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INRIA Saclay –Île-de-France —́Equipe-projet Parsifal
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Abstract. We investigate the question of what constitutes a proof whenquanti-
fiers and multiplicative units are both present. On the technical level this paper
provides two new aspects of the proof theory ofMLL2 with units. First, we give
a novel proof system in the framework of the calculus of structures. The main
feature of the new system is the consequent use of deep inference, which allows
us to observe a decomposition which is a version of Herbrand’s theorem that is
not visible in the sequent calculus. Second, we show a new notion of proof nets
which is independent from any deductive system. We have “sequentialisation”
into the calculus of structures as well as into the sequent calculus. Since cut elim-
ination is terminating and confluent, we have a category ofMLL2 proof nets. The
treatment of the units is such that this category is star-autonomous.

1 Introduction

The question of when two proofs are the same is important for proof theory and its
applications. It comes down to the question of which information contained in a proof
is essential, and which information is purely bureaucratic, due to the chosen deductive
system. One of the first results in that direction is Herbrand’s theorem which allows a
separation between the quantifiers and the propositional fragment of first order classical
predicate logic. The work on expansion trees by Miller [1] shows how Herbrand’s result
can be generalized to higher order. In this paper we present asimilar result for linear
logic. Our work is motivated by the desire to find eventually ageneral treatment for the
quantifiers, independent from the propositional fragment of the logic (see the related
work by McKinley [2]).

The first contribution of this paper is a presentation ofMLL2 in the calculus of
structures, which is a new deductive formalism usingdeep inference. That means that
inferences are allowed anywhere deep inside a formula, verysimilar to what happens
in term rewriting. As a consequence of this freedom we can show a decomposition the-
orem, which is not possible in the sequent calculus, and which can be seen as a version
of Herbrand’s Theorem forMLL2. Secondly, we give a combinatorial presentation of
MLL2 proofs that we call hereproof nets(following the tradition) and that quotient
away irrelevant rule permutations in the deductive systems(sequent calculus and cal-
culus of structures). The identifications made by these proof nets are consistent with
ones forMLL (with units) made by star-autonomous categories [3–5]. Themain moti-
vation for these proof nets is to exhibit the precise relation between deep inference and
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Fig. 1. Sequent calculus system forMLL2

the existing presentations ofMLL2-proofs: sequent calculus, Girard’s proof nets with
boxes [6], and Girard’s proof nets with jumps [7]. In particular, there is a close connec-
tion between the decomposition theorem in deep inference, and the sequentialization of
proof nets. Furthermore, our proof nets are the first to accomodate the quantifiers and
the multiplicative units together without boxes. The proofnets proposed here are inde-
pendent from the deductive system, i.e., we do not have the strong connection between
links in the proof net and rule applications in the sequent calculus. However, we have
“sequentialization” into the sequent calculus as well as into the calculus of structures.
As expected, there is a confluent and terminating cut elimination procedure, and thus,
the two conclusion proof nets form a category.

2 MLL2 in the sequent calculus

Let us recall howMLL2 is presented in the sequent calculus. LetA = {a, b, c, . . .} be
a countable set ofpropositional variables. Then the setF of formulasis generated by

F ::= ⊥ | 1 | A | A ⊥ | [F OF ] | (F �F ) | ∀A. F | ∃A. F

Formulas are denoted by capital Latin letters (A, B, C, . . .). Linear negation(−)⊥ is
defined for all formulas by the De Morgan laws.Sequentsare finite lists of formulas,
separated by comma, and are denoted by capital Greek letters(Γ, ∆, . . .). The notions
of free andbound variableare defined in the usual way, and we can always rename
bound variables. In view of the later parts of the paper, and in order to avoid changing
syntax all the time, we use the following syntactic conventions:

(i) We always put parentheses around binary connectives. For better readability we
use[. . .] for O and(. . .) for �.

(ii) We omit parentheses if they are superfluous under the assumption thatO and�
associate to the left, e.g.,[AO B OC O D] abbreviates[[[AO B] OC] O D].

(iii) The scope of a quantifier ends at the earliest possible place (and not at the latest
possible place as usual). This helps saving unnecessary parentheses. For example,
in [∀a.(a � b)O∃c.c O a], the scope of∀a is (a � b), and the scope of∃c is justc.
In particular, thea at the end is free.

The inference rules forMLL2 are shown in Figure 1. In the following, we will call this
systemMLL2Seq. As shown in [6], it has the cut elimination property:

2.1 Theorem The cut rule
⊢ Γ, A ⊢ A⊥, ∆

cut
⊢ Γ, ∆

is admissible forMLL2Seq.
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Fig. 2. Deep inference system forMLL2

3 MLL2 in the calculus of structures

We now present a deductive system forMLL2 based on deep inference. We use the cal-
culus of structures, in which the distinction between formulas and sequents disappears.
This is the reason for the syntactic conventions introducedabove.1

The inference rules work directly (as rewriting rules) on the formulas. The system
for MLL2 is shown in Figure 2. There,S{ } stands for an arbitrary (positive) formula
context. We omit the braces if the structural parentheses fill the hole. E.g.,S[AOB] ab-
breviatesS{[AOB]}. The system in Figure 2 is calledMLL2DI↓. We consider here only
the so-calleddown fragmentof the system, which corresponds to the cut-free system
in the sequent calculus.2 Note that the∀-rule of MLL2Seq is in MLL2DI↓ decomposed
into three pieces, namely,e↓, u↓, andf↓. We also need an explicit rule for associativity
which is “built in” the sequent calculus. The relation between the�-rule and the rules
ls and rs (called left switchand right switch) has already in detail been investigated
by several authors [13–15,9]. The following theorem ensures thatMLL2DI↓ is indeed a
deductive system forMLL2.

3.1 Theorem For every proof of ⊢ A1, . . . , An in MLL2Seq, there is a proof of
[A1 O · · ·OAn] in MLL2DI↓, and vice versa.

As for MLL2Seq, we also have forMLL2DI↓ the cut elimination property, which can
be stated as follows:

3.2 Theorem The cut rule
S(A�A⊥)

i↑
S{⊥}

is admissible forMLL2DI↓.

1 In the literature on deep inference, e.g., [8, 9], the formula (a �[b O(a⊥
� c)]) would be writ-

ten as(a, [b, (a⊥, c)]), while without our convention it would be written asa�(b O(a⊥
� c)).

Our convention can therefore be seen as an attempt to please both communities. In particular,
note that the motivation for the syntactic convention (iii)above is the collapse of theO on the
formula level and the comma on the sequent level, e.g.,[∀a.(a� b) O ∃c.c O a] is the same as
[∀a.(a, b),∃c.c, a].

2 Theup fragment(which corresponds to the cut in the sequent calculus) is obtained by dualizing
the rules in the down fragment, i.e., by negating and exchanging premise and conclusion. See,
e.g., [10, 11, 8, 12] for details.



4 Lutz Straßburger

S{∃a.∀b.A}
x

S{∀b.∃a.A}

S{∃a.∃b.A}
y↓

S{∃b.∃a.A}

S{∃a.[A OB]}
v↓

S[∃a.A O ∃a.B]

S{∃a.(A �B)}
w↓

S(∃a.A � ∃a.B)

S{∃a.1}
1f↓

S{1}

S{∃a.⊥}
⊥f↓

S{⊥}

S{∃a.b}
af↓

S{b}

S{∃a.b⊥}
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Fig. 3. Towards a local system forMLL22

We write

A

MLL2DI↓
‖
‖ D

B

for denoting a derivationD in MLL2DI↓ with premiseA

and conclusionB. The following decomposition theorem forMLL2DI↓ can be seen as a
version of Herbrand’s theorem forMLL2 and has no counterpart in the sequent calculus.

3.3 Theorem

Every derivation

1

MLL2DI↓
‖
‖ D

C

can be transformed into

1

{ai↓,⊥↓, 1↓, e↓} ‖
‖ D1

A

{α↓, σ↓, ls, rs, u↓} ‖
‖ D2

B

{n↓, f↓} ‖
‖

D3

C

.

This decomposition is obtained by permuting all instances of ai↓,⊥↓, 1↓, e↓ up
and permuting all instances ofn↓, f↓ down. There are two versions of the “switch” in
MLL2DI↓, the left switchls, and theright switchrs. For Thm. 3.1, thels-rule would be
sufficient, but for obtaining the decomposition in Thm. 3.3 we also need thers-rule.

If a derivationD uses only the rulesα↓, σ↓, ls, rs, u↓, then premise and conclusion
of D (and every formula in between the two) must contain the same atom occurrences.
Hence, theatomic flow-graph[16, 17] of the derivationD defines a bijection between
the atom occurrences of premise and conclusion ofD . Here is an example of a deriva-
tion with its flow-graph. (We left some some applications ofα↓ andσ↓ implicit.)

∀a.∀c.([ ⊥
O ] �[ ⊥

O ])
ls

∀a.∀c.[ ⊥
O( �[ ⊥

O ])]
rs

∀a.∀c.[ ⊥
O[( �

⊥) O ]]
u↓

∀a.[∃c. ⊥
O ∀c.[( �

⊥) O ]]
u↓

∀a.[∃c. ⊥
O[∃c.( �

⊥) O ∀c. ]]
u↓

[∀a.∃c. ⊥
O ∃a.[∃c.( �

⊥) O∀c. ]]

∀a.∀c.([a⊥
O a] �[c⊥ O c])

ls
∀a.∀c.[a⊥

O(a �[c⊥ O c])]
rs

∀a.∀c.[a⊥
O[(a � c⊥) O c]]

u↓
∀a.[∃c.a⊥

O ∀c.[(a � c⊥) O c]]
u↓

∀a.[∃c.a⊥
O[∃c.(a � c⊥) O ∀c.c]]

u↓
[∀a.∃c.a⊥

O ∃a.[∃c.(a� c⊥) O∀c.c]]

(1)

In the sequent calculus the∀-rule has a non-local behavior, in the sense that for applying
the rule we need some global knowledge about the contextΓ , namely, that the variable
a does not appear freely in it. This is the reason for the boxes in [6] and the jumps in [7].
In the calculus of structures this “checking” whether a variable appears freely is done
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in the rulef↓, which is as non-local as the∀-rule in the sequent calculus. However, with
deep inference, this rule can be made local, i.e., reduced toan atomic version (in the
same sense as the identity axiom can be reduced to an atomic version). For this, we need
an additional set of rules which is shown in Figure 3 (again, we show only the down
fragment), and which is calledLf↓. Clearly, all rules are sound, i.e., proper implications
of MLL2. Now we have the following:

3.4 Theorem

Every derivation

B

{n↓, f↓}
‖
‖ D

C

can be transformed into

B

{n↓} ∪ Lf↓
‖
‖ D

′

C

, and vice versa.

4 Proof nets for MLL2

For defining proof nets forMLL2, we follow the ideas presented in [18, 5] where the
axiom linking of multiplicative proof nets has been replaced by a linking formula to
accommodate the units1 and⊥. In such a linking formula, the ordinary axiom links are
replaced by�-nodes, which are then connected byOs. A unit can then be attached to a
sublinking by another�, and so on. Here we extend the syntax for the linking formula
by an additional construct to accommodate the quantifiers. Now, the setL of linking
formulasis generated by the grammar

L ::= ⊥ | (A �A
⊥) | (1 �L ) | [L OL ] | ∃A. L

In [18, 5] a proof net consists of the sequent forest and the linking formula. The presence
of the quantifiers, in particular, the presence of instantiation and substitution, makes it
necessary to expand the structure of the sequent in the proofnet. The setE of expanded
formulas3 is generated by

E ::= ⊥ | 1 | A | A ⊥ | [E O E ] | (E � E ) | ∀A. E | ∃A. E | EA. E | ∃∃∃∃∃∃∃∃∃A. E

There are only two additional syntactic primitives: theE, calledvirtual existential quan-
tifier, and the∃∃∃∃∃∃∃∃∃, calledbold existential quantifier. An expanded sequentis a finite list
of expanded formulas, separated by comma. We denote expanded sequents by capi-
tal Greek letters (Γ , ∆, . . . ). For disambiguation, the formulas/sequents introduced in
Section 2 (i.e., those withoutEand∃∃∃∃∃∃∃∃∃) will also be calledsimple formulas/sequents.

In the following we will identify formulas with their syntaxtrees, where the leaves
are decorated by elements ofA ∪ A ⊥ ∪ {1,⊥}. We can think of the inner nodes as
decorated either with the connectives/quantifiers�, O, ∀a, ∃a, ∃∃∃∃∃∃∃∃∃a, Ea, or with the
whole subformula rooted at that node. For this reason we willuse capital Latin letters
(A, B, C, . . . ) to denote nodes in a formula tree. We writeA ¤ B if A is a (not
necessarily proper) ancestor ofB, i.e., B is a subformula occurrence inA. We writelΓ (resp.lA) for denoting the set of leaves of a sequentΓ (resp. formulaA).

3 This is almost the same structure as Miller’sexpansion trees[1]. The idea is to code a formula
and its “expansion” together in the same syntactic object. But our case is simpler than in [1]
because we do not have to deal with duplication.
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4.1 Definition A stretchingσ for a sequentΓ consists of two binary relationsñσ+
andñσ− on the set of nodes ofΓ (i.e., its subformula occurrences) such thatñσ+ andñσ−
are disjoint.

A stretching consists of edges connecting∃∃∃∃∃∃∃∃∃-nodes with some of its subformulas,
and these edges can be positive or negative. Their purpose isto mark the places of the
substitution of the atoms quantified by the∃∃∃∃∃∃∃∃∃. When writing an expanded sequentΓ with
a stretchingσ, denoted byΓ � σ, we will draw these edges either insideΓ when it is
written as a tree, or belowΓ when it is written as string. The positive edges are dotted
and the negative ones are dashed. Examples are shown in Figures 6, 4 and 5 below. If
A is a node inΓ , we writeσA to denote the restriction ofσ to A.

The virtue of second orderMLL is the possibility of substitution and instantiation,
which is theraison d’̂etreof the expansion via∃∃∃∃∃∃∃∃∃ and E.
4.2 Definition For an expanded formulaE and a stretchingσ, we define theceiling
and thefloor4, denoted by⌈E � σ⌉ and⌊E � σ⌋, respectively, to be simple formulas,
which are inductively defined as follows:

⌈1 � ∅⌉ = 1 ⌈AO B � σ⌉ = ⌈A � σA⌉O⌈B � σB⌉
⌈⊥ � ∅⌉ = ⊥ ⌈A� B � σ⌉ = ⌈A � σA⌉�⌈B � σB⌉
⌈a � ∅⌉ = a ⌈∀a.A � σ⌉ = ∀a.⌈A � σ⌉ ⌈ Ea.A � σ⌉ = ∃a.⌈A � σ⌉
⌈a⊥ � ∅⌉ = a⊥ ⌈∃a.A � σ⌉ = ∃a.⌈A � σ⌉ ⌈∃∃∃∃∃∃∃∃∃a.A � σ⌉ = ⌈A � σA⌉

⌊1 � ∅⌋ = 1 ⌊AOB � σ⌋ = ⌊A � σA⌋O⌊B � σB⌋
⌊⊥ � ∅⌋ = ⊥ ⌊A�B � σ⌋ = ⌊A � σA⌋�⌊B � σB⌋
⌊a � ∅⌋ = a ⌊∀a.A � σ⌋ = ∀a.⌊A � σ⌋ ⌊ Ea.A � σ⌋ = ⌊A � σ⌋
⌊a⊥ � ∅⌋ = a⊥ ⌊∃a.A � σ⌋ = ∃a.⌊A � σ⌋ ⌊∃∃∃∃∃∃∃∃∃a.A � σ⌋ = ∃a.⌊Ã � σ

Ã
⌋

The expanded formulãA in the last line is obtained fromA as follows: For every node
B with A ¤ B and∃∃∃∃∃∃∃∃∃a.Añσ+ B remove the whole subtreeB and replace it bya, and for

everyB with ∃∃∃∃∃∃∃∃∃a.Añσ− B replaceB by a⊥.

Note that ceiling and floor of an expanded sequentΓ differ from Γ only on∃∃∃∃∃∃∃∃∃ andE. In the ceiling, the Eis treated as ordinary∃, and the∃∃∃∃∃∃∃∃∃ is completely ignored. In the
floor, the Eis ignored, and the∃∃∃∃∃∃∃∃∃ uses the information of the stretching to “undo the
substitution”. To provide this information on the locationis the purpose of the stretch-
ing. To ensure that we really only “undo the substitution” instead of doing something
weird, we need some further constraints, which are given by Definition 4.3 below.

GivenΓ � σ and nodesA, B in Γ , then we writeAñB if A is a∃∃∃∃∃∃∃∃∃-node and there
is a stretching edge fromA to B, orA is an ordinary quantifier node andA ¤ B andB

is the variable (or its negation) that is bound byA in ⌊A � σA⌋.

4.3 Definition A pair Γ � σ is appropriate, if the following three conditions hold:
1. If Añσ+ B andAñσ+ C, then⌊B � σB⌋ = ⌊C � σC⌋,

if Añσ− B andAñσ− C, then⌊B � σB⌋ = ⌊C � σC⌋,

if Añσ+ B andAñσ− C, then⌊B � σB⌋ = ⌊C � σC⌋
⊥.

4 Note the close correspondece to Miller’s expansion trees [1], where these two functions are
calledDeepandShallow, respectively.
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a b a⊥

�

O

∃∃∃∃∃∃∃∃∃c

b⊥ b

O

∀b

∃∃∃∃∃∃∃∃∃a

a a⊥ b⊥

O

�Ea
∃∃∃∃∃∃∃∃∃c

∃∃∃∃∃∃∃∃∃c.[(a�b)Oa⊥] ∃∃∃∃∃∃∃∃∃a.∀b.[b⊥Ob] ∃∃∃∃∃∃∃∃∃c. Ea.([aOa⊥]�b⊥)

Fig. 4. Examples of expanded sequents with stretchings that are notappropriate

a b a⊥

�

O

∃∃∃∃∃∃∃∃∃c

b⊥ b

O

∃∃∃∃∃∃∃∃∃a

∀b

a a⊥ b⊥

O

�

∃∃∃∃∃∃∃∃∃cEa
∃∃∃∃∃∃∃∃∃c.[(a�b)Oa⊥] ∀b.∃∃∃∃∃∃∃∃∃a.[b⊥Ob] Ea.∃∃∃∃∃∃∃∃∃c.([aOa⊥]�b⊥)

Fig. 5.Appropriate examples of expanded sequents with stretchings

2. If A1ñB1 andA2ñB2 andA1 ¤ A2 andB1 ¤ B2, thenB1 ¤ A2.
3. For all Ea.A, the variablea must not occur free in the formula⌊A � σA⌋.

The first condition above says that in a substitution a variable is instantiated every-
where by the same formulaB. The second condition ensures that there is no variable
capturing in such a substitution step. The third condition is exactly the side condition of
the rulef↓ in Figure 2. We show in Figure 4 three examples of pairsΓ � σ that are not
appropriate: the first fails Condition 1, the second fails Condition 2, and the third fails
Condition 3. In Figure 5 all three examples are appropriate.

In [6] and [7], the first two conditions of Definition 4.3 appear only implicitly with-
out being mentioned in the treatment of the∃-rule. But for capturing the essence of a
proof independently of a deductive system, we have to make everything explicit.

4.4 Definition A pre-proof graphis a quadruple, denoted byP
ν

⊲ Γ � σ, whereP a
linking formula,Γ is an expanded sequent,σ is a stretching forΓ , andν is a bijectionlΓ

ν
→ lP such that only dual atoms/units are paired up. IfΓ is simple, we say that

the pre-proof graph issimple. In this caseσ is empty, and we can simply writeP
ν

⊲ Γ .

ForB ∈ lΓ we writeBν for its image underν inlP . When we draw a pre-proof
graphP

ν

⊲ Γ � σ, then we writeP aboveΓ (as trees or as strings) and the leaves are
connected by edges according toν. Figure 6 shows an example written in both ways.

4.5 Definition A switchings of a pre-proof graphP
ν

⊲ Γ � σ is the graph that is
obtained from the whole ofP

ν

⊲ Γ �σ by removing all stretching edges and by removing
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⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥

O

∃c O

O O �

� � � � �

c c⊥ c c⊥ a a⊥ a a⊥ 1 a a⊥

c⊥ c⊥ c c a⊥ a⊥ ⊥ a a a⊥ a

� O � O O

∃∃∃∃∃∃∃∃∃d ∀c ∃∃∃∃∃∃∃∃∃c OEc �

�

∃∃∃∃∃∃∃∃∃a

∃c.[(c�c⊥)O(c�c⊥)O[(a�a⊥)O(a�a⊥)O(1�(a�a⊥))]]Ec.∃∃∃∃∃∃∃∃∃d.(c⊥�c⊥),∃∃∃∃∃∃∃∃∃a.(∀c.[cOc]�∃∃∃∃∃∃∃∃∃c.(a⊥
�a⊥)�⊥), [aOaO[a⊥

Oa]]

Fig. 6. Two ways of writing a proof graph

for eachO-node one of the two edges connecting it to its children. A pre-proof graph
P

ν

⊲ Γ �σ is multiplicatively correctif all its switchings are acyclic and connected [19].

For multiplicative correctness the quantifiers are treatedas unary connectives and
are therefore completely irrelevant. The example in Figure6 is multiplicatively correct.
For involving the quantifiers into a correctness criterion,we need some more conditions.

Let s be a switching forP
ν

⊲ Γ , and letA andB be two nodes inΓ . We write
A ��s����������B if there is a path ins from A to B, starting fromA by going down to its parent
and coming intoB from below. Similarly, one can define the notationsA ��s����������B and
A ��s����������B andA ��s����������B.

Let A andB be nodes inΓ with A ¤ B. Thequantifier depthof B in A, denoted
by

`
A
B, is the number of quantifier nodes on the path fromA to B (includingA if it

happens to be an∀ or an∃, but not includingB). Similarly we define
`

Γ
B. For quan-

tifier nodesA′ in P andA in Γ , we sayA andA′ arepartners, denoted byA′ ←→P Γ A, if
there is a leafB ∈lΓ with A ¤ B in Γ , andA′ ¤ Bν in P , and

`
A
B =

`
A′B

ν .

4.6 Definition We say a simple pre-proof graphP
ν

⊲ Γ is well-nestedif the follow-
ing five conditions are satisfied:
1. For everyB ∈lΓ , we have

`
Γ
B =

`
P
Bν .

2. If A′ ←→P Γ A, thenA′ andA quantify the same variable.

3. For every quantifier nodeA in Γ there is exactly one∃-nodeA′ in P with A′ ←→P Γ A.
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(1)
∃a.∃c.[(a � a⊥) O(c � c⊥)]

∃c.a⊥,∀a.[∃c.(a � c⊥) O ∀c.c]

(2)
∃a.∃c.[(a� a⊥)O(c � c⊥)]

∀a.∃b.a⊥, ∃a.[∃d.(a� c⊥)O ∀c.c]

(3)
∃a.[∃c.(a � a⊥) O∃c.(c � c⊥)]

∀a.∃c.a⊥,∃a.[∃c.(a � c⊥)O ∀c.c]

(4)
∃a.∃c.[(a� a⊥)O(c � c⊥)]

∃a.∀c.a⊥,∃a.[∃c.(a � c⊥) O ∀c.c]

(5)
∃a.∃c.[(a � a⊥) O(c � c⊥)]

∀a.∃c.a⊥,∃a.[(∃c.a� ∃c.c⊥) O ∀c.c]

(6)
∃a.∃c.[(a� a⊥)O(c � c⊥)]

∀a.∃c.a⊥,∃a.[∃c.(a � c⊥) O ∀c.c]

Fig. 7.Examples (1)–(5) are not well-nested, only (6) is well-nested

4. For every∃-nodeA′ in P there is exactly one∀-nodeA in Γ with A′ ←→P Γ A.

5. If A′ ←→P Γ A1 andA′ ←→P Γ A2, then there is no switchings with A1
��s����������A2.

Every quantifier node inP must be an∃, and every quantifier node inΓ has exactly
one of them as partner. On the other hand, an∃ in P can have many partners inΓ , but
exactly one of them has to be an∀. Following Girard [6], we can call an∃ in P together
with its partners inΓ the doors of an∀-box and the sub-graph induced by the nodes
that have such a door as ancestor is called the∀-boxassociated to the unique∀-door.
Even if the boxes are not really present, we can use the terminology to relate our work
to Girard’s. In order to help the reader to understand these five conditions, we show in
Figure 7 six simple pre-proof graphs, where the first fails Condition 1, the second one
fails Condition 2, and so on; only the sixth one is well-nested.

4.7 Definition We say that a pre-proof graphP
ν

⊲ Γ � σ is correct if the pairΓ � σ

is appropriate and the simple pre-proof graphP
ν

⊲ ⌈Γ � σ⌉ is well-nested and multi-

plicatively correct. In this case we say thatP
ν

⊲ Γ � σ is aproof graphand⌊Γ � σ⌋ is
its conclusion.

The example in Figure 6 is correct. There we have that⌈Γ � σ⌉ is the simple se-
quent ⊢ ∃c.(c⊥ � c⊥), (∀c.[c O c] �(a⊥ � a⊥)�⊥), [a O a O[a⊥ O a]] and the con-
clusion⌊Γ � σ⌋ is ⊢ ∃d.(d � d), ∃a.(a⊥ � a �⊥), [a O a O[a⊥ O a]] .

As said before, due to the presence of the multiplicative units (see [18, 5]), we need
to enforce an equivalence relation on proof graphs.

4.8 Definition Let∼ be the smallest equivalence on proof graphs satisfying

P [QOR]
ν

⊲ Γ � σ ∼ P [R OQ]
ν

⊲ Γ � σ

P [[Q O R]O S]
ν

⊲ Γ � σ ∼ P [Q O[R O S]]
ν

⊲ Γ � σ

P (1�(1�Q))
ν

⊲ Γ � σ ∼ P (1�(1�Q))
ν
′

⊲ Γ � σ

P (1�[Q O R])
ν

⊲ Γ � σ ∼ P [(1� Q)O R]
ν

⊲ Γ � σ

P (1� ∃a.Q)
ν

⊲ Γ{⊥} � σ ∼ P{∃a.(1� Q)}
ν

⊲ Γ{ Ea.⊥} � σ
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id
a � a⊥

ν0

⊲ a⊥, a � ∅

P
ν

⊲ Γ, A〈a\B〉 � σ
∃

P
ν

⊲ Γ,∃∃∃∃∃∃∃∃∃a.A〈a\B〉 � σ′

P
ν

⊲ A, B1, . . . , Bn � σ
∀
∃a.P

ν

⊲ ∀a.A, Ea.B1, . . . , Ea.Bn � σ

P
ν

⊲ Γ � σ
⊥

(1 � P )
ν⊥

⊲ Γ,⊥ � σ

P
ν

⊲ A, B, Γ � σ
O

P
ν

⊲ [A O B], Γ � σ

P
ν

⊲ Γ, A � σ Q
ν
′

⊲ B, ∆ � τ
�

[P O Q]
ν∪ν

′

⊲ Γ, (A � B), ∆ � σ ∪ τ

1
⊥

ν1

⊲ 1 � ∅

P
ν

⊲ Γ, A, B, ∆ � σ
exch

P
ν

⊲ Γ, B, A, ∆ � σ

P
ν

⊲ Γ, A � σ Q
ν
′

⊲ A⊥, ∆ � τ
cut

[P O Q]
ν∪ν

′

⊲ Γ, A � A⊥, ∆ � σ ∪ τ

Fig. 8. Translating sequent calculus proofs into proof nets

where in the third lineν′ is obtained fromν by exchanging the preimages of the two
1s. In all other equations the bijectionν does not change. In the last lineν must match
the1 and⊥. A proof netis an equivalence class of∼.

The first two equations in Definition 4.8 are simply associativity and commutativity
of O inside the linking. The third is a version of associativity of �. The fourth equation
could destroy multiplicative correctness, but since we defined∼ only on proof graphs
we do not need to worry about that.5 The last equation says that a⊥ can freely tunnel
through the borders of a box. Let us emphasize that this quotienting via an equivalence
is due to the multiplicative units. If one wishes to use a system without units, one could
completely dispose the equivalence by usingn-aryOs in the linking.

5 Sequentialisation

In this section we will discuss how we can translate proofs inthe sequent calculus and
the calculus of structures into proof nets and back.

Let us begin with the sequent calculus. The translation fromMLL2Seq proofs into
proof graphs is done inductively on the structure of the sequent proof as shown in Fig-
ure 8. For the rulesid and1, this is trivial (ν0 andν1 are uniquely determined and the
stretching is empty). In the rule⊥, theν⊥ is obtained fromν by adding an edge be-
tween the new1 and⊥. Theexch andO-rules are also rather trivial (P , ν, andσ remain
unchanged). For the� rule, the two linkings are connected by a newO-node, and the
two principal formulas are connected by a� in the sequent forest. The same is done for
the cut rule, where we use a special cut connective�. The two interesting rules are the
ones for∀ and∃. In the∀-rule, to every root node of the proof graph for the premise a
quantifier node is attached. This is what ensures the well-nestedness condition. It can
be compared to Girard’s putting a box around a proof net. The purpose of the Ecan
be interpreted as simulating the border of the box. The∃-rule is the only one where
the stretchingσ is changed. As shown in Figure 1, in the conclusion of that rule, the

5 In [18, 5] the relation∼ is defined on pre-proof graphs, and therefore a side condition had to
be given to that equation (see also [20]).
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subformulaB of A is replaced by the quantified variablea. When translating this rule
into proof graphs, we keep theB, but to every place where it has to be substituted we
add a positive stretching edge from the new∃∃∃∃∃∃∃∃∃a. Similarly, whenever aB⊥ should be
replaced bya⊥, we add a negative stretching edge. The new stretching isσ′.

A pre-proof graph isSC-sequentializableif it can be obtained from a sequent proof
as described above. If a pre-proof graphP

ν

⊲ Γ � σ is obtained this way then the simple
sequent⌊Γ � σ⌋ is exactly the conclusion of the sequent proof we started from.

5.1 Theorem Every SC-sequentializable pre-proof graph is a proof graph.

For the other direction, i.e, for going from proof graphs toMLL2Seq proofs we need
to consider two linking formulasP1 andP2 to be equivalent modulo associativity and

commutativity ofO. We write this asP1

O
∼ P2. Then, we have to remove all∃-nodes

from Γ in order to get a sequentialization theorem because the translation shown in
Figure 8 never introduces an∃-node inΓ . For this we replace inΓ every∃a.A withEa.∃∃∃∃∃∃∃∃∃a.A and by adding a stretching edge between the new∃∃∃∃∃∃∃∃∃a and everya anda⊥ that
was previously bound by∃a (i.e, is free inA). Let us writeΓ̂ � σ for the result of this
modification applied toΓ � σ.

5.2 Theorem If P
ν

⊲ Γ � σ is correct, then there is aP ′ O
∼ P , such thatP ′ ν

⊲ Γ̂ � σ

is SC-sequentializable.

The proof works in the usual way by induction on the size ofP
ν

⊲ Γ � σ. It is a
combination of the sequentialization proofs in [5] and [6],and it makes crucial use of
the “splitting tensor lemma” which in our case also needs well-nestedness.

Let us now discuss the translation between proof nets and derivations in the calculus
of structures. This can be done in a more modular way than for the sequent calculus.

5.3 Proposition An MLL2 formulaP is a linking formula if and only if there is a
derivation

1

{ai↓,⊥↓, 1↓, e↓}
‖
‖ D .

P⊥

(2)

5.4 Lemma LetP1 andP2 be two linkings. Then there is a derivation

P1

{α↓, σ↓, rs} ‖
‖

D

P2

if and only if the simple pre-proof graphP2 ⊲ P⊥
1 is correct.

If P1 andP2 have this property, we say thatP1 is weaker thanP2, and denote it as
P1 . P2. We can now characterize simple proof graphs in terms of deepinference:

5.5 Proposition A simple pre-proof graphP
ν

⊲ Γ is correct if and only if there is a
linking P ′ with P ′ . P and a derivation

P ′⊥

{α↓, σ↓, ls, rs, u↓}
‖
‖ D

Γ

, (3)
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such thatν coincides with the bijection induced by the flow graph ofD .

As an example, consider the derivation in (1) which corresponds to (6) in Figure 7.
Finally, we characterize appropriate pairsΓ � σ in terms of deep inference.

5.6 Proposition For every derivation

D

{n↓, f↓} ‖
‖

D

C

(4)

there is an appropriate pairΓ � σ with

D = ⌈Γ � σ⌉ and C = ⌊Γ � σ⌋ . (5)

Conversely, ifΓ � σ is appropriate, then there is a derivation(4) with (5).

We can explain the idea of this proposition by considering again the examples in
Figures 4 and 5. To the non-appropriate examples in Figure 4 would correspond the
following incorrect derivations:

[(a � b) O a⊥]
n↓

∃c.[c O c⊥]

∀b.[b⊥ O b]
n↓

∃a.∀b.[aO b]

∃a.([aO a⊥] � b⊥)
f↓

([a O a⊥] � b⊥)
n↓

∃c.(c � b⊥)

And to the appropriate examples in Figure 5 correspond the following correct deriva-
tions:

[(a� b)O a⊥]
n↓

∃c.[(c � b) O c⊥]

∀b.[b⊥ O b]
n↓

∀b.∃a.[a O b]

∃a.([a O a⊥] � b⊥)
n↓

∃a.∃c.(c � b⊥)
f↓

∃c.(c � b⊥)

We can now easily translate aMLL2DI↓ proof into a pre-proof graph by first decompos-
ing it via Theorem 3.3 and then applying Propositions 5.3, 5.5, and 5.6. Let us call a
pre-proof graphDI-sequentializableif is obtained in this way from aMLL2DI↓ proof.

5.7 Theorem Every DI-sequentializable pre-proof graph is a proof graph.

By the method presented in [21], it is also possible to translate aMLL2DI↓ directly
into a proof graph without prior decomposition. However, the decomposition is the key
for the translation from proof graphs intoMLL2DI↓ proofs (i.e., “sequentialization” into
the calculus of structures). Propositions 5.3, 5.5, and 5.6give us the following:

5.8 Theorem If P
ν

⊲ Γ � σ is correct, then there is aP ′ . P , such thatP ′ ν

⊲ Γ � σ

is DI-sequentializable.

There is an important difference between the two sequentializations. While for the
sequent calculus we have a monolithic procedure reducing the proof graph node by
node, we have for the calculus of structures a modular procedure that treats the different
parts of the proof graph (which correspond to the three different aspects of the logic)
separately. The core is Proposition 5.5 which deals with thepurely multiplicative part.
Then comes Proposition 5.6 which only deals with instantiation and substitution, i.e,
the second-order aspect. Finally, Proposition 5.3 takes care of the linking, whose task
is to describe the role of the units in the proof. Therefore the equivalence in 4.8, which
is due to the mobility if the⊥, only deals with the linkings. This modularity in the



Some Observations on the Proof Theory of MLL2 13

sequentialization is possible because of the decomposition in Theorem 3.3. Because of
this modularity we treated the units via the linking formulas [18, 5] instead of a linking
function as done by Hughes in [22, 20].

6 Comparison to Girard’s proof nets for MLL2

Such a comparison can only make sense forMLL2
−, i.e., the logic without the units

1 and⊥. In [7] the units are not considered, and in [6] the units are treated in a way
that is completely different from the one suggested here. Consequently, in this section
we consider only proof nets without any occurrences of1 and⊥. For simplicity, we
will allow n-ary Os in the linkings, so that we can discard the equivalence relation of
Definition 4.8 and identify proof graphs and proof nets.

The translation from our proof nets to Girard’s boxed proof nets of [6] is immediate:
If P

ν

⊲ Γ � σ is a given proof net, then (1) for each∃ in P draw a box around the sub-
proof net which has as doors this∃ and its partners inΓ ; (2) replace inΓ every nodeA
that is not a Eby its floor⌊A �σ⌋, and remove all stretching edges and allE-nodes, and
finally (3) remove all∃- and allO-nodes inP , and replace the�-nodes inP by axiom
links. For the converse translation we proceed in the opposite order. It is clear that in
both directions correctness is preserved, i.e., the two criteria are equivalent. Both data
structures contain the same information. However, Girard’s boxed proof nets depend on
the deductive structure of the sequent calculus. A box stands for the global view that
the∀-rule has in the sequent calculus, and the∃-link is attached to it full premise and
conclusion that are subject to the same side conditions as inthe sequent calculus. The
new proof nets presented in this paper make these side conditions explicit in the data
structure, which is the reason why our definitions are a bit longer than Girard’s.

The proof nets of [7] are obtained from the box proof nets by simply removing the
boxes. In our setting this is equivalent to removing all∃-nodes inP and all E-nodes
in Γ . Hence, this new data structure contains less information.This raises the ques-
tion whether the other two representations contain reduntant data or whether Girard’s
box-free proof nets make more identifications, and whether the missing data can be re-
covered. The answer is that the proof nets of [7] make indeed more proof identifications.
For example the following proofs of⊢ ∀a.a, (∃b.b �[c O c⊥]) would be identified:

∃a.[(a⊥
� a)O(c⊥ � c)]

∀a.a, Ea.(∃∃∃∃∃∃∃∃∃b.a⊥
�[c O c⊥])

and
[∃a.(a⊥

� a) O(c⊥ � c)]

∀a.a, ( Ea.∃∃∃∃∃∃∃∃∃b.a⊥
�[c O c⊥])

(6)

When translating back to box-nets, we must for each∀-link introduce a box around its
whole empire. This can be done because a proof net does not lose its correctness if a∀-
box is extended to a larger (correct) subnet, provided the bound variable does not occur
freely in the new scope. In [7], Girard avoids this by variable renaming. The reason
why this gives unique representants is the stability and uniqueness of empires inMLL

−

proof nets. However, as already noted in [5], under the presence of the units, empires
are no longer stable, i.e., due to the mobility of the⊥ the empire of an∀-node might be
different in different proof graphs, representing the sameproof net.

Another reason for not using the solution of [7] is the desireto find a treatment for
the quantifiers that is independent from the underlying propositional structure, i.e., that
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is also applicable to classical logic. While Girard’s nets are tightly connected to the
structure ofMLL

−-proof nets, our presentation is closely related to Miller’s expansion
trees [1] and the recent development by McKinley [2]. Thus, we can hope for a unified
treatment of quantifiers in classical and linear logic.

7 Concluding Remarks

We have investigated the relation between deep inference and proof nets and the se-
quent calculus forMLL2, and we have shown that this relation is much closer than one
might expect. We did not go into the details of cut elimination because from the pre-
vious sections it should be clear that everything works as laid out in [6, 7] and [5, 18].
There are no technical surprises, and we have a confluent and terminating cut elimina-
tion procedure for our proof nets. An important consequenceis that we have a category
of proof nets: the objects are (simple) formulas and a mapA → B is a proof net with
conclusion⊢ A⊥, B , where the composition of maps is defined by cut elimination.A
detailed investigation of this category (which is *-autonomous [5]) has to be postponed
to future research. The proof identifications made in this paper are motivated by the
interplay between proof nets, calculus of structures, and sequent calculus. They should
not be considered to be the final word. For example the proof nets by Girard [7] make
more identifications, and the ones by Hughes [22] make less identifications. However,
there are some observations about the units to be made here. The units can be expressed
with the second-order quantifiers via1 ≡ ∀a.[a⊥ O a] and⊥ ≡ ∃a.(a � a⊥). An inter-
esting question to ask is whether these logical equivalences should be isomorphisms in
the categorification of the logic. In the category of coherent spaces [6] they are, but in
our category of proof nets they are not: The two canonical maps∀a.[a⊥ O a] → 1 and
1→ ∀a.[a⊥ O a] are given by:

[⊥O(1�⊥)]

∃∃∃∃∃∃∃∃∃a.(1�⊥) , 1
and

(1� ∃a.(a� a⊥))

⊥ , ∀a.[a⊥
O a]

(7)

respectively. Composing them means performing this cut eliminating:

[⊥O(1�⊥) O(1�∃a.(a� a⊥))]

∃∃∃∃∃∃∃∃∃a.(1�⊥) , 1�⊥ , ∀a.[a⊥
O a]

→
[⊥O(1�∃a.(a� a⊥))]

∃∃∃∃∃∃∃∃∃a.(1�⊥) , ∀a.[a⊥
O a]

(8)

If the two maps in (7) where isos, the result of (8) must be the same as the identity map
∀a.[a⊥ O a]→ ∀a.[a⊥ O a] which is represented by the proof net

∃a.[(a⊥
� a) O(a� a⊥)]

∃a.(a� a⊥) , ∀a.[a⊥
O a]

(9)

This is obviously not the case (even if we replaced∃a by Ea.∃∃∃∃∃∃∃∃∃a as for Theorem 5.2).
A similar situation occurs with the additive units, for which we have0 ≡ ∀a.a and
⊤ ≡ ∃a.a. Since we do not have0 and⊤ in the language, we cannot check whether
we have these isos in our category. However, since0 and⊤ are commonly understood
as initial and terminal objects of the category of proofs, wecould ask whether∀a.a and
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∃a.a have this property: We clearly have a canonical proof for∀a.a → A for every
formulaA, but it is not necessarily unique. The correct treatment of additive units in
proof nets is still an open problem for future research.
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