
Foundational Aspects of Syntax 1

Dale Miller and Catuscia Palamidessi
Department of Computer Science and Engineering

The Pennsylvania State University
220 Pond Laboratory

University Park, PA 16802-6106 USA

Phone: (814) 865-9505, FAX: (814) 865-3176
dale@cse.psu.edu, catuscia@cse.psu.edu

http://www.cse.psu.edu/~dale
http://www.cse.psu.edu/~catuscia

Introduction

A large variety of computing systems, such as compilers, interpreters, static
analyzers, and theorem provers, need to manipulate syntactic objects like pro-
grams, types, formulas, and proofs. A common characteristic of these syntactic
objects is that they contain variable binders, such as quantifiers, scoping opera-
tors, and parameters. The presence of binders complicates formal specifications
and symbolic processing.

Consider, for example, a function definition of the form

f(x) = let y = e in x + y.

When analyzing or transforming a program containing the call f(e′), we might
wish to replace f(e′) with the body of f in which x is substituted by e′. But we
cannot simply apply the substitution [x 7→ e′] because a free variable could be
captured. For example, if e′ is the expression y, naive substitution would yield
the expression (let y = e in y + y), which is incorrect.

Binders are often treated in traditional specifications by adding side condi-
tions on variables. Consider, for example, the following (late semantics) rule of
the π-calculus [MPW92], expressing how bound input propagates in a context
of parallel processes:

P
x(y)
−−→ P ′

P |Q
x(y)
−−→ P ′|Q

y /∈ freevar(Q).

Here, the scope of the binding for y is intended to be over P ′ only. The side
condition is necessary to avoid capturing possibly free occurrences of y in Q.

1To appear in the ACM Computing Surveys Symposium on Theoretical Computer Science:
A Perspective, edited by Pierpaolo Degano, Roberto Gorrieri, Alberto Marchetti-Spaccamela,
and Peter Wegner, March or June 1999.

1

Such side conditions on variables are a burden both for formal reasoning and
implementations.

The problem with both the above examples is that in the representation the
scoping nature of binders is lost: bound and free variables are represented in
the same way. Choosing a representation which provides means to encode and
operate directly on abstractions is highly desirable for building formal theories
and computer systems involving such syntactic objects. Fortunately, there have
been a large number of advances in the theory of syntax, particularly resulting
from the proof theory of intuitionistic logic, higher-type quantification, and
dependent λ-calculus, that suggests an approach [MN87, PE88], which we call
here the λ-tree syntax. In the literature, this approach is also known as higher-
order abstract syntax [PE88].

The conventional approach: parse trees

Expressions to be read by humans are often represented by strings. Strings,
however, contain whitespaces, brackets, keywords, and syntactic sugar that aid
in human readability but are not related to the intended semantics. On the
other hand, important semantic information is not represented directly. For
this reason, expressions are generally transformed prior to being manipulated
into parse trees (also called abstract syntax trees). For example, the first-order
formula represented by the string

“∀x∃y(p(x, y) ⊃ ∃x q(f(x), a))”

would be parsed into a tree

(∀ x (∃ y (⊃ (p x y) (∃ x (q (f x) a))))).

With such a representation of syntax, semantically important notions, like the
function-argument relationship, are immediate, whereas in the string represen-
tation that information must be extracted carefully by counting parentheses and
accounting for infix declarations.

As this example also illustrates, however, there are important aspects of the
intended meaning that are not captured by parse trees: the concepts of bound
variable, scope, α-conversion, and substitution are not directly supported. In
the above example, variables are represented by constructors of type variable (a
subcategory of terms), and the various aspects of binding are derived notions
that need to be carefully defined and implemented.

The λ-tree syntax

The λ-tree representation enriches parse trees in the following two ways.

2

First, bindings are encoded using λ-abstractions, following Church’s tech-
nique for encoding universal and existential quantifiers [Chu40]. The abstracted
expressions are given new syntactic categories formed using the type arrow con-
structor. For example, λx. ⊃ (p a x) (q (f x) a) represents an abstraction of
a term over a formula and has the type term → formula. The universal and
existential quantifiers in the example above can then be modified to take one
argument of type term → formula instead of the two arguments of type variable
and formula. In this way, the category variable is no longer necessary (being
subsumed by the corresponding notion in the λ-calculus) and the expression
above would be represented by the following λ-term of type formula:

(∀ (λx.∃ (λy. ⊃ (p x y) (∃ (λx. q (f x) a))))).

Second, α-conversion is part of this representation in the sense that two
parse trees which differ only in the names of bound variables are identified as
λ-trees. As a consequence, the names of bound variables are not accessible (just
as memory locations are not available in high-level languages) and operations
that, on parse trees, would require dealing with the many technical aspects of
variable names, are treated by using higher-level mechanisms described below.
Furthermore, the η-rule is also assumed since it is most natural in this simply
typed setting to identify an expression t with λx.tx whenever x is not free in t.

For another example of using λ-tree syntax, consider the untyped λ-calculus.
Let tm denote the syntactic category for untyped λ-terms, let application be
denoted by the constructor app of type tm → tm → tm, and let abstraction be
denoted by the constructor abs of type (tm → tm) → tm. For example, the
untyped λ-term λx.xx would be encoded as the term abs(λx. app x x) of type
tm. Two α-equivalent closed untyped λ-terms translate to α-equivalent terms
of type tm. While this encoding is not surjective, it is the case that every close
term of type tm is αβη-equivalent to a term that is an encoding of an untyped
λ-term.

Computing on λ-trees

We list two central issues that arise when computing with λ-trees.

Determining the structure of λ-trees. Matching or unification modulo
αη-conversion, as we shall see, is not enough to decompose λ-trees adequately.
Consider, for example, the problem of recognizing exactly those expressions that
represent universally quantified implications. One might consider the pattern
(∀ (λu. ⊃ P Q)), where P and Q are the meta-variables to be instantiated
by a successful match. Because substitution does not allow the capturing of
free variables, all instances of this pattern would be expressions in which the
universally quantified variable is vacuous. The pattern (∀ (λu. ⊃ (P u) (Q u)))

3

will work, however, if we admit β-conversion to simplify the instantiate pattern
(β-conversion is the rule that states that the expression (λx.t)s is equal to t
with s substituted for x). For example, this pattern will match with the λ-tree
(∀ (λx. ⊃ (p x x) (q a a))) by instantiating P with λx.p x x and Q with λx.q a a
and then using α and β-conversion.

Matching and unification of simply typed λ-terms modulo αβη-conversion
are complex operations. For example, matching at second order is NP-complete
and unification at higher-types is undecidable. If we examine more closely the
example above, however, we find that we do not need full β-conversion: we only
need the weaker β0-conversion rule that states that the expression (λx.t)x is
equal to t. If meta-variables are applied only to distinct bound variables, then
α and β0 are complete with respect to β, and matching and unification are
decidable and unitary [Mil91], and can be solved in linear time [Qia93].

Recursion over λ-trees. In order to compute with λ-trees, it must be pos-
sible to define recursion over them. This requires understanding how one “de-
scends” into the λ-abstraction λx.t in a way that is independent from the choice
of the name x. One successful solution to this problem is to use the generic
and hypothetical judgments that are found in intuitionistic logic and associated
dependent typed λ-calculi. In logic settings, computations are specified with
relations (atomic judgments) and generic and hypothetical judgments employ
universal quantification and implication, respectively.

Consider, for example, the judgment that an untyped λ-term has a certain
simple type. We first introduce the category ty to denote the syntactic domain
of simple types; provide constructors i of type ty and arr of type ty → ty → ty ;
and introduce the atomic judgment (predicate) typeof that asserts that its first
argument (a term of type tm) has its second argument (a term of type ty) as a
simple type. The following two inference rules specify the typeof judgment.

typeof M (arr A B) typeof N A

typeof (app M N) B

∀x(typeof x A ⊃ typeof (R x) B)
typeof (abs R) (arr A B)

The first of these inference rules is essentially a simple Horn clause while the
second has both a universal quantifier (for the generic judgment) and an im-
plication (for the hypothetical judgment). Inference rules such as the second
one are easily expressible in hereditary Harrop formulas [MNPS91], the logi-
cal foundations of Isabelle [Pau90] and λProlog [NM88], and in the dependent
typed λ-calculus [HHP93], which has been mechanized in Elf [Pfe89].

The conventional approach to specifying such a typing judgment would in-
volve an explicit context of typing assumptions and an explicit treatment of
bound variables names, either as strings or de Bruijn numbers. The hypotheti-
cal judgment (the meta-level implication) implicitly handles the typing context,
and the generic judgment (the universal quantifier) implicitly handles the bound
variable names by via the use of meta-level eigenvariables.

4

An additional example

We show here how to use λ-trees to encode the π-calculus [MPW92]. We need
two syntactic categories: name for channels and proc for processes. The output
prefix is the constructor out of type name → name → proc → proc and the
input prefix is the constructor in of type name → (name → proc) → proc:
the π-calculus expressions x̄y.P and x(y).P are represented as (out x y P)
and (in x (λy.P)), respectively. We use | (written as infix) of type proc →
proc → proc to denote parallel composition and ν of type (name → proc) →
proc to denote restriction. To encode the labeled transition system of the π-
calculus [MPW92], we introduce another type action with three constructors
for it: τ denotes the silent action and ↓ and ↑, both of type name → name →
action, denote the input and output, respectively, on one named channel with
a named value. The transition semantics uses two predicates: −−→, which
takes three arguments of type proc, action, and proc; and −−⇀, which takes
three arguments of type proc, name → action, and name → proc. The first of
these predicates encodes transitions involving free values and the second encodes
transitions involving bound values. Below we specify a few transition rules for
the π-calculus.

out x y P
↑xy−−→ P

output
in x M

↓x−−⇀ M

input

∀y(My
↑xy−−→ M ′y)

νM
↑x−−⇀ M ′

open
P

↓x−−⇀ M Q
↑x−−⇀ N

P |Q τ−−→ νλn((Mn)|(Nn))
close

P
A−−⇀ M

P |Q A−−⇀ λn((Mn)|Q)
par

P
↓x−−⇀ M Q

↑xy−−→ Q′

P |Q τ−−→ (My)|Q′
L-com

One advantage of this style of specification over the traditional one [MPW92]
is the absence of complicated side-conditions on variables: they are handled
directly by the logical mechanisms described above. In particular, the par
rule above implements the rule displayed in the introduction but without the
need of an explicit side condition. When examining the specification of the
full π-calculus, most inference rules require only meta-level β0 and not full
β-conversion. If one considers the subset of the π-calculus that arises from
dropping those the rules requiring β-conversion (L-com in the inference rules
above), the resulting calculus happens to be a natural subset of the π-calculus,
independently investigated in the literature under the name πI [San96].

Future work

There are several challenging topics related to λ-tree syntax. We list a few of
them here.

5

Implementation. While some work on designing and implementing support
for this style of representation has been completed [NW98], it is still unknown
how well these ideas will work in large scale applications. Logic programming
languages [MN87, Pfe89] and rewriting systems [Nip91] are the only program-
ming language paradigms that have successfully supported λ-tree syntax: it
would be interesting to see if other programming languages can encompass this
approach to representation.

Semantics. For conventional specifications using parse trees syntax, well un-
derstood semantic tools are available, such as those of initial algebras and models
for equality. Similar tools have not yet been developed to handle λ-tree syntax.
Since the logic that surrounds λ-tree syntax is that of intuitionistic logic, Kripke
models are likely to be useful.

Techniques. Good techniques for reasoning inductively have still to be for-
mulated for λ-tree syntax. A starting point could be the work of McDowell
[McD97, MM97], which proposes a logic that includes λ-tree syntax and natural
number induction.

Properties. When specifications comply with certain restrictions, interesting
properties for the specified formalism can be inferred. For instance, if a transi-
tion system is in the tyft/tyxt format then bisimulation is a congruence [GV92].
It would be interesting to study analogous results for specifications involving
λ-trees. Note that restrictions like the ones imposed by the tyft/tyxt format
are probably too restrictive for λ-tree specifications since they are tailored for
term-decomposition in parse trees only.

References

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal
of Symbolic Logic, 5:56–68, 1940.

[GV92] J. F. Groote and F. Vaandrager. Structured operational semantics
and bisimulation as a congruence. Information and Computation,
100:202–260, 1992.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework
for defining logics. Journal of the ACM, 40(1):143–184, 1993.

[Mil91] Dale Miller. A logic programming language with lambda-abstrac-
tion, function variables, and simple unification. Journal of Logic
and Computation, 1(4):497–536, 1991.

6

[McD97] Raymond McDowell. Reasoning in a Logic with Definitions and In-
duction. PhD thesis, University of Pennsylvania, December 1997.

[MM97] Raymond McDowell and Dale Miller. A logic for reasoning with
higher-order abstract syntax. In Glynn Winskel, editor, Proceedings
of teh 1997 Symposium on Logic and Computer Science, 1997.

[MN87] Dale Miller and Gopalan Nadathur. A logic programming approach
to manipulating formulas and programs. In Seif Haridi, editor, IEEE
Symposium on Logic Programming, 379–388, San Francisco, 1987.

[MNPS91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov.
Uniform proofs as a foundation for logic programming. Annals of
Pure and Applied Logic, 51:125–157, 1991.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of
mobile processes, Part II. Information and Computation, pages 41–
77, September 1992.

[Nip91] Tobias Nipkow. Higher-order critical pairs. In G. Kahn, editor, Sixth
Annual Symposium on Logic in Computer Science, pages 342–349.
IEEE, July 1991.

[NM88] Gopalan Nadathur and Dale Miller. An Overview of λProlog. In
Fifth International Logic Programming Conference, pages 810–827,
Seattle, Washington, August 1988. MIT Press.

[NW98] Gopalan Nadathur and Debra Sue Wilson. A Notation for Lambda
Terms: A Generalization of Environments. Theoretical Computer
Science 198(1-2): 49-98 (1998).

[Pau90] Lawrence C. Paulson. Isabelle: The next 700 theorem provers. In
Piergiorgio Odifreddi, editor, Logic and Computer Science, pages
361–386. Academic Press, 1990.

[PE88] Frank Pfenning and Conal Elliot. Higher-order abstract syntax.
In Proceedings of the ACM-SIGPLAN Conference on Programming
Language Design and Implementation,199–208. ACM Press, 1988.

[Pfe89] Frank Pfenning. Elf: A language for logic definition and verified
metaprogramming. In Fourth Annual Symposium on Logic in Com-
puter Science, pages 313–321, Monterey, CA, June 1989.

[Qia93] Zhenyu Qian. Linear unification of higher-order patterns. In J.-P.
Jouannaud, editor, Proc. 1993 Coll. Trees in Algebra and Program-
ming. Springer Verlag LNCS, 1993.

[San96] Davide Sangiorgi. π-calculus, internal mobility and agent-passing
calculi. Theoretical Computer Science, 167(2):235–274, 1996.

7

