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ABSTRACT
In this paper, we present the XStream system that pro-

vides high-quality explanations for anomalous behaviors that
users annotate on CEP-based monitoring results. Given
the new requirements for explanations, namely, conciseness,
consistency with human interpretation, and prediction power,
most existing techniques cannot produce explanations that
satisfy all three of them. The key technical contributions of
this work include a formal definition of optimally explaining
anomalies in CEP monitoring, and three key techniques for
generating su�cient feature space, characterizing the con-
tribution of each feature to the explanation, and selecting a
small subset of features as the optimal explanation, respec-
tively. Evaluation using two real-world use cases shows that
XStream can outperform existing techniques significantly in
conciseness and consistency while achieving comparable high
prediction power and retaining a highly e�cient implemen-
tation of a data stream system.

1. INTRODUCTION
Complex Event Processing (CEP) extracts useful infor-

mation from large-volume event streams in real-time. Users
define interesting patterns in a CEP query language (e.g,.
[3, 4]). With expressive query languages and high perfor-
mance processing power, CEP technology is now at the core
of real-time monitoring in a variety of areas, including the
Internet of Things [18], financial market analysis [18], and
cluster monitoring [28].

However, today’s CEP technology supports only passive

monitoring by requesting the monitoring application (or user)
to explicitly define patterns of interest. There is a recent re-
alization that many real-world applications demand a new
service beyond passive monitoring, that is, the ability of the
monitoring system to identify interesting patterns (includ-
ing anomalous behaviors), produce a concrete explanation
from the raw data, and based on the explanation enable a
user action to prevent or remedy the e↵ect of an anomaly.
We broadly refer to this new service as proactive monitoring.
We present two motivating applications as follows.

1.1 Motivating Applications
Production Cluster Monitoring. Cluster monitoring

is crucial to many enterprise businesses. For a concrete ex-
ample, consider a production Hadoop cluster that executes
a mix of Extract-Transform-Load (ETL) workloads, SQL
queries, and data stream tasks. The programming model
of Hadoop is MapReduce, where a MapReduce job is com-
posed of a map function that performs data transformation

and filtering, and a reduce function that performs aggre-
gation or more complex analytics for all the data sharing
the same key. During job execution, the map tasks (called
mappers) read raw data and generate intermediate results,
and the reduce tasks (reducers) read the output of mappers
and generate final output. Many of the Hadoop jobs have
deadlines because any delay in these jobs will a↵ect the en-
tire daily operations of the enterprise business. As a result,
monitoring of the progress of these Hadoop jobs has become
a crucial component of the business operations.

However, the Hadoop system does not provide su�cient
monitoring functionality by itself. CEP technology has been
shown to be e�cient and e↵ective for monitoring a vari-
ety of measures [28]. By utilizing the event logs generated
by Hadoop and system metrics collected by Ganglia, CEP
queries can be used to monitor Hadoop job progress; to find
tasks that cause cluster imbalance; to find data pull strag-
glers; and to compute the statistics of lifetime of mappers
and reducers. Consider a concrete example below, where
the CEP query monitors the size of intermediate results that
have been queued between mappers and reducers.

Example 1.1 (Data Queuing Monitoring). Collect all the
events capturing intermediate data generation/consumption
for each Hadoop job. Return the accumulative intermediate
data size calculated from those events (Q1).

Figure 1(a) shows the data queuing size of a monitored
Hadoop job. The X-axis stands for the time elapsed since
the beginning of the job, while the Y-axis represents the size
of queued data. In this case, the job progress turns out to
be normal: the intermediate results output by the mappers
start to queue at the beginning and reach a peak after a
short period of time. This is because a number of mappers
have completed in this period while the reducers have not
been scheduled to consume the map output. Afterwards,
the queued data size decreases and then stabilizes for a long
period of time, meaning that the mappers and reducers are
producing and consuming data at constant rates, until the
queued data reduces to zero at the end of the job.

Suppose that a Hadoop user sees a di↵erent progress plot,
as shown Figure 1(b), for the same job on another day: there
is a long initial period where the data queuing size increases
gradually but continually, and this phase causes the job com-
pletion time to be delayed by more than 500 seconds. When
the user sees the job with an odd shape in Figure 1(b), he
may start considering the following questions:

I What is happening with the submitted job?

I Should I wait for the job to complete or re-submit it?
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Figure 1: Hadoop cluster monitoring: examples and system architecture.

I Is the phenomenon caused by the bugs in the code or
some system anomalies?

I What should I do to bring the job progress back to
normal?

Today’s CEP technology, unfortunately, does not provide
any additional information that helps answer the above ques-
tions. The best practice is manual exploration by the Hadoop
user: he can dig into the complex Hadoop logs and manually
correlate the Hadoop events with the system metrics such as
CPU and memory usage returned by a cluster monitoring
tool like Ganglia [13]. If he is lucky to get help from the
cluster administrator, he may collect additional information
such as the number of jobs executed concurrently with his
job and the resources consumed by those jobs.

For our example query, it turns out that the odd shape
in Figure 1(b) is due to high memory usage of other pro-
grams in the Hadoop cluster. However, this fact is not ob-
vious from the visualization of the user’s monitoring query,
Q1. It requires analyzing additional data beyond what is
used to compute Q1 (which used data relevant only to the
user’s Hadoop job, but not all the jobs in the system). Fur-
thermore, the discovery of the fact requires new tools that
can automatically generate explanations for the anomalies in
monitoring results such that these explanations can be un-
derstood by the human and lead to corrective / preventive
actions in the future.

Supply Chain Management. The second use case is
derived from an aerospace company with a global supply
chain. By talking with the experts in supply chain manage-
ment, we identified an initial set of issues in the company’s
complex production process which may lead to imperfect or
faulty products. For instance, in the manufacturing pro-
cess of a certain product the environmental features must to
be strictly controlled because they a↵ect the quality of pro-
duction. For example, the temperature and humidity need
to be controlled in a certain range, and they are recorded
by the sensors deployed in the environment. However, if
some sensors stop working, the environmental features may
not be controlled properly and hence the products manufac-
tured during that period can have quality issues. When such
anomalies arise, it is a huge amount of work to investigate
the claims from customers given the complexity of manufac-
turing process and to analyze a large set of historical data
to find explanations that are meaningful and actionable.

1.2 Problem Statement and Contributions
The overall goal of XStream is to provide good explana-

tions for anomalous behaviors that users annotate on CEP-

based monitoring results. We assume that an enterprise
information system has basic CEP monitoring functional-
ity: a CEP monitoring system o↵ers a dashboard to illus-
trate high-level metrics computed by a CEP query, such
as job progress, network tra�c, and data queuing. When
a user observes an abnormal value in the monitoring re-
sults, he annotates the value in the dashboard and requests
XStream to search for an explanation from the archived raw
data streams. XStream generates an optimal explanation
by quickly replaying a fraction of the archived data streams.
Then the explanation can be encoded into the system for
proactive monitoring for similar anomalies in the future.

Challenges. The challenges in the design of XStream
arise from the requirements for such explanations. Informed
by the two real-world applications mentioned above, we con-
sider three requirements in this work: (a) Conciseness: The
system should favor smaller explanations, which are easier
for humans to understand. (b) Consistency : The system
should produce explanations that are consistent with hu-
man interpretation. In practice, this means that explana-
tions should match the true reasons for an anomaly (ground
truth). (c) Prediction power : We prefer explanations that
have predictive value for future anomalies.

It is di�cult for existing techniques to meet all three re-
quirements. In particular, prediction techniques such as
logistic regression and decision trees [2] su↵er severely in
conciseness or consistency as shown in our evaluation re-
sults. This is because these techniques were designed for
prediction, but not for explanations with conciseness and
consistency requirements. Recent database research [27, 22]
seeks to explain outliners in SQL query answers. This line
of work assumes that explanations can be found by search-
ing through various subsets of the tuples that were used to
compute the query answers. This assumption does not suit
real-world stream systems for two reasons: As shown for our
example, Q1, the explanation of memory usage contention
among di↵erent jobs cannot be generated from only those
events that produced the monitoring results of Q1. Fur-
thermore, the stream execution model does not allow us to
repeat query execution over di↵erent subsets of events or
perform any precomputation in a given database [22].

Contributions. In this work, we take an important step
towards discovering high-quality explanations for anomalies
observed in monitoring results. Toward this goal, we make
the following contributions:

1) Formalizing explanations (Section 2): We provide a
formal definition of optimally explaining anomalies in CEP
monitoring as a problem that maximizes the information



reward provided by the explanation.

2) Su�cient feature space (Section 3): A key insight
in our work is that discovering explanations first requires a
su�cient feature space that includes all necessary features
for explaining observed anomalies. XStream includes a new
module that automatically transforms raw data streams into
a richer feature space, F, to enable explanations.

3) Entropy-based, single-feature reward (Section 4):
As a basis for building the information reward of an expla-
nation, we model the reward that each feature, f 2 F, may
contribute using a new entropy-based distance function.

4) Optimal explanations via submodular optimiza-
tion (Section 5): We next model the problem of find an
optimal explanation from the feature space, F, as a submod-
ular maximization problem. Since submodular optimization
is NP-hard, we design a heuristic algorithm that ranks and
filters features e�ciently and e↵ectively.

5) Implementation and evaluation (Section 6): We have
implemented XStream on top of the SASE stream engine [3,
28]. Experiments using two real-world use cases show very
promising results: (1) Our entropy distance function outper-
forms state-of-the-art distance functions on time series by re-
ducing the features considered by 94.6%. (2) XStream signif-
icantly outperforms logistic regression [2], decision tree [2],
majority voting [17] and data fusion [21] in consistency and
conciseness of explanations while achieving comparable, high
predication accuracy. Specifically, it outperforms others in
consistency by 3201% on average, and reduces 90.5% of fea-
tures on average to ensure conciseness. (3) Our implemen-
tation is very e�cient: with 2000 concurrent monitoring
queries, the triggered explanation analysis returns expla-
nations within a minute and a↵ects the performance only
slightly, delaying events processing by less than 1 second.

2. EXPLAINING CEP ANOMALIES
The goal of XStream is to provide good explanations for

anomalous behaviors that users annotate on CEP-based mon-
itoring results. We first describe the system setup, and give
examples of monitoring queries and anomalous observations
that a user may annotate. We then discuss the requirements
for providing explanations for such anomalies, and examine
whether some existing approaches can derive explanations
that fit these requirements. Finally, we define the problem
of optimally explaining anomalies in our setting.

2.1 CEP Monitoring System and Queries
In this section, we describe the system setup for our prob-

lem setting. The overall architecture of XStream is shown in
Figure 1(c). We consider a data source S, generating events
of n types, E = {E1, E2, . . . , En

}. Events of these types
are received by the CEP-based monitoring system continu-
ously. Each event type follows a schema, comprised of a set
of attributes; all event schemas share a common timestamp
attribute. The timestamp attribute records the occurrence
time of each event. Figure 2 shows some example event types
in the Hadoop cluster monitoring use case [28].
We consider a CEP engine that monitors these events

using user-defined queries. For the purposes of this pa-
per, monitoring queries are defined in the SASE query lan-
guage [3], but this is not a restriction of our framework, and
our results extend to other CEP query languages. Figure 3

shows the general syntax of CEP queries in SASE, and an
example query, Q1, from the Hadoop cluster monitoring use
case. Q1 collects all data-relevant events during the lifetime
of a Hadoop job. We now explain the main components of
a SASE query.

Sequence. A query Q may specify a sequence using the
SEQ operator, which requires components in the sequence
to occur in the specified order. One component is either a
single event or the Kleene closure of events. For example,
Q1 specifies three components: the first component is a sin-
gle event of the type JobStart; the second component is a
Kleene closure of a set of events of the type DataIO; and
the third component is a single event of type JobEnd.

Predicates. Q can also specify a set of predicates in its
Where clause. One special predicate among these is the
bracketed partitionAttribute. The brackets apply an equiv-
alence test on the attribute inside, which requires all se-
lected events to have the same value for this attribute. The
partitionAttribute tells the CEP engine which attribute to
partition by. In Q1, jobId is the partition attribute.

Return matches. Q specifies the matches to return in
the Return clause. Matches comprise a series of events with
raw or derived attributes; we assume timestamp and the
partitionAttribute are included in the returned events. We
denote with m a match on one partition and with M

Q

the
set of all matches. Q1 returns a series of events based on
selected DataIO events, and the returned attributes include
timestamp, jobId, and a derived attribute— the total size
for all selected DataIO events. In order to visualize results
in real time, matches will be sent to the visualization module
as events are collected.

Visualizations and feedback. Our system visualizes matches
from monitoring queries on a dashboard that users can inter-
act with. The visualizations typically display the (relative)
occurrence time on the X-axis. The Y-axis represents one of
the derived attributes in returned events. Users can specify
simple filters to focus on particular partitions. All returned
events of M

Q

are stored in a relational table T
MQ , and the

data to be visualized for a particular partition is specified
as ⇡

t,attr i

(�
partitionAttribute=v

(M)). Figure 1(a) shows the
visualization of a partition, which corresponds to a Hadoop
job for this query. In this visualization, the X-axis displays
the time elapsed since the job started, and the Y-axis shows
the derived sum over the “DataSize” attribute.

Users can interact with the visualizations by annotating
anomalies. For example, the visualization of Figure 1(b)
demonstrates an unexpected behavior, with the queueing
data size growing slowly. A user can drag and draw rect-
angles on the visualization, to annotate the abnormal com-
ponent, as well as reference intervals that demonstrate nor-
mal behavior. We show an example of these annotations
in Figure 4. A user may also annotate an entire period
as abnormal, and choose a reference interval in a di↵erent
partition. We use I

A

to denote the annotated abnormal in-
terval in a partition P

A

: I
A

= (Q, [lower, upper], P
A

). We
use I

R

to denote the reference interval, which can be ex-
plicitly annotated by the user, or inferred by XStream as
the non-annotated parts of the partition. We write I

R

=
(Q, [lower, upper], P

R

), where P
R

and P
A

might be the same
or di↵erent partitions.



Event type Meaning Schema

JobStart Recording a Hadoop job starts (timestamp, eventType, eventId, jobId, clusterNodeNumber)
JobEnd Recording a Hadoop job finishes (timestamp, eventType, eventId, jobId, clusterNodeNumber)
DataIO Recording the activities of generation

(positive values) / consumption (nega-
tive values) of intermediate data

(timestamp, eventType, eventId, jobId, taskId, attemptId, clusterN-
odeNumber, dataSize)

CPUUsage Recording the CPU usage for a node
in the cluster

(timestamp, eventType, eventId, clusterNodeNumber, CPUUsage)

MemUsage Recording the memory usage for a
node in the cluster

(timestamp, eventType, eventId, clusterNodeNumber, memUsage)

Figure 2: Example event types in Hadoop cluster monitoring. Event types can be specific to the Hadoop job (e.g.,
JobStart, DataIO, JobEnd), or they may report system metrics (e.g., CPUUsage, FreeMemory).

Q Pattern seq(Component1, Component2 , . . . )
Where [partitionAttribute] ^ Pred1 ^ Pred2 ^ . . .
Return (timestamp, partitionAttribute, derivedA1,

derivedA2, . . .)[]

Q1 Pattern seq(JobStart a, DataIO+ b[], JobEnd c)
Where [jobId]
Return (b[i].timestamp, a.jobId,

sum(b[1· · · i].dataSize))[]
Figure 3: Syntax of a query in SASE (on the left), and an example query for monitoring data activity (on the right).

IA IR

Figure 4: Abnormal (I
A

) and reference (I
R

) intervals.

2.2 Explaining Anomalies
Monitoring visualizations allow users to observe the evolu-

tion of various performance metrics in the system. While the
visualizations help indicate that something may be unusual
(when an anomaly is observed), they do not o↵er clues that
point to the reasons for the unexpected behavior. In our
example from Figure 4, there are two underlying reasons for
the abnormal behavior: (1) the free memory is lower than
normal, and (2) the free swap space is lower than normal.
However, these reasons are not obvious from the visualiza-
tion; rather, a Hadoop expert had to manually check a large
volume of logs to derive this explanation. Our goal is to au-
tomate this process, by designing a system that seamlessly
integrates with CEP monitoring visualizations, and which
can produce explanations for surprising observations.

We define three desirable criteria for producing explana-
tions in XStream:
1. Conciseness: The system should favor smaller, and thus

simpler explanations. Conciseness follows the Occam’s
razor principle, and produces explanations that are easier
for humans to understand.

2. Consistency: The system should produce explanations
that are consistent with human interpretation. In prac-
tice, this means that explanations should match the true
reasons for an anomaly (ground truth).

3. Prediction power: We prefer explanations that have
predictive value for future anomalies. Such explanations

can be used to perform proactive monitoring.

Explanations through predictive models. The first step
of our study explored the viability of existing prediction
techniques for the task of producing explanations for CEP
monitoring anomalies. Prediction techniques typically learn
a model from training data; by using the anomaly and refer-
ence annotations as the training data, the produced model
can be perceived as an explanation. For now, we will assume
that a su�cient set of features is provided for training (we
discuss how to construct the feature space in Section 3), and
evaluate the explanations produced by two standard predic-
tion techniques for the example of Figure 4.

Logistic regression [2] produces models as weights over a
set of features. The algorithm processes events from the two
annotated intervals as training data, and the trained predic-
tion model—a classifier between abnormal and reference
classes—can be considered an explanation to the anomaly.
The resulting logistic regression model for this example is
shown in Figure 5. While the model has good predictive
power, it is too complex, and cannot facilitate human un-
derstanding of the reported anomaly. The model assigns
non-zero weights to 30 out of 345 input features, and while
the two ground truth explanations identified by the human
expert are among these features (23 and 24), their weights
in this model are low. This model is too noisy to be of use,
and it is not helpful as an explanation.

Decision tree [2] builds a tree for prediction. Each non-leaf
node of the tree is a predicate while leaf nodes are predic-
tion decisions. Figure 6 shows the resulting tree for our
example. The decision tree algorithm selects three features
for the non-leaf nodes, and only one of them is part of the
ground truth determined by our expert. The other two fea-
tures happen to be coincidentally correlated with the two
intervals, as revealed in our profiling. This model is more
concise than the result of logistic regression, but it is not
consistent with the ground truth.

The above analyses showed that prediction techniques are
not suitable for producing explanations in our setting. While
the produced models have good predictive power (as this
is what the techniques are designed for), they make poor
explanations, as they su↵er in consistency and conciseness.



No. Feature Weight

1 DataIOFrequency -0.01376
2 CPUIdleMean 0.0089
3 PullFinishFrequency -0.00708
4 ProcTotalMean 0.00085
5 PullStartTaskIdMean -0.00046
. . . . . . . . .
20 MemBu↵ersMean 2.97E-05
21 PktsOutMean -1.88E-05
22 MapPeriodMean 0.00001
23 SwapFreeMean -4.79E-07
24 MemFreeMean -3.28E-07
25 MemCachedMean -2.42E-07
26 BytesOutMean -1.02E-07
27 SwapTotalMean -8.96E-08
28 BytesInMean -3.85E-08
29 MemTotalMean -3.69E-08
30 BoottimeMean 2.61E-10

Figure 5: Model generated by logistic regression for the
annotated anomaly of Figure 4.

MapFinishNodeNumberMean	

PullFinishNodeNumberMean	 MemFreeMean	

Abnormal	 Normal	 Abnormal	 Normal	

<4.7 ≥4.7 

<4.5 ≥4.5 <1684942 ≥1684942 

Figure 6: Model Generated by Decision Tree

Our goal is to design a method for deriving explanations
that satisfies all three criteria (Figure 7).

2.3 Formalizing Explanations
Explanations need to be understandable to human users,

and thus need to have a simple format. XStream builds
explanations as a conjunction of predicates. In their general
format, explanations are defined as follows.

Definition 2.1 (Explanation). An explanation is a boolean
expression in Conjunctive Normal Form (CNF). It contains
a conjunction of clauses, each clause is a disjunction of pred-
icates, and each predicate is of the form {v o c}, where v is a
variable value, c is a constant, and o is one of five operators:
o 2 {>,�,=,, <}.

Example 2.1. The formal form of the true explanations for
the anomaly annotated in Figure 4 is (MemFreeMean <
1978482 ^ SwapFreeMean < 361462), which is a conjunc-
tion of two predicates. It means that the average available
memory is less than 1.9GB and free swap space is less than
360MB. The two predicates indicate that the memory usage
is high in the system (due to resource contention), thus the
job runs slower than normal.

Arriving at the explanation of Example 2.1 requires two
non-trivial components. First, we need to identify important
features for the annotated intervals (e.g., MemFreeMean,
SwapFreeMean); these features will be the basis of form-
ing meaningful predicates for the explanations. Second, we
have to derive the best explanation given a metric of op-
timality. For example, the explanation (MemFreeMean
< 1978482) is worse than (MemFreeMean < 1978482 ^

Algorithm Conciseness Consistency Prediction
quality

Logistic regression Bad Bad Good
Decision tree Ok Bad Good
Goal Good Good Good

Figure 7: Performance of prediction methods on our
three criteria for explanations.

SwapFreeMean < 361462), because, while it is smaller, it
does not cover all issues that contribute to the anomaly, and
is thus less consistent with the ground truth.

Ultimately, explanations need to balance two somewhat
conflicting goals: simplicity, which pushes explanations to
smaller sizes, and informativeness, which pushes explana-
tions to larger sizes to increase the information content. We
model these goals through a reward function that models
the information that an explanation carries, and we define
the problem of deriving optimal explanations as the problem
of maximizing this reward function.

Definition 2.2 (Optimal Explanation). Given an archive of
data streams D for CEP, a user-annotated abnormal inter-
val I

A

and a user-annotated reference interval I
R

, an optimal
explanation e is one that maximizes a non-monotone, sub-
modular information reward R over the annotated intervals:
argmax

e

R
IA,IR(e)

The reward function in Definition 2.2 is governed by an
important property: rewards are not additive, but submod-

ular. This means that the sum of the reward of two expla-
nations is greater than or equal to the reward of their union:
R

IA,IR(e1) + R
IA,IR(e2) � R

IA,IR(e1 [ e2). The intuition
for the submodularity property is based on the observation
that adding predicates to an explanation o↵ers diminishing
returns: the larger an explanation already is, the lower the
reward of adding a new predicate will be. Moreover, R is
non-monotone. This means that adding predicates to an ex-
planation could decrease the reward. This is due to the con-
ciseness requirement that penalizes big explanations. The
optimal explanation problem (Definition 2.2) is therefore a
submodular maximization problem, which is known to be
NP-hard [12].

2.4 Existing Approximation Methods
Submodular optimization problems are commonly addressed

with greedy approximation techniques. We next investigate
the viability of these methods for our problem setting.

For this analysis, we assume a reward function for ex-
planations based on mutual information. Mutual informa-
tion is a measure of mutual dependence between features.
This is important in our problem setting, as features are
often correlated. For example, PullStartFrequency and
PullF inishFrequency are highly correlated, because they
always appear together for every pull operation. For this
precise reason, Definition 2.2 demands a submodular reward
function. Mutual information satisfies the submodularity
property. Greedy algorithms are often used in mutual infor-
mation maximization problems. The way they would work
in this setting is the following: given an explanation e, which
is initially empty, at each greedy step, we select the feature
f that maximizes the mutual information of e [ f .

Figure 8 shows the performance of the greedy algorithm
for maximization of mutual information (with two variants
that select a di↵erent feature in case of ties), with a few



Figure 8: Accumulative mutual information gain under
di↵erent strategies.

other strawman alternatives. The greedy strategy clearly
outperforms the alternatives by reaching higher mutual in-
formation gains with fewer features, but it still selects a
large number of features (around 20-30 features before it
levels o↵). This means that this method produces explana-
tions that are too large, and unlikely to be useful for human
understanding.

2.5 Overview of the XStream Approach
Since standard approaches for solving the optimal expla-

nation problem are insu�cient for our problem setting, we
develop a new heuristic method based on good intuitions to
address the problem. We next provide a high-level overview
of our approach in building XStream.

1. Su�cient feature space (Section 3): A key insight in
our work is that discovering optimal explanations first re-
quires a su�cient feature space that includes all necessary
features for explaining observed anomalies. Our work di↵ers
fundamentally from existing work on discovering explana-
tions from databases [27, 22]: First, XStream operates on
raw data streams, as opposed to the data carefully curated
and stored in a relational database. Second, XStream does
not assume that the raw data streams carry all necessary fea-
tures for explaining anomalous behaviors. In our above ex-
ample, the feature, SwapFreeMean, captures average free
swap space and it does not exist in Hadoop event logs or
Ganglia output. Our system includes a module that auto-
matically transforms raw data streams into a richer feature
space, F, to enable the discovery of optimal explanations.

2. Entropy-based, single-feature reward (Section 4):
As a basis for building the information reward defined in
Definition 2.2, we consider the reward that each feature,
f 2 F, may contribute. To capture the reward in such a base
case, we propose a new, entropy-based distance function that
is defined on a single feature across the abnormal interval,
I
A

, and the reference interval, I
R

. The larger the distance,
the more di↵erentiating power over the two intervals that
the feature contributes, and hence more reward produced.

3. Optimal explanations via submodular optimiza-
tion (Section 5): The next task is to find an optimal ex-
planation from the feature space, F, that maximizes the in-
formation reward provided by the explanation. The reward
function in Definition 2.2 is non-monotone and submodu-
lar, resulting in a submodular maximization problem. Since
submodular optimization is NP-hard, our goal is to design
a heuristic to solves this problem. Our heuristic algorithm
first uses the entropy-based, single-feature reward to rank

timestamp node usagePercent

4 2 35
5 5 49
6 8 99
7 1 86
8 2 61
9 6 43

Figure 9: Sample events in the type of CPUUsage.

features, subsequently identifies a cut-o↵ to reject features
with low reward, and finally uses correlation-based filtering
to eliminate features with information overlap (emulating
the submodularity property). Our evaluation shows that
our heuristic method is extremely e↵ective in practice.

3. DISCOVERING USEFUL FEATURES
Explanations comprise of predicates on measurable prop-

erties of the CEP system. We call such properties features.
Some features for our running example are DiskFreeMean,
MemFreeMean, DataIOFrequency, etc. In most existing
work on explanations, features are typically determined by
the query or the schema of the data (e.g., the query predi-
cates in Scorpion [27]). In CEP monitoring, using as features
the query predicates or data attributes is not su�cient, be-
cause many factors that impact the observed performance
are due to other events and changes in the system. This
poses an additional challenge in our problem setting, as the
set of relevant features is non-trivial. In this section, we
discuss how XStream derives the space of features as a first
step to producing explanations.

In an explanation problem, we are given an anomaly inter-
val I

A

and a reference interval I
R

; the relevant features for
this explanation problem are built from events that occurred
during these two intervals. To support the functionality of
providing explanations, the CEP system has to maintain an
archive of the streaming data. The system has the ability
to purge archived data after the relevant monitoring queries
terminate, but maintaining the data for longer can be useful,
as the reference interval can be specified on any past data.

Formally, the events arriving in a CEP system in input
streams and the generated matches compose the input to
the feature space construction problem. We assume that
the CEP system maintains a table for each event type, such
as the one depicted in Figure 9. That is, for each event type
E

i

, logically there is a relational table R(E
i

) to store all
events of this type in temporal order. There is also a table
R(M) to archive all match events in type M . Let D denote
the database for XStream, which is composed of those tables.
So D is defined as D = {R(E

i

)|1  i  n} [R(M).
Each attribute in event type E

i

, except the timestamp,
forms a time series in a given interval (which can be an
anomaly interval I

A

or a reference interval I
R

). Such time
series as features are called raw features.

Example 3.1. The table of Figure 9 records events of type
CPUUsage in a given time interval [4, 9], and forms two raw
features, from two time series. The first one is CPUUsage.Node,
and its values are ((4, 2), (5,5), (6,8), (7,1), (8,2), (9,6));
the other is CPUUsage.UsagePercent with values ((4,35),
(5,49), (6,99), (7,86), (8,61), (9,43)).

We found that the raw feature space is not good for deriv-
ing explanations due to noise. Instead, we need higher-level
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Figure 10: Visualization of the separating power of four
features: (1) free memory size, (2) idle CPU percentage,
(3) CPU percentage used by IO, and (4) system load.
This visualization is not part of XStream, but we show
it here for exposition purposes.

features, which we construct by applying aggregation func-
tions to features at di↵erent granularities. We apply sliding
windows over the time series features and over each win-
dow, aggregate functions including count and avg to gener-
ate new time serious features. The XStream system has an
open architecture that allows any window size and any new
aggregate functions to be used in the feature generation pro-
cess. Features produced this way are“smoothed”time series;
they demonstrate more general trends than raw features,
and outliers are smoothed. Example high-level features that
we produce by applying aggregations over windows on the
raw features are DataIOFrequency and MemFreeMean.

4. SINGLE-FEATURE REWARD
In this section, we present the core of our technique: an

entropy-based distance function that models the reward of
a single feature. We first discuss the intuition and require-
ments for this function, we then discuss existing, state-of-
the-art distance functions and explain why they are not
e↵ective in this setting, and, finally, we present our new
entropy-based distance metric.

4.1 Motivation and Insights
In seeking explanations for CEP monitoring anomalies,

users contrast an anomaly interval with a reference interval.
An intuitive way to think about the di↵erent behaviors in
the two intervals is to consider the di↵erences in the events
that occur within each interval. We can measure this dif-
ference per feature: how di↵erent is each feature between
the reference and the anomaly. Each feature is a vector of
values, a time series, and our goal is to measure the distance
between the time series of a feature during the abnormal
interval and the time series of the same feature during the
normal interval.

To explain one of the desirable properties of the distance
function, we visualize a feature as follows: We order the
values of a feature in increasing order and assign a color
to each value; red for values that appear in the abnormal
interval only, yellow for values that appear in the normal
interval only, and blue for values that appear in both normal
and abnormal intervals. Figure 10 shows this visualization
for 4 di↵erent features. In this figure, we note that the first
2 features show a clear separation of values between the
normal and abnormal periods. The third feature has less
clear separation, but still shows the trend that lower values

are more likely to be abnormal. Finally, the fourth feature
is mixed for a significant portion of values.

Intuitively, the first two features in Figure 10 are better
explanations for the anomaly, and thus have higher reward.
The first feature means when the anomalies occur, the free
memory size is relatively low, while during the reference in-
terval the free memory size is relatively high. The second
feature means that during the abnormal interval, idle CPU
percentage is low while it is high during the reference in-
terval. The unclear separation of the other two features, in
particular the blue segments, indicate randomness between
the two intervals, making them less suitable to explain the
annotated anomalies.

This example provides insights on the properties that we
need from the distance function: it should favor clear separa-
tion of normal and abnormal values, and it should penalize
features with mixed segments (values that appear in both
normal and abnormal periods). Therefore, the reward of a
feature is high if the feature has good separating power, and
it is lower with more segmentation in its values.

4.2 Existing State of the Art
Distance functions measuring similarities of time series

have been well studied [26], and there is over a dozen dis-
tance functions in the literature. However, these metrics
were designed with di↵erent goals in mind, and they do not
fit our explanation problem well. We discuss this issue for
the two major categories of distance functions [26].

Lock-step measure. In the comparison of two time series,
lock-step measures compare the ith point in one time series
to exactly the ith point in another. Such measures include
the Manhattan distance (L1), Euclidean distance (L2) [10],
other L

p

-norms distances and approximation basedDISSIM
distance. Those distance functions treat each pair of points
independently, but in our case, we need to compare the
time series holistically. For example, assume four simple
time series: TS1 = (1, 1, 1), TS2 = (0, 0, 0), TS3 = (1, 0, 1)
and TS4 = (0, 1, 0). Based on our separating power crite-
rion, D(TS1, TS2) should be larger than D(TS3, TS4) be-
cause there is a clear separation between the values of TS1

and TS2, while the values of TS3 and TS4 are conflicting.
However, applying any of the lock-step measures produces
D(TS1, TS2) = D(TS3, TS4).

Elastic measure. Elastic measures allow comparison of
one-to-many points to find the minimum di↵erence between
two time series. These measures try to compare time series
on overall patterns. For example, Dynamic Time Warping
(DTW) tries to stretch or compress one time series to better
match another time series; while Longest Common SubSe-
quence(LCSS) is based on the longest common subsequence
model. Although these measures also take value di↵erence
into account, the additional emphasis on pattern matching
makes them ill-suited for our problem.

Both lock-step and elastic measures fall in the category
of sequence-based metrics. This means that they consider
the order of values. Lock-step functions perform strict step-
by-step, or event-by-event comparisons; such rigid measures
cannot find similarities in the flexible event series of our
problem setting. Elastic measures allow more flexibility, but
the emphasis on matching the microstructure of sequences
introduces too much randomness in the metric.

In our case, temporal ordering is not important, because
we assume the sample points in time series are independent.



This makes set-based functions a better fit (as opposed to
sequence-based). Set-based functions measure the macro
trend while smoothing low-level details.

4.3 Entropy-Based Single-Feature Reward
Since existing distance functions are not suitable to model

single-feature rewards, we design a new distance function
that emphasizes the separation of feature values between
normal and abnormal intervals (Section 4.1). Our distance
function is inspired by an entropy-based discretization tech-
nique [11], which cuts continuous values into value intervals
by minimizing the class information entropy. The segmen-
tation visualized in Figure 10, shows an intuitive connection
with entropy: The more mixed the color segments are, the
higher the entropy (i.e., more bits are needed to describe
the distribution). We continue with some background defi-
nitions, and then define our entropy-based distance function,
which we will use to model single-feature rewards.

Definition 4.1 (Class Entropy). Class entropy is the infor-
mation needed to describe the class distributions between
two time series. Given a pair of time series, TS

A

and TS
R

,
belonging to the abnormal and reference classes, respec-
tively. Let |TS

A

| and |TS
R

| denote the number of points

in the two time series, let p
A

= |TSA|
|TSA|+|TSR| , and let p

R

=
|TSR|

|TSA|+|TSR| . Then, the entropy of the class distribution is:

H
Class

(f) = p
A

⇤ log( 1
p
A

) + p
R

⇤ log( 1
p
R

) (1)

Definition 4.2 (Segmentation Entropy). Segmentation en-
tropy is the information needed to describe how merged
points are segmented by class labels. If there are n segmen-
tations, and p

i

represents the ratio of data points included
in the ith segmentation, the segmentation entropy is:

H
Segmentation

=
nX

i=1

p
i

⇤ log( 1
p
i

) (2)

Complicated segmentations in a feature result in more en-
tropy. When there is a clear separation of the two classes, as
in the first two features of Figure 10, then the segmentation
entropy is the same as the class entropy. If there are more
segments, the segmentation entropy is more than the class
entropy.

Penalizing for mixed segments. Segmentation en-
tropy captures the segmentation of the normal and abnormal
classes, but does not penalize mixed segments with values
that appear in both classes (blue segments in the visualiza-
tion). Take an extreme case, where all values appear in both
classes (single mixed segment). This is the scenario with the
worst separation power, but its segmentation entropy is 0,
because it is treated as a single segment. This indicates that
we need special treatment for mixed (blue) segments.

We assume the worst case distribution of normal and ab-
normal data points within the segment. This is the uniform
distribution, which leads to most segmentation and highest
entropy. For example, if a mixed segment c consists of 5
data points, 3 contributed from the normal class (N) and 2
contributed from the abnormal class (A), distributing them
uniformly leads to 5 segments: (N,A,N,A,N). We denote this
worst-case ordering of segment c as c⇤. We assign a penalty
term for each segment c, which is equal to the segmentation
entropy of its worst-case ordering, c⇤: H

Segmentation

(c⇤).

We thus define the regularized segmentation entropy:

H+
Segmentation

= H
Segmentation

+
mX

j=1

H
Segmentation

(c⇤
j

) (3)

The first term in this formula is the segmentation entropy
of the feature, and the second term sums the regularization
penalties of all mixed segments (m).

Accounting for feature size. Features may be of di↵er-
ent sizes, as di↵erent event types may occur more frequently
than others. The segmentation entropy is only comparable
between two features f1, f2, if |f1.TSA

| = |f2.TSA

| and
|f1.TSR

| = |f2.TSR

|. However this does not hold for most
features. To make these metrics comparable, we normalize
segmentation entropy using class entropy and get the follow-
ing definition for our entropy-based feature distance:

D(f) =
H

Class

(f)

H+
Segmentation

(f)
(4)

We use this distance function as a measure of single-feature
reward. Features with perfect separation, such as the first
two features of Figure 10, have reward equal to 1. Features
with more complex segmentation have lower rewards. For
the 4 features displayed in Figure 10, the rewards are 1, 1,
0.31, and 0.18, respectively.

5. CONSTRUCTING EXPLANATIONS
The entropy-base single-feature reward identifies the fea-

tures that best distinguish the normal and abnormal peri-
ods. However, ranking the features based on this distance
metric is not su�cient to generate explanations. We first
have to address three additional challenges. First, it is not
clear how to select a set of features from the ranked list.
There is no specific constant k for selecting a set of top-k
features, and moreover, such a set would likely not be mean-
ingful as a top-k set is likely to contain highly-correlated fea-
tures with redundant information. Second, there are cases
where large distances are coincidental, and not associated
with anomalies. Third, the rewards are computed for each
feature individually, and due to submodularity, they are not
additive. Determining how to combine features into an ex-
planation requires eliminating redundancies due to feature
correlations.

We proceed to describe the XStream approach to con-
structing explanations by addressing these challenges in three
steps. Each step filters the feature set to eliminate features
based on intuitive criteria, until we are left with a high-
quality explanation.

5.1 Step 1: reward leap filtering
The entropy-based single-feature distance function pro-

duces a ranking of all features based on their individual re-
wards. Sharp changes in the reward between successive fea-
tures in the ranking indicate a semantic change: Features
that rank below a sharp drop in the reward are unlikely
to contribute to an explanation. Therefore, features whose
distance is low, relatively to other features, can be safely
discarded.

5.2 Step 2: false positive filtering
It is possible for features to have high rewards due to rea-

sons unrelated to the investigated anomaly. For example, a
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(b) Point-based alignment

Figure 11: Two ways of alignment

feature that measures system uptime can have strong sepa-
rating power between the annotated anomaly and reference
regions (e.g., the anomaly is before the reference), but this
is simply due to the nature of the particular feature, and it
is not related to the anomaly. We call these features false
positives. Our method for identifying and purging such false
positives leverages other partitions (e.g., other Hadoop jobs
in our running example). The intuition is that if a feature is
a false positive, the feature will demonstrate similar behav-
ior in other partitions without an indication of anomaly.

Identifying related partitions. We search the archived
streams to identify similar partitions. Intuitively, such par-
titions should be results generated by the same query, mon-
itoring the same Hadoop program, on the same dataset.
XStream maintains a record of partitions in a partition table
to facilitate fast retrieval. The partition table contains di-
mension attributes that record categorical information about
the partition (e.g., CEP � QueryID, HadoopJobName,
Dataset), and measure attributes that record partition statis-
tics (e.g., monitoring duration, number of points). The sys-
tem identifies related partitions, as those that match the
dimension attributes.

Partition alignment. Once it discovers related partitions,
XStream needs to map the annotated regions to each re-
lated partition. This alignment can be temporal-based or
point-based. In temporal-based alignment, an annotation is
mapped to a partition based on its temporal length. For
example, in Figure 4, the abnormal period occupies 31%
of temporal length; this annotation will align with the the
first 31% of the temporal length in a related partition (Fig-
ure 11(a)). In point-based alignment an annotation is mapped
to a partition based on the ratio of data points that it occu-
pies in the monitoring graph. For example, the annotated
high-memory usage partition of Figure 4 includes 113,070
points, with 2116 points falling in the abnormal annotation;
this annotation will align with the first equal fraction of
points in a related partition (Figure 11(b)). XStream selects
the alignment for which the two partitions have the smallest
relative di↵erence. For example, if a related partition has
10% more points, but is 50% longer in time compared to the
annotated partition, point-based alignment is preferred.

Interval labeling. Alignment maps the annotations to
all related partitions. Now, these new annotations need to
be labeled as normal or abnormal. XStream assigns labels
through hierarchical clustering: a period that is placed in the
same cluster as the annotated anomaly is labeled as abnor-
mal. The clustering uses two distance functions: entropy-
based, and normalized di↵erence of frequencies. Periods
whose cluster is far from the anomaly cluster are labeled
as normal (reference). Finally, periods that cannot be as-
signed with certainty are discarded and not used later for
validation.

Feature Reward (annotated) Reward (all)

Free memory size 1 0.77
Hadoop DataIO size 1 0.64
Num. of processes 1 0.64
Free swap size 1 1

Cached memory size 0.81 0.77
Bu↵er memory size 0.65 0.72

Figure 12: The six validated features after the removal
of false positives.

In Figure 11(b), both intervals are assigned a “Reference”
label. The left one is “Reference” because its frequency is
significantly di↵erent from the annotated one (3.7 vs. 50.1);
while the right one is “Reference”because both its frequency
and value di↵erence are quite small, meaning it is similar to
the annotated “Reference” interval.

Feature validation. The process of partition discovering
and automatic labeling generates a lot more labeled data
that helps XStream filter out false positives, and improve
the current set of features. Features that have high entropy
reward on the annotated partition will be reevaluated on
the large dataset. If the high reward is validated in the
larger dataset as well, the feature is maintained; otherwise,
it is discarded. In our running example, after the validation
step, only 6 out of 670 features remain. Figure 12 shows
the reward for each of these 6 features for the annotated
partition and the augmented partition set.

5.3 Step 3: filtering by correlation clustering
After the validation step, we are usually left with a small

set of features, which have high individual rewards, and the
high rewards are likely related to the investigated anomaly.
However, it is still possible that several of these features
have information overlap. For example, two identical fea-
tures, are good individually, but putting them together in
an explanation does not increase the information content.
We identify and remove correlated features using clustering.

We use pairwise correlation to identify similar features.
We represent a feature as a node; two nodes are connected, if
the pairwise correlation of the two features exceeds a thresh-
old. We treat each connected component in this graph as a
cluster, and select only one representative feature from each
cluster. In our running example, the final six features are
clustered into two clusters, one cluster with a single node,
and another cluster with five nodes. Based on this result,
the final explanation has two features.

5.4 Building final explanations
Once we make the final selection of features, the construc-

tion of an explanation is straightforward. For each selected
feature, we can build a partial explanation in the format
defined in Section 2.3. The feature name becomes the vari-
able name. The value boundaries for the abnormal intervals
become the constants. If a feature o↵ers perfect separation
during segmentation (Section 4), there is one boundary and
only one predicate is built: e.g., the abnormal value range
of feature f1 is (�1, 10], then the predicate is f1  10. If a
feature has more than one abnormal intervals, then multiple
predicates are built to compose the explanation: e.g., the ab-
normal value ranges of feature f2 are (�1, 20],[30, 50], and
then the explanations are f2  20_(f2 � 30^f2  50). Then
we simply connect the partial explanations constructed from



No. Anomaly Hadoop workload

1 High memory WC-frequent users
2 High memory WC-sessions
3 Busy Disk WC-frequent users
4 High High CPU WC-frequent users
5 High High CPU WC-sessions
6 Busy High CPU Twitter trigram
7 High Busy Network WC-sessions
8 High Busy Network Twitter trigram

Figure 13: Workloads for evaluating the explanations
returned by XStream.

di↵erent features using conjunction and write the final for-
mula into the conjunctive normal form.

6. EVALUATION
We have implemented XStream on top of the SASE stream

engine [3, 28]. In this section, we evaluate XStream on
the conciseness, consistency, and prediction power of its re-
turned explanations, and compare its performance with a
range of alternative techniques in the literature. We fur-
ther evaluate the e�ciency of XStream when the explana-
tion module is run concurrently with monitoring queries in
an event stream system.

6.1 Experimental Setup
In our first use case, we monitored a Hadoop cluster of 30

nodes which was used intensively for experiments at the Uni-
versity of Massachusetts Amherst. To evaluate XStream for
explaining anomalous observations, we used three Hadoop
jobs: (A) Twitter Trigram: count trigrams in a twitter
stream; (B) WC-Frequent users: find frequent users in a
click stream; (C) WC-session: sessionization over a click
stream. To enable the ground truth for evaluation, we man-
ually created four types of anomalies by running additional
programs to interfere with resource consumption: (1) High
memory usage: the additional programs use up memory.
(2) High CPU: the additional programs keep CPU busy.
(3) Busy disk: the programs keep writing to disk. (4) Busy
network: the programs keep transmitting data between nodes.
By combining the anomaly types and Hadoop jobs, we create
8 workloads listed in Figure 13. The ground truth features
are verified by a Hadoop expert.

Our second use case was supply chain management of an
aerospace company. Due to confidentiality issues we were
unable to get real data. Instead, we built a simulator to
generate manufacturing data and anomalies such as faulty
sensors and subpar material. Since both use cases generate
similar results, we report results using the first use case in
this section and refer the reader to Sec ?? for results of the
second use case.

All of our experiments were run on a server with two Intel
Xeon 2.67GHz, 6-core CPUs and 16GB memory. XStream
is implemented in Java and runs on Java HotSpot 64-bit
server VM 1.7 with the maximum heap size set to 8GB.

6.2 Effectiveness of Explanations by XStream
We compare XStream with a range of alternative tech-

niques. We use decision trees to build explanations based
on the latest version of weka, and logistic regression based
on a popular R package. We consider two additional tech-
niques, majority voting [17] and data fusion [21]. Both
techniques make full use of every feature, and make predic-
tion based on all features. Majority voting treats features
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Figure 14: Consistency comparison

equally and uses the label which counts the most as the
prediction result. The fusion method fuses the prediction
result from each feature based on their precision, recall and
correlations. We compare these techniques on three mea-
sures: (1) consistency: selected features as compared against
ground truth; (2) conciseness: the number of selected fea-
tures; (3) prediction accuracy when the explanation is used
as a prediction model on new test data.

Consistency. First we compare the selected features of
each algorithm with the ground truth features. The results
are shown in Figure 14. X-axis represents di↵erent work-
loads (1 - 8), while Y-axis is the F-measure, namely, the
harmonic mean of precision and recall regarding the inclu-
sion of ground truth features in the returned explanations.
XStream represents our results before applying clustering
on selected features, while XStream-cluster represents re-
sults clustered by correlations (Section 5). We can see that
XStream-cluster works better than XStream without clus-
tering for most of workloads, and XStream-cluster provides
much better quality than the alternative techniques. Ma-
jority voting and fusion do not select features, and hence
their F-measures are low. Logistic regression and decision
tree generate models with selected features, with sightly
increased F-measures but still significantly below those of
XStream-cluster.

Conciseness. Figure 15 shows the sizes of explanations
from each solution. Here the Y-axis (in logarithmic scale) is
the number of features selected by each solution, where the
total number of available features is 345. “Ground truth”
represents the number of features in ground truth, while
“Ground truth cluster” represents the number of clusters af-
ter we apply clustering on the contained features. Again,
majority voting and fusion do not select features, so the size
is the same as the size of feature space. The models of logis-
tic regression includes 20 - 30 features, which is roughly 10
times of the ground truth. Decision trees are more concise
with less than 10 features selected. Overall, XStream out-
performs other algorithms, and is quite close to the number
of features in ground truth cluster.

Predication accuracy. In Figure 16 we compare the
prediction accuracy of each method. The Y-axis represents
F-measure for prediction over new test data. The F-measures
of XStream, logistic regression and decision tree are quite
stable, most of time above 0.95. Data fusion and major-
ity voting fluctuate more. Overall, our method can provide
consistent high-quality prediction power.

E↵ectiveness of the distance function. We finally
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Figure 15: Conciseness comparison
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Figure 16: Prediction power comparison

demonstrate the e↵ectiveness of our entropy-based distance
function by comparing it with a set of existing distance func-
tions [26] for time series: (1) Manhattan distance, (2) Eu-
clidean distance, (3) DTW, (4) EDR, (5) ERP and (6) LCSS.

The results are shown in Figure 17. In each method,
all available features are sorted by the distance function of
choice in decreasing order. We measure the number of fea-
tures retrieved from each sorted list in decreasing order in
order to cover all the features in the ground truth, shown
as the Y-axis. We see that our entropy distance is always
the one using the minimum number of features to cover the
ground truth. LCSS works well in the first two workloads,
but it works poorly for workloads 3, 4, 5 and 6. This is be-
cause the ground truth features for the first two work loads
have perfect separating power based on LCSS distance, while
in other workloads they contain some signals. So LCSS is
not as robust as our distance function. Other distance func-
tions use large number of features all the time.

Summary. Our explanation algorithm outperforms other
techniques in consistency and conciseness while achieving
comparable, high predication accuracy. Specifically, XStream
outperforms others in consistency by 3201% on average, up
to 6037%. For conciseness, XStream reduces 90.5% of fea-
tures on average, up to 99.5%. XStream is as good as other
techniques on prediction quality: its F-measure on predic-
tion is only slightly worse than logistic regression by 0.4%,
while it is 3.3% higher than majority voting, 6.1% percent
higher than fusion, and 1.9% higher than decision tree.

Our entropy distance function works better than exist-
ing distance functions on time series. It reduces the size of
explanation by 94.6% on average, up to 97.2%, than other
functions in order to cover the ground truth features.
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Figure 17: Distance function comparison

6.3 Efficiency of XStream
We further evaluate the e�ciency of XStream. Our main

result shows that our implementation is highly e�cient: with
2000 concurrent monitoring queries, triggered explanation
analysis returns explanations within a minute and a↵ects
the performance only slightly, delaying events processing by
less than 1 second. Additional details are available at Sec C.

7. RELATED WORK
In the previous section, we compared our entropy distance

with a set of state-of-the-art distance functions [26] and com-
pared our techniques with prediction techniques including
decision trees and logistic regression [2]. In this section we
survey broadly related work.

CEP systems. There are a number of CEP systems in
the research community [8, 19, 1, 23, 25]. These systems
focus on passive monitoring using CEP queries by providing
either more powerful query languages or better evaluation
performance. Existing CEP techniques do not produce ex-
planations for anomalous observations.

Explaining outliers in SQL query results. Scor-
pion [27] explains outliers in group-by aggregate queries.
Users annotate outliers on the results of group-by queries,
and then scorpion searches for predicates that remove these
outliers while minimally a↵ect the normal answers. It does
not suit our problem because it works only for group-by ag-
gregation queries and it searches through various subsets of
the tuples that were used to compute the query answers.
As shown for our example, Q1, the explanation of memory
usage contention among di↵erent jobs cannot be generated
from only those events that produced the monitoring results
of Q1. Recent work [22] extends Scropion by supporting
richer and insightful explanations by pre-computation and
thus enables interactive explanation discovery. This work
assumes a set of explanation templates given by the user
and requires precomputation in a given database. Neither
of the assumptions fits our problem setting.

Explaining outputs in iterative analytics. Recent
work [7] focuses on tracking, maintaining, and querying lin-
eage and “how”provenance in the context of arbitrary itera-
tive data flows. It aims to create a set of recursively defined
rules that determine which records in a data-parallel com-
putation inputs, intermediate records, and outputs require
explanation. It allows one to identify when (i.e., the points
in the computation) and how a data collection changes, and
provides explanations for only these few changes.

Data summarization. Given a table, recent work [9]



constructs an explanation table and finds patterns a↵ecting
a binary value of each tuple. This problem is di↵erent from
ours because it tries to summarize existing information and
compute some statistical information, instead of discovering
features which clearly separate normal and abnormal inter-
vals in CEP monitoring.

Set-based distance function for time series. In ad-
dition to the lock-step and elastic distance functions we have
compared with, Time series are also transformed into sets
[20] for measurement. However, the design goal of the set-
based function is to speed up the computation of existing
elastic distance, so it is di↵erent from our entropy based
distance function.

Anomaly detection. Anomaly detection or outlier de-
tection [6, 14, 24] has been studied intensively in the data
mining community. Researchers are still contributing ac-
tively on this area to achieve more e�cient detection algo-
rithms [15, 5]. However, the set of techniques in this area do
not fit our problem. There are two main approaches. One
is using a prediction model, which is learned on labeled or
unlabeled data. Then incoming data is compared against
with expected value by the model. If the di↵erence is sig-
nificant, the point or time series will be reported as outlier.
The other approach is using distance functions, and outliers
are those points or time series far from normal values. Both
approaches report only outliers so that users know those out-
liers are di↵erent from normal values, but not the specific
reasons (explanations) why they are di↵erent.

8. CONCLUSIONS
In this paper, we present XStream, a system that provides

high-quality explanations for anomalous behaviors that users
annotate on CEP-based monitoring results. Formulated as
a submodular optimization problem, which is hard to solve,
we provide a new approach that integrates a new entropy-
based distance function and e↵ective feature ranking and
filtering methods. Evaluation results show that XStream
outperforms existing techniques significantly in conciseness,
by 3201% on average, and consistency, by 90.5% reduction
of features needed, while achieving comparable high predic-
tion power and retaining a highly e�cient implementation
of a data stream system.

To enable proactive monitoring in CEP systems, our fu-
ture work will address temporal correlation in discovering
explanations, automatic recognition and explanation of anoma-
lous behaviors, and exploration of richer feature space to
enable complex explanations.
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APPENDIX
A. OTHER WAYS OF FINDING MINIMUM

EXPLANATIONS

A.1 Optimization with penalty
Let ✓i denote a selection vectors, where
✓i = (x1, x2, . . . , xp

), 9i, 1  i  p, 8j 6= i^1  j  p, x
i

=
1, x

j

= 0

⇥q =

2

6664

✓m1

✓m2

...
✓mq

3

7775

So ⇥q is a q ⇥ p matrix, and F
j

= ⇥q ⇥ V
Cj , which is a

vector with q coordinates.

T = {⇥q =

2

6664

✓m1

✓m2

...
✓mq

3

7775
|✓i = (x1, x2, . . . , xp

), 1  i, j 

p, j 6= i, x
i

= 1, x
j

= 0, 1  m1 < m2 < . . . < m
q

 p}
The objective function is used to find a subset of features

as F from all the features of V
Cj , such that the distance

between F0 and F1 is maximum while |F | is minimal. We
tried quite a few functions, and none of them works.

argmax
⇥q2T

||⇥q · (V
C0 � V

C1)||
2
2 � �||⇥q||1 (5)

We choose euclidean distance for the object because it
tends to select the most distinguished features. For one in-
stance, there is no di↵erence for the two distances. With two
annotated instances, if one instance selects (a=0.8, b=0.5)
while another instance selects(a=0.9,c=0.4), which set of
feature should we consider? The Mahanttan distance would
be the same. While the Euclidean distance prefers the latter.
Or even a di↵erent case, (a=0.8, b=0.5) vs. (a=0.9,c=0.3).

While for the penalty term, we choose L1 norm because
it tends to return sparser results.

Function 5 is convex instead of concave according to Je-
sen’s inequality[16]. Being convex means a local minimum
value is a global minimum value, while being concave means
a local maximum value is a global minimum value.

Based on Jesen’s inequality, we can prove the convexity
of Function 5 by proving Function 6 for any given a,

0  a  1

af(⇥1) + (1� a)f(⇥2) � f(a⇥1 + (1� a)⇥2) (6)

Proof Sketch:
Left side:

af(⇥1) + (1� a)f(⇥2)

= a||⇥1 · (VC0 � V
C1)||

2
2 � a�||⇥1||1

+(1� a)(||⇥2 · (VC0 � V
C1)||

2
2 � �||⇥2||1)

= a||⇥1 · (VC0 � V
C1)||

2
2 + (1� a)(||⇥2 · (VC0 � V

C1)||
2
2)

��(||⇥1||1 + (1� a)�||⇥2||1)



Right side:

f(a⇥1 + (1� a)⇥2)

= ||(a⇥1+(1�a)⇥2) · (VC0 �V
C1)||

2
2��||a⇥1+(1�a)⇥2||1

Let us remove the

��||a⇥1 + (1� a)⇥2||1
on both sides.

Then we are trying to prove

||a⇥1 · (VC0 � V
C1)||

2
2 + ||(1� a)⇥2 · (VC0 � V

C1)||
2
2

� ||(a⇥1 + (1� a)⇥2) · (VC0 � V
C1)||

2
2

Then if we can prove for any dimension d of V
C0 � V

C1

this inequation holds, this proof is done. Let V to denote
V
C0 � V

C1 for short.

a(⇥1 · V )2
d

+ (1� a)(⇥2 · V )2
d

� ((a⇥1 + (1� a)⇥2) · V )2
d

a(⇥1 · V )2
d

+ (1� a)(⇥2 · V )2
d

� a2(⇥1 ·V )2
d

+(1�a)2(⇥2 ·V )2
d

+2a(1�a)(⇥1 ·V )
d

(⇥2 ·V )

a(⇥1 · V )2
d

+ (1� a)(⇥2 · V )2
d

�a2(⇥1·V )2
d

�(1�a)2(⇥2·V )2
d

�2a(1�a)(⇥1·V )
d

(⇥2·V ) � 0

(a� a2)(⇥1 · V )2
d

+ (a� a2)(⇥2 · V )2
d

�2(a� a2)(⇥1 · V )
d

(⇥2 · V ) � 0

(a� a2)((a⇥1 � (1� a)⇥2) · V )2
d

� 0

Given 0  a  1, so a�a2 � 0. And ((a⇥1�(1�a)⇥2)·V )2
d

is obviously larger than or euqal to 0. So the proof is done.

Then we designed the concave version shown in Function 7
The problem of Function 7 is the maximum is reached when
⇥q is 0.

argmax
⇥q2T

||⇥q · (V
C0 � V

C1)||
2
2 � �||⇥q||22(� � 1) (7)

So we adjusted it as Function 8. It is required that (�1 �
1,�1 > �2 > 0). In practice, in the constraint set, ||⇥q||22 =
||⇥q||1, so the meaning of Function 8 is: it only selects fea-
tures with distance larger than |�1 � �2|. It can be proved.
So the maximum value will be reached when all features with
larger distance are selected while all features with smaller
distance are filtered.

argmax
⇥q2T

||⇥q · (V
C0 � V

C1)||
2
2 � �1||⇥q||22 + �2||⇥q||1 (8)

In summary, those optimizations either cannot find opti-
mal solution or the results are equal to uninteresting thresh-
olds.

B. SYSTEM DESIGN
This section shows the system design of XStream. We first

discuss the requirements and design goal, then we present
the system architecture, following are the detailed discussion
on two modules for explanation.

B.1 Design goal
The design goal includes two aspects: functionality and

performance requirements. On functionality, the explana-
tion module should be highly integrated with existing CEP-
based monitoring system, because it is triggered only when
users observer anomalies from results of the monitoring sys-
tem. For performance, it should meet two requirements:
(1)after users trigger the explanation request, it should re-
turn answers as soon as possible, and the design goal is to be
within 1 minute, which is a reasonable delay for such kind
of tasks; (2)the explanation functionality should not hurt
the monitoring performance seriously because the monitor-
ing queries are always running and monitoring is the main
purpose of the system, while explanation is a supplementary
function which are supposed to run infrequently.

B.2 Architecture
With these design goals mentioned above, we design a

CEP-based monitoring system with explanation functional-
ity, and the new system is named XStream. The architecture
of XStream is shown in Figure 18.

An Explanation Engine

A CEP-based Monitoring System

CEP

Results

Data source

Data

Annotation

Archive Explanation

Visualization

Explanation

Figure 18: Architecture of XStream

Within the dashed rectangle, it is a CEP-based monitor-
ing system without explanation functionality. The monitor-
ing system is composed of three components. Data source
represents the input data stream, which works as a gateway
to collect all types of events from outside the monitoring
system. For example, in our Hadoop cluster monitoring use
case, the data source module collects system metrics and
Hadoop logs from all nodes across the whole cluster. The
CEP module in the architecture represents a CEP engine,
which is the workhorse of the monitoring system. Users sub-
mit queries to the CEP engine and the engine will match in-
coming events against all queries. The visualization mod-
ule visualize user specified results from the queries.

We add two new modules for explanation purpose, which
are outside the dashed rectangle and discussed below.

Archive module stores all events from input stream by
timestamp, as shown in Figure 19(a). Events are written
into disk by event types. Events of the same type will be
written sequentially to disk. The sequential writing low-
ers the cost on I/O in both writing and reading. In or-
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der to avoid reading unnecessary events when explanation is
triggered, events of the same type are chopped into smaller
chunk files on disk. An index of the time range for each
chunk is built. When events of certain period are requested,
the archive module first looks up via the index, then reads
needed events. The choice of chunk size needs to trade o↵ the
I/O cost and index storage cost. A larger chunk size poten-
tially increases the cost on reading unnecessary events, but
it reduces the size of index: the extreme case is all events of
the same type are written into one big file, and every time
the explanation is triggered the module has to read from the
beginning of the file, while the index has only one entry for
each event type. A smaller chunk size is better at avoiding
unnecessary events, but the index needs more space: the ex-
treme case is each file only stores events for one timestamp,
and every event read is needed but the index will hold a
large number of entries for each event type.

Archive

Files

Index

(a) Archive Module

Explanation

Related data 
reading

Feature filter

Feature 
generation

(b) Explanation Module

Figure 19: Main modules of XStream

Explanation module accepts request from users and an-
alyzes related events to generate explanations, and its com-
ponents are shown in Figure 19(b). Given user annotated
abnormal intervals, explanation engine requests events in the
specific time period according to index built by the archive
module. Then all relevant events are converted to features
in di↵erent granularities. After computing the entropy dis-
tance of every feature, and filtering noisy features, the mod-
ule will return selected features as explanation to users.

The architecture is demonstrated to be e↵ective: it re-
turns explanations quickly and only slightly a↵ects the per-
formance of the monitoring engine. Sec C shows the detailed
results on performance.

C. SYSTEM PERFORMANCE
Then we run experiments for performance. In the ex-

periments, we first run 2000 monitoring queries for a few
minutes, then trigger the explanation request every a few
minutes. Each time we only trigger one explanation request,
so there are no concurrent explanation request.

In Figure 20, we show the number of delayed threads
caused by the explanation function. A↵ected threads means
the monitoring thread having a delay more than 0.01 sec-
ond in processing incoming events, we choose 0.01 second
as the threshold because most events are processed within
this range when no explanation analysis is triggered. In the
figure we can see that, most use cases, only less than 25%
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Figure 20: Total running threads vs. delayed threads
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Figure 21: Explanation duration vs. a↵ected dura-
tion vs. delayed distance

of threads are a↵ected. Only in Use case 3 , 26% of all
threads are a↵ected. In Use case 6, only 4.7% are a↵ected.
In Use case 8, no threads are a↵ected. In summary, only a
small portion of all monitoring queries are a↵ected by the
explanation function.

Figure 21 shows how seriously of those delayed threads are
a↵ected. The blue bars are the runtime of running expla-
nation task independently, which means there are no moni-
toring queries running concurrently. The red bars show the
duration of threads are a↵ected. The delays do not last long,
most of which are less than 10 seconds or so. As observed,
these a↵ected threads can catch up very quickly after the
explanation triggered for some time. The green bars show
how much time is delayed of each thread. It turns out that
on average all the a↵ected threads are delayed around 0.4
seconds. In Use case 5, the average delay time is 0.24 sec-
onds. For Use case 8, it is 0 second because no threads are
a↵ected. It means that, although some threads are a↵ected,
but they are still going ahead, and only slightly behind the
latest event. For monitoring purposes, such delay should be
acceptable. In summary, after the explanation is triggered,
a small portion of threads are a↵ected slightly in a short
period.

D. EVALUATION FOR SUPPLY CHAIN MAN-
AGEMENT USE CASE

D.1 Detailed design of simulation

Yanlei Diao


Yanlei Diao


Yanlei Diao


Yanlei Diao


Yanlei Diao


Yanlei Diao


Yanlei Diao


Yanlei Diao


Yanlei Diao


Yanlei Diao


Yanlei Diao


Yanlei Diao


Yanlei Diao


Yanlei Diao


Yanlei Diao


Yanlei Diao


Yanlei Diao


Yanlei Diao


I don’t really  understand the last paragraph…

Yanlei Diao
“when an explanation …”

Yanlei Diao
“a certain period”
“looks up the index” 
“and then reads the needed events”
“The choice of the chunk size explores the tradeoff between…”

Yanlei Diao
Add “the” or “an” for a noun in its singular form. Or use the plural form, e.g., “The explanation module accepts requests from users”

Yanlei Diao
“Affected threads mean that the monitoring thread experienced a delay of more than 0.01 second in processing incoming events. We choose…”



In order to study the problems in supply chain manage-
ment, it is better to get some real traces from manufacturers.
However, due to the confidentiality issues, we were unable
to get real data. Thus a simulator is designed to generate
manufacturing data to study this use case.

The two use cases shown above involves two categories of
events: monitoring and materials. In practice, there must be
other types of events, which are ignored here because we fo-
cus on studying the two types of use cases. So in simulation
only those two categories of events will be generated.

In the monitoring category, we assume there are a number
of di↵erent sensors reporting di↵erent measurements for the
same place. Rate: each monitoring event series is reporting
a specific measurement at a fixed rate, like one report per 10
seconds. Value range: there is a valid value range for each
monitoring series, and any value outside the valid range is
some abnormal value.

In the materials category, we assume there are a number of
machines consuming materials at the same time. These ma-
chines are producing di↵erent parts for one product. Rate:
while monitoring event series have fixed rate, the interval be-
tween material recording events are not fixed because man-
ufacturing step might have di↵erent length of durations.
Value range: we use numeric value to denote the quality
of materials, and there is a valid bar for the quality value:
any value equal to or larger than the bar is satisfying the
standard, otherwise it is sub-par.These configurations are
summarized in Table 1.

D.2 Anomalies
With the above settings, we can generate all events with

di↵erent types occurred during the manufacturing period
for a specific product. For normal products, all events are
generated strictly following the event rates, and all values for
monitoring category fall into the valid range and all material
values are equal to or above the quality bar.

For anomalies, we simulated two di↵erent types of prod-
ucts corresponding to the use cases discussed above. A prod-
uct with missing monitoring issue lacks some monitoring
measurements during its manufacturing period. If a product
has sub-par material issue, in the simulation of its manufac-
turing events, some values of its material recording events
are under the quality bar.

In this usecase, CEP queries will be used to track the
progress of each product. The historical query results will
be archived. The analysis will be triggered when customers
report quality problems. After a product is claimed to be
problematic, the query result for this product will be com-
pared against a few products which are guaranteed to be
of good quality. Products have no claims during until ex-
piration date are automatically labeled as normal. And the
claimed product will be labeled as abnormal.

D.3 Evaluation
For the supply chain management use case, we created

six anomalies: the first three use cases are about missing
monitoring, and the last three use cases are about sub-par
materials.

Explanation quality results are shown in Fig 22. Our
techniques are providing much better explanations for every
use case. Fig 23 compares the conciseness of results, and
again our algorithm beats other techniques and the size is
always the same as that of the ground truth. The predic-
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Figure 22: Supply chain management: consistency
comparison
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Figure 23: Supply chain management: conciseness
comparison

tion results are listed in Fig 24, and our techniques provide
results as good as state-of-the-art techniques.



Category Event Rate Num. of types Schema Valid values

Monitoring Fixed rate 100 {(Monitoringname, timestamp,monitoringvalue)} Valid range
Material Non-Fixed rate 100 {(Machinename, timestamp,materialqualityvalue)} Valid bar

Table 1: Simulation configurations.
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Figure 24: Supply chain management: prediction
comparison


