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ABSTRACT
Large-scale event systems are becoming increasingly popular in a
variety of domains. Event pattern evaluation plays a key role in
monitoring applications in these domains. Existing work on pat-
tern evaluation, however, assumes that the occurrence time of each
event is known precisely and the events from various sources can be
merged into a single stream with a total or partial order. We observe
that in real-world applications event occurrence times are often un-
known or imprecise. Therefore, we propose a temporal model that
assigns a time interval to each event to represent all of its possible
occurrence times and revisit pattern evaluation under this model. In
particular, we propose the formal semantics of such pattern evalua-
tion, two evaluation frameworks, and algorithms and optimizations
in these frameworks. Our evaluation results using both real traces
and synthetic systems show that the event-based framework always
outperforms the point-based framework and with optimizations, it
achieves high efficiency for a wide range of workloads tested.

1. INTRODUCTION
Large-scale event systems are becoming increasingly popular

in domains such as system and cluster monitoring, network moni-
toring, supply chain management, business process management,
and healthcare. These systems create high volumes of events, and
monitoring applications require events to be filtered and correlated
for complex pattern detection, aggregated on different temporal and
geographic scales, and transformed to new events that represent
high-level meaningful, actionable information.

Complex event processing (CEP) [1, 2, 4, 8, 9, 15, 17, 21, 22] is
a stream processing paradigm that addresses the above information
needs of monitoring applications. CEP extends relational stream
processing with a sequence-based model (in contrast to the tradi-
tional set-based model), and hence considers a wide range of pattern
queries that address temporal correlations of events. Prior research
[1] has shown that such pattern queries are more expressive than
selection-join-aggregation queries and regular languages.
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Existing work, however, fundamentally relies on two assumptions.
First, the occurrence time of each event is known precisely. Second,
events from various sources can be merged into a single stream such
that a binary relation (denoted by ≺) based on the event occurrence
time gives rise to a total order [1, 9, 14, 17, 22] or a strict partial
order [2, 3, 4, 8, 15, 21] on the event stream. These assumptions are
used in systems that consider either point-based or interval-based
event occurrence times; the only difference between them is in the
specifics of the definition of the binary relation (≺), but not in the
underlying assumptions.

We observe that in many real-world applications, the above as-
sumptions fail to hold for a variety of reasons:

Event occurrence times are often unknown or imprecise. For
instance, in RFID-based tracking and monitoring, raw RFID data
provides primitive information such as (time, tag id, reader id) and
is known to be lossy and even misleading. Meaningful events such
as object movements and containment changes are often derived
using probabilistic inference [16, 19]. The actual occurrence time of
object movement or containment change is unknown and can only
be estimated to be in a range with high probability.

Event occurrence times are subject to granularity mismatch. In
cluster monitoring, for instance, a commonly used monitoring sys-
tem, Ganglia [11], measures the max and average load on each node
once every 15 seconds, whereas the system logs the jobs submitted
to each node using the UNIX time (whose unit is a microsecond). To
identify the jobs that max out a compute node, one has to deal with
the uncertainty that the peak load reported by Ganglia can occur
anywhere in a 15-second period, making it hard to judge whether
it occurred before or after the submission of a specific job. That is,
the temporal relationship between a load measurement event and a
job submission event is not determined and cannot be modeled as a
partial ordering (which we shall show formally in Section 2).

Events collected from a distributed system are subject to the clock
synchronization problem. Consider causal request tracing in large
concurrent, distributed applications [5, 12], which involves numer-
ous servers and system modules. As concurrent requests are served
by various servers and modules, an event logging infrastructure gen-
erates event streams to capture all system activities, including thread
resource consumption, packet transmission, and transfer of control
between modules. The challenge is to demultiplex the event streams
and account resource consumption by individual requests. The
clock synchronization problem, however, makes it hard to merge
the events relevant to a request from different machines into a single
stream with a total or partial order [12].

In this paper, we address pattern query evaluation in streams
with imprecise occurrence times of events—-such events preclude
the models based on a total order or partial order of events. A
starting point of our work is to employ a temporal uncertainty model



that assigns a time interval to each event for representing all of its
possible occurrence times and to revisit pattern query evaluation
under this new temporal model. Our technical contributions include:

Formal Semantics. We propose the formal semantics of pattern
query evaluation under the temporal uncertainty model, which in-
cludes two components: matching a pattern in a set of possible
worlds with deterministic timestamps, and collapsing matches into
a succinct result format. This formal semantics offers a foundation
for reasoning about the correctness of implementations.

Evaluation Frameworks and Optimizations. We propose two
evaluation frameworks that generate query matches according to
the formal semantics, but without enumerating a large number of
possible worlds. The first evaluation framework, called point-based,
requires minimum change of an existing pattern query engine and
hence is easy to use. The second framework, called event based, di-
rectly operates on events carrying uncertainty intervals. We present
evaluation methods in these frameworks, prove their correctness,
and further devise optimizations to improve efficiency.

Evaluation. Our evaluation using both real traces in MapReduce
cluster monitoring and synthetic streams yields interesting results:
(i) Despite the simplicity of the point-based framework, its perfor-
mance is dominated by the event-based framework. (ii) Queries that
use a traditionally simpler strategy to select only the first match of
each pattern component, instead of all possible matches, actually
incur higher cost under temporal uncertainty. (iii) Optimizations of
the event-based framework are highly effective and offer thousands
to tens of thousands of events per second for all queries tested. (iv)
Our event-based methods achieve high efficiency in the case study
of cluster monitoring despite the large uncertainty intervals used.

2. RELATED WORK
Interval-based event processing. Several event processing sys-

tems [3, 2, 4, 8, 21] model events using a time interval, representing
the duration of the events. However, these systems deal with events
with precise timestamps and often impose a strict partial order on
the events. In contrast, our work deals with events that occur at a
time instant but with uncertain timestamps. When a strict partial
order is applied to events with uncertain timestamps, it will not
allow us to enumerate all possible orderings of events and cause the
loss of results that would exist in some of the possible worlds.

Out of order event streams. Existing work on out-of-order
streams [3, 4, 13, 18] deals with events with precise timestamps,
so the order between late events and in-order events is clear. Our
work deals with imprecise timestamps and requires enumerating all
possible orderings among events, which is a complex problem even
without out-of-order events. In our context, out-of-order events can
be handled using buffering and punctuation as in existing work.

Temporal databases are surveyed in [6]. The most relevant work
is supporting valid-time indeterminacy [10], whose indeterminate
semantics shares the basic idea as our semantics. However, the work
in [10] only supports a single “select-from-where” block, while
our work supports more complex event patterns that need to be
expressed using nested queries in SQL (i.e., skip-till-next-match
queries defined in the next section). Even for the simple patterns
supported in [10], the proposed technique uses multiway joins,
which is less efficient than either of the two evaluation frameworks
we propose in this paper. Finally, our work supports pattern queries
over live streams, as opposed to stored data, and hence also deals
with arrival orders and incremental computation. The reader is
referred to our technical report [23] for a more detailed discussion.

Probabilistic Databases. Our work also differs from probabilis-
tic databases and stream systems, such as [7, 16], which address the
uncertainty of the values in events but not the timestamps. If we

were given n specific events in a window, it would be possible to
cast our problem as a probabilistic database problem: treat the uncer-
tain timestamp as an uncertain attribute, evaluate the pattern using
non-equijoins on the timestamp, and then compute the join result
distributions. However, when events carry imprecise timestamps
and arrive in no particular order, defining the events in a time win-
dow is hard because event timestamps are uncertain, and defining a
count window based on the arbitrary arrival order is not meaningful
for pattern matching. Moreover, how to share computation across
windows is another issue that probabilistic databases do not address.

3. MODEL AND SEMANTICS
In this section, we provide background on pattern query evalua-

tion, present our temporal uncertainty model, and formally define
the semantics of pattern query evaluation under our model.

3.1 Background on Pattern Queries
We begin by providing background on pattern queries [1, 4, 8, 17,

22] to offer a technical context for the discussion in the rest of the
paper. A pattern query addresses a sequence of events that occur
in temporal order and are further correlated based on their attribute
values. Below, we highlight the key features of pattern queries using
the SASE language which has been commonly used in recent work
[1, 13, 15, 22]. The overall structure of a pattern query is as follows:

PATTERN <pattern structure>
[WHERE <pattern matching condition>]
[WITHIN <time window>]
[RETURN <output specification>]

Query 1 below shows an example in cluster monitoring: for each
compute node in a MapReduce cluster, the query detects a map
or reduce task that causes the CPU to max out. The PATTERN
clause describes the structure of a sequence pattern, which in this
example contains four events of the specified types occurring in
temporal order. The WHERE clause further specifies constraints on
these events. The common constraints are predicates that compare
an attribute of an event to a constant or compare the attributes of
different events, as shown in Query 1. In addition, the WHERE clause
can further specify the event selection strategy, e.g., using “skip
till any match” in this query (which we discuss more shortly). The
WITHIN clause restricts the pattern to a 15 second period. Finally,
the RETURN clause selects the events to be included in the pattern
match. By default, all events used to match the pattern are returned.

Query 1:
PATTERN SEQ(TaskStart a,CPU b,TaskFinish c,CPU d)
WHERE a.taskId = c.taskId AND

b.nodeId = a.nodeId AND
d.nodeId = a.nodeId AND
b.value > 95% AND
d.value <= 70% AND
skip till any match(a, b, c, d)

WITHIN 15 seconds
RETURN a, b, c

The event selection strategy addresses how to select the events rel-
evant to a pattern query. For now, assume that events arrive in order
of the occurrence time in the input stream (this assumption will be
relaxed shortly). The events relevant to the pattern, however, are not
necessarily in contiguous positions in the input stream. In this work,
we consider two common event selection strategies (while referring
the reader to [1] for all possible strategies). (i) Skip till next match
[1, 8] specifies that in the pattern matching process, irrelevant events
are skipped until an event matching the next pattern component is
encountered. If multiple events in the stream can match the next



PATTERN SEQ(A,B,C)  WITHIN 4 seconds
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Figure 1: Semantics of pattern query evaluation under our temporal uncertainty model.

pattern component, only the first of them is considered. (ii) Skip till
any match [1, 15, 22] relaxes the previous one by considering all
events in the stream that can match a pattern component. For Query
1, consider an event stream of five streams, denoted by “a, b1, b2, c,
d”. Skip till any match will return two matches that result from “a,
b1, c, d” and “a, b2, c, d”, respectively. In comparison, skip till next
match will return only the former result because b1 is the first event
matching the b component of the pattern (and b2 is simply ignored).

3.2 Temporal Uncertainty Model
We now switch to consider events with uncertain occurrence

times and propose an event model that accommodates temporal
uncertainty. As in most temporal data model research [6], we assume
a discrete, totally ordered time domain T; without loss of generality,
we number the instants in T sequentially as 1, 2, . . . Each event
represents an atomic occurrence of interest at an instant. However,
the exact occurrence time of an event may not be available due to
the reasons mentioned in Section 1. To address this issue, our model
allows the event provider to specify an uncertainty interval, U:
[lower, upper]⊆ T, to bound the occurrence time of an event, with
an optional probability mass function f : U→ [0, 1] to characterize
the likelihood of occurrence in the uncertainty interval (by default, a
uniform distribution is used). The appropriate distribution of event
occurrence time can be derived for each uncertainty source as in
temporal databases [10]: for instance, the uniform distribution is
often used to cope with granularity mismatch and clock specific
distributions are used to model imprecise measurements.

In summary, an event in our model has the following format:
(event type, event id, U : [lower, upper], ( f : U → [0, 1])?,
attributes), where event type specifies the attributes allowed in
the events of this type and event id is the unique event identifier.
For example, a1=(A, 1, [5, 9], (v1, v2, v3)) represents an event of
type A, id 1, an uncertainty interval from time 5 to time 9, and three
required attributes. If the occurrence time of an event is certain, we
set the upper and lower bounds of the interval to the same point.

Ordering Properties. Given the temporal uncertainty model, it
is evident that we cannot find a binary relation (denoted by≺) based
on the event occurrence time that ensures a total or strict partial
order on an arbitrary event stream. Consider a strict partial order,
defined to be a binary relation on a sequence S that is (1) irreflexive,
∀e ∈ S, ¬(e ≺ e); (2) asymmetric, if e1 ≺ e2 then ¬(e2 ≺ e1);
and (3) transitive, if e1 ≺ e2 and e2 ≺ e3 then e1 ≺ e3. Under the
temporal uncertainty model, it is easy to construct an event stream
with two events that violate the asymmetry requirement; that is, one
possibility of their occurrence times entails e1 ≺ e2, and another
possibility of their occurrence times entails e2 ≺ e1. Similarly, we
can show that there exists no total order on events under this model.

Arrival order is a different issue. In data stream systems, out-of-
order arrival is signaled if the arrival of events is not in increasing

order of the occurrence time [18]. In our problem, there is no clear
notion of “increasing order of the occurrence time” due to imprecise
timestamps. So we loosely define out-of-order arrival to be that e1
is seen before e2 in the stream but the earliest possible time of e1
is after the latest possible time of e2, i.e., e1.lower > e2.upper.
To facilitate query evaluation, we assume that using buffering or
advanced techniques for out-of-order streams [13, 18], we can feed
events into the query engine such that if e1 is seen before e2, then
with respect to the occurrence time, e1 either completely precedes
e2 or overlaps with e2 in some way, i.e., e1.lower ≤ e2.upper.

3.3 Formal Semantics under the Model
We next introduce the formal semantics of pattern query evalua-

tion under our temporal uncertainty model, which has two parts:
Pattern Matching in Possible Worlds. In our model, an event

has several possibilities of its occurrence time, i.e., at consecutive
time points {(tj, f (tj))|j = 1, . . . , U}, where U = |U|. Given a
sequence of events S ={e1, . . . , ei, . . . en}, a unique combination
of the possible occurrence time of each event, (tij, f (tij)), gives
rise to a sequence Sk in which events have deterministic occurrence
times and can be sorted by their occurrence times. Borrowing the
familiar concept from the literature of probabilistic databases, we
refer to Sk as a possible world for pattern evaluation, and compute
its probability as P [Sk] = ∏n

i=1 f (tij). We then perform pattern
matching in every possible world Sk, as in any existing event system.

Example: Fig. 1(a) shows a sequence pattern with a 4-second
time window (assuming that a time unit is a second). Fig. 1(b)
shows a stream of four events, denoted by a1, c2, b3, and c4, and
their uncertainty intervals on the time line, all using the (default)
uniform distribution of the likelihood of occurrence. Since a1, c2,
b3, and c4 have 5, 3, 3, and 5 possible occurrence times, respectively,
there are 225 unique combinations of their occurrence times, hence
225 possible worlds. Fig. 1(c) shows some of these possible worlds,
the probabilities of these worlds, and the pattern matching result in
each possible world, strictly based on the query semantics for an
event stream with deterministic occurrence times. As can be seen, a
possible world can return zero, one, or multiple matches.

In general the number of events, n, that potentially fit in a time
window can be large. If the events have an average uncertainty
interval size U, then the number of possible worlds is O(Un).

Match Collapsing. The large number of possible worlds can
cause a large number of match sets to be returned from these worlds.
Returning all of them to the user (even if the computation is feasible)
is undesirable. In our work , we instead present these match sets in
a succinct way. More specifically, we collect the match set Qk from
each possible world Sk and proceed as follows:
• Union the matches from all match sets Qk, k = 1, 2, . . .
• Group all of the matches by match signature, which is defined

to be the unique sequence of event ids in a match.



• For each group with a unique match signature, compute the
(tightest) time range that covers all of the matches, and com-
pute the confidence of the match as the sum of the probabilities
of the possible worlds that return a match of this signature.

Finally, the triples, {(signature, time range, confidence)}, are re-
turned as the query matches at a particular time.

Example: In Fig. 1, the matches from the 225 possible worlds
have two distinct signatures: The first one is (a1, b3, c2). The tightest
time range that covers the matches of this signature is [1,5]; e.g., the
match from the possible world S17 is on points (1,3,4) and that from
S124 is on (3,4,5). Further, 15 out of 225 possible worlds return
matches of this signature, yielding a confidence of 15

225 . The second
signature is (a1, b3, c4) with its time range and confidence computed
similarly. The final query matches at t=7 are shown in Fig. 1(d).

4. A POINT-BASED FRAMEWORK
Given our temporal uncertainty model and formal semantics of

pattern queries under this model, we next seek an efficient approach
to evaluating these queries. Evidently, the possible worlds semantics
does not offer an efficient evaluation strategy since the number of
possible worlds is exponential in the number of events that may fit
in a time window. We next introduce efficient evaluation frame-
works that guarantee correct query results according to the formal
semantics, but without enumerating the possible worlds.

In this section, we introduce our first evaluation framework, called
a point-based framework. Our design is motivated by the fact that
existing pattern query engines take events that occur at specific
instants, referred to as point events. If we can convert events with
uncertainty intervals to point events, we can then leverage existing
engines to do the heavy lifting in pattern evaluation. Our design
principle is to require minimum change of a pattern engine so that
the proposed framework can work easily with any existing engine.
Below, we discuss three main issues in the design of this framework
(while giving the complete pseudocode in Appendix A.1).

Stream Expansion. The first issue is that existing pattern query
engines [1, 8, 15] require that events be arranged in total or partial
order based on their occurrence times. As stated in §3.2, under our
temporal uncertainty model there is in general no total or partial
order on events. As we convert such events to point events, what
ordering property can we offer?

To address the above question, we design a stream expansion
algorithm that guarantees that the point events are produced in
increasing order of time. Consider the example stream in Fig. 1(b).
To generate a point event stream, we (conceptually) iterate over all
the time points, from 1, 2, . . . At every point t, we collect each event
e from the input whose uncertainty interval spans t, and inject to the
new stream a point event that replaces e’s uncertainty interval with
a fixed timestamp t. In this example, the point event stream will
contain a1

1, a2
1, a3

1, c3
2, b3

3, a4
1, c4

2, b4
3, c4

4, . . . (where the superscript
denotes the occurrence time). As such, the new stream is ordered by
the occurrence time of point events.

Our implementation is more complex than the conceptual pro-
cedure above due to the various event arrival orders. Recall from
§3.2 that the only constraint on the arrival order in our work is
that if e1 arrives before e2, then with respect to the occurrence
time, e1 either completely precedes e2 or overlaps with e2, i.e.,
e1.lower ≤ e2.upper. Our implementation uses buffering (of
limited size) to cope with various arrival orders while emitting
point events in order of occurrence time. Let e1, . . ., en−1, en be
the events in arrival order. When receiving en, we create point
events for all the instants in en’s uncertainty interval and add them
to the buffer (possibly containing other point events). Further,
let now be a time range [lower = maxn

i=1(ei.lower), upper =

1 2 3 4 5

a1

c2

b3

t6 7

c4

(b) For pattern (A, B), illustration of a1's 
Next Event's Latest Time (NELT)

a1
b2
b3
b4
b5
b6

NELT: 
b4 starts after 
a1 ends, and 
ends earliest.

1 2 3 4 7 t85 6 9

(a) Point matches starting with a1 at t=2

Figure 2: The point-based evaluation framework.

maxn
i=1(ei.upper)]. Also assume that the maximum uncertainty

interval size for the event stream is Umax (which can be requested
from event providers). Then we know that any unseen event must
start after now.lower−Umax; otherwise, the unseen event will vio-
late the the arrival order constraint with the earlier event ei that sets
now.lower = ei.lower . So we can safely output the buffered point
events up to now.lower−Umax, labeled as the emit time temit.

Pattern Matching. We next evaluate pattern queries over the
point event stream by leveraging an existing pattern query engine
such as [1, 15]. The challenge is that directly running an existing
engine does not produce results consistent with our formal semantics.
Our goal is to produce all the matches that would be produced from
the possible worlds, referred to as the point matches. How do
we configure an existing engine and what is the minimum change
needed to produce such matches?

Configuration. We first show that the pattern query engine must
be configured with the most flexible event selection strategy, skip
till any match, to produce a complete set of matches (no matter what
strategy is actually used in the query).

Fig. 2(a) shows all the time points of the four events in Fig. 1(b).
We can also visualize the dots as point events arranged in increasing
order of time. Consider all the point matches that start with a2

1.
The formal semantics requires enumerating all possible worlds that
involve a2

1 (45 of them) to find those matches.
We show that the skip till any match strategy offers a more ef-

ficient algorithm that directly searches through the point events in
query order and captures all possible ways of matching points from
distinct input events. In this example, the point event a2

1 produces
a partial match, (a2

1), of the pattern (A,B,C). Then at time t=3, we
will select b3

3 to extend the partial match to (a2
1, b3

3); at the same
time, we will also skip b3

3 to preserve the previous partial match (a2
1).

At t=4, we can select c4
2 to produce a match (a2

1, b3
3, c4

2), or select c4
4

to produce a different match (a2
1, b3

3, c4
4). Again, we can skip these

events to preserve the partial match (a2
1, b3

3) so that it can be later
matched with the c events at t=5. In addition, at t=4 we can select
b4

3 to match with a2
1, yielding a new partial match (a2

1, b4
3), which

again will be extended with the c events at t=5. In total, skip till
any match generates 3 partial matches and 6 complete matches to
produce the same results as 45 possible worlds would produce.

In summary, given a point event that creates an initial partial
match of a pattern, the skip till any match strategy dynamically
constructs a directed acyclic graph (DAG) rooted at this event and
spanning the point event stream, such that each path in this DAG
corresponds to a unique partial or complete point match. If a query
uses the skip till any match strategy, we already have the correct
matches, which we prove in Appendix A.2.

Extension for “skip till next match” queries. A skip till next match
query means that the pattern matching process selects only the first
relevant event for each pattern component, hence producing fewer
results than a skip till any match query. While this strategy is easier
to support than skip till any match in a deterministic world, under
temporal uncertainty it becomes more difficult due to the uncertainty



regarding the “first” relevant event.
Fig. 2(b) shows a simple pattern (A,B) and an event stream with

a1 and five b events in arrival order. Can any b event be the first
b after a1? The answer is yes if we can find a possible world in
which a point of a1 precedes a point of the b event with no other b
in between. Evidently, any b that overlaps with a1, e.g., b2 and b3,
can be the next event right after a1 in some possible world. Further,
b4 and b5 that start after a1 ends still have a chance to be the next
event in a possible world. For b4, one such possible world contains
b2

2, b3
3, a4

1, b5
4, . . . For b5, a possible world contains b2

2, b3
3, a4

1, b6
5,

b7
4 . . . However, it is impossible for b8

6 or any point of b6 to be the
next b in any possible world since they are always preceded by b7

4.
The above example illustrates our notation of the Next Event’s

Latest Time (NELT), a timestamp associated with any event that has
just been selected in a partial match. Consider a pattern (E1, . . . , E`)
and a partial match (em1 , . . . , emj ), with emj being the last selected
event. Among all events that can match the next pattern component
Ej+1 and start after emj ends, the event that ends the earliest sets
the NELT of emj using the upper bound of its interval. NELT is of
particular importance because of its dichotomy property: if event e
matches pattern component Ej+1, any point of e that occurs before
or at emj ’s NELT can be in a point match, but none of the points of
e that occurs after emj ’s NELT can. In the above example, with a1
selected in the partial match, its NELT is set to b5.upper when b5
is seen. Then any point event of b that occurs after this timestamp
cannot be next to a1 in any possible world. We simply ignore such
point events to ensure correct results and to save time.

In our implementation, we extend the function, next(), that a
pattern query engine uses to match events with pattern components.
Given a pattern, next(m, e) is true iff event e can extend the partial
match m of the pattern. To support skip till next match queries,
we revise next(m, e) such that the matching stops when the time
marked by the NELT of the last event in m is reached. The detailed
algorithm for NELT is given in Algorithm 2 in Appendix A.1.

In summary, skill till next match queries are supported by running
an existing pattern engine using the skip till any match strategy
and extending the function next() with the use of NELT. We prove
the correctness of our method in Appendix A.2. Finally, note that
due to temporal uncertainty, skill till next match queries cannot
be run directly on the point event stream using the same strategy.
For example, starting from a3

1 in Fig. 2(b), the skip till next match
strategy will produce only one point match, (a3

1, b4
3), while many

other matches starting with a3
1 exist in the possible worlds.

Match Collapsing. The final issue is to collapse point matches
into query matches as defined in Section 3.3. In particular, without
enumerating all possible worlds, how do we compute the time range
and confidence for each unique signature of point matches?

Consider the set of point matches, { m : (et1
m1 , . . . , et`

m`
) }, that

share the same signature α, denoted by Sα. The tightest time range
for all the point matches is [minm(et1

m1 .lower), maxm(et`
m`

.upper)].
The remaining task is to compute the confidence.

For a skip till any match query, the confidence Cany(α) equals:

Cany(α) = ∑
m∈Sα

P
[
(et1

m1 , . . . , et`
m`

)
]
) = ∑

m∈Sα

`

∏
j=1

P
[
e

tj
mj

]
(1)

This calculation is correct because the probability of the point match
et1

m1 , . . . , et`
m`

is the product of the probabilities of its individual point
events, and different point matches represent disjoint sets of possible
worlds, hence independent of each other.

Calculating the confidence, Cnext(α), of a skip till next match
query is more subtle because some matches require that there are no
intervening events of certain types. For example, for a2

1, b3
3, c5

2 to be a

match of the query in Fig. 1, we require that event c4 does not occur
at time 4. Formally, a potential point match m = (et1

m1 , . . . , et`
m`

) is

a true match iff (1) t1 < . . . < t`, and (2) for each e
tj
mj (2 ≤ j ≤ `),

no point event matching Ej occurs between e
tj−1
mj−1 and e

tj
mj . Let

Θj(m) be the set of all such excluded point events. Thus condition
(2) may be written Θj(m) = ∅ for 2 ≤ j ≤ `, or Θ(m) = ∅ for
short. Then the confidence of skip-till-next match, Cnext(α), equals:

Cnext(α) = ∑
m∈Sα

P
[
(et1

m1 , . . . , et`
m`

)
]

= ∑
m∈Sα

`

∏
j=1

P
[
e

tj
mj

]
·P [Θ(m) = ∅]

(2)
We then consider two cases. In the first case, an event can match

at most one pattern component, due to the exclusiveness of the event
types and predicates of the pattern components. Thus, any event
can occur in at most one Θj(m) set, and these sets being empty are
independent of each other. Hence, we can rewrite Eq. 2 as:

C1
next(α) = ∑

m∈Sα

∏`
j=2 P

[
e

tj−1
mj−1

]
·P
[
e

tj
mj

]
·P
[
Θj(m) = ∅

]
∏`−1

j=2 P
[
e

tj
mj

] (3)

The equation above leads to a memoization-based algorithm to
compute C1

next(α). For all point matches in Sα, it computes the

quantity P
[
e

tj−1
mj−1

]
P
[
e

tj
mj

]
P
[
Θj(m) = ∅

]
once and records it

for reuse for other point matches sharing this quantity. To efficiently
compute P

[
Θj(m) = ∅

]
, we construct an index on the fly to re-

member those events that can potentially match a pattern component.
P
[
Θj(m) = ∅

]
is the product of the probability of each of these

events occurring outside the range between e
tj−1
mj−1 and e

tj
mj . This

algorithm is detailed in Algorithm 3 in Appendix A.1.
The second case is more complex in that an event can match

more than one pattern component. The idea is that we can further
enumerate the points of those events, {Sq}, that have matched
multiple components. So conditioned on the specific points of events
in {Sq}, we can factorize Θ(m) = ∅ based on independence. So,

C2
next(α) = ∑

eqi∈{Sq}
∏

i
P
[
eti

qi

]
· ∑

m∈Sα

`

∏
j=1

P
[
e

tj
mj

]
·

`

∏
j=2

P
[
Θj(m) = ∅|{eti

qi}
]

(4)
Our algorithm extends that of the first case by using the event index
to also compute P

[
Θj(m) = ∅|{eti

qi}
]

as well as memoization.

5. AN EVENT-BASED FRAMEWORK
In this section, we present a second evaluation framework which

is event based rather than point based. This way, we can elimi-
nate the cost of enumerating a potentially large number of point
matches. It is not obvious how to efficiently find the exact set of
query matches in this way. Below, we present evaluation methods
and optimizations that together achieve this goal. It is worth noting
that the key ideas developed in the point-based framework, such as
those for supporting skip till next match queries and computing the
confidence, are shared in the event-based framework.

5.1 The Query Order Evaluation Method
To focus on the main idea, we start with two temporary assump-

tions about the evaluation of a pattern p = (E1, . . . , E`) on an event
stream: (1) Each event can match only one of the ` components. (2)
If two events match two different pattern components, Ei and Ej
(i < j), and overlap in time, then the event matching Ei is presented
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Figure 3: Illustration of the event-based evaluation (assuming that events are presented in query order).

before the event matching Ej in the stream. These assumptions will
be eliminated later using a flexible evaluation algorithm.

A Three-Pass Algorithm. Even with these simplifying assump-
tions, it is still quite subtle to find event-based matches. To do so, we
will walk through the events in a potential match three times: first
forward, revising the lower endpoints of each event interval as we
form a potential match, second backwards, revising the upper end-
points of each event interval for pruning of the potential match, and
third backwards again, pruning the match further by the constraint
that all the matched events must fit in the query window, W.

1. Finding the Match Signature. We begin by introducing a
boolean function ext such that ext(m, e) is true iff event e may
extend the partial match m of pattern p. To compute ext(m, e), we
inductively define the concept valid lower bound (vlb). We write
e |= Ej to mean that event e matches the pattern component Ej by
both the event type and the predicates applied to Ej. In the base
case, if e |= E1, then e.vlb = e.lower. Inductively, assume that
m = (em1 , . . . , emj ) and emj .vlb is defined. If e |= Ej+1, define
e.vlb = max(emj .vlb + 1, e.lower). Thus, e.vlb is the first time
that e might occur in match m of pattern p.

Using vlb we can immediately define ext:

ext(m, e) ≡ (|m| < ` & e |= E|m|+1 & e.vlb ≤ e.upper)

This completes the first pass in which we have computed the poten-
tial match m = (em1 , . . . , em` ) and its valid lower bounds.

Example. Fig. 3(a) revisits our running example. We (temporar-
ily) reorder events c2 and b3 so that they are presented in query
order (A, B, C). We compute the valid lower bounds of events and
evaluate the ext function at the same time. For example, a1.vlb = 1,
ext(∅, a1) = True; b3.vlb = 3, ext((a1), b3) = True; and
c2.vlb = 4, ext((a1, b3), c2) = True, yielding a match (a1,b3,c2).

2. Pruning based on Upper Bounds. Now we walk back down
the potential match, m, revising the upper bounds of each inter-
val. We inductively define revised upper bound (rub) analogously
to vlb: In the base case, em` .rub = em` .upper. Inductively, as-
suming emj+1 .rub is defined, we let emj .rub = min(emj+1 .rub−
1, emj .upper). As we compute the revised upper bounds, we check
that each interval is nonempty, that is, emj .vlb < emj .rub; other-
wise, the match m is pruned.

Example. Fig. 3(b) shows the computation of the revised upper
bounds after the match (a1,b3,c2) is recognized. That is, c2.rub = 5,
b3.rub = 4, and a1.rub = 3. The match is preserved in this step.

3. Pruning based on the Window. Finally we consider the query
window size, W. We introduce the notion of valid upper bound
(vub) to bound the range of each event that can form a valid match.
We formally define it in two cases. Since the last possible time
for em1 is em1 .rub, the last possible time for em` is at most Tm =
em1 .rub + W − 1. In the first case, em` .rub ≤ Tm. Then the
revised upper bounds are in fact the valid upper bounds, and we
have validated the match m. Otherwise, we walk back down the
third time computing the valid upper bounds as follows: em` .vub =

Tm. Inductively, assuming emj+1 .vub is defined, we let emj .vub =
min(emj+1 .vub− 1, emj .upper). At any time during this pass, if
some event emj has emj .vub < emj .vlb, then the match fails.

Example. Fig. 3(c) shows an example using three events a1, b5,
and c6. In the first pass, we compute the valid lower bounds as:
a1.vlb = 1, b5.vlb = 2, and c6.vlb = 6. After the second pass,
we have: c6.rub = 7, b5.rub = 3, and a1.rub = 2. Then we have
Tm = a1.rub + W − 1 = 5. Since c6.rub = 7 > Tm = 5, we start
the third pass, in which we set c6.vub = Tm and can immediately
see that c6.vub = 5 < c6.vlb = 6. So the match is pruned.

An Incremental Algorithm. To prune non-viable matches as
early as possible, our implementation actually uses an incremental
algorithm that runs ext() forward on the event stream, building the
match signature and pruning the match simultaneously. The main
idea is that as we scan events forward to extend the partial match,
m = (em1 , . . . , emj ), we can already run backwards over m, treating
the event emj as if it were the last event in the pattern and computing
the revised upper bounds and valid upper bounds as described above.
At any time during this process, if an event in m has an empty valid
range, this partial match can be pruned immediately. The details of
this algorithm and its correctness proof are presented in §B.1.

Given events presented in query order, the incremental algorithm
evaluates skip till any match queries using ext() and the skip till any
match strategy, and skip till next match queries by further augment-
ing ext() using NELT as proposed in §4. For details see §B.1.

Computing the Confidence. We last compute the confidence
of a match. For a skip till any match query, in the point-based
evaluation framework we can simply sum up the probabilities of the
point matches sharing the signature. In the event-based framework,
we are only given the events in the match, so we need to enumerate
valid point matches in those events’ valid intervals and sum up
their probabilities. For a skip till next match query, we can reuse
the confidence algorithm in the point-based framework, again by
quickly constructing point matches from those events in the match.

5.2 The “Any State” Evaluation Method
We next relax the assumption that events are presented in query

order. Instead, we consider events in their arrival order. Fig. 3(d)
shows the events a1, c2, and b3 in their arrival order. If we run the
above algorithm, ext(∅, a1) will select a1, ext((a1), c2) will skip
c2, and ext((a1), b3) will select b3. However, we have permanently
missed the chance to extend (a1, b3) with c2.

To address the issue, we extend the pattern evaluation method so
that it can begin from any pattern component and then select any
event that can potentially match another pattern component until
the match completes or fails—we call this new method “any state”
evaluation. In our work, we refer to the partial processing result
using this method as a “run”. A new run is started if the current
event can match any of the pattern components, say Ei. When the
next event comes, if it can match any other pattern component Ej
and further satisfy the ordering constraints with the events already



selected by the run, then the current run is cloned: in one instance,
the new event is selected into the run; in the other instance, it is
ignored so that the previous run can be extended in a different way
later. Fig. 3(d) shows the any state evaluation method for events a1,
c2, and b3, including the evolution of runs and computation of upper
and lower bounds. The details of the method are given in §B.2.

5.3 Optimizations
Sorting for Query Order Evaluation. We observe that the any

state evaluation method, which evaluates events in arrival order, is
much more complex than the query order evaluation method, which
assumes events to be presented in query order, If we can sort the
input stream to present events in query order, we might achieve an
overall reduced cost. Sorting based on query order is not always
possible, especially when an event can match multiple components
of a pattern. However, for many common queries, an event can
match at most one pattern component, due to the exclusiveness of
the event types and predicates used. In this case, we sort events such
that if two events match two different components, Ei and Ej (i < j),
and overlap in time, the one matching Ei will be output before the
other matching Ej. To do so, we use buffering and available ordering
information. See the appendix (§B.3) for details.

Selectivity Order Evaluation. The any state evaluation method
can be applied to events ordered by any criterion, besides the ar-
rival order. Borrowing the idea from recent work [15], our second
optimization creates a buffer for each component Ej and triggers
pattern evaluation when all buffers become non-empty. At this time,
we output events from the buffers in order of the selectivity of Ej;
that is, we output events first for the highly selective components
and then for less selective components. This way, we can reduce the
number of runs created in the any state evaluation method.

6. PERFORMANCE EVALUATION
We have implemented both evaluation frameworks using the

SASE pattern query engine [1]. In this section, we evaluate these
frameworks using both synthetic data streams with controlled prop-
erties and real traces collected from MapReduce cluster monitoring.
The details of our experimental setup are given in Appendix C.

6.1 Evaluation using Synthetic Streams
We implemented a data generator that creates events in increasing

order of time t but assigns to each event an uncertainty interval
[t − δ, t + δ]; we call δ the half uncertainty interval size. The
query pattern (E1, . . ., E`) is controlled by the time window size
W (default 100 units), the pattern length ` (default 3), the event
selection strategy, and the selectivity of each pattern component.

Point vs. Event based Evaluation (skip till any match). We
begin by comparing the point-based and event-based evaluation
methods (without optimizations) for skip till any match queries.
We first increase the half uncertainty interval size δ from 1 to 50.
Fig. 4(a) shows that the point-based method degrades its perfor-
mance fast because as δ increases, the number of point events also
increases. More points lead to more runs, in the worst case O(δ`),
hence a high cost. The event-based method is not very sensitive to δ
as it does not enumerate points for pattern evaluation and hence has
a constant number of runs. Although to compute confidence it does
enumerate points in the valid intervals, this cost is relatively small.
Similar results were observed for varied W and ` values.

Optimizations of the Event based Method (skip till any match).
We next evaluate the two optimizations, sorting for query order eval-
uation and selectivity order evaluation, for enhancing the basic
event-based evaluation method, called the any state method.

Fig. 4(b) shows the results with varied δ. The performance of

the any state method degrades linearly with δ. This is because as
δ increases, there will be more matches to produce since events
overlap more. Moreover, each run needs to wait longer before it
can be pruned. Sorting for query order evaluation performs the
best, because pattern evaluation proceeds from E1 to E`, avoiding
the overhead of starting a run from any state. This can reduce the
number of runs significantly. The selectivity-based method lies
between the above two. It buffers events separately for every pattern
component. Before all buffers receive events, it can remove some
out-of-date events and hence reduce the number of runs started.

Fig. 4(c) compares these methods as the pattern length ` is in-
creased. The any state method loses performance quickly. Since a
run can start by matching any pattern component in this method, a
longer pattern means a higher chance for an event to match a com-
ponent and start a run. Sorting still works the best, alleviating the
performance penalty of the any state method. The selectivity method
degrades similarly to the any state method as it suffers from a similar
problem of starting more runs from the additional components.

We then examine the effect of event frequencies. We keep the
query selectivity roughly the same, increase the percentage of events
matching the first pattern component E1 by adjusting its predicate,
and decrease that for the last pattern component E` accordingly.
As a result, more events can match E1 and fewer can match E`.
Fig. 4(d) shows the results. In this case, sorting creates more runs
because it starts from E1, and is only slightly better than the any
state method. The selectivity method works the best, because it can
remove out-of-date events from the buffer of E1 before it sees events
in other buffers, especially that for El , hence avoiding many runs.

Point vs. Event based Evaluation (skip till next match). We
next consider queries using skip till next match. This strategy aims
to find the “first” match of each pattern component in a deterministic
world. Under temporal uncertainty, however, it requires more work
to handle such first matches, including the use of the Next Event’s
Latest Time (NELT) and the more complex confidence computation.
Fig. 4(e) shows the results as δ is varied. Compared to Fig. 4(a),
the point-based method experiences an earlier drop in performance
due to the combined costs of numerous point events and the more
complex confidence computation. The event-based methods also
reduce performance somewhat. It is because as δ goes up, more
matches are produced and for each match, the confidence computa-
tion enumerates the points in the events’ valid intervals. The cost of
confidence computation becomes dominant when δ ≥ 30.

6.2 Evaluation in Cluster Monitoring
To evaluate our techniques in real-world settings, we performed a

case study of Hadoop cluster monitoring (as detailed in Appendix C).
The Hadoop system logs events, such as the start and end times of
map and reduce tasks, in unix time (us). This cluster also uses the
Ganglia monitoring tool [11] to measure the max and average load
on each compute node, once every 15 seconds. By consulting a
research group on cluster computing, we constructed four pattern
queries, similar to Query 1 in §3, to study the effects of Hadoop
operations on the load on each compute node. These queries require
the use of uncertainty intervals because of (1) the granularity mis-
match between Hadoop events (in us) and Ganglia events (once 15
seconds) and (2) the clock synchronization problem in the cluster.
So, we rounded all Hadoop timestamps using 0.1 second as a time
unit, set δH = 0.5 second for Hadoop events, and δG = 7.5 sec-
onds for Ganglia events. We ran queries on the merged trace of the
Hadoop log and the Ganglia event stream.

For each query, we used four combinations of the event selection
strategy and the selectivity of the predicate on the last pattern com-
ponent (the predicates on other pattern components were fixed and
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Figure 4: Performance results using synthetic event streams and real traces in cluster monitoring.

not so selective). (S1) a skip till any match query with a selective
predicate; (S2) skip till any match and a nonselective predicate; (S3)
skip till next match and a selective predicate; and (S4) skip till next
match and a nonselective predicate. Fig. 4(f) shows the results. We
can see that skip till any strategy queries are faster than skip till
next match queries for the reasons explained above. Moreover, we
see that sorting always works well. Selectivity-based optimization
works well for S1 and S3 where the last predicate is selective. In
these cases, this method can prune many expired events when the
last stack remains empty. For S2 and S4 where the last predicate is
nonselective, this method cannot remove many events to save time.
Other queries show similar results as shown in [23].

7. CONCLUSIONS
To support pattern evaluation in event streams with imprecise

timestamps, we presented the formal semantics of pattern evaluation
under our temporal uncertainty model, two evaluation frameworks,
and optimizations in these frameworks. Our evaluation results show
that the best of our methods achieves thousands to tens of thousands
of events per second both in a real-world application of cluster
monitoring and under a wide range of synthetic workloads. In the
future, we plan to extend our work to support advanced pattern
features such as negation and Kleene closure, and consider more
efficient techniques when given a confidence threshold or requested
to return only a ranked list of matches based on confidence.
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APPENDIX
A. POINT-BASED EVALUATION

In this appendix, we give the pseudocode of algorithms in the
point-based evaluation framework and prove their correctness.

A.1 Pseudocode of Algorithms
Algorithm 1 shows the point-based evaluation procedure.

Algorithm 1 Point-based Evaluation
Input: Event Stream S , Pattern (E1, ...E`)

for Each event ei in S do
Set Now to [maxi

j=1(ej.lower), maxi
j=1(ej.upper)]

Set temit to Now.lower−Umax
for t = ei .lower to ei .upper do

Generate the point event et
i

Add et
i to the event buffer

end for
for Each point event et

j in the event buffer do
if t = temit then

Emit et
j to the pattern matching engine

if The query uses skip-till-any-match then
Run the engine using skip-till-any-match strategy

end if
if The query uses skip-till-next-match then

Run the engine using skip-till-any-match strategy and new
next() with NELT by calling Algorithm 2

end if
end if

end for
for Each point match m : (et1

m1 , ..., et`
m`

) in the match buffer do
if temit > em1 .upper + W then

Collapse matches with the same signature as m
Compute the time range and the confidence of the match by
calling Alogirhtm 3

end if
end for

end for

Algorithm 2 shows the function next() extended with the use
of Next Event’s Latest Time (NELT). In this algorithm, we incre-
mentally compute the NELT of an event e. Every time that a partial
match m : (em1 , ...emj ) decides whether to select event e that can
potentially match Ej+1, it compares emj .NELT with e.lower. If the
e.lower < emj .NELT, m will select e. Then it will compare its
emj .NELT with e.upper. If the emj .NELT is larger, then we update
emj .NELT to e.upper. At the same time, we need to check runs
that have passed the previous NELT in case that they fail in the
check using the new NELT. We will keep updating NELT of each
event until temit has advanced the point that no future events can
change the NELT. When a match has selected events for all pattern
components, we will not return it until we are sure that there is no
chance to change NELT’s of its events.

Algorithm 3 shows the computation of the match confidence for
a skip till next match query in the point-based framework. This algo-
rithm can be extended to support the more complex case in which
one event can match multiple pattern components. In particular,
when we index the events for Smi , we also keep track of the events
that can match more than one pattern component. Then we can
enumerate these events when we compute the confidence as shown
in Eq. (4). For details, please see our tech report [23].

A.2 Correctness Proofs
Skip till any match. We first prove the correctness of our point-

based evaluation algorithm for skip till any match queries.

Algorithm 2 Pattern Matching using next() with NELT
Input: Event e, Pattern (E1, ...E`)

for Each partial match m : (em1 , ...emj ) in the buffer do
if emj .NELT has not been initialized then

Initialize emj .NELT to +∞
end if
if e matches Ej+1 then

if e.lower < emj .NELT then
next(m, e) := true
if e.upper < emj .NELT then

emj .NELT := e.upper
for Every other partial match m′ that contains emj do

if em′j+1
.lower > emj .NELT then

Remove m′
end if

end for
end if
if j + 1 = ` and emj .NELT < temit then

Return m as a complete match
end if

end if
end if

end for

PROOF. For a skip till any match query, pattern matching natu-
rally runs skip till any match on the point event stream.

We first show that any point match returned by the skip till any
match strategy exists in some possible world. This is because the
point match already satisfies the ordering constraint as well as query-
specified constraints such as predicates and the time window.

We next prove that any match that exists in some possible world
will be returned by the skip till any match strategy on the point
event stream. We prove this by contradiction. Assume that there is a
match m with signature (ei1

m1 , ei2
m2 , ...ei`

m`
) in one possible world, but

it is not returned by skip till any match on the point event stream.
Since m is a match, the constituent point events are in order, i.e.,
i1 < i2 < ... < i`, and satisfy query-specified constraints such as
predicates and the time window. In the point event stream, point
events are ordered by timestamps, so, we have (ei1

m1 ≺ ei2
m2 ≺ ... ≺

ei`
m`

). By definition, skip till any match will have one such run
that first selects ei1

m1 , ignores other point events until ei2
m2 arrives,

selects ei2
m2 , ignores other point events until ei3

m3 arrives, and so on,
resulting in a match. This contradicts the assumption above. Hence
our second statement is proved.

Skip till next match. We next prove the correctness for skip till
next match queries. Recall that our algorithm handles such queries
by using the skip till any match strategy and extending next() with
the Next Event’s Latest Time (NELT) to prune potential matches.

PROOF. Consider a pattern (E1, . . . , E`) and a partial match
(et1

m1 , . . . , e
tj
mj ) (j ≥ 1), with emj being the last selected event. We

prove that the following statements are true:
(1) Any point event, denoted by et

i , that starts after emj ’s NELT

cannot be used to extend the partial match (et1
m1 , . . . , e

tj
mj ) in any

possible world. This is clear from the NELT definition: Among all
events that can match the next pattern component Ej+1 and start
after emj ends, the event that ends the earliest, denoted by ek, sets
the NELT of emj using ek.upper. Since et

i occurs after the emj ’s
NELT, it will surely be preceded by the point event eNELT

k in any
possible world, and hence cannot be the next to emj .

(2) Every point event, et
i , that can potentially match the pattern



Algorithm 3 Compute the confidence for point-based framework.
Input: match m:(em1 , em2 , ...em`

), S̄m2 , ..., S̄m`
(S̄mi denotes the set

of events that can potentially extend a partial match ending at
emi−1 )
1: if The query strategy is skip till any match then
2: Set q as the confidence of m using Equation (1)
3: else if The query strategy is skip till next match then
4: Pre-computation:
5: for Point match mp ∈ m do
6: for i=1 to i=` do
7: eti

mi = point event of mp at state i

8: eti+1
mi+1 = point event of mp at state i + 1

9: if P
[
eti

mi ≺ eti+1
mi+1

]
is not computed yet then

10: P
[
eti

mi ≺ eti+1
mi+1

]
= P

[
eti

mi

]
×P

[
eti+1

mi+1

]
11: P

[
None of S̄mi+1 occurs between[ti , ti+1]

]
=

∏emj∈S̄mi+1
P
[
emj not between [ti , ti+1]

]
12: end if
13: end for
14: end for
15: Con f idencem = 0
16: for Point match mp ∈ m do
17: for i = 1 to i = ` do
18: eti

mi = point event of mp at state i
19: end for

20: Con f idencem +=
∏`−1

i=1 P

[
e
ti
mi
≺e

ti+1
mi+1

]
×P
[
None of S̄mi+1 between [ti ,ti+1 ]

]
∏`−1

i=2 P
[
e
ti
mi

]
21: end for
22: end if

(b) Case2

e1

e2

e3

en
...

(a) Case1

e1

e2

e3

en
...

Figure 5: Two cases of constructing point-matches

component Ej+1 and starts before or at emj ’s NELT, can actually be

used to extend the partial match (et1
m1 , . . . , e

tj
mj ) in a possible world.

We construct one such possible world as follows: (i) the event emj

occurs at its last time point; (ii) all events that can potentially match
Ej+1 and overlap with emj , excluding et

i , take a point before or at
the same point as emj , hence not meeting the ordering constraint;
and (iii) all events that can potentially match Ej+1 and start after
emj ends but before emj ’s NELT, excluding et

i , take a point at or after
NELT. This way, all other events that can potentially match Ej+1
have made room for et

i to be the first match of the pattern component
Ej+1 (or one of the first few that occur at the same time NELT).

B. EVENT-BASED EVALUATION
In this appendix, we give details and optimizations of evaluation

methods in the event-based framework, and prove their correctness.

B.1 Query Order Evaluation

B.1.1 Three Pass Algorithm
To prove the correctness of our three pass algorithm (in §5.1), we

show that it obtains the same results as the point-based framework.
Finding the Match Signature. We first show that the event-

based framework can find the same match signature as the point-
based framework.

PROOF. First we show that for any match signature found by
the point-based framework, the event-based framework can also
find it, and the timestamps of point events should be larger than or
equal to their corresponding valid lower bounds. We show this by
induction. When the pattern length is one, obviously, for a point-
match et1

1 , we can capture the event e1 in the event-based framework,
and have that t1 ≥ e1.vlb and t1 ≤ e1.rub. Then we assume when
the sequence length is n, for a point match (et1

1 , et2
2 , ...etn

n ), we can
find an event match (e1, e2, ...en), and we have ti ≥ ei.vlb and
ti ≤ ei.rub (1 ≤ i ≤ n). When the sequence length is n + 1, if
the point-based framework gets a match (et1

1 , et2
2 , ...etn

n , etn+1
n+1), by

the assumption we know the event-based framework can capture
the first n events (et1

1 , et2
2 , ...etn

n ) and tn ≥ en.vlb, tn ≤ en.rub.
From the point-match, we know tn+1 > tn. Also we know tn+1 ≥
en+1.lower and tn+1 ≤ en+1.upper. By the definition of valid
lower bound, we know en+1.vlb = max(en.vlb + 1, en+1.lower),
and en+1.rub = en+1.upper. So we can get tn+1 ≥ en+1.vlb and
tn+1 ≤ en+1.rub. So en+1 will be selected for the match.

Then we show that for any match signature found by the event-
based framework, the point-based framework would find one or
more point matches with the same signature. We can pick a point
from each interval to compose the match signature. We can prove
this by showing that we can simply pick the point at the valid lower
bound of each event. Because ei.vlb < ei+1.vlb, so we can use
these points to compose a point match with the same signature.
Hence the correctness of finding the match signature is proved.

Time Window Constraint. Our proof above did not consider
the time window constraint. We next show that the event-based
framework can support the time window correctly.

PROOF. First, we show if a point match satisfies the time window
W, the event match with the same signature will also pass the
time window check. If the point match is (et1

1 , et2
2 , ...etn

n ), we have
tn− t1 < W. If we do not need the third pass, then ei.vub = ei.rub,
and thus ti will be in ei’s valid range (1 ≤ i ≤ n). If we need the
third pass to compute the valid upper bounds, en.vub = e1.rub +
W− 1 > t1 + W− 1 ≥ tn, so tn is still in en’s valid interval. Then
en−1.vub = min(en.vub− 1, en−1.upper). Since tn−1 < tn ≤
en.vub and tn−1 ≤ en−1.upper, we have tn−1 ≤ en−1.vub and
tn−1 is in en−1’s valid range. Repeating this, we can prove that ti is
in ei’s valid range for other events in this match. So the event match
will be retained from the time window check in both cases.

Then we show that given any event match m satisfying the time
window W, at least one point match with the same signature will
pass the time window check. We can prove this by constructing a
point match with the points from an event match. We consider two
cases that are distinguished by en.vlb− e1.vub.

Case 1: en.vlb− e1.vub < n− 1, as shown in Fig. 5(a).
In this case, we will pick (ee1.vub

1 , ee1.vub+1
2 , ...ee1.vub+n−1

n ) as
the point match. Since these points are consecutive on timestamps,
we only need to prove that these timestamps are in valid ranges of
these events, i.e., ei.vlb ≤ e1.vub + i− 1 ≤ ei.vub. We can show
this by contradiction: Assume that e1.vub + i− 1 is out of ei’s valid
range. Then e1.vub + i− 1 > ei.vub or e1.vub + i− 1 < ei.vlb.
In the former case, it will contradict with the valid upper bound
definition. In the latter case, we can get e1.vub + i− 1 < ei.vlb ≤
en.vlb− n + i, then we can get en.vlb− e1.vub ≥ n− 1, which
contradicts the case condition.

Case 2: en.vlb− e1.vub ≥ n− 1, as shown in Fig. 5(b).
In this case, we will pick ee1.vub

1 as the first point event of the

point match, and pick een .vlb
n as the last point event of the point

match. For ei(1 < i < n), we will choose the point at ti =



min(ei.vub, en.vlb− n + i). We need to show the timestamps of
these points are monotonically increasing. First, we show that the
valid range of ei(1 < i < n) overlaps with range [e1.vub + i −
1, en.vlb− n + i]. We can show this by contradiction. Assume
that there is no overlap. Then ei.vlb > en.vlb− n + i or ei.vub <
e1.vub + i− 1. According to the definition of the valid lower bound
and valid upper bound, ei.vlb ≤ en.vlb and ei.vub ≥ e1.vub + i−
1. The contradictions are obvious. And actually ti is the upper bound
of the overlap between its valid range and the range [e1.vub + i−
1, en.vlb−n + i]. Then we need to show that ti > ti−1(1 < i < n).
If ti = en.vlb − n + i, then ti is larger than all points during
[ei−1.vub + i− 1, en.vlb− n + i− 1], and so ti > ti−1. If ti =
ei.vub, then we need to consider two cases: if ti−1 = ei−1.vub, by
definition we can get ti > ti−1; if ti−1 = en.vlb− n + i− 1, we
know ti−1 = en.vlb− n + i− 1 < en.vlb− n + i ≤ ti. So ti is
always larger than ti−1.

Time Range. For the correctness of time range, we need to prove
that the valid range bounded by the valid lower bound and valid
upper bound is correct. It means that all the points that can form a
point match are included in the valid range, and all the points in the
valid range can construct a point match.

PROOF. In the proofs for the match signature and time window
constraint, we have already shown that any point that can form a
point match is in the valid range of the event. Then we need to show
that any point in the valid range can construct a point match. We
prove this by contradiction. Assume that we have an event match
(e1, e2, ...en). We assume that there exists a point e

tj

j in ej’s valid
range that cannot form a match by selecting points from the other
events’ valid range. If it cannot pick a point from ei (i < j), it
means that either tj − i + 1 < ei.vlb or tj − ei.vub > W. The
former case contradicts the definition of valid lower bound, which
can tell us ei + i − 1 < ej.vlb ≤ tj. The latter case contradicts
the time window constraint, by which we can get tj − ei.vub ≤
ej.vub− ei.vub ≤ en.vub− e1.vub < W. If e

tj

j cannot pick a
point from ei (i > j), we can obtain similar contradictions.

B.1.2 Incremental Algorithm
To prune non-viable matches early, our implementation actually

uses incremental computation as the ext function runs forward on
the event stream. Our algorithm incrementally computes valid lower
and upper bounds of events and evaluates the window constraint.
While the valid lower and upper bounds initially may not be as
tight as the true ones defined in the three-pass algorithm, they will
converge to the true ones when the match becomes complete.

Consider a partial match m = ∅ or (em1 , . . . , emj ), and the cur-
rent event e in the input. The incremental algorithm, as shown in
Algorithm 4, takes four main steps:

1. Compute e’s valid lower bound given m. Initialize e’s valid
upper bound using its own upper bound and check whether its
valid interval is empty. (Lines 4-6).

2. Compute the rub of the events in reverse pattern order, i.e.,
from emj down to em1 . Check whether the valid interval of
each event is empty (Lines 7-10).

3. If em1 .rub + W < e.upper, compute the vub in a third pass.
Again, check whether the valid interval of each event is empty
(Lines 11-19).

4. If the partial match passes all checks, perform the pattern
matching (Lines 20-26).

Example. Fig. 3(c) shows an example using three events a1, b5,
and c6. Upon arrival of c6, we have a partial match (a1, b5). Step

1 above sets c6.vlb = 6 and c6.vub = 7. Step 2 sets b5.rub = 3
and a1.rub = 2. Then in Step 3, the window constraint W = 4
is expressed as c6.rub > a1.vub + 4− 1 = 5. So we should set
c6.vub := 5, and then c6.vub − c6.vlb < 0 That is c6’s valid
interval is negative, and c6 cannot be included in a match starting
with a1. In this example, c6 is pruned.

Algorithm 4 Incremental Method for Query Order Evaluation
Input: Event Stream S, Pattern (E1, ..., E`)
1: for Each event e in s do
2: for Each partial match m (em1 , em2 , ..., emj ) in the buffer do
3: if e satisfies query component Ej+1 then
4: e.vlb := min(emj .lower + 1, e.vlb)
5: if e.vlb ≤ e.upper then
6: e.rub := e.upper
7: for each event emi (1 ≤ i ≤ j) in r do
8: emi .rub := min(emi+1 .rub− 1, emi .upper)
9: Check if emi .rub− emi .vlb < 0

10: end for
11: if emi .rub ≥ emi .vlb (1 ≤ i ≤ j + 1) then
12: if em1 .rub + W < e.rub then
13: e.vub := em1 .rub + W − 1
14: Check if e.vub− e.vlb < 0
15: if e.vub = e.vlb > 0 then
16: for each event emi (1 ≤ i ≤ j) in r do
17: emi .vub := min(emi+1 .vub− 1, emi .upper)
18: Check if emi .vub− emi .vlb < 0
19: end for
20: if emi .vub ≥ emi .vlb (1 ≤ i ≤ j + 1) then
21: if Using skip till any match strategy then
22: ext(m, e) := true
23: end if
24: if Using skip till next match strategy then
25: Call Pattern Matching with NELT for Event-

based Framework
26: end if
27: end if
28: end if
29: end if
30: end if
31: end if
32: end if
33: end for
34: end for

Then we need to show the equivalence of the incremental method
and the three pass method. The valid lower bounds computed by
the two methods are exactly the same. For the valid upper bounds,
when we see later events we either keep them or shrink them so
these bounds are non-increasing. Since the temporary valid upper
bounds in the incremental method will not be smaller than the final
valid upper bounds, our early pruning will not cause loss of results.
For the final valid upper bounds, the two methods both start the
computation from the last event’s upper bound so will produce the
same results. The formal proof is given in our tech report [23].

B.1.3 Support of Skip Till Next Match
The previous proofs show that the event-based framework can

produce the same results for skip till any match queries. To support
skip till next match queries, we also compute the NELT to filter
events that cannot form a match. In the point-based framework, we
do not select events that happen after the NELT. In the event-based
framework, we will shrink the next event’s valid upper bound to
the current event’s NELT, and if this causes the next event’s valid
upper bound to be less than its valid lower bound, then we prune
this partial match. The detailed algorithm is similar to Algorithm
2, hence omitted. Next we show that the results of the event-based



framework remain the same as the point-based framework.

PROOF. Since we use the same method to compute the NELT, it
is the same under two frameworks. First we show that when we re-
move a point by NELT in the point-based framework, the point will
not appear in the valid range of the event in the event-based frame-
work. From the definition, this is obvious. In the other direction,
after we shrink the valid upper bound by the NELT, of course we
will not pick points after the NELT to build the point match. Since
we prove the correctness of time range and window constraints with
the assumption that we already have the valid ranges, and the NELT
operation only shrinks the valid ranges, the correctness proof will
still hold for the remaining part after shrinkage.

B.2 The Any State Evaluation Method
The any state evaluation method is an incremental algorithm that

runs directly on the event stream, without the assumption that events
are presented in query order. Given an event e, a run γ, and the set
of events m selected in γ , this method proceeds as follows:

1. Type and Value Constraints: Check if e can match any new
pattern component Ej based on the event type and predicates.

2. Temporal Constraints: Let Ei, . . . , Ej, . . . , Ek denote the con-
tiguous matched pattern components involving Ej, i ≤ j ≤ k.
Compute e’s valid lower bound using emj−1 ’s valid lower bound
if existent, or e’s lower bound otherwise. Compute e’s valid
upper bound using emj+1 ’s valid upper bound if existent, or e’s
upper bound otherwise. Update the valid lower bound of the
subsequent events emj+1 , . . . , emk if present. Update the valid
upper bound of the preceding events emi , . . . , emj−1 if present.
If these updates cause any of the events to have an empty valid
interval, i.e., vlb > vub, skip e. If e is retained, check the
time window between the events matching the current two
ends of the pattern to further filter e.

3. If e is retained, clone γ to γ′ and select e to match Ej in γ′.

The pseudocode and the correctness proof of this method is given in
our tech report [23].

Example. Fig. 3(d) shows the any state evaluation method for the
three events a1, c2, and b3. It lists the runs created as these events
arrive: a1 causes the creation of the run denoted by (a1,−,−).
Then c2 causes two new runs, (a1,−, c2) and (−,−, c2), to be cre-
ated. The arrival of b3 clones all three existing runs, then extends
them with b3, and add a new run (−, b3,−). Now consider the
run (a1, b3, c2). Fig. 3(d) also shows the computation of the valid
intervals of these events. Before b3 came, the valid intervals of a1
and c2 were simply set to their uncertainty intervals because they
are not adjacent in the match. When b3 arrives, four updates occur
in order: (1) b3.vlb = max(a1.vlb + 1, b3.lower) = 3; (2) b3.vub
= min(c2.vub − 1, b3.upper) = 4; (3) c2.vlb = max(b3.vlb +
1, c2.lower) = 4; (4) a1.vub = min(b3.vub− 1, a1.upper) = 3;
These updates give the same result as in Fig. 3(b) assuming the
events in query order.

Pruning runs. We observe that the any state evaluation method
can create many runs. For efficiency, we prune nonviable runs using
the window. Consider a run γ and the set of events m selected. At
any point, we consider the smallest valid upper bound of the events
in m. The run can be alive at most until minj(emj .vub) + W, called
the time to live γtll . As more events are selected by γ, γtll will
only decrease but not increase. Recall from §4 that our system has
a notion now = [maxn

i=1(ei.lower), maxn
i=1(ei.upper)] defined on

all the events we have seen, and the maximum uncertainty interval
size Umax. Further, the arrival order constraint in our system implies
that any unseen event must start after now.lower−Umax. So, a run
γ can be safely pruned if γtll < now.lower−Umax.

Another pruning opportunity arises when a run γ has part of
the prefix unmatched; i.e., there is a pattern component Ej such
as Ej is matched but Ej−1 is not. We can prune γ based on the
arrival order constraint between emj and a future event matching
Ej−1. Since any unseen event must start after now.lower−Umax,
when emj .upper < now.lower −Umax, we know that no future
event can match Ej−1, and hence can safely prune γ.

B.3 Sorting for Query Order Evaluation
We propose an optimization for sorting for query order evaluation:

We sort events such that if two events match two different pattern
components, Ei and Ej (i < j), and overlap in time, the one matching
Ei will be output before the other matching Ej, despite their arrival
order. To do so, we create a buffer for each pattern component Ej
except the first (j > 1). We buffer each event e matching Ej until a
safe time to output it. Depending on the information available, the
safe output time for e can be: (1) If we only have the arrival order
constraint, then it is safe to output e if all unseen events are known
to occur after e.upper, that is, e.upper < now.lower−Umax ( the
earliest time of an unseen event given the arrival order constraint ).
(2) Many stream systems use heartbeats [18] or punctuations [13,
20] to indicate that all future events (or those of a particular type)
will have a timestamp greater than τ. If we know that every event
that can match a pattern component preceding Ej will have a start
time after e.upper, then it is safe to output e.

C. EXPERIMENTAL SETUP
All of our experiments were obtained on a server with an Intel

Xeon 3GHz CPU and 8GB memory and running Java HotSpot 64-bit
server VM 1.6 with the maximum heap size set to 3GB.

Synthetic streams. We implemented an event generator that
creates a stream of events of a single attribute. The events form a
series of increasing values from 1 to 1000 and once reaching 1000,
wrap around to start a new series. Events arrive in increasing order
of time t but each have an uncertainty interval [t− δ, t + δ], with δ
called the half uncertainty interval size. Each stream contains 0.1 to
1 million events. Queries follow the following pattern:

SEQ(E1, . . ., E`) WHERE E1%v1 = 0, . . ., E`%v` = 0 WITHIN W
Query workloads are controlled by the following parameters: the

time window size W (default 100 units), the pattern length ` (default
3), the event selection strategy (skill to any match or skip till any
match), and the selectivity of each pattern component controlled by
the value vj (1 ≤ j ≤ `).

Case Study. Our case study of MapReduce cluster monitoring
ran a Hadoop job for inverted index construction on 457GB of web
pages using a 11-node research cluster. This job used around 6800
map tasks and 40 reduce tasks on 10 compute nodes and ran for 150
minutes. The Hadoop system logs events for the start and end times
(in us) of all map and reduce tasks as well as common operations
such as the pulling and merging of data in the reducers. For this
job, the Hadoop log contains 7 million events. In addition, this
cluster uses the Ganglia monitoring tool [11] to measure the max
and average load on each compute node, once every 15 seconds.

Our monitoring queries study the effects of Hadoop operations
on the load on each compute node. These queries require the use of
uncertainty intervals. The first reason is the granularity mismatch be-
tween Hadoop events (in us) and Ganglia events (once 15 seconds).
The second reason is that the the start and end timestamps in the
Hadoop log were based on the clock on the job tracker node, not the
actual compute nodes that ran these tasks and produced the Ganglia
measurements. Thus, there is a further clock synchronization issue.
So we generated uncertainty intervals as described in §6.


