
A Non-commutative Extension of MELL
Alessio Guglielmi and Lutz Straßburger

Technische Universität Dresden

Fakultät Informatik - 01062 Dresden - Germany

Alessio.Guglielmi@Inf.TU-Dresden.DE and Lutz.Strassburger@Inf.TU-Dresden.DE

Abstract We extend multiplicative exponential linear logic (MELL) by a
non-commutative, self-dual logical operator. The extended system, called
NEL, is defined in the formalism of the calculus of structures, which is a
generalisation of the sequent calculus and provides a more refined analysis of
proofs. We should then be able to extend the range of applications of MELL,
by modelling a broad notion of sequentiality and providing new properties
of proofs. We show some proof theoretical results: decomposition and cut
elimination. The new operator represents a significant challenge: to get our
results we use here for the first time some novel techniques, which constitute
a uniform and modular approach to cut elimination, contrary to what is
possible in the sequent calculus.

1 Introduction

Non-commutative logical operators have a long tradition [12, 22, 2, 13, 16, 3], and
their proof theoretical properties have been studied in the sequent calculus [7]
and in proof nets [8]. Recent research has shown that the sequent calculus is not
adequate to deal with very simple forms of non-commutativity [9, 10, 21]. On the
other hand, proof nets are not ideal for dealing with exponentials and additives,
which are desirable for getting good computational power.

In this paper we show a logical system that joins a simple form of non-
commutativity with commutative multiplicatives and exponentials. This is done
in the formalism of the calculus of structures [9, 10], which overcomes the dif-
ficulties encountered in the sequent calculus and in proof nets. Structures are
expressions intermediate between formulae and sequents, and in fact they unify
those two latter entities into a single one, thereby allowing more control over
mutual dependencies of logical relations.

We perform a proof theoretical analysis for cut elimination, with new tools,
and we explore some further important properties, which are not available in more
traditional settings and which we can collectively regard as ‘modularity’. Despite
the complexities of the proof theoretical investigation, the system obtained is very
simple. This paper contributes the following new results:

1 We define a propositional logical system, called NEL (Non-commutative ex-
ponential linear logic), which extends MELL (multiplicative exponential lin-
ear logic [8]) by a non-commutative, self-dual logical operator called seq.
This system, which was first imagined in [10], is conservative over MELL
augmented by the mix and nullary mix rules [1, 6]. System NEL can be
immediately understood by anybody acquainted with the sequent calculus,
and is aimed at the same range of applications as MELL. In nearly all com-
puter science languages, sequential composition plays a fundamental role,

and it is therefore important to address it in a direct way, in logical represen-
tations of those languages. Perhaps surprisingly, parallel composition has
been much easier to deal with, due to its commutative nature, which is more
similar to the typical nature of traditional logics. The addition of seq opens
new syntactic possibilities, for example in dealing with process algebras. It
has been used already, in a purely multiplicative setting, to model CCS’s
prefixing [5]. Furthermore, we show a class of equivalent extensions of NEL,
which all enjoy the subformula property. This, together with the finer detail
in derivations achieved by the calculus of structures, provides much greater
flexibility, as witnessed by the proof theoretical properties mentioned below.

2 We prove for NEL a property called decomposition (first pioneered in [10,
19]): we can transform every derivation into an equivalent one, composed
of seven derivations carried into seven disjoint subsystems of NEL. We can
study small subsystems of NEL in isolation and then compose them together
with considerable more freedom than in the sequent calculus, where, for
example, contraction can not be isolated in a derivation. Decomposition is
made available in the calculus of structures by exploiting a new top-down
symmetry of derivations. Since it is a basic compositional result, we expect
applications to be very broad in range; we are especially excited about the
possibilities in the semantics of derivations.

3 We prove cut elimination for NEL by use of decomposition and a new tech-
nique that we call splitting. In the calculus of structures the traditional
methods for proving cut elimination fail, due to the more general applica-
bility of inference rules. The deep reason for this is in how the calculus deals
with associativity. Splitting theorems are a uniform means of recovering con-
trol over the way logical operators associate; they allow us to manage the
complex inductions required. The cut elimination argument becomes mod-
ular, because we can reduce the cut rule to several more primitive inference
rules, each of which is separately shown admissible by way of splitting. Only
one of these rules (an atomic form of cut) is infinitary, all the others enjoy
the subformula property and can be used to extend the system without af-
fecting provability. This result should be handy for software analysis and
verification.

The points above correspond, respectively, to Sections 2, 3 and 4. Readers who
are not interested in the proof theory of system NEL can just read Section 2.

Other systems extending linear logic with non-commutative operators are
studied in [3, 18]. These are more traditional systems in the sequent calculus, for
which a more limited proof theory can be developed. The calculus of structures
allows us to design a much simpler logic, as witnessed by the fact that we have
just one self-dual non-commutative operator instead of two dual ones.

It is worth noting that every system that can be expressed in the one-sided
sequent calculus can be trivially expressed in the calculus of structures, but the
vice versa is not true. The results in this paper help us to establish the calculus
of structures as a natural choice for logical systems aimed at computer science.
We showed in [10] that the sequent calculus suffers from excessive restrictions,
which are not apparent in the traditional systems of classical and intuitionistic

logics, but which start to appear in linear logic and are more and more evident
when issues such as non-commutativity, locality of inference rules, and various
forms of modularity are taken into account. The calculus of structures was in fact
conceived, in [9], as a way to overcome the limitations of the sequent calculus in
dealing with non-commutativity. Our calculus has later been used successfully in
[19] for defining pure MELL and showing decomposition and cut elimination for
it. In [4] a completely local definition of classical logic is shown: in that system,
not only the cut rule, but also contraction is atomic.

The calculus of structures essentially introduces two new ideas: 1) it makes
derivations top-down symmetric and 2) it allows inference rules to be applied
anywhere deep inside structures. We are showing, in this and other papers, that
it is possible to produce a rich proof theory in our calculus. This formalism is
less dependent than the sequent calculus or natural deduction on the original
idiosyncrasies of classical (and intuitionistic) logic, and it is actually designed
with notions of locality, atomicity and modularity in mind. For these reasons we
promote the calculus of structures as a worthy tool for syntactic investigations
related to computer science languages.

In the following sections some proof theory is developed for system NEL.
We stress the fact that the methods used are general. As stated above, many
techniques in this paper are new, but we tested them privately on the systems
that have already been studied, namely BV , MELL and classical logic, and in
some systems that we are currently investigating, like full linear logic, also in its
entirely atomic presentation [20].

The results in this paper are shown in detail in [11].

2 The System

We call calculus a formalism, like natural deduction or the sequent calculus, for
specifying logical systems. We say (formal) system to indicate a collection of
inference rules in a given calculus.

A system in our calculus requires a language of structures, which are inter-
mediate expressions between formulae and sequents. We now define the language
for system NEL and its variants. Intuitively, [S1, . . . , Sh] corresponds to a sequent
� S1, . . . , Sh in linear logic, whose formulae are essentially connected by pars, sub-
ject to commutativity (and associativity). The structure (S1, . . . , Sh) corresponds
to the associative and commutative times connection of S1, . . . , Sh. The struc-
ture 〈S1; . . . ; Sh〉 is associative and non-commutative: this corresponds to the new
logical operator, called seq, that we add to those of MELL.

For reasons explained in [9, 10], dealing with seq involves adding the rules
mix and its nullary version mix0 (see [1, 6, 14]):

� Φ � Ψ
mix and� Φ, Ψ

mix0 .�
This has the effect of collapsing the multiplicative units 1 and ⊥: we will only
have one unit ◦ common to par, times and seq. Please notice that mix and mix0

are not an artefact of the calculus of structures. But, as shown by Retoré in [14],
they are required when using a self-dual non-commutative connective.

2.1 Definition There are countably many positive and negative atoms. They,
positive or negative, are denoted by a, b, Structures are denoted by S, P , Q,
R, T , U , V and X. The structures of the language NEL are generated by

S ::= a | ◦ | [S, . . . , S
︸ ︷︷ ︸

>0

] | (S, . . . , S
︸ ︷︷ ︸

>0

) | 〈S; . . . ; S
︸ ︷︷ ︸

>0

〉 | ?S | !S | S̄ ,

where ◦, the unit, is not an atom; [S1, . . . , Sh] is a par structure, (S1, . . . , Sh) is a
times structure, 〈S1; . . . ; Sh〉 is a seq structure, ?S is a why-not structure and !S
is an of-course structure; S̄ is the negation of the structure S. Structures with a
hole that does not appear in the scope of a negation are denoted by S{ }. The
structure R is a substructure of S{R}, and S{ } is its context. We simplify the
indication of context in cases where structural parentheses fill the hole exactly:
for example, S [R, T] stands for S{[R, T]}.

Structures come with equational theories establishing some basic, decidable
algebraic laws by which structures are indistinguishable. These are analogous to
the laws of associativity, commutativity, idempotency, and so on, usually imposed
on sequents. The difference is that we merge the notions of formula and sequent,
and we extend the equations to formulae. We will show these equational laws
together with the inference rules.

2.2 Definition An (inference) rule is any scheme
T

ρ
R

, where ρ is the name of

the rule, T is its premise and R is its conclusion; R or T , but not both, may be
missing. Rule names are denoted by ρ. A (formal) system, denoted by S , is a set
of rules. A derivation in a system S is a finite chain of instances of rules of S ,
and is denoted by ∆; a derivation can consist of just one structure. The topmost
structure in a derivation is called its premise; the bottommost structure is called
conclusion. A derivation ∆ whose premise is T , conclusion is R, and whose rules

are in S is denoted by
T

R

S∆ .

The typical inference rules are of the kind
S{T}

ρ
S{R} . This rule scheme ρ

specifies that if a structure matches R, in a context S{ }, it can be rewritten as
specified by T , in the same context S{ } (or vice versa if one reasons top-down).
A rule corresponds to implementing in the formal system any axiom T ⇒ R,
where ⇒ stands for the implication we model in the system, in our case linear
implication. The case where the context is empty corresponds to the sequent cal-

culus. For example, the linear logic sequent calculus rule
� A, Φ � B, Ψ

� � A � B, Φ, Ψ
could

be simulated easily in the calculus of structures by the rule
(Γ, [A, Φ], [B, Ψ])

�
′
(Γ, [(A, B), Φ, Ψ])

,

where Φ and Ψ stand for multisets of formulae or their corresponding par struc-
tures. The structure Γ stands for the times structure of the other hypotheses in

the derivation tree. More precisely, any sequent calculus derivation

� Γ1 · · · � Γi−1

� A, Φ � B, Ψ
� � A � B, Φ, Ψ � Γi+1 · · · � Γh

∆

� Σ

containing the � rule can by simulated by

(Γ1, . . . , Γi−1, [A, Φ], [B, Ψ], Γi+1, . . . , Γh)
�

′
(Γ1, . . . , Γi−1, [(A, B), Φ, Ψ], Γi+1, . . . , Γh)

Σ

∆

in the calculus of structures, where Γj , A, B, Φ, Ψ , ∆ and Σ are obtained from
their counterparts in the sequent calculus by the obvious translation. This means
that by this method every system in the one-sided sequent calculus can be ported
trivially to the calculus of structures.

Of course, in the calculus of structures, rules could be used as axioms of a
generic Hilbert system, where there is no special, structural relation between T
and R: then all the good proof theoretical properties of sequent systems would
be lost. We will be careful to design rules in a way that is conservative enough
to allow us to prove cut elimination, and such that they possess the subformula
property.

In our systems, rules come in pairs,
S{T}

ρ↓
S{R} (down version) and

S{R̄}
ρ↑

S{T̄}
(up version). Sometimes rules are self-dual, i.e., the up and down version are
identical, in which case we omit the arrows. This duality derives from the duality
between T ⇒ R and R̄ ⇒ T̄ . We will be able to get rid of the up rules without
affecting provability—after all, T ⇒ R and R̄ ⇒ T̄ are equivalent statements
in many logics. Remarkably, the cut rule reduces into several up rules, and this
makes for a modular decomposition of the cut elimination argument because we
can eliminate up rules one independently from the other.

Let us now define system NEL by starting from a top-down symmetric vari-
ation, that we call SNEL. It is made by two sub-systems that we will call conven-
tionally interaction and structure. The interaction fragment deals with negation,
i.e., duality. It corresponds to identity and cut in the sequent calculus. In our cal-
culus these rules become mutually top-down symmetric and both can be reduced
to their atomic counterparts.

The structure fragment corresponds to logical and structural rules in the
sequent calculus; it defines the logical operators. Differently from the sequent
calculus, the operators need not be defined in isolation, rather complex contexts
can be taken into consideration. In the following system we consider pairs of
logical relations, one inside the other.

Associativity

[�R, [�T]] = [�R, �T]

(�R, (�T)) = (�R, �T)

〈�R; 〈�T 〉; �U〉 = 〈�R; �T ; �U〉

Singleton

[R] = (R) = 〈R〉 = R

Units

[◦, �R] = [�R]

(◦, �R) = (�R)

〈◦; �R〉 = 〈�R〉
〈�R; ◦〉 = 〈�R〉

Exponentials

?◦ = !◦ = ◦
??R = ?R

!!R = !R

Commutativity

[�R, �T] = [�T , �R]

(�R, �T) = (�T , �R)

Negation

◦̄ = ◦
[R,T] = (R̄, T̄)

(R,T) = [R̄, T̄]

〈R;T 〉 = 〈R̄; T̄ 〉
?R = !R̄

!R = ?R̄
¯̄R = R

Contextual Closure

if R = T
then S{R} = S{T}

S{◦}
ai↓

S [a, ā]

S(a, ā)
ai↑

S{◦}

Interaction
Structure

S([R,U], T)
s

S [(R,T), U]

S〈[R,U]; [T, V]〉
q↓

S [〈R;T 〉, 〈U ;V 〉]
S(〈R;U〉, 〈T ; V 〉)

q↑
S〈(R,T); (U, V)〉

S{![R,T]}
p↓

S [!R, ?T]

S(?R, !T)
p↑

S{?(R,T)}

core
non-core

S{◦}
w↓

S{?R}
S{!R}

w↑
S{◦}

S [?R,R]
b↓

S{?R}
S{!R}

b↑
S(!R,R)

Fig. 1 Left: Syntactic equivalence = Right: System SNEL

2.3 Definition The structures of the language NEL are equivalent modulo the
relation =, defined at the left of Fig. 1. There, �R, �T and �U stand for finite,
non-empty sequences of structures (sequences may contain ‘,’ or ‘;’ separators
as appropriate in the context). At the right of the figure, system SNEL is shown
(symmetric non-commutative exponential linear logic). The rules ai↓, ai↑, s, q↓, q↑,
p↓, p↑, w↓, w↑, b↓ and b↑, are called respectively atomic interaction, atomic cut,
switch, seq, coseq, promotion, copromotion, weakening, coweakening, absorption
and coabsorption. The down fragment of SNEL is {ai↓, s, q↓, p↓,w↓, b↓}, the up
fragment is {ai↑, s, q↑, p↑,w↑, b↑}.

There is a straightforward two-way correspondence between structures not
involving seq and formulae of MELL: for example ![(?a, b), c̄, !d̄] corresponds to
!((?a� b)� c⊥ � !d⊥), and vice versa. Units are mapped into ◦, since 1 ≡ ⊥, when
mix andmix0 are added toMELL. System SNEL is just the merging of systems SBV
and SELS shown in [9, 10, 19]; there one can find details on the correspondence
between our systems and linear logic. The reader can check that the equations in
Fig. 1 correspond to logical equivalences in MELL, disregarding seq. In particular,
!A � !!A and !!A � !A for every MELL formula A, and dually for ?. The rules s,
q↓ and q↑ are the same as in pomset logic viewed as a calculus of cographs [17].

All equations are typical of a sequent calculus presentation, save those for
units, exponentials and contextual closure. Contextual closure just corresponds
to equivalence being a congruence, it is a necessary ingredient of the calculus of

structures. All other equations can be removed and replaced by rules, as in the
sequent calculus. This might prove necessary for certain applications. For our
purposes, this setting makes for a much more compact presentation, at a more
effective abstraction level.

Negation is involutive and can be pushed to atoms; it is convenient always to
imagine it directly over atoms. Please note that negation does not swap arguments
of seq, as happens in the systems of Lambek and Abrusci-Ruet. The unit ◦ is self-
dual and common to par, times and seq. One may think of it as a convenient way
of expressing the empty sequence. Rules become very flexible in the presence of
the unit. For example, the following notable derivation is valid:

(a, b)
q↑ 〈a; b〉
q↓ =

[a, b]

(〈a; ◦〉, 〈◦; b〉)
q↑ 〈[a, ◦]; [◦, b]〉 = 〈(a, ◦); (◦, b)〉
q↓ .

[〈a; ◦〉, 〈◦; b〉]
Each inference rule in Fig. 1 corresponds to a linear implication that is

sound in MELL plus mix and mix0. For example, promotion corresponds to the
implication !(R � T) � (!R � ?T). Notice that interaction and cut are atomic in
SNEL; we can define their general versions as follows.
2.4 Definition The following rules are called interaction and cut :

S{◦}
i↓

S [R, R̄]
and

S(R, R̄)
i↑

S{◦} ,

where R and R̄ are called principal structures.

The sequent calculus rule
� A, Φ � A⊥, Ψ

cut � Φ, Ψ
is realised as

([A, Φ], [Ā, Ψ])
s

[([A, Φ], Ā), Ψ]
s

[(A, Ā), Φ, Ψ]
i↑ ,

[Φ, Ψ]

where Φ and Ψ stand for multisets of formulae or their corresponding par struc-
tures. Notice how the tree shape of derivations in the sequent calculus is realised
by making use of times structures: in the derivation above, the premise corre-
sponds to the two branches of the cut rule. For this reason, in the calculus of
structures rules are allowed to access structures deeply nested into contexts.

The cut rule in the calculus of structures can mimic the classical cut rule in
the sequent calculus in its realisation of transitivity, but it is much more general.
We believe a good way of understanding it is in thinking of the rule as being about
lemmas in context. The sequent calculus cut rule generates a lemma valid in the
most general context; the new cut rule does the same, but the lemma only affects
the limited portion of structure that can interact with it.

We easily get the next two propositions, which say: 1) The interaction and
cut rules can be reduced into their atomic forms—note that in the sequent calculus
it is possible to reduce interaction to atomic form, but not cut. 2) The cut rule is
as powerful as the whole up fragment of the system, and vice versa.

◦↓ ◦
S{◦}

ai↓
S [a, ā]

S([R,U], T)
s

S [(R,T), U]

S〈[R,U]; [T, V]〉
q↓

S [〈R;T 〉, 〈U ; V 〉]

S{![R,T]}
p↓

S [!R, ?T]

S{◦}
w↓

S{?R}
S [?R,R]

b↓
S{?R}

Fig. 2 System NEL

2.5 Definition A rule ρ is derivable in the system S if ρ /∈ S and for every

instance
T

ρ
R

there exists a derivation
T

R

S . The systems S and S ′ are strongly

equivalent if for every derivation
T

R

S there exists a derivation
T

R

S ′, and vice versa.

2.6 Proposition The rule i↓ is derivable in {ai↓, s, q↓, p↓}, and, dually, the rule
i↑ is derivable in the system {ai↑, s,q↑, p↑}.
Proof Induction on principal structures. We show the inductive cases for i↑:

S(P, Q, [P̄ , Q̄])
s

S(Q, [(P, P̄), Q̄])
s

S [(P, P̄), (Q, Q̄)]
i↑

S(Q, Q̄)
i↑ ,

S{◦}

S(〈P ; Q〉, 〈P̄ ; Q̄〉)
q↑

S〈(P, P̄); (Q, Q̄)〉
i↑

S(Q, Q̄)
i↑ and

S{◦}

S(?P, !P̄)
p↑

S{?(P, P̄)}
i↑ .

S{◦}

The cases for i↓ are dual. �

2.7 Proposition Each rule ρ↑ in SNEL is derivable in {i↓, i↑, s, ρ↓}, and, dually,
each rule ρ↓ in SNEL is derivable in the system {i↓, i↑, s, ρ↑}.

Proof Each instance
S{T}

ρ↑
S{R} can be replaced by

S{T}
i↓

S(T, [R, R̄])
s

S [R, (T, R̄)]
ρ↓

S [R, (T, T̄)]
i↑

S{R} . �

In the calculus of structures, we call core the set of rules, other than atomic
interaction and cut, used to reduce interaction and cut to atomic form. Rules,
other than interaction and cut, that are not in the core are called non-core.
2.8 Definition The core of SNEL is {s, q↓, q↑, p↓, p↑}, denoted by SNELc.

System SNEL is top-down symmetric, and the properties we saw are also
symmetric. Provability is an asymmetric notion: we want to observe the possible
conclusions that we can obtain from a unit premise. We now break the top-down
symmetry by adding an inference rule with no premise, and we join this logical
axiom to the down fragment of SNEL.
2.9 Definition The following rule is called unit : ◦↓ ◦ . System NEL is shown
in Fig. 2.

As an immediate consequence of Propositions 2.6 and 2.7 we get:
2.10 Theorem The systems NEL∪{i↑} and SNEL∪{◦↓} are strongly equivalent.

2.11 Definition A derivation with no premise is called a proof, denoted by Π .
A system S proves R if there is in the system S a proof Π whose conclusion is
R, written

R

SΠ . We say that a rule ρ is admissible for the system S if ρ /∈ S

and for every proof
R

S∪{ρ} there exists a proof
R

S . Two systems are equivalent

if they prove the same structures.

Except for cut and coweakening, systems SNEL and NEL enjoy a subformula
property (which we treat as an asymmetric property, by going from conclusion to
premise): premises are made of substructures of the conclusions.

To get cut elimination, so as to have a system whose rules all enjoy the
subformula property, we could just get rid of ai↑ and w↑, by proving their admis-
sibility for the other rules. But we can do more than that: the whole up fragment
of SNEL, except for s (which also belongs to the down fragment), is admissible.
This entails a modular scheme for proving cut elimination. In Sections 3 and 4
we will sketch a proof of the cut elimination theorem:

2.12 Theorem System NEL is equivalent to every subsystem of SNEL ∪ {◦↓}
which contains NEL.

2.13 Corollary The rule i↑ is admissible for system NEL.
Proof Immediate from Theorems 2.10 and 2.12. �

Any implication T � R, i.e. [T̄ , R], is connected to derivability by:

2.14 Corollary For any two structures T and R, there is a proof
[T̄ , R]

NEL iff

there is a derivation
T

R

SNEL.

Consistency follows as usual and can be proved by way of the same technique
used in [10]. It is also easy to prove that system NEL is a conservative extension
of MELL plus mix and mix0 (see [9]). The locality properties shown in [10, 19]
still hold in this system, of course. In particular, the promotion rule is local, as
opposed to the same rule in the sequent calculus.

3 Decomposition

The new top-down symmetry of derivations in the calculus of structures allows
to study properties that are not observable in the sequent calculus. The most re-
markable results so far are decomposition theorems. In general, a decomposition
theorem says that a given system S can be divided into n pairwise disjoint sub-
systems S1, . . . , Sn such that every derivation ∆ in system S can be rearranged
as composition of n derivations ∆1, . . . , ∆n, where ∆i uses only rules of Si, for
every 1 � i � n.

For system SNEL, we have two such results, which both state a decompo-
sition of every derivation into seven subsystems. They can be stated together as
follows:

First decomposition Second decomposition

T

T ′

creationdestruction

R′

merging

R

destructioncreation

T

T ′
non-core (up)

T ′′
interaction (down)

R′′
core (up and down)

R′
interaction (up)

R

non-core (down)

Fig. 3 Readings of the decomposition theorem

3.1 Theorem For every derivation
T

R

SNEL there exist derivations

T

T1

{b↑}

T2

{w↓}

T3

{ai↓}

R3

SNELc

R2

{ai↑}

R1

{w↑}

R

{b↓}

and

T

T ′
1

{b↑}

T ′
2

{w↑}

T ′
3

{ai↓}

R′
3

SNELc

R′
2

{ai↑}

R′
1

{w↓}

R
{b↓}

,

for some structures T1, T2, T3, R1, R2, R3 and T ′
1, T ′

2, T ′
3, R′

1, R′
2, R′

3.
The first decomposition can also be read as a decomposition of a derivation

into three parts, which can be called creation, where the size of the structure is in-
creased, merging, where the size of the structure does not change, and destruction,
where the size of the structure is decreased. The merging part is in the middle of
the derivation and (depending on your preferred reading of a derivation) creation
and destruction are at the top and at the bottom, as depicted at the left in Fig. 3.
In system SNEL the merging part contains the rules s, q↓, q↑, p↓ and p↑, which
coincides with the core. In the top-down reading of a derivation, the creation part
contains the rules b↑, w↓ and ai↓, and the destruction part consists of b↓, w↑ and
ai↑. In the bottom-up reading, creation and destruction are exchanged.

Such a decomposition is not restricted to system SNEL. It also holds for
other systems in the calculus of structures, including systems SBV and SELS [10],

T

R

SNEL →

T

T1

{b↑}

R

SNEL\{b↑}
→

T

T1

{b↑}

R1

SNEL\{b↓}

R

{b↓}

→

T

T2

{b↑}

R1

SNEL\{b↑}

R

{b↓}

→ · · · →

T

Tk

{b↑}

Rh

SNEL\{b↓,b↑}

R

{b↓}

Fig. 4 Permuting b↑ up and b↓ down

classical logic [4] and full propositional linear logic.
The second decomposition in Theorem 3.1 states that in any derivation we

can separate five homogeneous subsystems, as shown at the right of Fig. 3. In
particular, we can separate the non-core part of the system from the core.

We prove the two decomposition statements similarly. The first step is the
separation of absorption. For this, the instances of b↑ are permuted over all the
other rules. The only problematic case is when

S{![R, T]}
p↓

S [!R, ?T]
b↑ is replaced by

S [(!R, R), ?T]

S{![R, T]}
b↑

S(![R, T], [R, T])
p↓

S([!R, ?T], [R, T])
s
S [([!R, ?T], R), T]
s

S [(!R, R), ?T , T]
b↓ .

S [(!R, R), ?T]

Here, a new instance of b↓ is introduced. After all b↑ have reached the top of the
derivation, the instances of b↓ are permuted down by the dual procedure, where
new instances of b↑ might be introduced; and so on.

The problem is to show that this process, shown in Fig. 4, does terminate
eventually, which is done in two steps. First, the assumption of a non-termination
is reduced to the existence of a derivation

([!R1, ?T1], [!R2, ?T2], . . . , [!Rn, ?Tn])

[(!R2, ?T1), (!R3, ?T2), . . . , (!R1, ?Tn)]
{s,q↓,q↑}∆ ,

for some n � 1 and structures R1, . . . , Rn, T1, . . . , Tn. Second, we show that such
a derivation cannot exist. For the first step we mainly rely on the methods used
in [19] for a case without seq. We need only a little more effort to deal with the
unit. However, the non-existence of the derivation ∆ is more difficult to prove for
the system {s, q↓, q↑} than in the case where the rules q↓ and q↑ are not present.

After separating absorption, we have to separate weakening. For the first
decomposition, we use the same method used in [19], with the only difference that
there are more cases to consider because the units 1 and ⊥ are collapsed. In the
second decomposition, weakening is separated in the same way as absorption, but
termination is much easier to show.

In the end, the interaction rules are separated from the core, which is similar
to the separation of weakening in the first decomposition result.

4 Cut Elimination

The classical arguments for proving cut elimination in the sequent calculus rely
on the following property: when the principal formulae in a cut are active in both
branches, they determine which rules are applied immediately above the cut. This
is a consequence of the fact that formulae have a root connective, and logical rules
only hinge on that, and nowhere else in the formula.

This property does not hold in the calculus of structures. Further, since rules
can be applied anywhere deep inside structures, everything can happen above a
cut. This complicates considerably the task of proving cut elimination. On the
other hand, a great simplification is made possible in the calculus of structures by
the reduction of cut to its atomic form. The remaining difficulty is actually un-
derstanding what happens, while going up in a proof, around the atoms produced
by an atomic cut. The two atoms of an atomic cut can be produced inside any
structure, and they do not belong to distinct branches, as in the sequent calcu-
lus: complex interactions with their context are possible. As a consequence, our
techniques are largely different than the traditional ones.

Two approaches to cut elimination in the calculus of structures have been
explored in previous papers: in [10] we relied on permutations of rules, in [4]
the authors relied on semantics. In this paper we use a third technique, called
splitting, which has the advantage of being more uniform than the one based on
permutations and which yields a much simpler case analysis. It also establishes a
deep connection to the sequent calculus, at least for the fragments of systems that
allow for a sequent calculus presentation (in this case, the commutative fragment).
Since many systems are expressed in the sequent calculus, our method appears to
be entirely general; still it is independent of the sequent calculus and of a complete
semantics.

Splitting can be best understood by considering a sequent system with no
weakening and absorption (or contraction). Consider for example multiplicative
linear logic: If we have a proof of the sequent {� F{A � B}, Γ}, where F{A�B}
is a formula that contains the subformula A�B, we know for sure that somewhere
in the proof there is one and only one instance of the � rule, which splits A and
B along with their context. We are in the following situation:

Π1

� A, Φ

Π2

� B, Ψ
� � A � B, Φ, Ψ

∆

� F{A � B}, Γ

corresponds to

[B, Ψ]
Π2

([A, Φ], [B, Ψ])
s

[([A, Φ], B), Ψ]
s

[(A, B), Φ, Ψ]

Π1

[F (A, B), Γ]

∆

.

We can consider, as shown at the left, the proof for the given sequent as composed
of three pieces, ∆, Π1 and Π2. In the calculus of structures, many different
proofs correspond to the sequent calculus one: they differ for the different possible

sequencing of rules, and because rules in the calculus of structures have smaller
granularity and larger applicability. But, among all these proofs, there must
also be one that fits the scheme at the right of the figure above. This precisely
illustrates the idea behind the splitting technique.

The derivation ∆ above implements a context reduction and a proper split-
ting. We can state, in general, these principles as follows:
1 Context reduction: If S{R} is provable, then S{ } can be reduced to the

structure [{ }, U], such that [R, U] is provable. In the example above,
[F{ }, Γ] is reduced to [{ }, Γ ′], for some Γ ′. (Technically, without loss of
generality, we have to prefix the whole proof by a !.)

2 Splitting: If [(R, T), P] is provable, then P can be reduced to [P1, P2], such
that [R, P1] and [T, P2] are provable. In the example above Γ ′ is reduced
to [Φ, Ψ]. Splitting holds for all logical operators.

Context reduction is in turn proved by splitting, which is then at the core
of the matter. The biggest difficulty resides in proving splitting, and this mainly
requires finding the right induction measure. The splitting theorems follow, all
gathered together in Theorem 4.2.
4.1 Definition We call NELm the system NEL \ {w↓, b↓} = {◦↓, ai↓, s, q↓, p↓}.
4.2 Theorem For all structures R, T and P :
1 if [〈R;T 〉, P] is provable in NELm then there exist P1, P2 and

〈P1; P2〉

P
NELm

such that [R,P1] and [T , P2] are provable in NELm;

2 if [(R,T), P] is provable in NELm then there exist P1, P2 and
[P1, P2]

P
NELm

such that [R,P1] and [T , P2] are provable in NELm;
3 if [!R,P] is provable in NELm then there exist P1, . . . , Ph, for h > 0, and

[?P1, . . . , ?Ph]

P
NELm such that [R,P1, . . . , Ph] is provable in NELm;

4 if [?R,P] is provable in NELm then there exist P1 and
!P1

P

NELm such that
[R,P1] is provable in NELm.

As a notable consequence of splitting we have:
4.3 Theorem If [a, P] is provable in NELm then there exists

ā

P

NELm.
Further, we can easily prove that:

4.4 Theorem A structure R is provable in NELm iff !R is provable in NELm.
The context reduction theorem follows. The previous theorem insures its

general applicability, despite the ! prefixing:
4.5 Theorem For all R and S{ } such that S{R} is provable in NELm, there

exists a structure U such that for all X there exist
![X, U]

!S{X}
NELm and

[R, U]
NELm.

And now we can sketch the cut elimination argument: Given a proof, the
second decomposition theorem moves absorption and weakening down; coabsorp-
tion and coweakening go to the top. But coabsorptions and coweakenings at the
top of a proof can only be trivial, and disappear. We perform cut elimination, on
a proof thus rearranged, by going down the proof and eliminating all instances of

ai↑, q↑ and p↑, as they are encountered. This can be verified rather easily by the
reader, through a combined use of context reduction and splitting. For example,
by using the theorems above one can remove a topmost instance of ai↑ in a proof
by the following transformation:

S(a, ā)
ai↑

S{◦}

NELm

→

◦↓ ◦
ai↓
![ā, a]

![P1, P2]

NELm

![◦, U]
NELm

!S{◦}
NELm

→
S{◦}
NELm

.

We apply context reduction to S(a, ā), which gives us U such that [(a, ā), U] is
provable in NELm. By splitting, U is then further reduced into [P1, P2] such
that [a, P1] and [ā, P2] are provable in NELm. By applying Theorem 4.3 twice,
we obtain a proof of !S{◦}. By Theorem 4.4, there is then a proof of S{◦} in
NELm, which can be plugged into the original proof, so that the topmost ai↑ has
disappeared.

The rules q↑ and p↑ can be shown admissible the same way: we reduce the
context of a rule instance as dictated by the shape of the structures involved in
the rewriting. The pieces so produced are then rearranged—this is conceptually
similar to what happens in the sequent calculus.

This technique shows how admissibility can be proved uniformly, both for
cut rules (the atomic ones) and the other up rules, which are actually very different
rules than cut. So, our technique is much more general than cut elimination in
the sequent calculus, for two reasons:
1 it applies to operators that admit no sequent calculus definition, as seq;
2 it can be used to show admissibility of non-infinitary rules that involve no

negation, like q↑ and p↑.

5 Conclusions and Future Work

We have shown a class of logical systems, built around system NEL, that integrate
multiplicative commutativity and non-commutativity, together with exponentials.
This has been done in the formalism of the calculus of structures, which allows us
to obtain very simple systems. In addition, we get properties of locality, atomicity
and modularity that do not hold in other known calculi.

System NEL was originally inspired by Retoré’s pomset logic [16]. There is
research in progress to show that the multiplicative fragments of his logic and ours
coincide. In this case, our system and the work [21] would explain why sequen-
tialising pomset logic has been so hard and unfruitful. It should be possible to
extend our system NEL to other logical operators, perhaps to full linear logic, and
also to the self-dual modality associated to Retoré’s non-commutative operator
[15]. In this paper we limited ourselves to the bare necessary to include MELL.

In a forthcoming paper we will show that NEL is Turing-complete. This
result establishes an interesting boundary to MELL, whose decidability is still an
open problem. If it turns out, as many believe, that MELL is decidable, then
the boundary with undecidability is crossed by our simple extension to seq. This
would give a precise technical content to the perceived difficulty of getting Turing-
equivalence forMELL, namely the trouble in realising the tape of a Turing machine.
In this sense, our sequentiality would be even more strongly motivated by a basic
computational mechanism.

One of the biggest open problems we have is understanding when and why
decomposition theorems work. They seem to have a strong relation to the notion
of core system, but we fail to understand the deep reasons for this. For the time
being we observe that decomposition theorems hold for all logics we studied so far
(classical, linear and several commutative/non-commutative systems).

The calculus of structures generalises the sequent calculus for one-sided
sequent systems, which correspond to logics with involutive negation. Preliminary
work shows that it is also possible to design intuitionistic systems in the calculus
of structures, by way of polarities. This promises to be an active area of research.

Proving cut elimination is more difficult than in the sequent calculus. On
the other hand, the methods we used are more general than the traditional ones,
and, we believe, unveil some fundamental properties of logical systems that were
previously hidden. We make an essential use of a top-down symmetric notion of
derivation, which leads to a reduction of the cut rule into constituents which are
dual to the common logical rules.

We did not attempt to base our calculus on philosophical grounds. We
believe that this can only happen after several systems are thoroughly studied
and discussed. For the time being we are still collecting empirical evidence.

References

[1] Samson Abramsky and Radha Jagadeesan. Games and full completeness for mul-
tiplicative linear logic. Journal of Symbolic Logic, 59(2):543–574, June 1994.

[2] V. Michele Abrusci. Phase semantics and sequent calculus for pure noncommu-
tative classical linear propositional logic. Journal of Symbolic Logic, 56(4):1403–
1451, 1991.

[3] V. Michele Abrusci and Paul Ruet. Non-commutative logic I: The multiplicative
fragment. Annals of Pure and Applied Logic, 101(1):29–64, 2000.

[4] Kai Brünnler and Alwen Fernanto Tiu. A local system for classical logic. In
R. Nieuwenhuis and A. Voronkov, editors, LPAR 2001, volume 2250 of Lecture
Notes in Artificial Intelligence, pages 347–361. Springer-Verlag, 2001. On the web
at: http://www.ki.inf.tu-dresden.de/˜kai/LocalClassicalLogic-lpar.pdf.

[5] Paola Bruscoli. A purely logical account of sequentiality in proof search. In Peter J.
Stuckey, editor, Logic Programming, 18th International Conference, volume 2401
of Lecture Notes in Artificial Intelligence, pages 302–316. Springer-Verlag, 2002.
On the web at: http://www.ki.inf.tu-dresden.de/˜paola/bvl/bvl.pdf.

[6] Arnaud Fleury and Christian Retoré. The mix rule. Mathematical Structures in
Computer Science, 4(2):273–285, 1994.

[7] Gerhard Gentzen. Investigations into logical deduction. In M. E. Szabo, editor,
The Collected Papers of Gerhard Gentzen, pages 68–131. North-Holland, Amster-
dam, 1969.

[8] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[9] Alessio Guglielmi. A calculus of order and interaction. Technical Report WV-99-
04, Dresden University of Technology, 1999. On the web at:
http://www.ki.inf.tu-dresden.de/˜guglielm/Research/Gug/Gug.pdf.

[10] Alessio Guglielmi and Lutz Straßburger. Non-commutativity and MELL in the
calculus of structures. In L. Fribourg, editor, CSL 2001, volume 2142 of Lecture
Notes in Computer Science, pages 54–68. Springer-Verlag, 2001. On the web at:
http://www.ki.inf.tu-dresden.de/˜guglielm/Research/GugStra/GugStra.pdf.

[11] Alessio Guglielmi and Lutz Straßburger. A non-commutative extension of MELL.
Technical Report WV-02-03, Dresden University of Technology, 2002. On the web
at: http://www.ki.inf.tu-dresden.de/˜guglielm/Research/NEL/NELbig.pdf.

[12] Joachim Lambek. The mathematics of sentence structure. American Mathematical
Monthly, 65:154–169, 1958.

[13] P. Lincoln, J. Mitchell, A. Scedrov, and N. Shankar. Decision problems for propo-
sitional linear logic. Annals of Pure and Applied Logic, 56(1–3):239–311, 1992.

[14] Christian Retoré. Réseaux et Séquents Ordonnés. Thèse de Doctorat, spécialité
mathématiques, Université Paris 7, February 1993.

[15] Christian Retoré. A self-dual modality for “Before” in the category of coherence
spaces and in the category of hypercoherences. Technical Report 2432, INRIA,
1994.

[16] Christian Retoré. Pomset logic: A non-commutative extension of classical linear
logic. In Ph. de Groote and J. R. Hindley, editors, TLCA’97, volume 1210 of
Lecture Notes in Computer Science, pages 300–318, 1997.

[17] Christian Retoré. Pomset logic as a calculus of directed cographs. In V. M. Abrusci
and C. Casadio, editors, Dynamic Perspectives in Logic and Linguistics, pages
221–247. Bulzoni, Roma, 1999. Also available as INRIA Rapport de Recherche
RR-3714.

[18] Paul Ruet. Non-commutative logic II: Sequent calculus and phase semantics.
Mathematical Structures in Computer Science, 10:277–312, 2000.

[19] Lutz Straßburger. MELL in the calculus of structures. Technical Report WV-01-
03, Dresden University of Technology, 2001. On the web at:
http://www.ki.inf.tu-dresden.de/˜lutz/els.pdf, submitted to TCS.

[20] Lutz Straßburger. A local system for linear logic. In Matthias Baaz and Andrei
Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning,
LPAR 2002, volume 2514 of LNAI, pages 388–402. Springer-Verlag, 2002. On the
web at: http://www.ki.inf.tu-dresden.de/˜lutz/lls-lpar.pdf.

[21] Alwen Fernanto Tiu. Properties of a logical system in the calculus of structures.
Technical Report WV-01-06, Dresden University of Technology, 2001. On the web
at: http://www.cse.psu.edu/˜tiu/thesisc.pdf.

[22] David N. Yetter. Quantales and (noncommutative) linear logic. Journal of Sym-
bolic Logic, 55(1):41–64, 1990.

