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Abstract. In this paper, we describe an approach to boosting the performance 
of an XQuery engine by identifying and exploiting opportunities to share proc-
essing both within and across XML queries. We first explain where sharing op-
portunities arise in the world of XML query processing. We then describe an 
approach to shared XQuery processing based on memoization, providing details 
of an implementation that we built by extending the streaming XQuery proces-
sor that BEA Systems incorporates as part of their BEA WebLogic Integration 
8.1 product. To explore the potential performance gains offered by our ap-
proach, we present results from an experimental study of its performance over a 
collection of use-case-inspired synthetic query workloads. The performance re-
sults show that significant overall gains are indeed available. 

1 Introduction 

XQuery [18], while not yet a standard, is already being put to use in commercial soft-
ware infrastructure products for a number of different IT purposes. For example, the 
XQuery language (and its sub-language XPath) has been incorporated into several 
products for business process management and application integration. XQuery is 
used in several ways there – as a transformation language for defining XML data 
transformations, as an expression language for making branching and looping deci-
sions based on XML workflow variables, and as a filtering and routing language for 
handling message broker events. XQuery is also being used in enterprise information 
integration products that provide virtual XML views of disparate enterprise data 
sources where it is the language for defining integrated views and writing queries. 

As XQuery adoption gains momentum, the performance of XQuery processing 
becomes increasingly important. As with any query language, XQuery is amenable to 
a large number of optimizations, both at compile time and at runtime. In many of the 
uses to which XQuery is being put, significant optimization opportunities can be ob-
tained through the discovery and exploitation of shared processing, within or across 
queries. For example, in publish/subscribe, query evaluation work can be shared when 
matching messages against a large number of subscriptions [5]. In this paper, we in-



vestigate the exploitation of such sharing opportunities to boost the performance of 
XQuery processing. In particular, we develop memoization techniques for XQuery and 
apply them in the context of a commercial streaming XQuery processor.  

Sharing in XQuery processing. Intuitively, intermediate results of XQuery proc-
essing can be shared whenever the “same” XQuery expression(s) would otherwise be 
evaluated more than once with the “same” XQuery variable bindings. (We will say 
more about what “same”  means in this context in Section 2.)  This can happen in sev-
eral ways: 

 

1. The same expression can occur several times in different locations within a 
query. 

2. The same expression can occur in different queries that are evaluated together. 
3. An expression can occur within a query that is evaluated multiple times (most 

likely with different variable bindings). 
4. An expression can occur in different queries that are executed at different times 

(where the query context is the same across executions). 
 

The first case is self-explanatory. The second case arises in contexts like pub-
lish/subscribe, where an incoming XML message needs to be checked against many 
subscription queries. An example of the third and fourth cases is a web service call or 
a remote database lookup modeled as an XQuery function call, where the results of the 
call are known to be stable over time (at least for some specified time period). 

In this work, we propose a memoization-based approach to avoiding redundant 
work. Memoization caches the results for an expression based on its variable bindings, 
and it can thus support evaluation reuse in all of the above cases.  

Streaming XQuery processing. Our approach is designed to work well in the con-
text of an XML query processor that employs stream-based processing. In the context 
of XML query processing, streaming is important for performance, and it can occur at 
a fine level of granularity. A fine-grained approach is critical given that a single XML 
item can be arbitrarily large, containing the equivalent of an entire table’s or even 
database’s worth of data content. To enable fine-grained streaming, the BEA XQuery 
engine [6], the engine on which this work is based, represents its XML operands as 
sequences of (potentially nested) tokens that represent smaller constituent data pieces. 

The use of a token stream representation of XML provides an XQuery processor 
with several ways to achieve incremental query evaluation while avoiding the materi-
alization of its inputs. The first way is pipelining. A given XQuery expression can 
consume and produce token streams incrementally, materializing only one or a few 
tokens at a time in order to compute and emit its output. Of course, this requires the 
use of a pull-based API to be truly effective. The second way is lazy evaluation, a 
technique commonly used in the implementation of functional programming languages 
[11]. With this technique, a result is not actually generated until requested by a con-
suming expression. Moreover, in XQuery, some expressions can be evaluated based 
on only the first few tokens of a given input – for example, nth( ), empty( ), exists( ), 
existential comparators, and positional predicates. These expressions enable an even 
lazier mode for XQuery processing, where only those (possibly few) tokens needed for 
the consuming expression are generated. 



Contributions. In this paper, we present a memoization-based approach to sharing 
in XQuery processing. While both the multiple-query processing (MQP) problem [17] 
and the use of memoization for query processing [10] have been explored in other 
contexts, our contributions lie in the fact that shared XQuery query processing in a 
streaming environment adds significant new wrinkles to the problem.  In particular, 
MQP in the relational setting has focused on SELECT-FROM-WHERE style con-
structs, whereas our work is aimed at supporting sharing for the much richer XQuery 
language. Memoization has been exploited for expensive functions (as in query proc-
essing) or repeatedly computed functions (as in dynamic programming), but it has not 
been studied for a large variety of XQuery expressions and in a stream-based process-
ing environment. The main contributions of this work can be summarized as follows: 

 

1. We set the scope for XQuery memoization, first in a simple but limited way, 
and then in an expanded range exploiting semantic data and expression equiva-
lence.  

2. We develop a number of query compilation techniques to identify interesting 
shareable XQuery expressions and to determine the granularity of memoization.  

3. We also extend the runtime system, resolving the inherent tension between 
stream-based processing and memoization. Our solutions enable computation 
reuse while supporting pipelining and avoiding eager evaluation. 

4. We summarize results from a performance study of our techniques in the con-
text of the BEA XQuery engine. The results show significant performance gains 
for typical use cases of XQuery. 

5. As this paper represents our initial approach towards adding memoization to 
XQuery processing, we identify several important open problems to be ad-
dressed. 

 

The paper is as follows. Section 2 discusses basic issues related to XQuery memoi-
zation. Section 3 describes the BEA XQuery engine, the technical context of this 
work. Sections 4 and 5 describe how we have added memoization to this engine, fo-
cusing on the compile-time and runtime aspects, respectively. Section 6 reports ex-
perimental results. Section 7 covers related work. Section 8 concludes the paper. 

2 Basics of XQuery Memoization 

In this section we address the basic issues related to XQuery memoization. Memoiza-
tion is an algorithmic technique that remembers the results returned by functions in-
voked with particular arguments and, if the function is called with the same arguments 
again, returns the result from memory rather than recalculating it [11, 13]. In the con-
text of XQuery, the unit of computation that we adopt for memoization is the 
(XQuery) expression.  

In its simplest form, XQuery memoization can be implemented in a straightforward 
way: results of an expression are shared whenever an identical XQuery expression is 
evaluated more than once with identical XQuery variable bindings, where the meaning 



of “ identical”  is based on bit-wise comparison of their binary representations.1 The 
usefulness of such memoization, however, is limited by the stringent requirement of 
identical binary representations. To expand the scope for XQuery memoization, we 
would like to establish equivalence relationships between expressions and between 
variable bindings, so that ample reuse of the computed results is possible. To this end, 
we relax the conditions for the application of memoization along two dimensions: (1) 
when two XQuery data model instances can be determined to be equivalent; and (2) 
when two XQuery expressions can be determined to be equivalent.  

XML Data Equivalence. What we seek is an equivalence relationship on XQuery 
data model instances that meets the following requirement for safe memoization: 
Given an expression E, for every pair of equivalent XQuery data model instances, the 
two results of evaluating E on the two instances are also equivalent. XQuery has mul-
tiple equality testing predicates (=, eq, is, deep-equal( ), …) to compare data model 
instances. Unfortunately, none of these is satisfactory for establishing data equivalence 
for safe memoization (the analysis is omitted here in the interest of space). As a result, 
we define our own, more comprehensive (but still imperfect) equivalence relationship 
between XQuery data model instances: 

Definition 1 (XML data equivalence) Two data model instances are equivalent iff 
one of the following conditions is true: (a) they both represent the empty sequence, or 
(b) they are both single atomic values, their primitive values are equal (based on the 
eq comparison on their respective primitive XML data types), and their type annota-
tions are also equal (based on the eq comparison on their xs:QName data types), or (c) 
they are both nodes and they compare true via the is comparison, or (d) they are both 
sequences of the same length l ≥ 1 and the corresponding items in the ith position 
(1<=i<=l) are equivalent via the conditions (b) or (c). 

Unfortunately, memoization based on this definition is not safe for every possible 
XQuery expression. For example, consider the memoization of the string( ) function 
for two dateTime instances that use different time zones but have the same normalized 
values (i.e., the same UTC time). Based on Definition 1, the two dateTime instances 
are equivalent (via condition (b)), however, the results of applying string( ) to these 
instances are not equivalent, due to the different time zones included in the output 
strings. As such, memoization in this case would cause erroneous results.  

Given our goal of exploiting semantic data equivalence for memoization and the 
fact that doing so correctly for the full XQuery language is a very hard problem, our 
current solution is restricted to a subset of XQuery for which Definition 1 is guaran-
teed to provide safe memoization. Roughly speaking, every expression in this subset  
is such that each variable of the expression satisfies one of the following conditions: 
(1) the type of the free variable is a node; (2) the type of the free variable is an atomic 
type and the computation performed by the expression is compatible with the eq com-
parison defined on this type; or (3) the type of the free variable is a sequence of items 
and the items in the sequence have the same type that satisfies condition (1) or (2). As 
our experimental results show, even this limited definition of equivalence can provide 

                                                           
1 Of course, expressions that produce non-deterministic results are not suitable for memoiza-
tion. Examples of such expressions include functions that read the system time (e.g., fn:current-
dateTime( )), and user-defined functions that are declared to be variant. 



significant performance improvements for XQuery processing in use cases similar to 
those that we would expect to see in web services, application integration, etc. 

Expression equivalence. In general, two XQuery expressions are the same if and 
only if they return the same result for every correct binding of their variables. This 
question is undecidable in general, since XQuery is Turing-complete. As a result, we 
identify sufficient conditions for XQuery expression equivalence based on expression 
normalization and detection of syntactical equivalence between normalized expres-
sions (which will be described in detail in Section 4). As our experimental results 
show, these conditions permit ample reuse of computations (given typical use cases) 
while also being efficiently computable. 

Thus, our approach represents a practical compromise between an overly restrictive 
definition of XQuery memoization and the difficulties that arise due to the fully-
general nature of XQuery. While we believe that our approach is applicable in a large 
number of practical situations, expanding its range is part of our ongoing work.  

3 The BEA Streaming XQuery Processor 

In this section we review the aspects of the BEA XQuery engine [6] that are directly 
relevant to our subsequent design descriptions. The representation of XML data used 
internally by the BEA XQuery runtime is a sequence of tokens called the token 
stream. Despite its similarity to the SAX API, the token stream models typed XML, 
and is accessed via a pull-based API for producing and consuming tokens lazily. 
Moreover, the BEGIN tokens for documents, elements or attributes are augmented to 
carry the ids of the nodes in order to compare nodes for both equality and document 
ordering. Further details on the token stream can be found in [6].   

3.1 Query Compilation 

The purpose of the XQuery compiler is to parse, verify, type check, normalize and 
optimize a query. The result of compilation is an iterator tree that can be interpreted 
by the runtime system. 

During compilation, a query is represented as an expression tree. Nodes in an ex-
pression tree represent kinds of expressions and edges represent data flow dependen-
cies. The kinds of expressions used by the BEA XQuery processor are very close to 
the W3C XQuery formal semantics recommendation [20], and include Constants, 
Variables, FirstOrder expressions, SecondOrder expressions, IfThenElse, Node Con-
structors, etc. All built-in functions and operators of the XQuery standard [19] share 
the same representation – each is a FirstOrder expression. Examples include all XPath 
axes (e.g., child, descendant, parent), the data( ) function, arithmetic functions, com-
parisons, and constructor functions for simple types (e.g., float( ), string( )). The 
Match expression carries out an XPath nodetest (i.e., kind of node and name of node). 
A Node Constructor creates a new XML structure. In this particular processor, node id 
generation is decoupled from Node Constructors and postponed until later when 



needed for query evaluation.2 The family of SecondOrder expressions can be further 
classified into Map, Let, Sort, etc., most of which represent the high-order functions of 
XQuery. Map will be described more closely in the example below.   

The translation of an XQuery into an expression tree closely follows the W3C 
XQuery formal semantics [20]. For example, the for clause of a FLWOR query is 
translated into nested Maps, each of which defines one variable; the where clause into 
an IfThenElse expression; and so on. Consider query Q1 below, which requests line 
items in a purchase order document that have a particular seller. 

Query Q1:  for $line  in $doc/Order/OrderLine 
      where xs:integer(data($line/SellersID)) eq 1   
      return <LineItem> { $line/Item/ID}   </LineItem> 

Fig. 3-1 shows the expression tree for this query, where constant expressions are 
shown as rounded rectangles, variables as ovals, and all other expressions as rectan-
gles. Expressions other than constants and variables are labeled with the kind of ex-
pression (“FO” for FirstOrder), followed by a colon, followed by any optional specifi-
cations of an expression, such as a particular FirstOrder function (e.g., children( ) or 
data( )) as well as any other parameters (e.g., the NodeTest of a Match expression). 
Map is the only SecondOrder expression in this example. Note that the left child of the 
Map expression is labeled with the name of the variable defined in the Map. Uses of 
the variable in the right child of the Map are denoted by shaded ovals. 

A free variable of an expression is a variable that is not defined by any second or-
der expressions inside this expression, essentially representing an input of the expres-
sion. For example, “$doc” is a free variable of the Map, but “$line”  is not. However, 
“$line” is indeed a free variable of IfThenElse, the right child expression of Map, and 
of the expressions inside IfThenElse that contain this variable. We call a mapping 
between the free variables of an expression and a set of values a binding.  

At the last step of query compilation, the compiler generates code for the query ex-
pression, resulting in an executable iterator tree. There is a one-to-one mapping be-
tween many of the nodes in the expression tree and iterators in the generated iterator 
tree; however, a few iterators implement several expressions (e.g., the children( ) 
iterator implements a child( ) expression plus a Match expression) for performance 

                                                           
2 This decoupling raises the potential for sharing the node construction computation. 

Fig. 3-1. Expression tree of query Q1. 
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reasons. Variable expressions are implemented by a special runtime variable iterator 
that returns the value of a variable and can be bound to different inputs at runtime. 

3.2 Runtime System 

The task of the runtime system is to interpret an iterator tree to produce the query 
result. Like many database query engines, the BEA XQuery runtime system is based 
on an iterator model [9]. Its query execution model is pull-based, and data is con-
sumed at the granularity of tokens. Using the iterator model, the runtime system natu-
rally exploits pipelining. It also makes use of lazy evaluation; that is, an iterator only 
generates results on demand, with each next( ) call. Consider the iterator that imple-
ments the empty( ) function. This iterator consumes only a single token from its input 
in order to produce a Boolean result. The remaining input tokens are not consumed, 
and thus are not even generated. Other expressions where lazy evaluation is effective 
include positional predicates (e.g., $line/Item[1]) and existential quantification. 

4 Query Compilation for Memoization 

In this section we describe the compile-time aspects of arranging for efficient evalua-
tion of a set of XQuery queries (referred to as the “ target queries”). We restrict our 
attention to the cases where the target queries share the static context and most of the 
dynamic context (except the date and time of execution).3 The techniques presented in 
this section focus on sharing among common subexpressions. Although not discussed 
below, sharing by caching expensive methods [10] can be easily supported by indicat-
ing such expressions to the compiler. 

4.1 Expression Equivalence 

Our approach to expression equivalence is based on two steps. First, all expressions 
are normalized by applying a set of rewriting rules. The rewriting rules include ones 
that “normalize”  queries based on the XQuery formal semantics [20], and others that 
are typically applied in XQuery optimization, e.g., unnesting nested FLWOR expres-
sions whenever possible, putting predicates in conjunctive normal form, etc. More 
details of these rewriting rules are provided in [6].  

The second step searches for syntactical equivalence between expressions. Our ap-
proach to determining equivalence is based on the notion of variable renaming substi-
tutions. We say that two expressions E1 and E2 are syntactically equivalent via a re-
naming substitution S={ x1/y1,….,xn/yn} , if { x1,…,xn}  are the free variables of E1, { y1, 
…,yn}  are the free variables of E2, and E1 and E2 are syntactically isomorphic, up to a 
renaming of (free and bound) variables. For example, the expressions ($x+1)*($x-3) 
and ($y+1)*($y-3) are syntactically equivalent via the renaming substitution { $x/$y} . 

                                                           
3 XQuery memoization in the presence of different static and/or dynamic contexts poses diffi-

culties that are beyond the scope of this paper; we leave that generalization for future work. 



Given this definition, we develop an algorithm that detects syntactical equivalence 
between two expressions E1 and E2.  If E1 and E2 are syntactically equivalent via the 
renaming substitution S={ x1/y1, …., xn/yn} , the algorithm returns S,  otherwise it re-
turns null. In the sequel, we call this algorithm “equals( )” . 

Given two input expressions E1 and E2, equals( ) iterates on E1 and E2 and their 
subexpressions from top to bottom, checking recursively at each level for syntactic 
isomorphism. Obviously two expressions are not (syntactically) equal if they are not 
of the same kind (e.g., constants, variables, Maps, etc). Moreover, it is clear that the 
details of the recursive algorithm depend on the kinds of the expressions E1 and E2. 
XQuery has more than 15 kinds of expressions. While our algorithm handles all of 
them, for brevity, here we describe only three: 

Constant expressions. If E1 and E2 are both constant expressions, then they are 
equal via a renaming substitution S iff the given constants are equivalent via the data 
equivalence Definition 1 given in Section 2. 

FirstOrder expressions. If E1 and E2 are both FirstOrder Expressions, then they are 
equal via the renaming substitution S iff they have the same operator and the same 
number of children subexpressions, and the children subexpressions are pairwise equal 
via the same substitution S. 

Map expressions. Assume that both E1 and E2 are Map expressions of the form: 
E1= for $var1 in expr1 return expr2  
E2= for $var2 in expr3 return expr4 

First, the algorithm will test the structural equivalence of exp1 and expr3. If this suc-
ceeds with renaming substitution S then the algorithm continues; otherwise it fails. In 
the positive case, the renaming { $var1/$var2}  is added to the current renaming substi-
tution S and the algorithm will continue by testing the structural equivalence of expr3 
and expr4 via the new S. In case the test succeeds and an augmented substitution S is 
returned, the end result of the test is the substitution S without the renaming of the 
internal variables { $var1/$var2} . Otherwise the test fails. 

Note that the complexity of the structural test equals( ) is linear in the size of the 
input expressions. Given that the potentially interesting expressions for sharing among 
the target queries include all the subexpressions of these queries, the structural test 
needs to be applied to all possible pairs in the Cartesian product of the subexpressions 
of the target queries, yielding a very expensive algorithm. Next, we describe the tech-
nique used in our implementation to avoid this exponential complexity.  

4.2 Applying the Algorithm 

Identifying common subexpressions is implemented as an additional step taken by the 
compiler after query parsing, normalization and optimization, but before code genera-
tion. In this step, the compiler iterates over the target queries and identifies common 
subexpressions both inside each query and between this query and earlier queries.  

For each query, the compiler performs a depth first search in the query expression 
tree to identify the maximal shareable subexpressions: For each subexpression en-
countered that is not a constant or a variable, the compiler performs three tasks: (1) 
Apply hashing on the subexpression, ignoring all the variable names, and use the 
hashing result to probe the in-memory storage of all distinct subexpressions, each of 



which serves as a representative of an equivalence class. (2) If representatives with the 
same hashing result exist, for each of them call equals( ) on the representative and the 
subexpression in hand. (3) If any representative is equivalent to the subexpression, 
apply heuristics to filter out uninteresting cases of common subexpressions (such as 
inexpensive operations, e.g., a simple addition, and expressions that are not very ex-
pensive but could return large results e.g., a child path expression with wildcards). If a 
representative passes all these tests, the compiler determines that the representative 
matches the subexpression, and stops further traversal into this subexpression. Other-
wise, it updates the storage of equivalence classes with the unmatched subexpression 
and continues the search in the children of this subexpression. 

As an example, consider query Q1 from Section 3 together with Q2 given below. 

Query Q2:   for $item  in $doc/Order/OrderLine 
      where xs:integer(data($item/BuyersID)) eq 8  
      return <LineItem> { $item/Item/ID}   </LineItem> 

After query Q2 is parsed, normalized, and optimized, it is represented by an ex-
pression tree similar to that in Fig. 3-1 except for the if expression (i.e., the leftmost 
branch of IfThenElse). Table 1 shows the results of the compilation actions applied to 
the expression tree of Q2 for identifying maximal shareable subexpressions after all 
subexpressions of Q1 have been processed. The rows contain the subexpressions con-
sidered in order of the depth first search. As Table 1 shows, Map is filtered by the first 
step of hashing because it contains a different path expression and a different constant 
in its if expression. Match:OrderLine and NodeConstr are the two maximal common 
expressions identified. Note that although FO:children and FO:( ) are equivalent via 
equals( ), they are filtered by our heuristics as being uninteresting sharing cases. 

Table 1. Identifying Common Subexpressions between Q1 and Q2 

Expression (1) hashing (2) equals (3) heuristics 
Map No   
Match:OrderLine Yes Yes Yes 
IfThenElse No   
FO:eq No   
Cast:integer No   
FO:data No   
Match:SellersID No   
FO:children Yes Yes No 
NodeConstr Yes Yes Yes 
FO: ( ) Yes Yes No 

The implementation of code generation is also modified to take into account the 
identified common subexpressions. The compiler again iterates over the query set in 
the same order. For each query, code generation proceeds recursively in the expres-
sion tree as before, except for common subexpressions. For the instances of a common 
subexpression, a CacheIterator (which will be described in detail in the next section) 
is created for each instance, but all such CacheIterators point to the same memo table, 
which is where the results of memoization are cached at runtime.  

Fig. 4-1 shows the iterator trees generated for Q1 and Q2. The two queries have 
separate iterator trees. The structure of each iterator tree is similar to the expression 



tree (revisit Fig. 3-1), with abstract expressions replaced by specific iterators and some 
optimizations of the structure (e.g., merging Match and children). Moreover, instances 
of a common subexpression identified previously (as shown in Table 1) are wrapped 
by different CacheIterators that point to the same memo table. 

5 Query Execution for Memoization 

Having presented the compile-time aspects of our solution, we now describe the ex-
tensions required for the runtime system. These extensions are encapsulated into a new 
iterator called CacheIterator. The key data structure used by the CacheIterator is the 
memo table, which maps from the set of XQuery data model instances bound to the 
free variables of an expression to the computed/cached result of that expression. The 
main challenges in the memo table implementation, addressed here, stem from the 
inherent tension between memoization and streaming XQuery processing. 

The first challenge is to obtain the “ identity”  of the bindings of the free variables, 
so that this identity can then be used as a key to probe the memo table. If the binding 
of a free variable is a sequence of items, the entire sequence needs to be read before 
the identity can be computed and any result produced, which unfortunately breaks 
pipelining. In addition, with lazy evaluation, the binding of a free variable which is 
provided by a subexpression may not yet be evaluated at the point when this key is 
needed. How to perform memo table lookup in the face of these conflicts is crucial for 
computation reuse without losing the performance benefits of stream-based process-
ing. Our solution to this is presented in Section 5.1. 

The second challenge relates to the output. Recall that a very lazy mode of execu-
tion is used for XQuery processing. That is, the result of an expression is produced 
token by token, upon request, rather than in its entirety. Result caching, however, 
works best if the whole result is pre-computed because it is unknown how many to-
kens of the result are to be consumed by the different consumers. We refer to the kind 
of caching that pre-computes the entire result as Complete Caching. In contrast, Par-
tial Caching does not pre-compute entire results; it caches those parts of the results 
that have been requested by the consumers. Partial Caching is favorable from a per-
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formance perspective, but it is more difficult to integrate into a stream-based XQuery 
processor. These two caching schemes are described in more detail in Section 5.2. 

5.1 Memo Table Lookup 

The purpose of a memo table is to map the values of the free variables of a common 
subexpression to a (completely or partially) cached result. To this end, the memo table 
is implemented as a hierarchy of hash tables. Each level in this hierarchy corresponds 
to one free variable and is probed using the value of that free variable. Probing a 
memo table with a set of values bound to the free variables results in either a reference 
to the cached result (i.e., a memo table hit) or a null pointer (i.e., a memo table miss). 

In order to probe the memo table and to record new entries in the memo table in the 
event of lookup misses, it is crucial to know the values of the free variables. As stated 
at the beginning of this section, a naïve implementation of memo table lookup could 
break lazy evaluation and pipelined processing of these values, thus adversely affect-
ing the performance. At this point, we place an important restriction on the notion of 
data equivalence used for memo table lookup: we disregard condition (d) in Definition 
1 (given in Section 2) for establishing equivalence between sequences of items. In 
other words, we only cache results of an expression if the type of each free variable of 
this expression is either an atomic type (e.g., integer or date) or a node (e.g., element 
or document). We do not cache results if the type of a free variable is a sequence of 
items. Our implementation of this restriction is based on type checking on free vari-
ables at compile time.  

The issue with lazy evaluation still exists even with this restriction. The value of a 
free variable can contain an arbitrarily large number of tokens (e.g., for a document), 
which might be produced by another complex expression that we wish to evaluate 
lazily. Fortunately, this restriction does enable us to probe the memo table by only 
looking at the first token of the value of each free variable. If the type of the free vari-
able is a node, the first token will contain the id of the node and we can use this id to 
probe the memo table. If the type of free variable is an atomic type, instead, we can 
extract the whole value from the first token and use that to probe the memo table. 

5.2 Result Caching 

Implementing complete result caching is easy, once the memo table lookup issue has 
been solved. The queries that contain a common subexpression each instantiate a 
CacheIterator for this common subexpression. The CacheIterators of those queries, 
however, share the same memo table. This memo table is used in the following way: 
For each binding of the free variables, the memo table is probed as described before. 
If the result has been cached, the CacheIterator returns it token by token (whenever its 
next( ) method is called) from the cached result. If the memo table lookup fails, the 
common subexpression is fully evaluated using the current binding, the entire result is 
cached, and the memo table is updated with the (binding, result) pair. The next time 
when the common subexpression needs to be evaluated with the same binding of the 
free variables (within the same query or for another query), the stored result is reused. 



Complete Caching is simple, but it computes the entire result of a common subex-
pression which may never be needed. For performance reasons, we would like to 
compute the results of a common subexpression just as lazily as in other situations; 
that is, results stored in the memo table are generated only when they are needed by 
the consumers. This gives rise to the idea of Partial Caching that is able to cache par-
tial results across queries and compute additional parts of the results later, if needed. 

To implement Partial Caching, we need to keep the iterator tree of the common 
subexpression in addition to the partial results. We will use this iterator tree when 
additional results are needed which have not been produced yet. Furthermore, we must 
preserve the state of all iterators in the iterator tree, in particular, the bindings of the 
iterators that represent the free variables in the iterator tree. In general, preserving 
such states across queries can be costly and may involve further materialization.  

We currently focus on a special case, for which preserving the state is relatively 
simple; that is, the common subexpression is resumable. An expression is resumable if 
its free variables are bound only once in one invocation of the query execution. This 
condition can be checked at compile time based on the static types of the expressions 
that compute the values of the free variables. Common examples of such expressions 
occur in web services where path expressions are prefixed with an external variable 
that will be bound to each incoming message. For a resumable expression, we simply 
store the iterator tree together with the partial results in the memo table and use the 
iterator tree whenever additional results need to be produced (with guaranteed correct 
state of the iterator tree). Finally, some support is also provided to prevent a query 
from closing its iterator tree that has been stored in a memo table at the end of its 
processing. Details are omitted here due to space constraints. 

6 Performance Evaluation 

We have implemented our techniques for shared XQuery processing in a Java-based 
prototype system extending the BEA XQuery processor. In this section we evaluate 
the effectiveness of these techniques in the context of message brokering, where que-
ries are executed over XML message payloads (or messages, for short). The work-
loads are derived from use cases collected from BEA customers. These use cases 
demonstrate common ways of using XQuery in practice. 

Starting from these use cases, we created a set of workload queries based on the 
Purchase Order schema from the Universal Business Language (UBL) library [15]. 
We also created purchase order messages using a tool based on the AlphaWorks XML 
generator [1]. We used a set of 1000 10KB messages in our experiments. The per-
formance metric used is Query Execution Time. This is the average time for executing 
a set of queries on each message from the input set. It does not include the message 
parsing time. We compared the performance of individual execution of the queries 
(“no caching” ) and query execution with memoization (“caching”). Complete caching 
and partial caching perform the same, if not otherwise stated. All the experiments were 
performed on a Pentium III 850 Mhz processor with 768MB memory running Sun 
JVM 1.4.2 on Linux 2.4. The JVM maximum allocation pool was set to 500 MB. All 
data structures including the memo tables fit in the 500 MB allocation pool. 



The first experiment was conducted in the context of subscriptions using parameter-
ized queries, which is a common way that service instances subscribe to a message 
broker. The parameterized query that we used is provided below: 

for    $price  in  $doc/Order/OrderLine/Item/BasePrice/PriceAmount 
where   float(data($price))  lt  $value 
return   $price 

Thirty queries (i.e., subscriptions) were generated from this template. To obtain dif-
ferent degrees of query similarity, we varied the number of distinct values that the 
variable $value can take, called the domain size, from 1 to 30. For a given domain size 
n, the values between 1 and n were evenly distributed in the thirty queries. 

The results are shown in Fig. 6-1. It is clear that memoization provides huge bene-
fits for this workload. When all thirty queries use the same value, “caching”  achieves a 
10.7x performance gain. As the domain size increases, its performance benefit de-
creases slowly, obtaining a factor of 3.3 when every query uses a distinct value. 

The next experiment focuses on the use case of message transformation for sub-
scribers. In this case, the message broker provides a function called summarizeOrder-
Line (not shown here) for summarizing the line items of interest to each subscriber. 
An example subscription query is illustrated below. 

for         $line   in $doc/Order/OrderLine 
where    xs:integer(data($line/Item/ID)) ge 1  and  xs:integer(data($line/Item/ID)) le 20 
return    summarizeOrderLine ($doc, $line) 

In this test, we used five queries similar to the query above and fixed their selectivity 
to 20% each using a range predicate on the ID of line items. We varied the overlap 
among queries by changing the constants in the range predicates so that the selectivity 
of the union of the 5 predicates varied from 100% (no overlap) to 20% (full overlap).  

With query overlap, the same OrderLine may satisfy multiple predicates, and 
memoization over the function summarizeOrderLine( ) can avoid redundant work 
among queries. This type of sharing, however, cannot be captured by the traditional 
plan-level sharing approach of the relational world [17]. Here, plan sharing is equiva-
lent to individual execution of queries. The results of this experiment are shown in 
Fig. 6-2. It can be seen that as the overlap among queries increases, the performance 
of “caching”  improves remarkably but that of “no caching”  (or plan sharing) does not. 

We also conducted experiments to evaluate the effectiveness of our approach for 
web services calls and message routing using path expressions, and to compare com-
plete and partial caching for workloads where lazy evaluation is crucial. The results of 
these experiments show that significant overall performance gains are available. 
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7 Related Work 

Our work is related to a number of areas in the databases and functional programming 
communities. We attempt to provide a rough overview of related work here. 

Query execution techniques based on sorting or hashing have been used to elimi-
nate redundant computation of expensive methods [10]. For SQL trigger execution, 
algorithms have been developed to extract invariant subqueries from triggers’  condi-
tion and action [8]. These techniques used in the relational setting are related to ours 
for XQuery processing in the case of single expression, multiple bindings. 

In the pioneering work on multi-query optimization [17], the problem of MQO is 
formulated as “merging”  local access plans of a set of queries into a global plan with 
reduced execution cost. Along this line, advanced algorithms have been proposed to 
approximate the optimal global plan [4, 16]. Our work addresses XQuery--a much 
richer language--and uses different techniques for identifying common subexpressions. 
Moreover, as our results show, our work provides finer-grained (i.e., binding-based) 
sharing of intermediate results than merging relational-style access plans. 

There has been a large body of work on materialized views, which precomputes the 
views used by a set of queries and stores the results to speed up query processing [7]. 
In contrast, our techniques consider expressions with parameters, and cache and re-
cover expression results “on the fly”  while running a set of queries. View selection [1, 
3, 14] decides what subqueries to materialize based on cost models and/or reliable 
statistics, similar in spirit to our technique of selecting interesting shareable computa-
tions. Using partial result caching, our approach has the advantage of avoiding unnec-
essary materialization over the cached computations. 

XQuery memoization differs from memoization in functional programming [11, 12] 
in two aspects. First, instead of named functions, the memoization target for XQuery is 
expressions, making effective detection of shareable expressions critical. Second, 
while memoization in functional programming is usually based on a simple “values in, 
value out”  execution model, our approach is realized in a complex processing model 
that produces results lazily and pipelines them to the extent possible. 

8 Conclusions 

In this paper, we described a memoization-based approach to sharing in XQuery proc-
essing. We first provided an analysis of data and expression equivalence for XQuery 
memoization. We then addressed issues related to efficient implementation. We de-
veloped a number of query compilation techniques to identify interesting shareable 
expressions, and extended a pipelined runtime system with efficient memo table 
lookup and different caching schemes. All of these techniques have been implemented 
in the context of a commercial XQuery processor and their effectiveness was demon-
strated using query workloads derived from the common uses of XQuery in practice.  

While our results are promising, we view this as a first step towards solving the 
problem of efficient sharing in XQuery processing. There are many interesting and 
important problems to be addressed in our future work. First, as data and expression 
equivalence is crucial to the applicability of memoization, a thorough analysis in the 



context of the full XQuery language will be a main focus of our work. Second, we will 
consider normalization rules that rewrite queries especially to enable memoization. 
Such rewriting is aimed at turning variables of an expression from node-based to 
value-based, thus expanding the opportunities for reusing the computed results. Third, 
a complete solution to partial result caching that supports lazy evaluation requires 
further investigation. Finally, due to the diverse characteristics of shareable expres-
sions, selective memoization is key to the performance of memoization. We plan to 
extend the set of compile-time heuristics and develop runtime adaptability to select 
those shareable expressions beneficial from the cost point of view. 
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