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Abstract—Big Data systems are producing huge amounts of
data in real-time. Finding anomalies in these systems is becoming
increasingly important, since it can help to reduce the number of
failures, and improve the mean time of recovery. In this work, we
present EXAD, a new prototype system for explainable anomaly
detection, in particular for detecting and explaining anomalies
in time-series data obtained from traces of Apache Spark jobs.
Apache Spark has become the most popular software tool for
processing Big Data. The new system contains the most well-
known approaches to anomaly detection, and a novel generator
of artificial traces, that can help the user to understand the
different performances of the different methodologies. In this
demo, we will show how this new framework works, and how
users can benefit of detecting anomalies in an efficient and fast
way when dealing with traces of jobs of Big Data systems.

Index Terms—anomaly detection, machine learning, Spark

I. INTRODUCTION

Big Data systems in real-time are becoming the core of the
next generation of Business Intelligence (BI) systems. These
systems are collecting high-volume event streams from various
sources such as financial data feeds, news feeds, application
monitors, and system monitors. The ability of a data stream
system to automatically detect anomalous events from raw data
streams is of paramount importance.

Apache Spark is a unified analytics engine for large-scale
data processing, that has become the most used data processing
tool running in the Hadoop ecosystem. Apache Spark provides
an easy to use interface for programming entire clusters with
implicit data parallelism and fault tolerance.

In this work, we consider anomalies in traces of Apache
Spark jobs. These anomalies are patterns in time-series data
that deviate from expected behaviors [1]. An anomaly can be
detected by an automatic procedure, for which the state-of-
the-art includes statistical, SVM, and clustering based tech-
niques [1]–[3].

However, there is one key component missing in all these
techniques: finding the best explanation for the anomalies
detected, or more precisely, a human-readable formula offering

useful information about what has led to the anomaly. The
state-of-art methods mainly focus on detecting anomalies,
but not providing useful information about what led to the
anomaly. Without a good explanation, anomaly detection is
only of limited use: the end user knows that something anoma-
lous has just happened, but has limited or no understanding
of how it has arisen, how to react to the situation, and how
to avoid it in the future. Most data stream systems cannot
generate explanations automatically, even if the anomaly has
been signaled. Relying on the human expert to analyze the
situation and find out explanations is tedious and time con-
suming, sometimes even not possible. Even as a human expert,
the engineer cannot come up with an explanation immediately.

The main contribution of this paper is EXAD (EXplainable
Anomaly Detection System), a new integrated system for
anomaly detection and explanation discovery, in particular for
traces of Apache Spark jobs.

This demo paper is structured as follows. We describe the
design of anomalies of traces of Spark jobs in Section II. In
Section III we present the design of our new system EXAD,
and we outline the demonstration plan in Section IV. Finally,
in Section V we give our conclusions.

II. ANOMALY DESIGN

Because of the very nature of stream processing and the
resorting to large clusters, failures are both real challenges and
very common events for stream processing. A rule of thumb
for Spark Streaming monitoring is that the Spark application
must be stable, meaning that the amount of data received
must be equal to or lower than the amount of data the cluster
can actually handle. When it is not the case, the application
becomes unstable and starts building up scheduling delay
(which is the delay between the time when a task is scheduled
and the time when it actually starts). With tools such as
Graphite or even the Spark Web UI, it is quite simple to
monitor a spark application and specially to make sure that
the scheduling delay does not build up.
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Anomaly Detection

Explanation:

Feature: node6_CPU011_Idle% (value was > 0.015)
Feature: node5_CPU003_User% (value was > 0.015)
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Explanation Discovery

node6_CPU011_Idle% <=0.015
samples = 1005240

value = [577986, 427254]
class = normal

samples = 136659
value = [17025, 119634]

class = abnormal

True

node5_CPU003_User% <=0.015
samples = 868581

value = [560961, 307620]
class = normal

False

samples = 123016
value = [24230, 98786]

class = abnormal

node5_CPU011_Idle% <=0.015
samples = 745565

value = [536731, 208834]
class = normal

samples = 101553
value = [32632, 68921]

class = abnormal

node8_CPU018_Idle% <=0.025
samples = 644012

value = [504099, 139913]
class = normal

samples = 100426
value = [46860, 53566]

class = abnormal

2_executor_runTime_count <=0.212
samples = 543586

value = [457239, 86347]
class = normal

2_executor_shuffleBytesWritten_count <=0.158
samples = 220919

value = [157481, 63438]
class = normal

node8_VM_nr_page_table_pages <=0.539
samples = 322667

value = [299758, 22909]
class = normal

samples = 117879
value = [101676, 16203]

class = normal

samples = 103040
value = [55805, 47235]

class = normal

samples = 100006
value = [86165, 13841]

class = normal

node5_CPU012_User% <=0.176
samples = 222661

value = [213593, 9068]
class = normal

samples = 122117
value = [119745, 2372]

class = normal

samples = 100544
value = [93848, 6696]

class = normal

Fig. 1. Graphical User Interface of EXAD, the new integrated system for anomaly detection and explanation discovery

However, detecting anomalies in Spark traces is much more
complex than just tracking the scheduling delay on each
application. First of all, it is not a reliable indicator for a
failure: for maximizing the use of the resources, users tend
to scale down as much as possible the resources used by one
application. As a consequence, having some scheduling delay
from time to time is common practice and does not necessarily
mean that a failure occurred (see on Figure 2). Moreover, the
scheduling delay is only a consequence of a failure that can
have occurred a while ago hence detecting the failure before
the application actually generates substantial scheduling delay
can provide the user some time to react.

For generating our synthetic data, we used a four-node
cluster that was run with Yarn. We created a concurrent envi-
ronment by running 5 jobs simultaneously on the cluster. The
metrics are coming from the default Spark Metrics monitoring
tool and we used a set of ten different spark workloads, with
and without injected failures to constitute our dataset.

When designing the failures, we targeted the anomalies
that had particular characteristics: the failure must have a
significant impact on the application and must create some
anomaly in the traces. Moreover, the failure must not lead to
an instant crash of the application (otherwise, it is pointless to
try to detect it). Finally, we must be able to precisely track the
failure (start and end time) to produce some precise labeling
of the data.

We designed three different types of failures, targeting

Fig. 2. Normal Trace

different levels of the application:
• Node failure: this is a very common failure specially on

large clusters, and it is mostly caused either by hardware
faults or maintenance. All the instances (driver and/or
executors) located on that node will be unreachable. As
a result, the master will restart them on another node,
causing delay on the processing. On Figure 3, there are
three distinct anomalies happening in the application:
the first two instances are executor failures (hence the



peak in both scheduling delay and processing time) while
the drop in the number of processed records indicates a
driver failure (hence the reset of the number of processed
records).

• Data source failure: for every application, the user
expects a certain data input rate and scales the application
resources accordingly. However, two scenarios need to
be detected as soon as possible. If the input rate is null
(meaning that no data is actually processed by Spark),
it indicates a failure of the data source (Kafka or HDFS
for instance) and a waste of resource on the cluster. On
the contrary, if the input rate is way higher than what the
application was scaled for, the receivers memory starts
filling up because the application can’t process data as
fast as it receives it. It can eventually lead to a crash of
the application.

• CPU contention failure: clusters are usually run with a
resource manager that allocate resources to each applica-
tion so that each of them have exclusive access to their
own resources. However, the resource manager does not
prevent external programs from using the resources that
it allocated previously. For instance, it is not uncommon
to have a Hadoop datanode using a high amount of cpu
on a node used by Spark. This generates a competition
for resources between the applications and the external
program which affect dramatically the throughput of the
applications.

Fig. 3. Spark application with multiple failures

III. SYSTEM DESIGN

A. System Architecture

Our system implements a two-pass approach to support
anomaly detection and explanation discovery in the same
stream analytics system. Though closely related, anomaly de-
tection and explanation discovery often differ in the optimiza-
tion objective. Therefore, our two-pass approach is designed
to handle anomaly detection and explanation discovery in two
different passes of the data, as shown Figure 4.

Fig. 4. An integrated system for anomaly detection and explanation
discovery

In the forward pass, the live data streams are used to
drive anomaly detection, and at the same time archived for
further analysis. The detected anomalies will be delivered
immediately to the user and the explanation discovery module.

Then in the backward pass, explanation discovery runs on
both the archived streams and feature sets created in the
forward pass. Once the explanation is found, it is delivered
to the user, with only a slight delay.

Anomaly detection in real-world applications raises two key
issues. 1) Feature space: The vast amount of raw data collected
from network logs, system traces, application traces, etc. does
not always present a sufficient feature set, which are expected
to be carefully-crafted features at an appropriate semantic level
for anomaly detection algorithms to work. This issue bears
similarity with other domains such as image search, where
the raw pixels of images present information at a semantic
level too low and with too much noise for effective object
recognition. 2) Modeling Complexity: The labeled anomalies
are often rare (in some cases non-existent), which indicates the
need of unsupervised learning or semi-supervised learning.
The effective model for anomaly detection may exhibit very
complex (non-linear) relationship with the features, which in-
dicates that the detection algorithms must have good expressive
power. The generalization ability is also critical to anomaly
detection since the task is often to detect anomalies that have
never happened before. To address both issues, we seek to
explore Deep Learning as a framework that addresses feature
engineering and anomaly detection in the same architecture.

To respond to the two challenges, we explore Deep Learn-
ing [4] as a new framework that addresses feature engineering
and anomaly detection in the same mechanism. Deep Learning
(DL) is a successful approach to processing natural signals,
and has been applied to various applications with best known
results achieved [4] due to its ability to learn more complex
structures and offer stronger expressive power. In addition,
deep learning produces a layered representation of features
that can be used in both anomaly detection and subsequent
explanation discovery.

As we discussed before, the logical formulas representing
explanations can be divided into different categories. For the
simple class (conjunctive queries), the explanations do not
aim to include complex temporal relationships, and hence



the dataset can be viewed as time-independent. In this case,
the auto-encoder method may be a candidate for anomaly
detection, while other more advanced methods may be added
later. For a broader class where the explanations include
temporal relationships, LSTM is more appropriate for anomaly
detection because it inherently models temporal information.

Unsupervised anomaly detection normally follow a general
scheme of modeling the available (presumably normal) data
and considering any points that do not fit this model well as
outliers. Many static (i.e., in non-temporally-dependent data)
outlier detection methods can be employed, simply by running
a sliding window (which removes the temporal dependence)
of pseudo-instances. For a window of size w, each pseudo-
instance has dw features. It can be remarked that due to the
possibility of unlabeled outliers existing in the training set,
methods should be robust to noise.

B. Methods for anomaly detection

Here we review the main approaches to anomaly detection.
Simple statistical methods. Many simple statistic methods

are appropriate for outlier detection, for example, measuring
how many standard deviations a test point lies from its mean.
Some approaches are surveyed in, e.g., [5]. Such methods,
however, are not straightforward to apply on multi-dimensional
data and often rely on assumptions of Gaussianity.

Density-based methods. Density-based methods, such as
k-nearest neighbors based detection (kNN) and local-outlier-
factor model (LOF) [6] assume that normal data will form
dense neighborhoods in feature space, and anomalous points
will be relatively distant from such neighborhoods. As non-
parametric methods, they rely on having an internal buffer of
instances (presumably normal ones) to which to compare a
query point under some distance metric. LOF uses a reacha-
bility distance to compute a local outlier factor score, whereas
kNN is typically employed with Euclidean distance.

These kind of methods are generally easy to deploy and
update, but they are sensitive to the data dimensions: Time
complexity is O(nd) for each query (given n buffered in-
stances each of dimension d), i.e., O(n2d) for n instances.

Isolation forest. In a decision tree, it is possible to consider
path length (from root to leaf) as proportional to the probability
of an instance being normal. Therefore, instances falling
through short paths may be flagged as anomalies. When this
effect is averaged over many trees – it is known as an isolation
forest [7].

Auto-encoder. A deep auto-encoder aims to learn an ar-
tificial neural structure such that the input data can be re-
constructed via this structure [8], [9]. In addition, the hidden
layer (of the narrowest width in the structure) can be used
as a short representation (or essence) of input. It has been
applied to anomaly detection, though often with a focus on
image data [10]. There is also pioneering work to use Neural
Networks for network anomaly detection. For example, in [11]
the authors used a device called Replicator Neural Network (a
concept similar to Auto-Encoder) to detect anomalous network
behaviors, in a time even before the current wave of DL

activities. The underlying assumption justifying using an auto-
encoder for anomaly detection is that the model will be formed
by normal data if not labeled, we assume that abnormal
data should be rare; if labeled, we can leverage supervised
learning to fine tune the auto-encoder. Consequently, what it
will learn is the mechanism for reconstructing data generated
by the normal pattern. Hence, the data corresponding to the
abnormal behavior should have a higher reconstruction error.
In our work we applied auto-encoders in the Spark cluster
monitoring task. Moreover, this deep auto-encoder extracts a
short representation of the original data, which can be used
as an extended feature set for explanation discovery in the
backward pass.

Long Short-Term Memory. The second method uses Long
Short-Term Memory (LSTM) [12]. It is an improved variant
of RNNs (Recurrent neural networks), which overcomes the
vanishing/exploding gradient difficulty of standard RNNs. It
has the ability to process arbitrary sequences of input, and
has been used recently to detect anomalies in time series. For
example, in [13], the authors applied semi-supervised anomaly
detection techniques. They first train a LSTM network of
normal behaviors, then apply this network to new instances
and obtain their likelihood with respect to the network. The
anomaly detection is based on a pre-determined threshold. In
this work, the measure used is the Euclidean distance between
ground truth and prediction. Alternatively, in [14] the authors
assumed that the error vectors follow a multivariate Gaussian
distribution. In our work, we are adapting two methods to
make them applicable in our setting.

Our initial results from cluster monitoring reveal that the
LSTM outperforms the auto-encoder, in F-score and recall,
for anomaly detection. Some possible explanations for why
the LSTM outperforms the auto-encoder are: First, the LSTM
has been provided with temporal information. To the contrary,
the auto-encoder may need to extract extra information by
itself (for example, the relative phase in a complete sequence
that has a consistent signal). This often requires more training
data and more complex structures. Second, our hypothesis that
the anomalies injected are not associated with temporal infor-
mation might not be true. Future research questions include:
1) Tuning architectures and cost functions: In current work,
we only use standard architectures and cost functions for the
neutral network architectures. It is worth investigating the best
architecture and the customized cost function that can improve
the detection accuracy for both methods. 2) Tradeoffs: We will
further investigate for which workloads they provide better
results for anomaly detection. Sometimes even if the intended
explanation is a conjunctive query, LSTM still outperforms
antoencoder for anomaly detection, which requires further
understanding. 3) Incremental training: Most DL algorithms
are designed for offline processing. However, in a stream
environment, new data is arriving all the time and needs to be
included in the training dataset. Ideally we need a mechanism
to leverage the new data in a timely manner, but incremental
training for DL methods is known to be hard. In ongoing
work, we are exploring an ensemble method, i.e., to build a
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performance relative to the class imbalance, shown as a dashed line (at 5%
anomaly rate, in this example on synthetic data). More area under the PRC
(AUPRC) indicates better performance; to a maximum of 1.

set of ”weak” detectors on the new data, and then to perform
anomaly detection using the combined result. Another idea is
to randomly initialize the weights of the last layer and retrain
with all data – it is a tradeoff between breaking local optima
and reducing training cost.

To make these methods adapting to dynamic environments:
Most deep learning algorithms are designed for offline pro-
cessing, especially for image processing, hence not good
for dynamic environments. Network/system anomaly detection
often requires the ability to handle a dynamically changing
environment where concept drifts are possible. To deal with
this, we are exploring a design that can make DL approaches
more applicable to the anomaly detection in live streams. In an
ongoing work we propose to separate the network architecture
into two parts: feature extraction and prediction. The feature
extraction part exhibit stable behavior (feature should be a
stable concept) hence should be trained offline mostly; the
prediction part is more sensitive to the dynamic changing en-
vironment, hence better use online training. Also this division
will reduce the cost for (online) training significantly which is
a key factor to make online training applicable in DL approach.

C. Performance Evaluation

Evaluation in anomaly detection is focused on the tradeoff
between detecting anomalies and false alarms; on data which is
typically very imbalanced. Setting a threshold for detection de-
fines the tradeoff. By varying such a threshold we can obtain a
precision-recall curve, and the area under this curve (AUPRC)
is a good evaluation metric in this case, as exemplified in
Fig III-C, since it evaluates the method’s general performance
without a need to calibrate a particular threshold value.

However, in real-world systems, detection plays only part
of the role. In most applications, interpretation of the anomaly,
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Fig. 6. Prediction of anormality (synthetic data). Note the importance of
thresholding: neither method can be certain of any normal example, and not
all methods (e.g., LOF) provide predictions bounded between 0 and 1.

i.e., explanation discovery, as explained in the following
section.

D. Explanation discovery

It is of paramount importance that the human user can
understand the ”root cause” behind an anomaly hehavior. After
all, it is human user who make decision and prevent anomalies
from happening. Hence the transformation of knowledge re-
garding the anomalies to a human understandable form is the
key in making anomaly detection fully useful. However, this
component is often missing in the anomaly detection work.

Quite often, a good anomaly detection procedure is not
good for generating human understandable explanation. For
example, most machine learning based anomaly detection
methods work as a black box by involving very complex,
non-linear functions which are hard for human to understand.
Also, thousands of parameters will participate in the anomaly
detection work which is impossible for human user to learn
knowledge from it.

We impose two special requirements for being a good expla-
nation besides the detection power. They are: 1). simplification
in term of quantity: we want to restrict the number of features
involved. 2). simplification of the formality: the explanation
should be easy to be interpreted by human user.

The simplest form we can imagine, is an atomic predicate
of the form (v o c) (v is a feature, c is a constant, and o is one
of five operators {>,≥,=,≤, <}). For each predicate of this
form, one can build a measurement representing its separation
power (the predicate can be viewed as a special binary
classifier). For example, an entropy based reward function
learned from the training data set based on their distinguishing
power between the normal and abnormal cases [15]. However,
due to the combinatorial explosion, it is not possible for us to
use similar methodology in calculating this measurement for
more complex combination of the atomic predicates.

In this work, we have tried two different ways to solve this
problem. The first one is to build a conjunction of the atomic



predicates, and use it as the explanation. Such a simplified
situation is indeed a submodular optimization problem. We
use greedy algorithm to find an approximated solution. Greedy
is a good and practical algorithm for solving monotonic
submodular optimization problem. However, in our case, the
problem is non-monotonic, which means there is no guarantee
of the performance of a simple greedy algorithm.

The second method we implemented is from the work of
[15], where we build the entropy based reward function for
atomic predicates as before. The form of the explanation we
are seeking is a Conjunctive Normal Form (CNF), and the
way we construct this CNF is to use heuristic-based method.
By searching through the achieved data set, we get some
additional information which will guide the construction.

There is yet another method that we implemented which
is learning based. It is inspired by a recent work [16]. We
customize their approach to construct an anomaly detection
model which can be translated directly into a logical formula.
In our implementation, we restrict the explanation as a Dis-
junctive Normal Form (DNF). First, we construct a neural
network model as the anomaly detection device, then we
approximate this neural network by a decision tree. In this
case, the explanation can be formed by the paths leading to
the leaves labeled as anomalies. Further, we impose a penalty
term which try to minimize the number of attributes involved
in the explanation (paths). For instance, we are able to produce
an explanation for the anomaly seen in the GUI (see Figure
1): from a Spark point of view, there is no scheduling delay so
a Spark user would probably not have seen the problem until
the scheduling delay appears (minutes later), and the cause
would have been hard to spot since the only visible shift is the
processing time. Using our decision tree, we can easily identify
the cause: the path indicates that the cpu consumption on node
5 is abnormally high (idle% is below 1.5%) and therefore
indicates some cpu contention on this node.

Our demo system shows in the explanation discovery phase:
1) The root cause corresponds to the anomalous behavior.

This is given by human experts. Also highlight some
features in the data to give an explanation to these
anomalies, this can be served as ground truth for human
user.

2) Given a data set includes a time period labeled as
anomalies, show the explanation constructed by different
algorithms. Here we do not have rigorous measurement,
some intuitive ones are: whether the features related to
root cause have been included in the explanation, how
complicated of the explanation, etc.

3) Use the explanation discovered as anomaly detection,
run on a new test data set, show the detection accuracy
(recall and precision, maybe detection phase as well).

IV. DEMONSTRATION PLAN

In the demonstration, we will show the performance of our
system in anomaly detection and in explanation discovery. We
organize the demonstration by different type of anomalies. In
the anomaly detection demonstration, we focus on the anomaly

detection accuracy and the ability to detect anomalies as early
as possible, which means we have two measurement. In the
explanation discover, we first show the ”root cause” given
by human expert, then show the explanations discovered by
different methods. Finally, we give another verification by
running the explanation as the anomaly detection on the new
test data.

V. CONCLUSIONS

We have built EXAD, a framework for anomaly detection,
in particular for detecting anomalies from traces of Apache
Spark jobs. In this framework we have gathered the most
well-known approaches to anomaly detection. In particular,
we have considered methods that can be easily adapted to a
streaming environment – which is natural to live tasks such as
job management. Our framework shows promise for studies
and practical deployments involving anomaly detection and
explanation.
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