

It is also possible to give a direct proof of Theorem 3.2 usingonly the calculus of
structures (see, e.g., [21, 4, 11]), without referring to the sequent calculus.

Proof of Theorem 3.3: The construction is done in two phases. First, we permute all
instances ofai↓,⊥↓, 1↓, e↓ to the top of the derivation. Forai↓ ande↓ this is trivial,
because all steps are similar to the following:

S[AOB{1}]
σ↓

S[B{1}OA]
e↓

S[B{∀a.1}OA]

→

S[AOB{1}]
e↓

S[AOB{∀a.1}]
σ↓

S[B{∀a.1}OA]

For⊥↓ and1↓ there are some more cases to inspect. We show here only one because
all others are similar:

S{∀a.[AOB]}
u↓

S[∀a.A O∃a.B]
1↓

S[(1 �∀a.A) O ∃a.B]

→

S{∀a.[AOB]}
1↓

S(1 �∀a.[AO B])
u↓

S(1 �[∀a.AO∃a.B])
rs

S[(1 �∀a.A)O ∃a.B]

Here, in order to permute the1↓ above theu↓, we need an additional instance ofrs (and
possibly two instances ofσ↓). The situation is analogous if we permute the1↓ overls,
rs, orα↓ (or ai↓ or⊥↓, but this is not needed for this theorem). When permuting⊥↓ up
(instead of1↓), then we needα↓ (andσ↓) instead ofrs. For a detailed analysis of this
kind of permuation arguments, the reader is referred to [21].

In the second phase of the decomposition, all instances ofn↓ andf↓ are permuted
down to the bottom of the derivation. For the rulen↓ this is trivial since no rule can
interfere (except forf↓, which is also permuted down). For permuting down the rulef↓,
the problematic cases are as before caused by the rulesu↓, ls, rs, andα↓. To get our
result, we need an additional inference rule:

S{∃a.[AOB]}
v↓

S[∃a.AO∃a.B]
(11)
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Now we can do the following replacement

S(∃a.[AOB] � C)
f↓

S([AO B] �C)
ls

S[AO(B �C)]

→

S(∃a.[AO B] �C)
v↓

S([∃a.AO∃a.B] � C)
ls

S[∃a.A O(∃a.B �C)]
f↓

S[A O(∃a.B � C)]
f↓

S[AO(B �C)]

and continue permuting the two newf↓ further down. Finally, we eliminate all instances
of v↓ by permuting them up. This is trivial since no rule has an∃ in its conclusion,
except foru↓ andn↓. In the case ofu↓ we can replace

S{∀a.[AO[B OC]]}
u↓

S[∀a.AO ∃a.[B O C]]
v↓

S[∀a.AO [∃a.B O∃a.C]]

by

S{∀a.[AO[B OC]]}
α↓, σ↓

S{∀a.[[AOB] OC]}
u↓

S[∀a.[AOB] O ∃a.C]
u↓

S[[∀a.AO∃a.B] O∃a.C]
α↓

S[∀a.AO[∃a.B O∃a.C]]

and in the case ofn↓, we can replace

S{[A1 OA2]〈a\B〉}
n↓

S{∃a.[A1 OA2]}
v↓

S [∃a.A1 O ∃a.A2]

by

S{[A1 OA2]〈a\B〉}
=

S[A1〈a\B〉O A2〈a\B〉]
n↓

S[A1〈a\B〉O ∃a.A2]
n↓

S[∃a.A1 O ∃a.A2]

Because we start from a proof, i.e., the premise of the derivation is 1, all v↓ must
eventually disappear. ⊓⊔

Proof of Theorem 3.4: For transformingD into D ′, we replace every instance of
f↓ by a derivation using only the rules in Figure 3. For this, we proceed by structural
induction on the formulaA in thef↓. We show here only one case, the others are similar:
If A = (A′ �A′′) then replace

S{∃a.(A�A′′)}
f↓

S(A� A′′)
by

S{∃a.(A�A′′)}
w↓

S(∃a.A�∃a.A′′)
f↓

S(A� ∃a.A′′)
f↓

S(A�A′′)

Conversely, for transformingD ′ into a derivation using onlyn↓ andf↓, note that1f↓,
⊥f↓, af↓, and âf↓ are already instances off↓. The rulesx, y↓, v↓, andw↓ can be
replaced as follows:

S{∃a.[AOB]}
v↓

S[∃a.AO∃a.B]
→

S{∃a.[AOB]}
n↓

S{∃a.[∃a.AOB]}
n↓

S{∃a.[∃a.AO∃a.B]}
f↓

S[∃a.AO ∃a.B]

where in the twon↓, the variablea is substituted by itself. The other rules are handled
similarly. ⊓⊔
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Proof of Theorem 5.1: The pre-proof graphs obtained from the rulesid and1 are
obviously correct. Then it is an easy exercise to check that all other rules preserve
correctness. ⊓⊔

Proof of Theorem 5.2: We proceed by induction on the size ofP
ν
⊲ Γ � σ, i.e., the

number of nodes in the graph. In the base case where our proof graph is just⊥ ⊲ 1 we
have an instance of the1-rule and we are done.

If there are anyO-roots inP or Γ , we simply remove them. If we remove aO-
root in Γ , we have to apply theO-rule and can proceed by induction hypothesis. Note
that by removing aO-root fromP , the linking formula becomes a “linking sequent”.
This is the reason for the “modulo associativity and commutativity” in the statement
of the theorem. If there is a∃∃∃∃∃∃∃∃∃-root in Γ then we can simply remove this node, which

corresponds to applying the∃-rule because its conclusion iŝ⌊Γ � σ⌋, and we proceed
by induction hypothesis.

We are now in a situation where all roots of our proof graph areeither∀-, ∃-, E-, or
�-nodes. (By our transformation above, all∃-nodes are inside the linking.) Let us first
consider the case in which there are no�-roots. By well-nestedness and connectedness,
all of them quantify the same variable, the linkingP consists of exactly one formula
rooted by an∃-node, andΓ contains exactly one∀-root, all other roots beingE-nodes.
Therefore, we can apply the∀-rule, remove all root-nodes, and proceed by induction
hypothesis.

Let us now consider the case where�-roots are present (but noO- nor∃∃∃∃∃∃∃∃∃-roots). By
the splitting tensor lemma (Lemma B.8, proved in Appendix B), we know that one of
them must be splitting. This splitting tensor can either be inside the sequentΓ or inside
the linkingP . If it is inside Γ , we can immediately apply the�-rule and proceed by
induction hypothesis. If the splitting tensor is insideP , then there are two possibilities:
either both children are dual atoms, or one child is a1. Both cases handled exactly as
in [17]. ⊓⊔

Proof of Proposition 5.3: We can proceed by structural induction onP to construct
D . The base case is trivial. Here are the four inductive cases:

{1}
ai↓

[a⊥ O a]

1

‖
‖ D ′

A
⊥↓

[⊥OA]

1

‖
‖ D ′

B
1↓

(1 �B)

‖
‖ D ′′

(A� B)

1
e↓
∀a.1

‖
‖ D ′

∀a.A

whereD ′ andD ′′ always exist by induction hypothesis. Conversely, we proceed by
induction on the length ofD to show thatP is a linking formula. We show only the
case where the bottommost rule inD is aai↓, i.e.,D is

1

‖
‖ D ′

S{1}
⊥↓ .

S[a⊥ O a]

19



By induction hypothesisS{1}⊥ = P{⊥} is a linking for some contextP{ }. Hence
S[a⊥ O a]⊥ = P (a � a⊥) is also a linking. The other cases are similar. ⊓⊔

In the following we also need the inference rules
S(A�(B � C))

α↑
S((A� B)� C)

and
S(A�B)

σ↑
S(B �A)

(12)

which are the duals forα↓ andσ↓, respectively.
We also use the following definition.

A.1 Definition If a linking has the shapeS1(1 �S2(a � a⊥)) for some contexts
S1{ } andS2{ }, then we say that the1 governsthe pair(a � a⊥). Let P1 andP2 be
two linkings. We say thatP1 is weaker thanP2, denoted byP1 . P2, if

– lP1 =lP2,
– P1 andP2 contain the same set of∃-nodes, and for every∃-node, its set of leaves

is the same inP1 andP2, and
– whenever a1 governs a pair(a � a⊥) in P2, then it also governs this pair inP1.

Proof of Lemma 5.4: We prove that for any two linkingsP1 andP2, the following
are equivalent
1. P1 . P2.
2. There is a derivation

P1

{α↓, σ↓, rs} ‖‖ D

P2

3. There is a derivation
P⊥

2

{α↑, σ↑, ls} ‖‖ D ′

P⊥
1

4. The simple pre-proof graphP2 ⊲ P⊥
1 is correct.

1 ⇒ 2: The only way in whichP1 andP2 can differ from each other are theO-trees
above the pairs(a � a⊥) and where in these trees the1-occurrences are attached. There-
fore, the rules for associativity and commutativity ofO and the rule

S(1 �[B OC])
rs

S[(1 �B)OC]

are sufficient to transformP1 into P2.
2⇒ 3: The derivationD ′ is the dual ofD .
3 ⇒ 4: We proceed by induction on the length ofD ′. ClearlyP2 ⊲ P⊥

2 is correct.
Furthermore, all three inference rulesα↑, σ↑, andls preserve correctness.

4 ⇒ 1: We havelP1 = lP2 becauseP2 ⊲ P⊥
1 is a simple proof graph. The

second condition in Definition A.1 follows immediately fromthe well-nestedness of
P2 ⊲ P⊥

1 and the fact thatP1 andP2 are both linkings, i.e., do not contain∀-nodes.
Therefore, we only have to check the last condition. Assume,by way of contradiction,
that there is a1-occurrence which governs a pair(a � a⊥) in P2 but not inP1, i.e.,P2 =
S1(1 �S2(a � a⊥)) for some contextsS1{ } andS2{ }, andP1 = S3[S4{1}OS5(a � a⊥)]
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for some contextsS3{ }, S4{ }, andS5{ }. This means we have the following situa-
tion in P2 ⊲ P⊥

1

⊥

⊥

�

�

1 a a⊥

⊥ a⊥ a

O

�
which clearly fails the acyclicity condition. ⊓⊔

In the following proof we use a series of lemmas which are given in Appendix C.
We also use the following notation: LetA andB be nodes inΓ with A � B and
B � A. Then we writeA!Γ

�
B if the first common ancestor ofA andB is a�, and we

write A!Γ
O

B if it is a O, or if A andB appear in different formulas ofΓ .

Proof of Proposition 5.5: Let a simple pre-proof graphP
ν
⊲ Γ be given, and assume

we have a linkingP ′ . P and derivationD as in (3) whose flow-graph determinesν.
By Lemma 5.4 we have a derivationD1 such that

P⊥

{α↑, σ↑, ls} ‖‖ D1

P ′⊥

{α↓, σ↓, ls, rs, u↓} ‖‖ D

Γ

. (13)

Now we proceed by induction on the length ofD1 andD to show thatP
ν
⊲ Γ is multi-

plicatively correct and well-nested. In the base case it is easy to see thatP ⊲ P⊥ has the
desired properties. Now it remains to show that all rulesα↓, σ↓, α↑, σ↑, ls, rs, u↓ pre-
serve multiplicative correctness and well-nestedness. For multiplicative correctness it is
easy: foru↓ it is trivial because it does not change theO-�-structure of the graph, and
for the other rules it is well-known. That well-nestedness is preserved is also easy to see:
rulesα↓, σ↓, α↑, σ↑, ls, rs do not modify the∀-∃-structure of the graph, and therefore
trivially preserve Conditions 1–4 in Definition 4.4. For theno-down-path condition it
suffices to observe that it cannot happen that a!

O
is changed into!

�
while going down

in a derivation. Finally, it is easy to see thatu↓ preserves all five conditions in Defini-
tion 4.4.

Conversely, assumeP
ν
⊲ Γ is well-nested and multiplicatively correct. For con-

structingD , we will again need the rulev↓ that has already been used in the proof of
Theorem 3.3.

We proceed by induction on the distance betweenP⊥ and Γ . For defining this
formally, let A be a simple formula and define#OA to be the number of pairs〈a, b〉
with a, b ∈ lA anda!A

O
b, and define#∃A to be the number of∃-nodes inA. Now
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observe thatP⊥ andΓ have the same set of leaves. We can therefore define

δO〈P
⊥, Γ 〉 = #OΓ −#OP⊥

δ∃〈P
⊥, Γ 〉 = #∃Γ −#∃P⊥

Note that because of acyclicity it can never happen that for somea, b ∈ lΓ we have
a!P⊥

O
b anda!Γ

�
b. ThereforeδO〈P⊥, Γ 〉 is the number of pairsa, b ∈ lΓ with a!P⊥

�
b

anda!Γ
O

b. Furthermore, observe that by definition there cannot be any∃-node inP⊥.

Henceδ∃〈P⊥, Γ 〉 = #∃Γ . Now define thedistance betweenP⊥ andΓ to be the pair

δ〈P⊥, Γ 〉 = 〈δO〈P
⊥, Γ 〉, δ∃〈P

⊥, Γ 〉〉

where we assume the lexicographic ordering.
Let us now pick inΓ a pair of dual atoms, saya⊥ anda, which appear in the same

“axiom link” in P , i.e.,P is P (a � a⊥). We now make a case analysis on the relative
position ofa⊥ anda to each other inΓ . Because of acyclicity we must havea⊥!Γ

O
a.

This meansΓ = S[A{a⊥}OB{a}] for some contextsS{ }, A{ }, andB{ }. Without
loss of generality, we assume that neitherA norB has aO as root (otherwise applyα↓
andσ↓). There are the following cases:
1. A{ } andB{ } have both a quantifier as root. Then both must quantify the same

variable (because of the same-depth-condition and the same-variable-condition),
and at least one of them must be an∃ (because of the one-∃-condition and the
one-∀-condition). Assume, without loss of generality, thatA{a⊥} = ∀b.A′{a⊥}

andB{a} = ∃b.B′{a}. Then by Lemma C.3 we have thatP
ν
⊲ Γ ′ with Γ ′ =

S{∀b.[A′{a⊥}OB′{a}]} is also correct. We can therefore apply theu↓-rule and
proceed by induction hypothesis becauseδ〈P⊥, Γ ′〉 is strictly smaller thanδ〈P⊥, Γ 〉.
If A andB have both an∃ as root, the situation is the same, except that we apply
v↓-rule instead ofu↓.

2. One ofA{ } and B{ } has a quantifier as root and the other has a� as root.
Without loss of generality, letA{ } = ∀b.A′{ } and B{ } = (B′{ }�B′′),

i.e., Γ = S[∀b.A′{a⊥}O(B′{a}�B′′)]. Then by Lemma C.1 we have thatP
ν
⊲

Γ ′ with Γ ′ = S([∀b.A′{a⊥}OB′{a}] �B′′) is also correct. We can therefore
apply thels-rule and proceed by induction hypothesis becauseδ〈P⊥, Γ ′〉 is strictly
smaller thanδ〈P⊥, Γ 〉.

3. One ofA{ } andB{ } has a quantifier as root and the other is just{ }. This is
impossible because it is a violation of the same-depth-condition.

4. A{ } andB{ } have both a� as root. Without loss of generality, assume thatΓ =

S[(A′′ �A′{a⊥})O(B′{a}�B′′)]. Then, we have by Lemma C.2 thatP
ν
⊲ Γ ′ is

correct, with eitherΓ ′ = S([(A′′ �A′{a⊥})OB′{a}] �B′′) orΓ ′ = S(A′′ �[A′{a⊥}O(B′{a}�B′′)]).
In one case we apply thers-rule, and in the other thels-rule. In both cases we have
thatδ〈P⊥, Γ ′〉 is strictly smaller thanδ〈P⊥, Γ 〉. Therefore we can proceed by in-
duction hypothesis.

5. One ofA{ } andB{ } has a� as root and the other is just{ }. Without loss of

generality,Γ = S[a⊥ O(B′{a}�B′′)]. Then, by Lemma C.4, we have thatP
ν
⊲ Γ ′

with Γ ′ = S([a⊥ OB′{a}] �B′′), is also correct. We can therefore apply thels-
rule and proceed by induction hypothesis (as beforeδ〈P⊥, Γ ′〉 is strictly smaller
thanδ〈P⊥, Γ 〉).
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6. If A{ } andB{ } are both just{ }, i.e.,Γ = S[a⊥ O a], then do nothing and pick
another pair of dual atoms.

We continue until we cannot proceed any further by applying these cases. This means,
all pairs of dual atoms inlΓ are in a situation as in case 6 above. Now observe that a
formula is the negation of a linking formula iff it is generated by the grammar

N ::= 1 | [A ⊥ O A ] | [⊥ON ] | (N �N ) | ∀A. N

Consequently, the only thing that remains to do is to bring the all⊥ to the left-hand side
of a O. This can be done in a similar fashion as we brought pairs[a⊥ O a] together, by
applyingα↓, σ↓, ls, rs, u↓. This makesΓ the negation of a linking. (Because of well-
nestedness, there can be no∃-nodes left.) Let us call this linking formulaP ′. Now we
have a proof graphP ⊲ P ′⊥. By Lemma 5.4 we haveP ′ . P .

It remains to remove all instances ofv↓, which is done exactly as in the proof of
Theorem 3.3. ⊓⊔

Proof of Proposition 5.6: We begin by extractingΓ �σ from D . For this, we proceed
by induction on the length ofD . In the base case, letΓ = D = C andσ be empty. In
the inductive case letD be

D

{n↓, f↓} ‖‖ D ′

C′

ρ
C

whereρ is either
S{∃a.A}

f↓
S{A}

or
S{A〈a\B〉}

n↓
S{∃a.A}

and letΓ ′ � σ′ be obtained by induction hypothesis fromD ′. In particular,C′ = ⌊Γ ′ �
σ′⌋.

– If ρ is f↓, then we constructΓ from Γ ′ as follows: If the∃ to which f↓ is applied
appears inΓ ′ as ordinary∃, then replace it by aE-node, and letσ = σ′. If the ∃
is in fact a∃∃∃∃∃∃∃∃∃, then completely remove it, and letσ be obtained fromσ′ by remov-
ing all edges adjacent to that∃∃∃∃∃∃∃∃∃. In both cases the same-formula-condition and the
no-capture-condition (4.7-1 and 4.7-2) are satisfied forΓ � σ by induction hypoth-
esis (becauseΓ ′ � σ′ is appropriate). The not-free-condition (4.7-3) holds because
otherwise thef↓ would not be a valid rule application.

– If ρ is n↓, we insert an∃∃∃∃∃∃∃∃∃-node at the position where then↓-rule is applied and letσ
be obtained fromσ′ by adding a positive (resp. negative) edge from this new∃∃∃∃∃∃∃∃∃ to
every occurrence ofB in C′ which is replaced bya (resp.a⊥) in C. Then clearly the
same-formula-condition is satisfied since it is everywherethe sameB which is sub-
stituted. Let us now assume by way of contradiction, that theno-capture-condition
is violated. This means we haveA1, A2, B1, B2 such thatA1ñB1 andA2ñB2

andA1 ¤ A2 andB1 ¤ B2 andB1 � A2. Note that by the definition of stretching
we have thatA1, A2, B1, B2 all sit on the same branch inΓ . Therefore we must
have thatA′

2 ¤ B1, whereA′
2 is child ofA2. Since the no-capture-condition is sat-

isfied forΓ ′ � σ′ we have that eitherA1 or A2 is the newly introduced∃∃∃∃∃∃∃∃∃. Note that
it cannot beA2 because thenB1 would not be visible in⌊Γ ′ � σ′⌋ because it has
been replaced by the variablea bound inA1. SinceB2 is insideB1 it would also
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be invisible in⌊Γ ′ � σ′⌋. Hence the new∃∃∃∃∃∃∃∃∃ must beA1. Without loss of generality,
let A1 = ∃∃∃∃∃∃∃∃∃a.A′

1. Then ourn↓-instance must look like

S{A′
1{Qb.A′

2{B1{b}}}}
n↓

S{∃a.Ã′
1{Qb.Ã′

2{a}}}
(14)

wherea is substituted byB1{b} everywhere insidẽA′
1{Qb.Ã′

2{a}} andQ is either
∀ or ∃. Clearly, the variableb is captured. Therefore (14) is not a valid rule ap-
plication. Hence, the no-capture-condition must be satisfied. Finally, the not-free-
condition could only be violated in a situation as above whereA2 is a E-node. But
since (14) is not valid, the not-free-condition does also hold.

Conversely, for constructingD from Γ � σ, we proceed by induction on the number
of Eand∃∃∃∃∃∃∃∃∃ in Γ . The base case is trivial. Now pick inΓ an Eor ∃∃∃∃∃∃∃∃∃ which is minimal
wrt.¤, i.e., has no otherEor ∃∃∃∃∃∃∃∃∃ as ancestor.

– If we pick an E, sayΓ = S{ Ea.A}, then letΓ ′ = S{∃a.A}. By the not-free-
condition,a does not appear free in⌊A � σ⌋. Hence

⌊Γ ′ � σ⌋
f↓
⌊Γ � σ⌋

is a proper application off↓.
– If we pick an∃∃∃∃∃∃∃∃∃, sayΓ = S{∃∃∃∃∃∃∃∃∃a.A}, then letΓ ′ = S{A} and letσ′ be obtained

fromσ by removing all edges coming out of the selected∃∃∃∃∃∃∃∃∃a. We now have to check
that

⌊Γ ′ � σ′⌋
n↓
⌊Γ � σ⌋

is a proper application ofn↓. Indeed, by the same-formula-condition, every occur-
rence ofa bound by∃∃∃∃∃∃∃∃∃a in ⌊Γ � σ⌋ is substituted by the same formula in⌊Γ ′ � σ′⌋.
The no-capture-condition ensures that no other variable iscaptured by this.

In both cases we have that⌈Γ ′ �σ′⌉ = ⌈Γ �σ⌉. Therefore we can proceed by induction
hypothesis. ⊓⊔

Proof of Theorem 5.7: Apply Theorem 3.3 and Propositions 5.3, 5.5, and 5.6. We
get a pre-proof graphP

ν
⊲ Γ �σ with P⊥ = A and⌈Γ �σ⌉ = B and⌊Γ �σ⌋ = C. ⊓⊔

Proof of Theorem 5.8: Propositions 5.3, 5.5, and 5.6 give us for aP
ν
⊲ Γ � σ the

derivations
1

{ai↓,⊥↓, 1↓, e↓} ‖‖ D ′
1

P ′⊥

{α↓, σ↓, ls, rs, u↓} ‖‖ D ′
2

⌈Γ � s⌉

{n↓, f↓} ‖‖ D3

⌊Γ � s⌋

24



whereP ′ . P . Note that together with Lemma 5.4, we also have
1

{ai↓,⊥↓, 1↓, e↓} ‖‖ D1

P⊥

{α↑, σ↑, α↓, σ↓, ls, rs, u↓} ‖‖ D2

⌈Γ � s⌉

{n↓, f↓} ‖‖ D3

⌊Γ � s⌋
⊓⊔

B The splitting tensor lemma

For proving our sequentialization (into the sequent calculus) we need the so-called
“splitting tensor lemma”, which is a well-known fact for thepurely multiplicative case
[9]. Unfortunately, due to the presence of the quantifiers and the units, the proof of the
splitting tensor lemma is slightly more complicated than inthe purely multiplicative
case. This means, for the sake of completeness, we have to prove it here again. We fol-
low closely the presentation in [2]. We need the concept of aweak(pre-)proof graph
P

ν
⊲ Γ � σ which is a (pre-)proof graph in which the linkingP does not have to be a

formula but can be a sequent, i.e., some of the root-Os are removed.

B.1 Definition Letπ1 andπ2 be weak pre-proof graphs. We sayπ1 is asubpregraph
of π2, written asπ1 ⊆ π2 if all nodes appearing inπ1 are also present inπ2. We say
π1 is asubgraphof π2 if π1 ⊆ π2, andπ1 andπ2 are both multiplicatively correct (i.e,
for the time being we ignore well-nestedness and appropriateness). Adoorof π1 is any
root node (inP or in Γ ) of π1.

B.2 Lemma Letπ′ andπ′′ be subgraphs of some weak proof graphπ.
(i) The subpregraphπ′ ∪ π′′ is a subgraph ofπ if and only ifπ′ ∩ π′′ 6= ∅.
(ii) If π′ ∩ π′′ 6= ∅ thenπ′ ∩ π′′ is a subgraph ofπ.

Proof: Intersection and union in the statement of that lemma have tobe understood in
the canonical sense: An edge/node/link appears in inπ′∩π′′ (resp.π′∪π′′) if it appears
in both,π′ andπ′′ (resp. in at least one ofπ′ or π′′). For proving the lemma, let us first
note that because inπ every switching is acyclic, also in every subpregraph ofπ every
switching is acyclic, in particular also inπ′ ∪ π′′ andπ′ ∩ π′′. Therefore, we need only
to consider the connectedness condition.

(i) If π′ ∩π′′ = ∅ then every switching ofπ′ ∪π′′ must be disconnected. Conversely,
if π′ ∩ π′′ 6= ∅, then every switching ofπ′ ∪ π′′ must be connected (in every
switching ofπ′ ∪ π′′ every node inπ′ ∩ π′′ must be connected to every node inπ′

and to every node inπ′′, becauseπ′ andπ′′ are both multiplicatively correct).
(ii) Let π′ ∩ π′′ 6= ∅ and lets be a switching forπ′ ∪ π′′. Thens is connected and

acyclic by (i). Lets′π, s′′π, andsπ′∩π′′ , be the restrictions ofs to π′, π′′, andπ′ ∩
π′′, respectively. Now letA andB be two nodes inπ′ ∩ π′′. ThenA andB are
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connected by a path ins′π becauseπ′ is correct, and by a path ins′′π becauseπ′′

is correct. Sinces is acyclic, the two paths must be the same and therefore be
contained insπ′∩π′′ . ⊓⊔

B.3 Lemma Letπ be a weak proof graph, and letA be a node appearing inπ. Then
there is a subgraphπ′ of π, that hasA as a door.

Proof: For proving this lemma, we need the following notation. Letπ be a proof
graph, letA be some node inπ, and lets be a switching forπ. Then we writes(π, A)
for the graph obtained as follows:

– If A is a child of a binary nodeB in π, and there is an edge fromB to A in s, then
remove that edge and lets(π, A) be the connected component of (the remainder of)
s that containsA.

– Otherwise lets(π, A) be justs.
Now let

π′ =
⋂

s

s(π, A)

wheres ranges over all possible switchings ofπ. (Note that it could happen that for-
mally π′ is not a subpregraph because some edges in the formula trees might be miss-
ing. We graciously add these missing edges toπ′ such that it becomes a subpregraph.)
Clearly,A is in π′.

We are now going to show thatA is a door ofπ′. By way of contradiction, assume
it is not. This means there is ancestorB of A that is in

⋂
s s(π, A). Now choose a

switchingŝ such that whenever there is aO node betweenA andB, i.e.,
A

C1 C2

C1 O C2

B

or

A

C2 C1

C2 O C1

B
thenŝ choosesC2 (i.e., removes the edge betweenC1 and its parent).7 Then there must
be a� betweenA andB:

A

D1 D2

D1 � D2

B

or

A

D2 D1

D2 �D1

B
OtherwiseB would not be inπ′ (because we remove every edge fromA to its parent).
Now suppose we have chosen the uppermost such�. Then the path connectingA and
D1 in ŝ(π, A) cannot pass throughD2 (by the construction of̂s(π, A)). But this means
that inŝ (where the edge betweenA and its parent is not removed) there are two distinct
paths connectingA andD1, which contradicts the acyclicity of̂s.

Now we have to show thatπ′ is a subgraph. Lets be a switching forπ′. Sinceπ′ is
a subpregraph ofπ, we have thats is acyclic. Now let̃s be an extension ofs to π. Then
s is the restriction of̃s(π, A) to π′, and hence connected. ⊓⊔

7 Note that there is a mistake in [2].
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B.4 Definition Let π be a weak proof graph, and letA be a node inπ. Thekingdom
of A in π, denoted bykA, is the smallest subgraph ofπ, that hasA as a door. Similarly,
theempire ofA in π, denoted byeA, is the largest subgraph ofπ, that hasA as a door.
We defineA≪ B iff A ∈ kB, whereA andB can be any nodes inπ.

An immediate consequence of Lemmas B.2 and B.3 is that kingdom and empire
always exist.

B.5 Remark The subgraphπ′ constructed in the proof of Lemma B.3 is in fact the
empire ofA. But we will not need this fact later and will not prove it here.

B.6 Lemma Letπ be a weak proof graph, and letA, A′, B, andB′ be nodes inπ,
such thatA andB are distinct,A′ is a child ofA, andB′ is a child ofB. Now suppose
thatB′ ∈ eA′. Then we have thatB /∈ eA′ if and only ifA ∈ kB.

Proof: We haveB′ ∈ eA′ ∩ kB. Hence,π′ = eA′ ∩ kB andπ′′ = eA′ ∪ kB are
subnets ofπ. By way of contradiction, letB /∈ eA′ andA /∈ kB. Thenπ′′ hasA′ as
door and is larger thaneA′ because it containsB. This contradicts the definition ofeA′.
On the other hand, ifB ∈ eA′ andA ∈ kB thenπ′ hasB as door and is smaller than
kB because it does not containA. This contradicts the definition ofkB. ⊓⊔

B.7 Lemma LetA andB be nodes in a weak proof graphP
ν
⊲ Γ �σ. If A≪ B and

B ≪ A, then eitherA andB are the same node or they are dual leaf-nodes connected
via an edge inν.

Proof: If a anda⊥ are two dual leaf-nodes connected viaν, then clearlyka = ka⊥.
Now let A andB be two distinct non-leaf nodes withA ∈ kB andB ∈ kA. Then
kA ∩ kB is a subgraph and hencekA = kA ∩ kB = kB. We have three cases:

– If A is a quantifier node, then the result of removingA from kB is still a subgraph,
contradicting the minimality ofkB.

– If A = A′ O A′′ then the result of removingA from kB is still a subgraph, contra-
dicting the minimality ofkB.

– If A = A′ � A′′ thenkA = kA′∪kA′′∪{A′ �A′′}. HenceB ∈ kA′ or B ∈ kA′′.
This contradicts Lemma B.6, which says thatB /∈ eA′ andB /∈ eA′′. ⊓⊔

From Lemma B.7 it immediately follows that≪ is a partial order on the nodes of
a weak proof graphπ. We make crucial use of this fact in in the proof of the splitting
tensor lemma:

B.8 Lemma Let P
ν
⊲ Γ � σ be a weak proof graph in which no root (inP or Γ ) is

an O- or ∃∃∃∃∃∃∃∃∃-node. If there are�-roots inP or Γ , then at least one of them is splitting,
i.e., by removing that�, the graph becomes disconnected.

Proof: Choose among the�-roots ofP
ν
⊲ Γ � σ one which is maximal w.r.t.≪.

Without loss of generality, assume it isAi = A′
i �A′′

i . We will now show that it is
splitting, i.e.,π = {A′

i �A′′
i } ∪ eA′

i ∪ eA′′
i . By way of contradiction, assumeA′

i �A′′
i

is not splitting. This means we have somewhere inπ a nodeB with two childrenB′ and
B′′ such thatB′ ∈ eA′

i andB′′ ∈ eA′′
i , and thereforeB /∈ eA′

i andB /∈ eA′′
i . We also

know thatAj ¤ B for some other root nodeAj . We have now two cases to consider
– If Aj is a�-node, sayAj = A′

j �A′′
j , thenB ∈ kAj and thereforekB ⊆ kAj .

But by Lemma B.6 we haveAi ∈ kB and thereforeAi ∈ kAj , which contradicts
the maximality ofAi w.r.t.≪.
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– OtherwiseAj is a∀-, ∃-, or E-node. ThenB is inside a box which hasAj as a door.
SinceeA′

i andeA′′
i are both multiplicatively correct, we have a switchings with

two paths,A′
i
��s����������B′ andA′′

i
��s����������B′′. Both paths must enter the box at some point.

This can happen only through a door. And because of the acyclicity condition the
two paths must come in through two different doors. At most one of them can be
in the linkingP , because otherwise the one-∃-condition (4.4-3) would be violated.
But if one of the doors is inP and the other inΓ , we have immediately a violation
of the acyclicity condition. (For every box we can always construct a switching with
a direct path from the∃-door inP to any chosen door inΓ . Hence both doors must
be insideΓ . But this violates the no-down-path condition (4.4-5), because there is
a down path between the two doors going throughA′

i �A′′
i . Contradiction. ⊓⊔

C Properties of simple proof graphs

In this appendix we present a series of lemmas which are needed for the proof of Propo-
sition 5.5, and whose role in the big picture is similar to therole of the “splitting tensor
lemma” for the sequent calculus.

In the following we will sometimes identify a sequent⊢ A1, . . . , An with the for-
mula[A1 O · · ·O An].

C.1 Lemma Let

P (a � a⊥)
ν
⊲ S[∀b.A′{a⊥}O(B′{a}�B′′)] (15)

be a simple proof graph, whereS{ }, A′{ }, andB′{ } are arbitrary contexts,P{ }
is a linking formula context, andν pairs up the shown occurrences ofa anda⊥. Then

P (a � a⊥)
ν
⊲ S([∀b.A′{a⊥}OB′{a}] �B′′) (16)

is also correct.

Proof: Let us abbreviate (15) byP
ν
⊲ Γ and (16) byP

ν
⊲ Γ ′. By way of contradiction,

assume thatP
ν
⊲ Γ ′ is not correct.

If it is not multiplicatively correct then there is a switchings which is either discon-
nected or cyclic. If it is disconnected, then we get froms immediately a disconnected
switching forP

ν
⊲ Γ . So, let us assumes is cyclic. The only modification fromΓ to Γ ′

that could produce such a cycle is the change fromA′{a⊥}!Γ
O

B′′ to A′{a⊥}!Γ ′

�
B′′.

Hence, we must have a pathA′{a⊥} ��s����������B′′, which is also present inP
ν
⊲ Γ . Note that

this path cannot pass througha⊥ anda because otherwise we could use(B′{a}�B′′)

to get a cyclic switching forP
ν
⊲ Γ . Furthermore, becauseP

ν
⊲ Γ is well-nested, there

is an∃b-node insideB′{a} belowa. We can draw the following pictures to visualize

28



the situation:

in P ⊲ Γ ′

⊥

⊥

′

′ ′′

in P ⊲ Γ ′

∃b

�

a a⊥

a⊥ a

A′ ∃b

∀b B′ B′′

O

�

in P ⊲ Γ

⊥

⊥

′ ′ ′′

in P ⊲ Γ

∃b

�

a a⊥

a⊥ a

∃b

A′ B′ B′′

∀b �

O

Now, let c be the leaf at which our path leavesA′{a⊥} and goes intoP , and letc′ be

the leaf at which it leavesP and comes back intoΓ . by well-nestedness ofP
ν
⊲ Γ , there

must be some∃b-node somewhere inΓ belowc′. We also know that our path, coming
into Γ at c′, goes first down, and at some point goes up again. This turningpoint must
be some�-node belowc′. Since the∃b-node and the�-node are both on the path from
c′ to the root of the formula, one must be an ancestor of the other. Let us first assume
the� is below the∃b. Then our path is of the shape

′⊥ ⊥ ⊥

′ ⊥

′ ′ ′′

∃b

� �

c′⊥ c⊥ a a⊥

c′ c a⊥ a

∃b ∃b

� A′ B′ B′′

∀b �

O

(17)

This, however, is a contradiction to the well-nestedness ofP
ν
⊲ Γ because it violates

the no-down-path-condition (4.4-5) because there is a pathbetween the∃b below thec′

and the∃b below thea. Therefore the� must be above the∃b. The situation is now as
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follows:

′⊥ ⊥ ⊥

′ ⊥

′ ′ ′′

∃b

� �

c′⊥ c⊥ a a⊥

c′ c a⊥ a

� ∃b

∃b A′ B′ B′′

∀b �

O
From the�, the path must go up again. Without loss of generality, assume it leavesΓ
at d and reentersΓ at d′. For the same reasons as above, there must be an∃b and a�
belowd′. And so on. There are two possibilities: either at some pointthe� is below
the∃b, which gives us a violation of the no-down-path-condition as in (17), or we reach
eventuallyB′′:

′⊥ ⊥ ′⊥ ⊥ ⊥

′ ′ ⊥

′ ′ ′′

∃b

� � �

d′⊥ d⊥ c′⊥ c⊥ a a⊥

d′ d c′ c a⊥ a

� � ∃b ∃b

∃b ∃b A′ B′ B′′

∀b �

O

For the same reasons as above, there must be an∃b insideB′′, and we get immediately
a violation of the no-down-path-condition because of the short path between the two∃b
aboveB′ andB′′. Consequently,P

ν
⊲ Γ ′ must be multiplicatively correct.

Let us therefore assumeP
ν
⊲ Γ ′ is not well-nested. The same-depth-condition and

the same-variable-condition (4.4-1 and 4.4-2) must hold inP
ν
⊲ Γ ′ because they hold

in P
ν
⊲ Γ and the quantifier structure is identical inΓ andΓ ′. For the same reasons also

the one-∃-condition and the one-∀-condition (4.4-3 and 4.4-4) must hold inP
ν
⊲ Γ ′.

Therefore, it must be the no-down-path-condition which is violated. This means we
must have inΓ ′ two quantifier nodes, say∀c and∃c, connected by a path∀c �� s����������∃c in
some switchings. Because this path is not present inP

ν
⊲ Γ it must pass through the
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new� between∀b.A′{a⊥} andB′′, as follows:

⊥

⊥

′

′ ′′

�

a a⊥

a⊥ a

A′

∀c ∀b B′ B′′ ∃c

O

�

(18)

SinceP
ν
⊲ Γ ′ is multiplicatively correct, the switchings must be connected. Therefore

there is ins a path from the∀b-node to thea insideB′. This new path must follow the
path between∀c and∃c for some steps in one direction. Hence, we either have

⊥

⊥

′

′ ′′

�

a a⊥

a⊥ a

A′ � �

∀c ∀b B′ B′′ ∃c

O

�

(19)

or

⊥

⊥

′

′ ′′

�

a a⊥

a⊥ a

�

A′

∀c ∀b B′ B′′ ∃c

O

�

(20)

31



Clearly, (19) violates the acyclicity condition forP
ν
⊲ Γ ′ as well as forP

ν
⊲ Γ . And

from (20), we can obtain a switching forP
ν
⊲ Γ with a path∀c �� s����������∃c as follows:

⊥

⊥

′ ′ ′′

�

a a⊥

a⊥ a

�

∀c A′ B′ B′′ ∃c

∀b �

O

(21)

Contradiction. (Note that although in (20) and (21) the pathdoes not go through thea⊥

insideA′, this case is not excluded by the argument.) ⊓⊔

C.2 Lemma Let

P (a � a⊥)
ν
⊲ S[(A′′ � A′{a⊥})O(B′{a}�B′′)] (22)

be a simple proof graph. Then at least one of

P (a � a⊥)
ν
⊲ S([(A′′ � A′{a⊥})OB′{a}] �B′′) (23)

and

P (a � a⊥)
ν
⊲ S(A′′ �[A′{a⊥}O(B′{a}�B′′)]) (24)

is also correct.

Proof: We will abbreviate (22) byP ⊲ Γ , (23) byP ⊲ Γ ′, and (24) byP ⊲ Γ ′′.

We start by showing that both,P ⊲ Γ ′ andP ⊲ Γ ′′ have to be multiplicatively
correct. We consider here only the acyclicity condition andleave connectedness to the
reader. Suppose by way of contradiction, that there is a switchings′ for P ⊲ Γ ′ that is
cyclic. Then the cycle must pass throughA′′, the root� and theO as follows:

⊥

⊥

′′ ′ ′ ′′

�

a a⊥

a⊥ a

A′′ A′ B′ B′′

�

O

�
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Otherwise we could construct a switching with the same cyclein π. If our cycle contin-
ues throughB′′, i.e.,

⊥

⊥

′′ ′ ′ ′′

�

a a⊥

a⊥ a

A′′ A′ B′ B′′

�

O

�

(25)

then we can use the path fromA′′ toB′′ (which cannot go throughA′ orB′) to construct
a cyclic switchings in P ⊲ Γ as follows:

⊥

⊥

′′ ′ ′ ′′

�

a a⊥

a⊥ a

A′′ A′ B′ B′′

� �

O

Hence, the cycle ins′ goes throughB′, giving us a path fromA′′ to B′ (not passing
throughA′):

⊥

⊥

′′ ′ ′ ′′

�

a a⊥

a⊥ a

A′′ A′ B′ B′′

�

O

�

(26)

By the same argumentation we get a switchings′′ in P ⊲ Γ ′′ with a path fromA′ to B′′,
not going throughB′. Froms′ ands′′, we can now construct a switchings for P ⊲ Γ
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with a cycle as follows:

⊥

⊥

′′ ′ ′ ′′

�

a a⊥

a⊥ a

A′′ A′ B′ B′′

� �

O

which contradicts the correctness ofP ⊲ Γ .

We now have to show thatP ⊲ Γ ′ andP ⊲ Γ ′′ are both well-nested. This can be
done in almost literally the same way as in the proof of Lemma C.1. ⊓⊔

C.3 Lemma Let

P (a � a⊥)
ν
⊲ S[∀b.A′{a⊥}O∃b.B′{a}] (27)

be a simple proof graph. Then

P (a � a⊥)
ν
⊲ S{∀b.[A′{a⊥}OB′{a}]} (28)

is also correct.

Proof: Multiplicative correctness of (28) follows immediately, because the�-O-structure
is the same as in (27). Furthermore, all five conditions in Definition 4.4 are obviously
preserved by going from (27) to (28). Hence (28) is correct. ⊓⊔

C.4 Lemma Let

P (a � a⊥)
ν
⊲ S[a⊥ O(B′{a}�B′′)] (29)

be a simple proof graph. Then

P (a � a⊥)
ν
⊲ S([a⊥ O B′{a}] �B′′) (30)

is also correct.

Proof: As before, we abbreviate (29) byP ⊲ Γ and (30) byP ⊲ Γ ′. Well-nestedness
of P ⊲ Γ ′ follows trivially from the well-nestedness ofP ⊲ Γ . By way of contradiction,
assumeP ⊲ Γ ′ is not multiplicatively correct. Since connectedness is trivial, assume
there is a cyclic switchings. If the cycle does not involve the� betweena⊥ andB′′,
then we immediately have a cyclic switching forP ⊲ Γ . Since the cycle involvesa⊥, it
must also involvea. Therefore it must leaveB′{a} at some other leaf, and finally enter
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O

� �

a a⊥ a a⊥

a⊥ a a⊥ a

�EcnEc1 ;

�

a a⊥

a⊥ a

O

�

Q

⊥ 1

1 ⊥

�EcnEc1 ;

Q

A B C D

O �

�EcnEc1 ;

A C B D

� �Ecn EcnEc1 Ec1
Fig. 9.Cut reduction for MLL2 proof nets (Part 1)

B′′ from above, as shown below on the left.
in P ⊲ Γ ′

⊥

⊥

′ ′′

in P ⊲ Γ ′

�

a a⊥

a⊥ a

�

B′ B′′

O

�

in P ⊲ Γ

⊥

⊥

′ ′′

in P ⊲ Γ

�

a a⊥

a⊥ a

�

B′ B′′

�

O
This allows us to construct a cyclic switching forP ⊲ Γ , as shown on the right above.
Contradiction. ⊓⊔

D Cut elimination

For the convenience of the referee we show how cut elimination works for the proof nets
introduced in this paper. We will be brief because the essential ingredients have already
been shown in [9] and [17]. graphP

ν
⊲ Γ �σ is a special binary connective�, such that

whenever we haveA� B in Γ , then we must have⌊A � σ⌋ = ⌊B � σ⌋⊥.8 Morally, a
� may occur only at the root of a formula inΓ . However, due to well-nestedness we
must allow cuts to haveE-nodes as ancestors. Then the� is treated in the correctness

8 Note that it does not meanA = B⊥, becauseΓ is expanded.
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∃a

R

· · ·

A B B1 Bn

∃∃∃∃∃∃∃∃∃a ∀a Ea ∃a

�EcnEc1
;

R′

· · ·

A B′ B1 B′

n

� ∃∃∃∃∃∃∃∃∃aEcnEc1
O

∃a R

Q

· · · A · · ·

∀a Ea Ea B B1 Bn

�EcnEc1 ;

∃a

O

Q R

· · · A B B1· · ·Bn

∀a Ea � Ea EaEaEcnEc1
O

∃a ∃a

Q R

· · · A B · · ·

∀a Ea ∃a ∀a Ea ∃a

�EcnEc1 ;

∃a

O

Q R

· · · A B · · ·

∀a Ea � Ea ∃aEaEcnEc1
Fig. 10.Cut reduction for MLL2 proof nets (Part 2)

criterion in exactly the same way as the�, and sequentialization does also hold for
proof graphs with cut.

The cut reduction relation; is defined on pre-proof graphs as shown in Figures
9 and 10. The reductions not involving quantifiers are exactly as shown in [17]. If we
encounter a cut between two binary connectives, then we replace[AO B] �(C �D) by
two smaller cutsA� C andB � D. Note that if⌊[AOB] �σ⌋ = ⌊(C � D) �σ⌋⊥ then
⌊A�σ⌋ = ⌊C �σ⌋⊥ and⌊B �σ⌋ = ⌊D�σ⌋⊥. If we have an atomic cuta⊥ � a, then we
must have inP two “axiom links” (a⊥ � a), which are by the leaf mappingν attached
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to the two atoms in the cut. It was shown in [17] that the two pairs (a⊥ � a) can, under
the equivalence relation in Definition 4.9, be brought next to each other such thatP
has[(a � a⊥)O(a � a⊥)] as subformula. We can replace this by a single(a⊥ � a) and
remove the cut. If we encounter a cut1 �⊥ on the units, we must have in the linking a
corresponding⊥ and a subformula(1 �Q), which can (for the same reasons as for the
atomic cut) be brought together, such that we have inP a subformula[⊥O(1 �Q)].
We replace this byQ and remove the cut.

Let us now consider the cuts that involve the quantifiers. There are three cases, one
for each of∃∃∃∃∃∃∃∃∃, E, and∃. The first two correspond to the ones in [9]. The third one does
not appear in [9] because there is never a∃-node created when a sequent calculus proof
is translated into a proof net.

If one of the cut formulas is an∃∃∃∃∃∃∃∃∃-node, then the other must be an∀, which quantifies
the same variable, say we have∃∃∃∃∃∃∃∃∃a.A� ∀a.B. Then we pick a stretching edge starting
from ∃∃∃∃∃∃∃∃∃a.A. Let C be the node where it ends and letD = ⌊C � σ⌋. Note that by
Condition 4.7-1,D is independent from the choice of the edge in case there are many
of them. (If there are only negative edges, then letD = ⌊C � σ⌋⊥. If there are no
stretching edges at all, then letD = a. Now we can inside the box of∀a.B substitute
a everywhere byD. Then we remove all the doors of the∀a.B-box and replace the
cut byA�B. There are two subtleties involved in this case. First, “removing a door”
means for a Ethat the node is removed, but for and∃, it means that the node is replaced
by an∃∃∃∃∃∃∃∃∃ and a stretching edge is added for everya anda⊥ bound by the∃-node to
be removed. Second, by substitutinga with D we get “axiom links” which are not
atomic anymore, but it is straightforward to make them atomic again: one proceeds by
structural induction onD. If D = ∀b.D1, then replace

�

∀b.D1 ∃b.D⊥
1

∃b.D⊥
1 ∀b.D1

with

∃b

�

D1 D⊥
1

D⊥
1 D1

∃b ∀b

(31)

and ifD = (D1 �D2) then replace

�

(D1 �D2) [D⊥
1 O D⊥

2 ]

[D⊥
1 OD⊥

2 ] (D1 � D2)

with

O

� �

D1 D⊥
1 D2 D⊥

2

D⊥
1 D⊥

2 D1 D2

O �

(32)

The cases for∃a.D1 and[D1 OD2] are similar.
If one of the two cut formulas is aE-node, then the other one can be anything.

Say, we have Ea.A�B. Let eB be theempireof B, i.e, largest sub-proof graph of
P

ν
⊲ Γ � σ that hasB as a conclusion. LetB1, . . . , Bn be the other doors ofeB inside
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Γ , and letR be the door ofeB in P . If eB has more than one root-node inside the
linking P , then we can rearrange theO-nodes inP via the equivalence in 4.9 such that
eB has a singleO-root in P . Furthermore, as in the case of the atomic cut we can use
the equivalence in 4.9 to get inP a subformula[∃a.Q OR] where∃a.Q is the partner
of Ea.A. Now we replace onP the formula[∃a.Q OR] by ∃a.[Q OR] and inΓ the
formulasB1, . . . , Bn by Ea.B1, . . . , Ea.Bn. Put in plain words, we have pulled the
whole empire ofB inside the box of Ea.A. But now we have a little problem: Morally,
we should replace the cutEa.A�B by A�B; the cut is also pulled inside the box.
But by this we would break our correctness criterion, namely, the same-depth-condition
4.4-1. To solve this problem, we allow cut-nodes to haveE-nodes as ancestors, and we
replace the cut Ea.A�B by Ea.(A� B). Note that this does not cause problems for
the other cut reduction steps because we can just keep allE-ancestors when we replace
a cut by a smaller one.

Finally, there is the cut between an ordinary∃-node and a∀-node, say∃a.A� ∀a.B.
Then we do not pull the whole empire of∀a.B inside the box of∃a.A but only the
∀a.B-box. This is the same as merging the two boxes into one. Formally, let ∃a.Q and
∃a.R be the partners of∃a.A and∀a.B, respectively. Again, for the same reasons as in
the case of the atomic cut, we can assume that we have the configuration[∃a.Q O∃a.R]
in P , which we replace by∃a.[Q OR]. The cut is replaced byEa.(A� B).

This cut reduction relation is defineda priori only on pre-proof graphs. For a pre-
proof graphP

ν
⊲ Γ � σ and a cutA�B in Γ , we say the cut isready, if the cut

can immediately be reduced without further modification ofP . We now can show the
following:

D.1 Theorem The cut reduction relation preserves correctness and is well-defined
on proof nets.

Proof: That correctness is preserved follows immediately from inspecting the six
cases. To show that cut reduction is well-defined on proof nets we need to verify the
following two facts:
1. Whenever the same cut is reduced in two different representations of the same proof

net, then the two results also represent the same proof net.
2. Whenever there is a cut in a proof net, then this cut can be reduced, i.e., there is a

representant to which the corresponding reduction step in Figures 9 and 10 can be
applied.

For the first statement, it suffices to observe that whenever one of the basic equivalence
steps in Definition 4.9 can be performed in the non-reduced net, then the same step can
be performed in the reduced net or is vacuous in the reduced net. For the second state-
ment we have to make a case analysis on the type of cut: If the cut is [AOB] �(C � D)
or ∃∃∃∃∃∃∃∃∃a.A�∀a.B, then it is trivial because these cuts are always ready. Let us now con-
sider a cut∃a.A�∀a.B. Clearly, the two boxes of which∃a and∀a are doors each have
a single door∃a in P , and their first common ancestor is aO (because of the acyclicity
condition). Therefore, the linking is of the shapeP [S1{∃a.Q}OS2{∃a.R}] for some
contextsS1{ } andS2{ }. Now we proceed by induction on the size ofS1{ } and
S2{ } and make a case analysis on their root-nodes:9

9 Note the similarity to the proof of Proposition 5.5.
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– Both contexts are empty. In this case the linking has the desired shape, and we are
done.

– One of them has aO-root. In this case we apply associativity of theO and proceed
by induction hypothesis.

– One of them has an∃-node as root. This is impossible because it would violate the
well-nested condition.

– One of them has a�-root, and the other context is empty. Without loss of generality,
the linking is of the shapeP [(1 �S′

1{∃a.Q})O∃a.R]. We claim, that in this case
the correctness is preserved if we replace the linking byP (1 �[S′

1{∃a.Q}O∃a.R]).
We leave the proof of this claim to the reader because it is very similar to the proof
of Lemma C.4. Hence, we can proceed by induction hypothesis.

– Both contexts have a�-root. Then the linking is of the shape
P [(1 �S′

1{∃a.Q})O(1 �S′
2{∃a.R})] .

Now we claim that we can replace this linking with one of
P (1 �[S′

1{∃a.Q}O(1 �S′
2{∃a.R})])

and
P (1 �[(1 �S′

1{∃a.Q})OS′
2{∃a.R}])

without destroying correctness. Again, we leave the proof to the reader because
it is almost the same as the proof of Lemma C.2. As before, we can proceed by
induction hypothesis.

For a cut Ea.A�B we proceed similarly. The only difference is that we first have to
apply associativity and commutativity ofO to bring the proof graph in a form where
the empireeB has a single rootR in the linking. For cutsa � a⊥ and1 �⊥ we can also
proceed similarly. ⊓⊔

D.2 Theorem The cut reduction relation; is terminating and confluent.

Proof: Termination has already been shown in [9], and we will not repeat it here. For
showing confluence it suffices to show local confluence. We will do this first for proof
graphs. Suppose we have two cuts which are ready in a given proof graph. We claim that
the result of reducing them is independent from the order of the reduction. There is only
one critical pair, since the only possibility for overlapping redexes is when one cut is
∃∃∃∃∃∃∃∃∃a.A�∀a.B and the other is∃a.C �∀a.D and the formulas∀a.B and∃a.C are doors
of the same box. If we reduce first the cut∃∃∃∃∃∃∃∃∃a.A�∀a.B, then we do first the substitution
in the∀a.B-box, remove its border, change the second cut to∃∃∃∃∃∃∃∃∃a.C′ � ∀a.D, and then
do the same substitution in the∀a.D-box and remove its border. If we reduce first the
cut ∃a.C �∀a.D, then we merge the two boxes into one, and then do the substitution
and remove the border of the box. Clearly, the result is the same in both cases. Hence,
we have local confluence for the cut reduction on proof graphs. In the case of proof
nets, it can happen that the two cuts are ready in two different representants. With the
method shown in the previous proof we can try to construct a representant in which
both cuts are ready. There are only two cases in which this fails. The first is when we
have two atomic cuts using the same “axiom link”. But then theresult of reducing the
two is a single axiom link, independent from the order. The second case is when we
have two cuts∃a.A� ∀a.B and∃a.C �∀a.D where∀a.B and∃a.C are doors of the
same box. Here the result of reducing the two will be a big box which is the merge of
all three boxes, independent of the order in which the two cuts are reduced. ⊓⊔
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