
vldb manuscript No.
(will be inserted by the editor)

CLARO: Modeling and Processing Uncertain Data
Streams

Thanh T. L. Tran · Liping Peng · Yanlei Diao · Andrew McGregor ·
Anna Liu

the date of receipt and acceptance should be inserted later

Abstract Uncertain data streams, where data are in-
complete and imprecise, have been observed in many
environments. Feeding such data streams to existing
stream systems produces results of unknown quality,
which is of paramount concern to monitoring applica-
tions. In this paper, we present the Claro system that
supports stream processing for uncertain data naturally
captured using continuous random variables. Claro

employs a unique data model that is flexible and allows
efficient computation. Built on this model, we develop
evaluation techniques for relational operators by ex-
ploring statistical theory and approximation. We also
consider query planning for complex queries given an
accuracy requirement. Evaluation results show that our
techniques can achieve high performance while satisfying
accuracy requirements, and outperform state-of-the-art
sampling methods.

1 Introduction

Uncertain data management has become increasingly
important in a wide range of applications. Much research
in the literature has been motivated by traditional ap-
plications including data integration, information ex-
traction, and sensor networks (e.g., [13,20,26,30,31]).
More recently, research has shown that uncertain data
management also plays an important role in large-scale
scientific applications such as severe weather monitoring
[10] and computational astrophysics [24]. Most scientific
data that results from real-world measurements is inher-
ently noisy and uncertain. Capturing uncertainty from

T. T. L. Tran · L. Peng · Y. Diao · A. McGregor · A. Liu

University of Massachusetts, Amherst

E-mail: {ttran,lppeng,yanlei,mcgregor}@cs.umass.edu;
anna@math.umass.edu

input data to query output becomes a key component of
scientific data management systems. Below we discuss
several concrete applications that motivate our work.

RFID Tracking and Monitoring. RFID readers de-
ployed in a storage area return readings of tagged objects.
RFID cleaning and inference methods [26] can trans-
late noisy raw RFID data into location tuples (time,
tag id, weight, (x, y)p), where x and y locations, two
continuous-valued attributes, are probabilistic in nature
(denoted by the letter p) due to the use of inference. A
fire monitoring application could use the RFID deploy-
ment to detect violations of a fire code.

Query Q1 below triggers an alert when a flammable
object is exposed to a high temperature. This query
takes two inputs: a location stream as described above
for flammable objects, and a temperature sensor stream
with attributes (time, sensor id, (x, y), temp), and joins
them based on the location. The query is written as if
the x and y locations were precise.
Q1: Select Rstream(R.tag id, R.x, R.y, T.temp)

From FlammableObject [Now] As R,

Temperature [Partition By sensor id Rows 1] As T

Where T.temp > 60 ℃ and

R.x = T.x and R.y = T.y

Another example query triggers an alert when the
storage of flammable merchandise exceeds 200 pounds in
each unit area. Query Q2 detects such violation on the
location tuple stream: It keeps the most recent location
tuple for each object in the query window and groups
the tuples in the window by the area to which they
belong (where AreaId() returns the id of the area given
the object location and the area definition). For each
group, Q2 computes the total weight of objects and
raises an alert if the weight exceeds 200 pounds.
Q2: Select group id, sum(S.weight)

From Locations S [Partition By tag id Rows 1]

Group By AreaId(S.(x,y), AreaDef) as group id

2

Having sum(S.weight) > 200

Computational Astrophysics. Massive astrophysical
surveys will soon generate observations of 108 stars and
galaxies at nightly data rates of 0.5TB to 20TB [24].
The observations are inherently noisy as the objects can
be too dim to be recognized in a single image. However,
repeated observations (up to a thousand times) allow
scientists to model the location, brightness, and color of
objects using continuous distributions, denoted by (id,
time, (x, y)p, luminosityp, colorp). Then queries can be
issued to detect dynamic features, transient events, and
anomalous behaviors. Query Q3 below detects regions
of the sky of high luminosity from the observations in
the past hour. Similar to Q2, it groups the objects into
predefined regions and reports the regions where the
maximum luminosity exceeds a threshold.

Q3: Select group id, max(S.luminosity)

From Observations S [Range 1 hour]

Group By AreaId(S.(x,y), AreaDef) as group id

Having max(S.luminosity) > 20

Problem statement. In this paper, we address
uncertain data stream processing for data naturally
modeled by continuous random variables, such as many
types of sensor data, scientific data, and financial data.
We aim to support relational query processing on such
uncertain data by fully characterizing the distribution
of each tuple produced. Such distributions, called result
tuple distributions, can be exact or approximate. If ap-
proximate distributions are returned for performance
reasons, we further consider the interaction of the op-
erators in a complex query and seek a query plan that
meets an arbitrary given accuracy requirement.

Challenges. Uncertain data stream processing as
described above raises two challenges: First, it is com-
putationally difficult to obtain result distributions when
input tuples are modeled using continuous random vari-
ables. Such computation often involves multivariate inte-
grals or requires new algorithms to be designed. Second,
such computation must be performed for high-volume
data streams. While approximation is a common ap-
proach to improving efficiency, it must be able to achieve
a small bounded error while meeting stringent perfor-
mance requirements.

Despite a flurry of recent work on uncertain data
management, the above two challenges have not been
sufficiently addressed for several reasons. First of all,
most probabilistic databases, e.g., [2,3,7,22,30], and
probabilistic stream systems, e.g., [6,15,16], model tu-
ples using discrete random variables and evaluate queries
using the possible worlds semantics. The continuous na-
ture of our data, however, precludes the use of these
techniques as the possible values of a continuous random
variable cannot be enumerated.

Second, the state-of-the-art techniques for continu-
ous random variables employ either multivariate inte-
gration, discretization, or Monte Carlo simulation. The
integral-based approach to aggregation [5] performs n-1
integrals to compute the sum of n tuples. Its computa-
tion is too slow for stream processing. The discretization
approach [1,23] approximates continuous distributions
using discrete ones, and uses the possible worlds se-
mantics to evaluate queries. This approach, however,
does not offer any accuracy guarantee and can often
be inefficient, as we will show in our experiments. The
Monte Carlo approach [11,13] samples from the input
distributions and computes the result distribution from
the samples. While it is a simple and general approach,
a large number of samples is often needed to achieve
high accuracy, making it slow for stream processing, as
we will also show in our performance evaluation.

Third, conditioning operations (e.g., selections, group-
bys) on uncertain attributes complicate the problem fur-
ther. These operations can introduce uncertainty about
the tuple existence. This tuple existence, indicating
whether a tuple is present in a relation, is modeled by
a discrete random variable (e.g., a Bernoulli distribu-
tion). Hence, for complex queries we must handle both
continuous and discrete random variables. Moreover,
tuples of conditioned distributions make it harder to
compute the distributions of aggregates. Previous work
on aggregates in probabilistic databases was restricted
not only to discrete distributions but also to just the
moments of result distributions, e.g., the mean of max
and min [14,15,6], the mean and variance of sum, and
some higher moments of count [6]. In contrast, our work
aims to characterize full distributions of these aggregates.
Moreover, just knowing a few moments of aggregates
is not enough to answer queries accurately, as we will
demonstrate in our performance study.

Contributions. In this paper, we present a proba-
bilistic data stream system, called Claro, that supports
relational processing of uncertain data streams modeled
by continuous random variables.1 Claro provides a sys-
tems framework for continuous uncertain data, including
a data model, formal semantics, evaluation techniques
of relational operators, and query planning for complex
queries. Our main contributions include:

Data model . The foundation of Claro is a unique
data model, named mixed-type model. In this model,
continuous uncertain attributes follow Gaussian mix-
ture distributions, which can model complex real-world
distributions [18]. They also allow us to develop effi-
cient solutions for many relational operators. Besides
the attribute-level uncertainty captured by such distribu-

1 Our techniques can also be applied to probabilistic databases

by using a sequential scan to produce a stream of tuples.

3

tions, the mixed-type model can also capture tuple-level
uncertainty regarding the existence of a tuple.

Formal semantics. In like manner that the possi-
ble worlds semantics (PWS) [7] laid the foundation for
query processing on discrete uncertain data, we propose
formal semantics for relational processing under our
model for continuous uncertain data. Our formal seman-
tics, based on measure theory, is shown to be equivalent
to PWS when used in the discrete case.

Joins. Our choice of data model enables efficient
evaluation techniques for joins. We propose two types
of joins to suit different application semantics. The first
type models equi-joins on continuous-valued uncertain
attributes as a join of an input stream and a proba-
bilistic view. Claro supports such joins with regression
techniques to construct the view and then gives a closed-
form solution for result distributions. The second type
pairs tuples from two inputs by a cross-product. We
show that there are also closed-form result distributions
for such joins.

Aggregates of Gaussian mixture distributions.
Our data model also empowers us to design efficient tech-
niques for aggregates such as sum and avg. When the
tuple existence is certain, we show that there are exact
result distributions of aggregates, which eliminate the
use of integrals. In workloads when the exact solution is
slow, we derive approximate distributions with bounded
errors to improve efficiency. These techniques, when
used as a hybrid solution, can meet arbitrary accuracy
requirements while achieving high speed.

Aggregates under the mixed-type model. We
observe that conditioning operations (e.g., selection) can
introduce uncertainty regarding tuple existence, which
complicates the computation for aggregates. We propose
an approximate evaluation framework for the mixed-
type model that includes tuple existence probabilities.
Within this framework, we develop deterministic and
randomized approximation algorithms with error bounds
for common aggregates like max, min, sum, and count.

Query planning. A unique aspect of Claro is its
ability to meet arbitrary accuracy requirements even
for complex queries. Given a complex query, we arrange
the operators to first apply the closed-form solutions
and then approximation algorithms if needed. Starting
from the first approximate operator in the query plan,
we quantify the errors of this operator as well as all
subsequent operators. Based on the above results, we
can provision an error bound for each operator to meet
an overall query accuracy requirement.

Performance evaluation. We perform a thorough
evaluation of our techniques and compare them with
state-of-the-art sampling techniques. Our main results
are as follows: (i) When the tuple existence is certain,

our algorithms for joins and aggregates consistently out-
perform histogram-based sampling [11]. (ii) When the
tuple existence is uncertain, our deterministic algorithm
for max is faster than our randomized algorithm by or-
ders of magnitude. For sum, there is a tradeoff between
the two, depending on the workloads. (iii) For complex
queries involving conditioning and aggregation, our eval-
uation used real data and queries from the applications
of object tracking and computational astrophysics. Re-
sults show that our system can meet any given accuracy
requirement while achieving throughput of thousands of
tuples per second or higher for most workloads tested.

2 Data Models

We now present our data model, called mixed-type
model, for relational processing in Claro.

2.1 Gaussian Mixture Model

Our choice for modeling continuous-valued attributes
is Gaussian mixture models, abbreviated GMMs [18].
As an instance of probability mixture models, a GMM
describes a probability distribution using a convex com-
bination of Gaussian distributions.

Definition 1 A Gaussian mixture model for a contin-
uous random variable X is a mixture of m Gaussian
variables X1, X2, · · · , Xm. The probability density func-
tion (pdf) of X is:

fX(x) =
m∑
i=1

pifXi(x), fXi(x) =
1

σi
√

2π
e
− (x−µi)

2

2σ2
i ,

where 0 ≤ pi ≤ 1,
∑m
i=1 pi = 1, and each mixture

component Xi is a Gaussian distribution with mean µi
and variance σ2

i , or abbreviatedly Xi ∼ N (µi, σ2
i).

Definition 2 A multivariate Gaussian mixture model
for a random vector X naturally follows from the defini-
tion of multivariate Gaussian distributions:

fX(x) =
m∑
i=1

pifXi
(x),

fXi
(x) =

1
(2π)k/2|Σi|1/2

e−
1
2 (x−µi)

TΣ−1
i (x−µi),

where k is the size of the random vector, and each mix-
ture component Xi is a k-variate Gaussian distribution
with mean µi and covariance matrix Σi.

Claro adopts GMMs due to several key benefits
of these models. First, theoretical results have shown
that GMMs can approximate any continuous distribu-
tion arbitrarily well [18]. Hence, they are suitable for

4

Fig. 1 Location distribution of a recently moved object detected

using RFID readers.

modeling complex real-world distributions. Consider
an example in the RFID tracking application. Fig. 1
shows the inferred location distribution of a recently
moved object [26]. Here, the bivariate, bimodal GMM
represents the possibilities of the old and new locations
using two mixture components; each component is a
bivariate Gaussian modeling the joint distribution of
x and y locations. The second benefit of GMMs is ef-
ficient computation based on Gaussian properties and
statistical theory. The mean and variance of GMMs
can be computed directly from those of the mixture
components: E[X] =

∑m
i=1 piE[Xi], and V ar[X] =∑m

i=1 pi(V ar[Xi] + (E[Xi])2)− (E[X])2. Other compu-
tational benefits of GMMs, such as the characteristic
functions and product distributions are described in the
relevant later sections.

2.2 Mixed-type Model for Relational Processing

Input model. We now describe the model of the in-
put streams. An uncertain data stream is an infinite
sequence of tuples that conform to the schema Ad ∪Ap.
The attributes in Ad are deterministic attributes, like
those in traditional databases. The attributes in Ap

are continuous-valued uncertain attributes such as the
location of an object and the luminosity of a star. In
each tuple, the m attributes in Ap are modeled by a
vector of continuous random variables, X, that have a
joint pdf, fAp(x), defined on Rm. In our model, X are
captured by a multivariate GMM. If the attributes are
independent, this joint pdf may be further partitioned
into independent (univariate) GMMs.

Mixed-type model for relational processing.
To support relational processing of uncertain data in
our input model, we propose a richer model that char-
acterizes the uncertainty associated with tuples in inter-
mediate and final query results. Our model, called the
mixed-type model, essentially states that with probability
p, the tuple exists and when it exists, the deterministic
attributes take their original values and the uncertain
attributes follow a joint distribution.

Definition 3 Given a tuple with m continuous un-
certain attributes, denoted by Ax, n discrete uncer-
tain attributes Ay, and other deterministic attributes
Ad, its mixed-type distribution g is a pair (p, f): p ∈
[0, 1] is the tuple existence probability (TEP), and
f is the joint density function for all uncertain at-
tributes, defined as f(x,y) = fAx|Ay (x|y) · P [Ay = y].
Then, g characterizes a random vector (X,Y,Z) over
(Rm × Un × Ad) ∪ {⊥} (⊥ denotes the non-existence
case that is all-or-none over the variables in (X,Y,Z),
where

P [(X,Y,Z) = ⊥] = (1− p),

P
[
X ⊆ I,Y = y,Z = Ad

]
= p ·

∫
I

f(x,y)dx,

for I ⊆ Rm,y ∈ Un.

Note that the input model is a special case of the above
definition where p = 1 and n = 0.

Consider a simple example of applying a selection
predicate a ≤ X ≤ b on an attribute X characterized
by a pdf f(x). Given a value x drawn from the pdf, the
selection returns x if it satisfies the predicate, and ⊥
otherwise. The probability that a value is returned is∫ b
a
f(x)dx, which is the TEP of the result tuple. The

returned distribution is truncated to the selection in-
terval [a, b], and then normalized to remain a proper
distribution. The result tuple is then characterized by
two components, a TEP and a pdf, hence mixed-type.
In the context of a query, Fig. 2 illustrates the execution
of the group-by operator in Q2 under the mixed-type
model. (For simplicity, we consider the dimension x and
omit y.) Each group corresponds to a selection on the x
location using the interval associated with that group.
Then, for a given group and a distribution of x, group-by
is performed as in the above example.

An important note on the mixed-type model is that it
combines the tuple-level uncertainty (i.e., TEP) with the
attribute-level uncertainty. In fact, the TEP requires ev-
ery attribute of the tuple, when used in query processing,
to be modeled by a random variable. If an attribute was
deterministic before, it is now modeled by a Bernoulli
variable for taking its original value with probability
p and ⊥ otherwise, e.g., the attribute “weight” after
group-by in Fig. 2 is Bernoulli. If an attribute was un-
certain and modeled by a continuous distribution, it is
now modeled by a mixed-type distribution capturing
the joint event that the tuple exists and the attribute
follows the continuous distribution. Also, discrete un-
certain attributes can emerge as derived attributes, e.g.,
as the result of aggregating Bernoulli variables. There-
fore, in general, relational processing needs to consider
both discrete and continuous random variables under
the mixed-type model.

5

x
p

weight

1

2

3

1

2

3

Gi

(a) Input (b) Group Gi

iL≤ x ≤(i+1)L

CGi

TEP

1

...

1

1

...

30

...

40

10

0.9

...

0.6

0.7

...

30

...

40

10

x
p

TEPweight

Fig. 2 Group-bys in Q2 under the mixed-type model.

Our current data model does not handle correlations
among tuples. Inter-tuple correlations can be handled
using lineage [3] and Monte Carlo simulation [13]. Our
work can be viewed as an optimization of these gen-
eral systems when query processing does not produce
correlated intermediate results.

3 Formal Semantics of Relational Processing

We now propose the formal semantics of relational op-
erations under our mixed-type data model. (Note that
for mixed-type tuples, a continuous uncertain attribute
can follow any distribution, not restrictedly a Gaussian
mixture model.) The formal semantics is crucial because
it states the intended answer of each operation under
the chosen data model, hence ensuring the correctness of
query processing. A key observation is that the possible
worlds semantics (PWS) does not apply to continuous
random variables. First, the values of a continuous ran-
dom variable are uncountable. Second, the probability
of each possible world is simply zero. Hence, we cannot
construct possible worlds by enumerating values of a
continuous random variable and merge the results of the
possible worlds to get the result distribution. To address
this issue, we propose to use measure theory to quantify
the probabilities associated with subsets of values taken
from the domain of a random variable. We first state
the definition of probability space [4].

Definition 4 Probability Space. In measure theory,
a probability space of a random variable X is a triple
(SX ,FX , PX) where SX is the sample space consisting of
all possible values of X, FX is the σ-field over SX , and
PX is the probability measure capturing the probability
of any set in the σ-field.

A σ-field over SX is a nonempty collection of subsets of
SX that contains the empty set, is closed under comple-
mentation and countable unions of its members. There
can be many σ-fields associated with a sample space. For
probability space of a random variable, we only concern
with the smallest one that contains all of the open sets
in the sample space S. For example, if SX is the real
line, then FX is chosen to contain all sets of the form
[a, b], (a, b], (a, b), and [a, b), for all real numbers a and b

(the closed intervals are due to complementation). The
measure of the entire sample space is 1, or PX(SX) = 1.

We now define the probability space of our mixed-
type distributions. To focus on the main idea, we first
omit discrete random variables and discuss the extension
to them near the end of this section.

Definition 5 Probability Space of Mixed-type Dis-
tributions. Consider a random vector X described by
a mixed-type distribution (p, f) where p is the exis-
tence probability and f is the density function over Rm.
The probability space for X is characterized by: (1) the
sample space SX = Rm∪{⊥}, where ⊥ denotes the non-
existence case, (2) the σ-field FX over SX, and (3) the
probability measure PX such that given any set A in the
σ-field FX, PX(A) = (1−p)1(⊥ ∈ A)+p

∫
A\{⊥} f(x)dx.

We next use measure theory to define the semantics
of the relational operations. More precisely, given the
probability space of input tuples, we define the proba-
bility space of each output tuple.

3.1 Projection

Let (X,Y) be a random vector following a mixed-type
distribution (p, fXY). Consider the projection of (X,Y)
onto Y, i.e., projecting out X. Suppose that the domain
of X is R|X|, and the domain of Y is R|Y|.

The probability space of the projection result has
three items, the sample space SY = R|Y| ∪ {⊥}, the
σ-field FY over SY, and the probability measure defined
for any set A in FY as follows.

1. If A = {⊥}, then PY(A) = 1− p.
2. If A ⊂ R|Y|, then

PY(A) = p

∫
A

∫
R|X|

fXY(x,y)dxdy.

3. For any set A that contains both ⊥ and a subset
of the domain, its probability is the sum of the
probabilities of the two cases.

In fact, the third case, as a property of measure
theory, holds for all other operations; hence we will not
mention it explicitly hereafter.

3.2 Selection

Let X be a random vector following a mixed-type dis-
tribution (p, fX) with the probability space (SX,FX,

PX), where SX = R|X| ∪ {⊥}. Let X̄ be the output
of the selection X ∈ I, where I is the selection re-
gion. The probability space of X̄ has the same sample
space and σ-field as that of X. To define the probability
measure, we first define the selection probability, q, to
be the probability mass of f under the region I, i.e.,
q =

∫
R|X|∩I fX(x)dx. Consider a set A in FX̄.

6

1-p

⊥

p

 a1 b1

1-pq

⊥

pq

 a2 b2

a2 ≤ X ≤ b2

f f'

Fig. 3 Selection under the mixed-type model

1. If A = {⊥}, then

PX̄(A) = (1− p) + p

∫
R|X|\I

fX(x)dx = 1− pq.

2. If A ⊂ R|X|, then PX̄(A) = p
∫
A∩I f(x)dx.

Fig. 3 illustrates the result of a selection of a tuple X
following a mixed-type distribution (p, f), whose support
of f is [a1, b1]. The selection on X using the condition
a2 ≤ X ≤ b2 results in another distribution with reduced
support [a2, b2] and reduced TEP as defined above in
the probability measure. In §4.1, we will describe the
steps to obtain the result distributions.

3.3 Cross Product

Consider two independent random vectors, X and Y.
Let their probability spaces be (SX,FX, PX), and Y be
(SY,FY, PY), respectively.

The cross product of X and Y corresponds to the
joint distribution of the pair (X,Y). We now char-
acterize the probability space of X × Y, denoted as
(SXY,FXY, PXY). The probability space SXY is (R|X|×
R|Y|) ∪ {⊥}. Due to our convention of all-or-none ex-
istence among the variables, we define that the cross
product exists when both X and Y exists. Therefore,

1. If A = {⊥}, then PXY(A) = 1− pXpY.
2. For any A ⊂ (R|X| × R|Y|),

PXY(A) = pXpY

∫∫
A

fX(x)fY(y)dxdy.

3.4 Join using Probabilistic View

We first introduce the concept of a probabilistic view.
Consider the scenario when some attributes Y depend
on some other attributes X as follows. For a given x,
there is a distribution of Y, fY(y|X = x). Then we
say that Y view-depends on X and the collection of
these distributions for all values of x is a probabilistic
view. The formal definition is given in §4.3.1. We denote
the existence of the view with pY|X=x. For x where the
view is defined, pY|X=x = 1; otherwise, pY|X=x = 0.
Now given a tuple with the attributes X following a
distribution (pX, fX), the join of this tuple with the

Tag id Prob

0.5

0.5

20

10

Loc

0x333

Loc

10

20

0.1

0.2

0.3

Prob

0.4

50

70

Temp

30

50

20

Loc

10

10

204 0x333

0x3333

Tag id

0x333

0x333

2

1

PW

T1 Object Location

T2 Temperature

T3 Possible Worlds

70 0.4

50 0.6

0.850

0.230

ProbTemp

(a) Discrete Domain (b) Continuous Domain

fLoc(x)

fTemp(t|Loc=10)

x

t

Joint Distribution of (Loc, Temp)

Location Distribution

45 t58

15

Probabilistic View of Temperature given Location

fTemp(t|Loc=20)

Fig. 4 Compare equi-joins in the discrete domain (using PWS)

and in the continuous domain (using a probabilistic view).

view is characterized by the joint distribution that pairs
each value of X with the corresponding distribution of
Y from the view.

Let the probability space for the random vector X
of the join be (SX,FX, PX), and the mixed-type dis-
tribution of X be (pX, fX). Let the probability space
for the random variable Y given X = x (in the prob-
abilistic view) be (SY|x,FY|x, PY|x) and its distribu-
tion be (pY|X=x, fY|X=x). Then the joint probability
space for (X,Y) is characterized with the sample space
SX×SY|x, the σ-field FXY, and the probability measure
PXY, where for A ∈ FXY:

1. If A = {⊥}, then PXY(A) = 1− pXq,
where q =

∫
R|X| pY|X=xfX(x)dx.

2. If A ⊂ (R|X| × R|Y|), then

PXY(A) = pX

∫∫
A

pY|X=xfX(x)fY|X=x(y)dxdy.

Consider the example query Q1. In this query, there
are two input streams, the location stream and the tem-
perature reading stream. Fig. 4 illustrates the execution
of this query for both discrete and continuous domains,
assuming one-dimensional location x. The known possi-
ble worlds semantics is used for the discrete case. Now
we consider the continuous case.

Let (pi, fXi(x)) be the mixed-type distribution for
object i, where fXi(x) is the distribution of its location.
Assume that at location x, a temperature sensor obverses
the temperature fT |x(t). (In §4.3.1, we will discuss tech-
niques to construct this distribution from temperature
readings.) The collection of all of these observations
forms a probabilistic view of temperature given object
location. In general, a probabilistic view can be char-
acterized with both a distribution and an existence
probability pT |x. Depending on implementation choice,

7

pT |x can be set to 1, if there are enough observations for
the view. Then, the query computes the temperature of
each object in the location stream, which is a join with
the probabilistic view. Using the above definition, we
can quantify the probability space of the joint distribu-
tion of location and temperature for each object i with
existence probability pi and fi(x, t) = fXi(x) · fT |xi(t).
For the general case when the view may not exist for
some locations (i.e., pT |x ≤ 1), let qi =

∫
R fXi(x)pT |xdx;

then qi denotes the existence probability of the view
given object i. In this case, the new TEP of the join
result is p′i = piqi.

3.5 Aggregation

SUM. Let Y = X1 + X2. Consider the simple case
where X1 and X2 are univariate and independent. Xi

follows a mixed-type distribution (pXi , fXi) and has the
probability space (R∪{⊥},FXi , PXi), i = 1, 2. Then, the
sum Y has probability space characterized with the same
sample space SY = R∪{⊥}. Note that since X1 and X2

can either exist or not, there are four combinations of
how X1 and X2 contribute to the sum. The probability
measure is hence defined for any A ∈ FY as follows.

1. If A = {⊥}, then PY (A) = (1− pX1)(1− pX2).
2. If A ⊂ R, then, PY (A) =

pX1 (1− pX2) ·
Z

x∈A
fX1 (x)dx+ (1− pX1)pX2 ·

Z
x∈A

fX2 (x)dx

+pX1pX2 ·
Z

x1+x2∈A
fX1 (x1)fX2 (x2)dx1dx2.

In general, sum of n independent random variables can
be obtained using induction.

COUNT. In our model, count is equivalent to the
sum of Bernoulli random variables. The above semantics
for sum can be directly adapted to count by replacing the
probability density functions (pdfs) with the probability
mass functions (pmfs), and replacing integration with
summation. Also, the sample space of count is the set
of natural numbers N, i.e., does not include ⊥ — count
is 0 when none of the tuples exists. This is the same as
the possible worlds semantics.

MIN and MAX. The semantics for these aggre-
gates are defined similarly to that for sum; the only
difference is the integration region in the last term of
the probability measure. For example, for max, the inte-
gration region is max(x1, x2) ∈ A.

AVG. Since avg=sum/count, and count is proba-
bilistic due to the uncertainty of tuple existence, avg is
more complicated than sum and cannot be defined using
induction. Generally, it is defined by enumerating all
combinations of the input tuples’ existence. Consider
Y = avg(X1, X2, X3). Given a set A in the σ-field of Y ,

1. If A = {⊥}, PY (A) = (1− pX1)(1− pX2)(1− pX3)
2. If A ⊂ R, then

PY (A) = pX1 (1− pX2)(1− pX3)

Z
x∈A

fX1 (x1)dx1

+(1− pX1)pX2 (1− pX3)

Z
x∈A

fX2 (x2)dx2

+(1− pX1)(1− pX2)pX3

Z
x∈A

fX3 (x3)dx3

+pX1pX2 (1− pX3)

Z
(x1+x2)/2∈A

fX1 (x1)fX2 (x2)dx1dx2

+pX1 (1− pX2)pX3

Z
(x1+x3)/2∈A

fX1 (x1)fX3 (x3)dx1dx3

+(1− pX1)pX2pX3

Z
(x2+x3)/2∈A

fX2 (x2)fX3 (x3)dx2dx3

+pX1pX2pX3

Z
(x1+x2+x3)/3∈A

fX1 (x1)fX2 (x2)fX3 (x3)dx1dx2dx3

If there are more than 3 random variables, the semantics
is defined similarly by enumerating a number of terms
exponential in the number of input tuples.

3.6 Group-by Aggregation

Group-by aggregation involves repeated selections, with
a different condition per group. If selections involve
deterministic attributes, then the participation of a
tuple in a group is certain, and when it is a group, the
TEP remains the same. Aggregation of a set of tuples
in a group is defined as above. If selections involve
uncertain attributes, we will first use the definition of
selection to obtain the selection results, and then use
the definition of aggregation to obtain the results of
group-by aggregation.

Now consider queries Q2 and Q3, which are group-by
aggregation queries. Since they are similar, we focus on
Q3 here. Each object in the input stream is characterized
with the distributions of its location fX(x) and luminos-
ity fY (y); the tuple existence probability p is assumed
to be 1. The objective is to define the probability space
of max(S.luminosity) for each group. Let the condition
of the i-th group be x ∈ [iL, (i+ 1)L], where L denotes
the group length. For object i, the selection probability
is qi =

∫
x∈[iL,(i+1)L]

fXi(x)dx. The new TEP of object
i in this group is pi = qi. The result distribution of
Xi has a probability space defined as in §3.2. Then we
can characterize the distribution of max(S.luminosity),
which is Mi = maxk(fY k(y) · 1(k ∈ Group(i))), using
the semantics for max.

3.7 Equivalence to Possible Worlds Semantics

For discrete random variables characterized by probabil-
ity mass functions (pmfs), instead of probability density
functions (pdfs), the above definitions can still apply by
replacing integration with summation in the formulas

8

for probability measures. This is the same as the possible
worlds semantics (PWS), which has been defined for dis-
crete random variables. Hence, our proposed semantics
is consistent with the PWS. In general, for mixed-type
distributions involving both discrete and continuous at-
tributes, the formulas for probability measures use both
integration and summation.

4 Relational Processing under Mixed-type
Model

In this section, we consider the processing of relational
operations under the mixed-type model. We show that
for a substantial subset of operations, there are exact,
closed-form solutions. For other operations, we devise
approximate result distributions with bounded errors.

4.1 Selections

We first consider selections under the mixed-type model,
which involve applying a condition on some attributes
of mixed-type tuples. In §3.2, we define the semantics of
selection by characterizing its result distribution using
probability space. We now state how to obtain this result
distribution.

Let t be a tuple following a mixed-type distribution
g = (p, f), and let S be the support of f(x) such that S
is a subset of the domain of f , and f(x) 6= 0 for any x
in S. Consider a selection that applies a range condition
x ∈ I to (one or many) uncertain attributes in t. Let t̄
denote the result tuple. Then, its distribution ḡ = (p̄,
f̄) is computed as follows.

1. Compute the selection probability q, which is the
the probability mass of f in the selection range I,
q =

∫
S∩I f(x)dx.

2. Compute the new tuple existence probability, p̄ =
p · q.

3. Truncate the joint distribution so that its support is
restricted to the intersection of the original support
S and the selection range I, S̄ = S ∩ I.

4. Normalize the truncated distribution, f̄(x) = f(x)/q.

Note that a group-by operation applies repeated
selections with a different condition for every group,
hence the above process can be applied to compute the
result distribution of each tuple in a group. We will
mention conditioning operations when referring to both
selections and group-bys later.

4.2 Projections

A projection is equivalent to integrating over the at-
tributes that are projected out, or not in the projec-

tion list. For example, if an attribute xi from the at-
tributes x is projected out, the new distribution is
f ′(x\{xi}) =

∫
R f(x)dxi. If f is a GMM, this is a

marginalization of a multivariate GMM to get a GMM
of lower dimension. Under the mixed-type model, the
result tuple follows a mixed-type distribution with the
same tuple existence probability while the continuous
distribution is the result of marginalization.

4.3 Joins

We next consider efficient evaluation for joins under our
data model. We propose two types of joins of continuous
random attributes to suit different application semantics.
The first type deals with the complexities associated
with equi-joins on attributes modeled by continuous
random variables, which is the focus of this section.
Our system employs a probabilistic view to facilitate
such joins and offers a closed-form solution for inputs
characterized by Gaussian mixture models (GMMs), and
more general mixed-type models. The other (traditional)
type of join pairs tuples from two inputs for inequality
comparison and is modeled by a cross-product followed
by a selection [23]. We also show that cross-products
have exact result distributions under our data model.

4.3.1 Joins using Probabilistic Views

We now discuss equi-joins for continuous random vari-
able. Revisit the query Q1, which, retrieves the tempera-
ture for any given object location. The two common join
attributes (X, Y) in the object location stream are un-
certain and modeled by continuous random variables (in
contrast, the join attributes in the temperature stream
are the fixed sensor locations and hence deterministic).
This kind of joins is inherently difficult to support, since
given a tuple i, the value of (Xi, Yi) at a specific location
has probability 0, any join result that pairs a specific
value of the location tuple and a temperature tuple also
has probability 0.

To attain proper result distributions for such joins,
we use the notion of probabilistic views, as intro-
duced in §3.4. In Q1, a probabilistic view on the tem-
perature stream is the distribution of Temp given (x, y),
denoted by fTemp(t|x, y). Then, for each tuple i in the
location stream, the process of iterating all possible
values of (Xi, Yi) and retrieving the corresponding tem-
perature distribution can be compactly represented by
fXi,Yi(x, y)fTemp(t|x, y), yielding a joint distribution
fXi,Yi,Temp(x, y, t). Below we give formal definitions of
such equi-joins using probabilistic views.

Definition 6 We denote a stream by S(A∗,B∗, S̄), where
A is a vector of attributes that are deterministic or

9

probabilistic (denoted by A∗ = A or Ap), B is another
vector of deterministic or probabilistic attributes related
to attributes in A, and S̄ is a vector for the rest of the
attributes. The probabilistic view of B as a function
of A, denoted by VB|A(S), is a distribution of B for a
given value of A, characterized by fB(b|A = a).

Given an equi-join query, the suitable probabilistic
view can be recognized by the query compiler based on
the following observation: as in traditional databases,
equi-joins only include one copy of the join attributes,
say R.(X,Y), in the output; the other copy of the join
attributes, S.(X,Y), is used only for comparison but
suppressed from the output. This implies a probabilis-
tic view for the input, S, and the view is defined for
the S attributes included in the output, e.g., S.Temp,
dependent on the join attributes.

Definition 7 Given two independent streamsR(Ap, R̄)
and S(A∗, B∗, S̄) with the probabilistic view VB|A(S),
an equi-join of R and S on A using the probabilistic
view, denoted by R onv

A S is a join of R and VB|A(S):
For any tuple i in R, denoted by (Ai, R̄i), the join com-
bines the tuple with the view VB|A(S) and outputs a
tuple (Ai, R̄i,B) with the joint distribution defined as:

fAi,R̄i,B
(a, r̄,b) ≡ fAi,R̄i

(a, r̄) · fB(b|S.A = a).

In this definition, the join preserves each tuple in R
and extends it with the attributes in B from S.

Closed-form result distributions in GMMs.
Given the above definitions, we seek a closed-form solu-
tion to join results under our data model. Recall that
Claro describes uncertain attributes using mixed-type
distributions, where (multivariate) GMMs are used to
model continuous distributions. We propose a special
model for the probabilistic view, which we call order-1
linear regression, that allows us to obtain join result
distributions also in GMMs. While the assumption of
order-1 linearity may seem restrictive, it can be applied
to the view at either a global or local scale, allowing
implementation choices for both accuracy and efficiency.

We now consider the case when the tuples in R

follow GMMs (i.e., existence probabilities are 1), while
the join attributes A and the view attributes B in S are
deterministic. We present a theorem that offers result
distributions in GMMs for these inputs and then discuss
its extensions. (The proofs are available in [27].)

Theorem 1 Given R(Ap, R̄), S(A,B, S̄) with the view
VB|A(S), and the join Ronv

AS, assume order-1 linear
regression to model the view:

B = Aβ + E, (1)

where A, B, and E are row vectors, β is a parameter
matrix, and E is normally distributed with mean 0 and

covariance matrix ΣE. For each tuple i in R, if (Ai, R̄i)
follows a GMM, a mixture of m components identified
by the parameters (pc, µc, Σc), (c = 1..m), then based
on Definition 7, the join of tuple i and VB|A(S) yields a
distribution of (Ai, R̄i,B) which also follows a GMM, a
mixture of m components with parameters (pc, µ′c, Σ

′
c),

(c = 1..m):

µ′c = (µc,µcβ̄), β̄ =
(

β

0

)
, Σ′c =

(
Σc Σcβ̄

β̄
T
Σc ΣE + β̄

T
Σcβ̄

)
.

Theorem 1 fully characterizes each join result distribu-
tion with all of its parameters. In practice, β and ΣE
are unknown. They can be estimated using regression
over the tuples in S, denoted by (Aj,Bj, S̄j), (j = 1..n).
The least squares estimates of β and ΣE are:

β = (ÃT Ã)−1ÃT B̃ (2)

ΣE = B̃T (In − Ã(ÃT Ã)−1ÃT)B̃/(n− k), (3)

where Ã = (AT
1 , ...,A

T
n)T , B̃ = (BT

1 , ...,B
T
n)T , In is the

identity matrix of size n, and k is the size of vectors Ai.
We next discuss three extensions for Theorem 1 that

handle mixed-type tuples in R and S.
First, we consider the case when the existence of

the tuples in R is uncertain. If each tuple in R follows
a mixed-type distribution (p, f), where p is the tuple
existence probability (TEP) and f is a GMM as before,
then the join result tuple also follows a mixed-type
distribution (p′, f ′), where p′ = p, and f ′ follows a
GMM as stated in the theorem.

Second, we extend to the case when the attributes
in S are uncertain. We can show that when the view
attributes B follow GMMs, there is a closed-form so-
lution to the join result, which is also in GMMs (see
[27]). When the join attributes A in B are uncertain,
(e.g., modeled by GMMs), many smoothing techniques
are available for creating the view. In this work, we
opt to sample from the distributions of those uncer-
tain attributes, collect the samples into a new input S’,
and apply Theorem 1 to the original input R and the
new view input S’. This method allows us to obtain
a closed-form solution to the join result distribution
and guarantees that it is also in the form of GMMs.
Note that sampling here is on a GMM, hence easy and
fast. This is different from a sampling approach that
constructs the full join result distribution directly from
the samples—the lack of a model-based view and the
need to sample over the joint space makes this approach
less desirable, as we will show in §6.1.1.

Third, for the general case when the existence of
tuples in S is uncertain, we also propose to sample these
tuples. The difference here is that sampling may return
⊥, indicating that a tuple does not exist. We then handle

10

Left Outer
Join

Update WindowNOW Window

SR

[Partition By sensor_id

 Rows k]

time sensor_id x y tempptime tag_id xp yp

Top k tuples from

each sensor

[NOW]

Current location

tuple

V tempp | x,y : p(temp|x,y)

Probabilistic View

time tag_id xp yp tempp

xp = x and yp = y

Fig. 5 Query plan for the join using a probabilistic view (Q1).

this by omitting these samples and sampling for more
data points to run regression as above.

Evaluation Techniques. The query plan for Q1
with a join and a probabilistic view is depicted in Fig. 5.
The plan first applies the query-specified windows to
the inputs: A Now window feeds each location tuple as
the left input to the join. An Update window, [Parti-
tion By sensor id Rows k], contains the most recent k
temperature tuples from each sensor; the probabilistic
view Vtemp|x,y is maintained over the update window
and is the right input to the join. The join extends each
location tuple with the temperature presented by the
view, and returns a joint distribution.

Given the closed-form result distribution, the main
implementation issue is the view construction using
regression. While recent research has applied regression
to build models and views for sensor data [12,9], our
work differs by exploring the tradeoffs of using order-1
linear regression at a global versus local scale.

Global regression applies regression equations (Eq.
2 and Eq. 3) to all S tuples in the current update
window to construct the view. As proposed in recent
work [12], the view can be maintained incrementally by
updating intermediate matrices for β, e.g., ÃT Ã and
ÃT B̃ in Eq. 2. Then, when an R tuple arrives, the view
is refreshed by completing the matrix operations for β

and ΣE . A fundamental limitation of global regression
is that the order-1 linear assumption may not hold
over the entire view. For Q1, the temperature may not
be a linear function of the location but rather, say, a
quadratic function. In that case, global regression may
be inaccurate when its assumption fails to hold.

Local regression is motivated by the statistical the-
ory that a smooth function can be approximated by a
low degree polynomial, e.g., a linear function, in the
neighborhood of any point. We design a local regression
method as follows: Given each R tuple following a GMM,
use the means and the variances of the components of
the GMM to define a sufficient local regression region
(LRR). As a simple example, the LRR for an R tuple
that follows N (µ, σ2) can be [µ − mσ, µ + mσ] with

m ≥ 2. Then, retrieve the subset of S tuples that reside
in the LRR and apply regression to these tuples.

A key advantage of this method is that it does not
require the assumption of global linearity, hence allow-
ing more accurate view construction. However, a very
small set of tuples in the LRR may not have enough
data points to achieve the accuracy (which is a data
problem, not a model problem). When this problem
occurs, we can collect more data points by adjusting the
LRR appropriately (as shown experimentally in §6.1.1).
Computation-wise, regression is applied to a small set
of tuples, hence with a low cost.

4.3.2 Joins using Cross-Product

We now summarize the main result for joins using cross-
product, which is straightforward under our data model.
It can be applied in the scenarios where a join is modeled
using a cross-product followed by a selection [23]—in
this case, only inequality predicates are allowed to avoid
join results of zero probability. An example is a query in
the RFID domain that detects the co-location of peanut
and peanut-free food: it compares every pair of objects
for proximity in location. Our system supports such joins
with closed-form result distributions under the mixed-
type model. More specifically, if two join attributes are
uncertain and follow mixed-type distributions (p1, f1)
and (p2, f2), then the join result follows a mixed-type
(p, f) where p = p1 · p2, f = f1 · f2. If f1 and f2 are
GMMs, then f is a multivariate GMM. Any subsequent
selection for a specific region of f can be performed as
detailed in §4.1.

4.4 An Evaluation Framework for Aggregation

In this section, we address aggregation of continuous-
valued uncertain tuples. The nature of computation
for aggregates such as sum and avg is multivariate in-
tegration, which is inherently expensive. Fig. 6 shows
an example of avg of continuous random varibles. A
state-of-the-art approach is integral-based [5], which in-
tegrates two variables at a time, resulting in the use
of n-1 integrals to aggregate n variables. An alterna-
tive sampling-based approach [11,23] generates samples
from the input distributions and computes aggregates
from these samples. However, it is hard to know the
right number of samples to exploit the tradeoff between
accuracy and performance, as we will show in the ex-
periments. Another approach is to discretize continuous
distributions and use existing algorithms for discrete
distributions to compute sum and avg [16]. This has
a time complexity O(nD3), where n is the number of
tuples and D is the domain size of each tuple, hence be-

11

coming inefficient for large domains like what continuous
variables require.

Our work departs from existing approaches by ex-
ploring advanced statistical theory to obtain exact re-
sult distributions, whenever possible, while completely
eliminating the use of integrals. When the exact result
distributions are complex, we provide an efficient ap-
proximation technique to simplify their formulas while
satisfying given accuracy requirements. In other cases
when it is hard to obtain the closed-form solutions, we
seek approximation algorithms to directly compute the
distribution of aggregates with bounded errors.

We next present an evaluation framework including
metrics and objectives that we will use in our approxi-
mation algorithms for aggregation.
A. Metrics. We introduce two common distance met-
rics to approximate the distributions of aggregates.

The point-based Variation Distance (VD), similar in
idea to the VD in [11], is used as a distance metric for
two continuous distributions.

Definition 8 Given two probability density functions
(pdf’s) f(x) and g(x), the VD is defined as:

VD(f, g) =
1
2

∫
R
|f(x)− g(x)|dx.

The constant 1/2 ensures that VD is in [0,1].

Another distance metric based on a standard measure
in statistics, is the Kolmogorov-Smirnov (KS) distance.

Definition 9 Given two one-dimensional cumulative
distribution functions (CDF’s) F,G : R→ [0, 1], the KS
distance is defined as: KS(F,G) = supx |F (x)−G(x)|.

The following proposition states the relationship be-
tween the two distance metrics. (The proof is in [27].)

Proposition 1 The KS distance of two CDF’s, KS(F ,
G) and the variation distance of the corresponding pdf ’s,
VD(f, g), satisfy KS(F , G) ≤ VD(f, g). In some cases,
KS(F , G) can be arbitrarily smaller than VD(f, g).

Since KS(F , G) ≤ VD(f, g) always holds, any approxi-
mation algorithm that satisfies the error bound ε using
the VD metric also has a KS distance bounded above
by ε. Therefore, approximation algorithms using the
VD metric can be readily included in an evaluation
framework that employs the KS distance as the metric.

In the following sections, we derive approximation al-
gorithms using the KS distance. We include the variation
distance to compare our techniques with a state-of-the-
art technique that uses this metric [11].
B. Approximation Objective. We next state the
definition of (ε, δ) approximation using KS distance as
the metric. (The definition using VD follows directly.)

0

0.2

0.4

0.6

3 8 13

0

0.2

0.4

0.6

0 5 10 15 20 25

0

0.2

0.4

0.6

15 20 25 30 35

f1

t2

t3

t1

f2

f3

0

0.2

0.4

0.6

8 13 18 23

Fig. 6 Aggregation of continuous random variables.

Definition 10 A (randomized) algorithm computes an
(ε, δ) approximation if the KS distance between the
approximate distribution and its corresponding exact
distribution is at most ε with probability 1− δ.

δ = 0 corresponds to deterministic algorithms.

4.5 Aggregations under GMM (TEP=1)

We now address aggregation of uncertain tuples whose
existence is certain, i.e., the existence probabilities are
1, and the tuples follow Gaussian mixture models. This
includes our input model, hence a common case in our
applications. We focus on sum and avg because they
are crucial to our target applications but have not been
sufficiently addressed in the literature.2

4.5.1 A Basic Algorithm

We next introduce characteristic functions and describe
a basic algorithm to derive the result distribution for
sum of a set of independent tuples. When tuples exist
with probabilities 1, count is deterministic; thus, the
modification to avg is straightforward, hence omitted.

In probability theory, characteristic functions (CFs)
[4] are used to “characterize” distributions. Specifically,
the CF of a random variable U is defined as:

ΦU (t) = E[eiUt], (4)

where E denotes the expected value and i is the complex
number

√
−1. The pdf of U then can be obtained by

the inverse transformation of the CF:

fU (x) =
1

2π

∫ +∞

−∞
e−itxΦU (t)dt. (5)

Now let us consider sum(A), with the attribute A in
n tuples modeled using random variables X1, ..., Xn.
Let U = X1 +X2 + ...+Xn. The CF of U is:

ΦU (t) = E[eiUt] = E[ei(X1+X2+...+Xn)t]

= ΦX1(t)ΦX2(t)...ΦXn(t) (6)

2 Our technique for min and max is similar to that in [5], hence

omitted in this paper.

12

That is, the CF of U can be written as the product
of the CFs of the input tuples based on the indepen-
dence assumption. This suggests a simple algorithm for
sum: (1) Get the CF of each input tuple and take the
product of these functions according to Eq. 6. (2) For a
given value x, apply the inverse transformation to yield
fU (x) according to Eq. 5. In particular, we call the in-
verse transformation in the second step a parameterized
integral because it takes an argument x.

In the context of Gaussian mixture models (GMMs),
the CFs can be expressed in closed form. For example,
for a Gaussian mixture of two components:

f(x) = p1N (µ1, σ
2
1) + p2N (µ2, σ

2
2),

its CF can be directly obtained as:

ΦX(t) = p1e
iµ1t− 1

2σ
2
1t

2
+ p2e

iµ2t− 1
2σ

2
2t

2
.

Thus, Step 1 of the above algorithm does not involve
any integration. The only integral required is the one for
inverse transformation in Step 2. This analysis holds for
all common distributions whose characteristic functions
are known. This gives a boost in performance compared
to the two-variable convolution method, which requires
n-1 parameterized integrals [5].

The main drawback of this approach is that the for-
mula of the result distribution involves an unresolved
parameterized integral. To get sufficient knowledge of
the result distribution (e.g., calculating its mean and
variance), one needs to repeat the inverse transforma-
tion for a large number of points. This is expensive
when the integration has no closed-form solution and
needs resorting to numerical solutions. Moreover, it is
unknown if the result distribution is a GMM.

4.5.2 Exact Derivation of Result Distributions

The discussion in the previous section motivated us to
seek a solution without using integration. For GMMs, it
turns out that we can obtain the closed-form solution
to the inverse transformation. In addition, when input
tuples are GMMs and independent, the result of sum
over those tuples is also a GMM that can be directly
obtained from the input tuples.

Theorem 2 Let each Xi (i = 1..n) be a mixture of mi

components identified by the parameters (pij , µij , σij), (j =
1..mi). The result distribution for U =

∑n
i=1Xi is a

Gaussian mixture of
∏n
i=1mi components, each of which

corresponds to a unique combination that takes one
component from each input Gaussian mixture {ji}(i =
1..n, j = 1..mi) and is identified by (pk, µk, σk):

pk =
n∏
i=1

pji , µk =
n∑
i=1

µji , σk =

√√√√ n∑
i=1

σ2
ji
. (7)

This theorem can be proved by manipulation of the
inverse transformation formula. The result subsumes the
well-known linear property of Gaussian distributions.

This technique gives an exact solution. The compu-
tation involved is to enumerate and compute all com-
ponents of the result Gaussian mixture, which grows
exponentially in the number of tuples, n. Hence, this
technique is inefficient when n is large.

4.5.3 Approximation of Result Distributions

We next propose to approximate the exact result distri-
bution by performing function fitting in the Character-
istic Function (CF) space. This is based on the property
that the CF of sum can be compactly represented as
a product of n individual CFs (Eq. 6), rather than an
exponential number of components (Eq. 7). Our goal is
to find some Gaussian mixture distribution whose CF
best fits this product function.

Algorithm 1 Sketch of the CF fitting algorithm for
approximation
1: Obtain the expression of the CF of the sum, Φsum(t) =Qn

i=1 ΦXi (t). This is a complex function.

2: Take P points {ti}, (i = 1..P) from the domain of Φsum(t),

and compute {Φsum(ti)}, (i = 1..P).
3: Start with K = 1. Consider a Gaussian mixture of K compo-

nents. The corresponding CF is Φ(t).
4: Run least squares fitting to minimize:PP

i=1

ˆ
(Re(Φ(ti)− Φsum(ti)))

2 + (Im(Φ(ti)− Φsum(ti)))
2
˜
.

5: Get the fitting residual. If this is smaller than a threshold ε,
return the fitted Gaussian mixture. Otherwise, increase K by

one (by default) and go back to step 3.

We devise an approximation algorithm, named Char-
acteristic Function (CF) fitting, which is sketched
in Algorithm 1. The algorithm starts with one compo-
nent Gaussian mixture, running the least squares fitting.
If the fitting residual is below a threshold, it returns the
fitted parameters; otherwise it increases the number of
components and repeats fitting. Note that the objective
function for fitting contains both real and imaginary
parts, since the CFs are complex functions and both
parts contribute to the result pdf via inverse transfor-
mation. This algorithm eliminates the exponential cost
as for exact derivation, and incurs a cost polynomial
in the number of tuples n, the number of components
per tuple (Steps 1 and 2), and the size of the result
distribution K (Steps 3 and 4).

Optimizations. We further employ a suite of op-
timizations based on statistical theory to improve per-
formance and accuracy. The first optimization regards
the choice of an appropriate range in the domain of the
CF Φsum(t) for fitting. The formula of Φsum(t) indicates
that it approaches 0 fast as t moves from the center 0.

13

Fig. 7 Example characteristic function for sum of 10 tuples.

Fig. 7 shows an example CF for sum of 10 tuples, with
both real and imaginary parts. Given this observation,
we set the range for fitting to be a small region centered
around 0 so that points taken can better capture the
shape of the function to be fitted.

The second optimization concerns the initial guess
of the parameters of a K-component Gaussian mixture.
Due to the oscillating behavior of the CF, the fitting
result is quite sensitive to the initial guess and can get
stuck in local optima. We use Theorem 2 to precompute
a small number of result components whose means are
spread out and use them as the initial guess for fitting.

Test Condition for Convergence. We determine
whether the fitting result satisfies a KS requirement, ε,
by approximately computing the distance between the
the approximate distribution and the true distribution.
To do so, we approximate the inverse transformation to
obtain the CDF’s by using the points in fitting to esti-
mate the integrals. Specifically, we check if the following
condition holds to stop fitting.
P∑
i=1

[Re(Φ(ti)−Φsum(ti)) + Im((Φ(ti)−Φsum(ti))]
∆t

ti
≤ ε

where ti (i = 1..P) are points used in fitting. This holds
because for points outside this range, the values of the
CFs are close to 0. A similar condition can also be
derived if VD is used as the metric.

Relation to the Central Limit Theorem. The
Central Limit Theorem (CLT) is a special case of our
CF fitting algorithm. It states that the sum of a suffi-
ciently large number of independent random variables is
normally distributed [4]. This gives an asymptotic result
but our algorithm dynamically determines when this
result can apply. For example, a weather monitoring
system sometimes requires a small number of stream
segments to be averaged, for which our algorithm deter-
mines that the CLT does not apply, whereas when the
number of tuples is sufficiently large (e.g., greater than
20), the result distribution starts to become a single
smooth Gaussian.

4.5.4 Hybrid Solution

The two algorithms for aggregation, exact derivation
and CF fitting, can be combined into a hybrid solution

to exploit their advantages. When the number of tuples
is small, we use exact derivation since it is fast and its
formula is not complex. When the number of tuples is
large enough, we switch to CF fitting. This way, we take
the advantage of each algorithm in the range it performs
best. We observe that the switching points among the
two mainly depend on the number of tuples and less so
on other data characteristics, as shown in §6.1.2.

4.6 Aggregations under Mixed-type Model (TEP ≤ 1)

We have considered aggregation when the existence of tu-
ples is certain. However, in the presence of conditioning
operations, e.g., selections, the existence probabilities of
tuples become less than 1, precluding the above closed-
form solution and its approximation for aggregation. In
this section, we seek to directly devise approximation
algorithms to compute aggregates of conditioned tuples.

4.6.1 Approximate Representation for CDFs

We first extend our approximation framework to include
a new approximate representation for approximation al-
gorithms to compute aggregates. We employ cumulative
distribution functions (CDFs) to approximate distribu-
tions of aggregates due to two desirable properties of a
CDF: (1) it is a non-decreasing function ranging from
0 to 1, and (2) it can be defined at any point in the
real domain; e.g., the CDF of a discrete random vari-
able can be represented as a step function. We employ
two specific CDF functions, StepCDF and LinCDF, for
approximate representations.

Definition 11 Given a set of points P = {(x1, y1), . . . ,
(xk, yk)} where x1 ≤ x2 ≤ . . . ≤ xk and 0 ≤ y1 ≤ . . . ≤
yk = 1, StepCDFP is the piecewise constant function
that interpolates between the points whereas LinCDFP
is a piecewise linear function that interpolates between
the points:

StepCDFP (x) =

8><>:
0 if x < x1

yi if xi ≤ x < xi+1

1 if x ≥ xk

LinCDFP (x) =

8>><>>:
0 if x < x1

yi + x−xi
xi+1−xi

(yi+1 − yi) if xi ≤ x < xi+1

1 if x ≥ xk

Objectives. Using these approximate representations,
we devise algorithms that construct approximate distri-
butions of aggregates over uncertain data. If FAt is the
cumulative distribution of aggregate At = A(Y1, . . . , Yt),
where Yi’s are independent, we seek an algorithm that
maintains an approximation F̃At incrementally as data
arrives while satisfying a given error bound.

14

For all standard aggregates, the existence probabil-
ity of the aggregate result, p, can be computed exactly.
Specifically, for count, p = 1; for sum, avg, max and
min, an aggregate exists if one of the input tuples ex-
ists; hence, p = 1 −

∏
i(1 − pi). Therefore, below we

focus on algorithms that compute (ε, δ) approximate
distributions given that the aggregates exist.

4.6.2 Distributions of MAX and MIN

In this section, we present a deterministic algorithm
to compute approximate distributions of max and min.
Since the algorithm is similar for both aggregates, our
discussion below focuses on max.

We define the random variable Mt = max(Y1, . . . , Yt)
where Yi is the random variable corresponding to the i-
th tuple, and let FMt be the CDF of Mt. Recall that our
mixed-type data model incorporates both continuous
and discrete variables that arise from tuple existence un-
certainty. To provide a uniform solution, we first consider
discrete variables and later extend to the continuous
case. We assume that each Yi takes λ values from a
finite universe of size U, without loss of generality, [1, n],
or shortly [n].

A useful property of max is that FMt (x) can be easily
computed for any specific value of x, if x is known ahead
of time, because FMt (x) =

∏
i∈[t] P [Yi ≤ x]. Therefore,

it is sufficient to maintain FMt (x) for every x in the
universe and update it when a new tuple arrives. This
computes the exact distribution of max with the update
cost per tuple O(U), hence inefficient for stream process-
ing. Probabilistic databases compute the distribution
of max based on the extensional semantics [7], with the
high total cost of O(tU) for a relation of t tuples; further,
this is not an incremental algorithm.

An natural attempt given the above observation is
to approximate the distribution of max by maintaining
its values at a set of points. However, it is impossible
to choose this set of points in advance to get a good
approximation. The main idea of our algorithm is to
dynamically partition the universe into consecutive in-
tervals. For each interval, we maintain the estimates of
the cumulative probabilities of its two ends. Because
the CDF is non-decreasing, if the estimates of the two
ends are sufficiently close, either of these estimates is a
good estimate for all the intermediate points.
Approximate Representation with Invariants. We
employ an approximate representation based on StepCDF
for F̃Mt . The universe is partitioned into consecutive in-
tervals: [1, n] = ∪i[ai, bi], where ai+1 = bi + 1. For each
interval [a, b], we maintain ca and cb to be the estimates
of cumulative probabilities at a and b. Each interval [a, b]
is then viewed as a broad step, which contains a straight

line from a to b−1 and possibly a jump at b if cb 6= ca, as
illustrated in intervals I1 and I3 in Fig. 8(a). This yields
a StepCDF defined over the point set {a1, b1, a2, b2, . . .}.

The algorithm has the following two invariants. At
any point, given any interval [ai, bi] and a constant
parameter ε′ (see Theorem 3 on how to set ε′ as a
function of the accuracy requirement ε) , we have:

(1) cbi ≤ cai(1 + ε′), (2) cai+1 ≥ cai
√

1 + ε′

Invariant 1 guarantees that the estimates of the two
ends of an interval are close, so the errors for the points
in between can be bounded. Invariant 2 ensures that the
estimates of any two adjacent intervals are separated
by at least a certain factor. Given the range [0, 1] of
CDF’s, the number of intervals to be maintained is hence
bounded, which gives an upper bound on the time and
space required for the algorithm.
MAX Algorithm. This algorithm computes the ap-
proximate distribution of max incrementally. The al-
gorithm first initializes F̃Mt (x) with one interval, I =
{[1, n]}, c1 = cn = 1. When a new tuple arrives, the al-
gorithm proceeds by updating the intervals in I, subpar-
titioning and adjusting some intervals when necessary.
When an approximation is required, a StepCDF based
on the intervals and estimates is returned. Below are
the main steps performed per tuple.

0. Preprocessing: Construct a CDF from λ values in
the tuple Yt.

1. Updating and Pruning: For each interval I = [a, b]
in the current max distribution, update its estimates
with the new tuple: c′a = ca · P [Yt ≤ a] and c′b = cb ·
P [Yt ≤ b] (see Fig. 8b & c). If after updating, c′b < ε,
discard the interval. Note that the ratio between the
updated estimates of the two ends can only increase.

2. Subpartitioning: This step is performed to ensure
that Invariant 1 is satisfied. If updating with the new
tuple results in c′b > c′a(1+ε′) for some interval I = [a, b],
we subpartition that interval into subintervals I1 =
[a1, b1], . . . , Ik = [ak, bk] with a1 = a, ai+1 = bi + 1, so
that Invariant 1 holds (see Fig. 8d). The implementation
ensures that the interval is not partitioned excessively.
Then, for each x ∈ {a1, b1, a2, b2, . . . , bk}, we update cx
as cxP [Yt ≤ x].

3. Adjusting: This step deals with a subtle issue
regarding the efficiency of the algorithm. If, among the
intervals after subpartitioning, there exists an interval
Ii, whose width is greater than half of the width of
the original interval I, we split it into two intervals
Ii1, Ii2 with equal width. This step ensures that each
new interval is at most half the width of I. However,
this results in Ii1 and Ii2 having the same estimates; to
ensure Invariant 2, one of the intervals is shifted by a
factor

√
1 + ε′. Fig. 8e illustrates this step.

15

a1 b1a2
b2a3 b3

(a) StepCDF defined on 3 intervals

I1
I2 I3

a b

ca

cb

a b

c'a

c'b

v1 v2
a b

c'a

c'b

v1 v2 a b

c'a

c'b

v1 v2

I I
I1 I2 I1 I21

I22

(b)Interval I
before updating

(c) Updating I using
values v1, v2

(d) Subpartitioning I at v1
in this example

(e) Splitting I2 into I21 and I22,
and shifting I21

Fig. 8 StepCDF and illustration of the basic steps of the MAX algorithm.

Analysis. We define two properties for any interval:
The generation g of an interval is the number of splits
made to generate that interval. Note that the algorithm
starts with one interval having g = 0. The net shifting
effect s of an interval is the net number of times the
interval has been shifted. s is incremented by 1 when
the interval is shifted up, and decremented by 1 when
shifted down. The proofs of the following lemmas and
theorem are available in [28].

Lemma 1 For any interval I = [a, b] of generation g
and net shifting effect s, after t tuples have been pro-
cessed, for v ∈ {a, b},

FMt (v) ∈ [cv/(
√

1 + ε′)s, cv/(
√

1 + ε′)s · (1 + ε′)g] .

Furthermore, for any x ∈ [a, b],

FMt (x) ∈ [ca/(
√

1 + ε′)s, cb/(
√

1 + ε′)s · (1 + ε′)g] .

Lemma 2 At any time, the number of intervals is
bounded as follows: |I| ≤ 2 log(ε−1)/ log(1 + ε′).

Lemma 3 The maximum generation of an interval is
log U.

Theorem 3 The algorithm for max maintains an (ε, 0)
approximation for FMt where ε′ = ε(1+0.5εeε)−1(log U+
1)−1. The space use is O(ε−1 log U ln ε−1) and the update
time per-tuple is O(min(λt, ε−1 log U ln ε−1) + λ).

Supporting Continuous Distributions. When in-
put tuples are modeled by continuous random variables,
e.g., Gaussian distributions for object locations, a gen-
eral approach is to consider a real universe of size 264.
The complexity is then proportional to log U = 64. In
most applications, the universe size depends on the
range and precision of measurements, often with smaller
values of U and the number of values per tuple λ fur-
ther less than U. This combined effect can yield a fast
algorithm (as shown in §6.2.1).

4.6.3 Distributions of SUM and COUNT

In this section, we consider the aggregates sum and
count. Since count is a special case of sum, we focus
on sum in the discussion below. We define the random
variable St =

∑
i∈[t] Yi and let FSt be the corresponding

CDF, where Yi is the random variable corresponding to
the i-th tuple. If the mean and variance of each Yi are
bounded, the Central Limit Theorem (CLT) states that
the distribution of St tends towards a Gaussian distri-
bution as t goes to infinity. But for many applications,
this asymptotic result cannot apply. In the probabilistic
databases where input tuples are modeled by discrete
distributions, the exact distribution of sum can be com-
puted using possible worlds semantics, which has an
exponential complexity in the number of tuples [7]. We
instead present a deterministic algorithm that computes
the approximate distribution of sum more efficiently.
Approximate Representation using Quantiles. We
use StepCDF and LinCDF with the set of points based
on the quantiles of a distribution. For some 0 < ε < 1,
a particularly useful set of k = d1/εe points are those
corresponding to uniform quantiles, or shortly quantiles,
of the distribution, denoted by Q(ε), such that:

PQ(ε)(F) = {(x1, ε), (x2, 2ε), . . . (xk, 1)} .

where each xi = F−1(iε). It is easy to show that

KS(F,LinCDFPQ(ε)(F)) ≤ ε , KS(F,StepCDFPQ(ε)(F)) ≤ ε .

SUM Algorithm. We now present a deterministic al-
gorithm for maintaining a good approximation of FSt .
We assume that each Yt takes values from a finite set Vt
of size at most λ, where the universe size is still U. We
treat the non-existence value ⊥ as if 0 since this does not
affect the value of sum. In this case, it is easy to see that
FSt satisfies FSt (x) =

∑
v∈Vt F

S
t−1(x− v)P [Yt = v]. Un-

fortunately, even when λ = 2, the complexity of exactly
representing FSt is exponential in t. Hence, to achieve
space and time efficiency, we use approximate repre-
sentations using quantiles. The challenge is to quickly
update the point set when each tuple arrives. We focus
on the LinCDF representation with quantiles but the fol-
lowing algorithm also applies to StepCDF. (We observed
empirically that LinCDF is often more accurate.)

Our algorithm processes each new tuple in two con-
ceptual steps Update and Simplify. In update, we com-
bine our approximation for FSt−1 with Yt to produce an
intermediate approximation F for FSt :

F (x) =
∑
v∈Vt

LinCDFPt−1(x− v)P [Yt = v] (8)

16

Fig. 9 Updating step of the SUM algorithm.

That is, for each v ∈ Vt, we shift the point set Pt−1

for the previous sum distribution by v and scale it by
P [Yt = v]. We then compose these new point sets into
λk points by using linear interpolation for the LinCDF.
See Fig. 9 for an illustration of this step. Now F contains
a set of λk points, which we call P̄t. Next, simplify F

to ensure efficiency in later processing while meeting
the error bound ε′ provisioned for this tuple. (Theorem
4 shows how to set ε′.) To do this, we compute the
k quantiles of F and return LinCDFPt where Pt =
{(F−1(iε′), iε′) : 1 ≤ i ≤ k}. Performing these steps
sequentially may be inefficient since we compute λk

points but then only use k points. To avoid this we
compute F−1(iε′) for each i by doing a binary search
for the closest pair xa, xb ∈ P̄t such that F (xa) ≤ iε′ ≤
F (xb). This results in the following theorem.
Theorem 4 We can maintain an (ε, 0) approximation
for FSt using O(1

ε′) space and O(λε′ log(λε′)) time per
tuple, where ε′ = ε/t.

Optimizations. We further develop three optimiza-
tions for the basic algorithm: (1) Adaptive number of
quantiles. We observe empirically that the number of
quantiles, k, needed at each step to satisfy the error
bound ε′, is smaller than the proven bound 1/ε′. Hence,
we consider a variant of the algorithm that computes
the updated set of λk points, then computes the k quan-
tiles, and reduces the number of quantiles, e.g., by half,
if the error bound ε′ is still met. (2) Biased quantiles.
For distributions that are close to Gaussian, we observe
that using a set of biased quantiles, which has more
points near the two ends of a distribution, gives a better
approximation. However, to meet a KS requirement, we
need more biased quantiles than uniform quantiles theo-
retically. We hence propose to use both sets of quantiles,
named mixed quantiles. (3) Central Limit Theorem. For
sufficiently large t, the distribution of FSt is approxi-
mately a Gaussian distribution. To exploit this, we just
need to compute a few moments of each input distribu-
tion and check if the asymptotic result holds according
to the Berry-Esseen theorem [8].
Supporting Continuous Distributions. When the
input distributions are continuous, we propose to dis-
cretize and represent these distributions by StepCDF

or LinCDF. When discretized with λ quantiles, the KS
error is (at most) ε1 = 1/λ. We can show that if the KS
error incurred when adding this tuple to sum is ε2, the
total error from this tuple is bounded by ε1 + ε2 [28].
We next discuss on how to set ε1 and ε2. Recall that
the SUM algorithm with optimizations computes λk
points and then adaptively chooses a subset of size k′

that satisfies the KS error of ε2, where k′ ≤ 1/ε2. Hence
the cost is also proportional to O(λk′) = O(1/ε1 · 1/ε2).
In practice, due to the use of mixed quantiles, k′ is of-
ten smaller than 1/ε2, especially when the distribution
becomes smooth. This gives an incentive to set ε1 > ε2
as we validate empirically.

4.7 Bounded-Error Monte-Carlo Simulation

We next present a general randomized algorithm based
on Monte-Carlo simulation to compute aggregates. In
contrast to prior work, we establish accuracy guaran-
tees in our evaluation framework. Given a determinis-
tic stream 〈y1, . . . , yt〉 and an aggregate A for which
there exists an efficient stream algorithm Φ to compute
A(y1, . . . , yt), the algorithm Φ∗ to compute an (ε, δ) ap-
proximate distribution for an uncertain stream proceeds
as follows:

– On seeing the t-th tuple, generatem ≥ ln(2δ−1)/(2ε2)
values y1

t , . . . , y
m
t independently from the distribu-

tion of Yt.
– Run m copies of Φ: run the i-th copy on the stream
〈yi1, . . . , yit〉, i = 1..m, and compute ai = A(yi1, . . . , y

i
t).

– Return F̃At (x) = 1
m

∑
i∈[m] 1[ai,∞)(x).

Theorem 5 For any aggregate A for which there ex-
ists an exact algorithm Φ for computing aggregate A

on a non-probabilistic stream, the proposed randomized
algorithm Φ∗ computes an (ε, δ) approximation of the
distribution of A on a probabilistic stream. The space
and update time used by Φ∗ is a factor O(ε−2 log δ−1)
greater than the space and update time required by Φ.

The proof of this theorem follows from the Dvoretsky-
Kiefer-Wolfowitz theorem in statistics.

We see that this theorem directly applies to ag-
gregates such as sum, count, min, max, and avg. This
theorem subsumes existing work based on Monte Carlo
sampling [11,13,23], since it can determine the number
of samples sufficient for a given accuracy requirement,
in contrast to taking the number of samples as an input
parameter. A recent work [21] also uses Monte Carlo
simulation to estimate the probability of an aggregate
predicate in the having clause, but does not compute
the full distribution of an aggregate.

17

Exact

Distributions

(Error ε = 0)

Approximate

Distributions

(Error ε > 0)

π, ×, Aggr

σ, γ

σ, π

Aggr

 (TEP p = 1)

(TEP p ≤ 1)

Aggr

Fig. 10 Query plan arrangement in the mixed-type model.

5 Query Planning under Mixed-type Models

In this section, we examine query planning that con-
siders how to handle errors due to the mix of different
operations in the context of a complete query.

5.1 Arranging Operators in a Query Plan

We first discuss the arrangement of relational operators
in a query plan using our data model. For queries that
involve only joins, projections, and aggregates, we have
shown that for continuous uncertain attributes mod-
eled by Gaussian mixture models (GMMs), there are
exact, closed-form solutions for the result distributions
in Section 4. When the above queries are extended with
selections, placing selections before joins, projections,
and aggregates in a query plan can result in conditioned
(or precisely, mixed-type) distributions, hence not in
GMMs any more. The implications of this on other
relational operations depend on commutativity. As in
traditional databases, projections and joins commute
with selections [19]. Therefore, the GMM-based solu-
tions can still be applied if we postpone selections after
the joins and projections in a query plan. However, ag-
gregates do not commute with selections, hence these
solutions cannot be applied to aggregates after selec-
tions. Similarly, group-bys condition distributions when
evaluating the groups, thus precluding GMM-based so-
lutions for subsequent aggregates. Then, we can resort
to the approximations proposed in Section 4 to compute
the distributions of aggregates.

The above discussion suggests the arrangement of
relational operators in a query plan, as depicted in Fig.
10, where the operators contained in the same box can
be arranged in any order. In particular, the bottom part
of the query plan computes exact distributions, using
the exact algorithms and the definition of conditioning
operations, i.e., selections, group-bys (denoted as γ).
Errors start to occur at the aggregation operator where
an approximation algorithm is used, (see §4.5.3 and
§4.6), and will propagate to the subsequent operators.

5.2 Query Planning

We now consider query planning that computes ap-
proximate answers with bounded errors for complex
queries. Our work supports a Select-From-Where-Group
by-Having block. We can compute multiple aggregates
that are independent by invoking the approximation
algorithms separately.3 More specifically, the cases that
we support include: (1) apply selection or group-by on
some uncertain attributes and then compute a single
aggregate, (2) compute multiple aggregates on indepen-
dent attributes when tuple existence is certain. In both
cases, the aggregates computed can be used in Having
or returned in Select. The examples of the first case
are Q2 and Q3, where group-bys introduce tuple exis-
tence probabilities (TEPs) and the uncertain attributes
become correlated through these TEPs. Then, we can
compute the marginal distribution for a single aggre-
gate. The second case includes not having Group by or
having Group by on deterministic attributes (e.g., Q4
below) since this still retains TEPs equal to 1. In this
case, the aggregates of the independent attributes are
independent and can be computed using our algorithms.

At mentioned above, errors start to occur in the first
aggregate computed using an approximation algorithm.
These errors can then propagate to the subsequent oper-
ations performed on the derived aggregate attributes. To
quantify errors of intermediate and final query results,
we extend our approximation framework to account for
errors associated with both the attribute distributions
and the tuple existence probability.

Extended Approximation Metric. We first ex-
tend our KS metric to a general case when both the
TEP and uncertain attributes in a mixed-type tuple
are approximate. The extension, adopted from the KS
definition for multi-dimensional CDF’s [17], considers all
complementary distribution functions. We denote an or-
dering of random variables, X = (X1, X2, ..., Xn), to be
a vector o = (o1, o2, ..., on), where oi = {≤,≥}. Given
a constant vector, x = (x1, x2, ..., xn), PX [〈o,x〉] =
P [
∧
i(Xi oi xi)]. PX [〈o,x〉] can be computed via inte-

gration of the joint density function (pdf) of X.

Definition 12 LetG=(p, f) and G̃=(p̃, f̃) be two mixed-
type distributions of X and X̃, where each contains
n attributes, respectively. The mixed-type KS, termed
KSM, between G and G̃ is defined as:

KSM(G, G̃)

= max(|p− p̃|,max
o

(sup
x
|p · PX [〈o,x〉]− p̃ · PX̃ [〈o,x〉] |)).

3 Computing correlated aggregates is a hard problem and left

to future work.

18

This definition considers all of the 2n orderings o of n
variables. Since KSM computes the maximum of the
differences between the probabilities that the variables
are in any given range, it ensures symmetric results for
range predicates (e.g., for ≤, ≥). For the two classes of
queries discussed above, this general definition can be
reduced to:

Remark 1 Let G=(p, F) and G̃=(p̃, F̃) be two mixed-
type distributions where F and F̃ are the cumulative
distributions of a single attribute. The KSM between G
and G̃ becomes:

KSM(G, G̃) = max(|p− p̃|, sup
x
|p · F (x)− p̃ · F̃ (x)|,

sup
x
|p · (1− F (x))− p̃ · (1− F̃ (x))|).

For example, if G and G̃ are the true and approximate
distributions of an attribute X, KSM(G, G̃) = ε means
that all quantities such as P [x 6= ⊥], P [x 6= ⊥ ∧ x ≤ 5],
and P [x 6= ⊥ ∧ x ≥ 5], when computed using G or G̃,
will not differ by more than ε.

In the second case, where the TEP is exact and equal
to 1, and the attributes Xi are independent, the KSM
can be rewritten as follows.

Remark 2 Let G and G̃ be the multivariate distribu-
tions of X and X̃, where each contains n independent
attributes. The KSM between G and G̃ is:

KSM(G, G̃) = max
o

(sup
x
|PX [〈o,x〉]− PX̃ [〈o,x〉] |)

= max
o

sup
x
|
∏
i

P [Xi oi xi]−
∏
i

P
[
X̃i oi xi

]
|

The following proposition characterizes the KSM of
the joint distribution in terms of individual KS’s. Its
proof is shown in [27], due to space constraints.

Proposition 2 Let G=(p, f) and G̃=(p̃, f̃) be two mixed-
type distributions of attributes X = (X1, X2, ..., Xn). If
p = p̃ = 1, Xi’s are independent of each other, and each
Xi is bounded with a KS error εi, KSM(G, G̃) ≤

∑
i εi.

Query Approximation Objective. We next in-
troduce our notion of approximate answers of a query.
As is known, the evaluation of a relational query results
in an answer set; when given infinite resources or time,
we could compute the exact answer set. We then define
an approximate answer set against such an exact answer
set as follows.

Definition 13 An approximate query answer set, S̃, is
called (ε, δ)-approximation of the exact query answer
set, S, if S̃ and S contain the same set of tuples and
the KSM between any tuple in S̃ and its corresponding
tuple in S is at most ε with probability 1− δ.

Query Planning: Error Propagation. The goal
of query planning is to find a query plan that meets the
(ε, δ) approximation objective for a given query. We first
perform a bottom-up analysis of a query plan, focusing
on how errors arise and propagate through operators.
In our query plans, errors begin at the first aggrega-
tion that applies (ε, δ)-approximation as proposed in
Section 4. For post-aggregate operations, the earlier ap-
proximation errors now affect the estimates of both the
tuple existence probability and distributions of derived
aggregate attributes. Below, we focus on selection and
projection as post-aggregation operators.

Selection. We quantify the approximation errors
propagated through selections, e.g., in the Having clause
in the next proposition. The proof is available in [28].

Proposition 3 Selection on an attribute with (ε, δ)-
approximation using a range condition (x ≤ u, x ≥ l,
or l ≤ x ≤ u) is (2ε, δ)-approximation. If the selection
uses a union of ranges, the approximation error is the
sum of error, 2εi, incurred for each range i.

When selections are applied for multiple independent ag-
gregates, the above proposition applies for each selection
independently. Note that in this case, the TEP would
be factorized into these attributes, and its KSM error is
bounded by the sum of KSM error of the independent
attributes (this is a simple generalization of Proposition
2 that uses KSM instead of KS).

Projection. Projection does not change the tuple
existence probability. That is, if a derived attribute
whose existence probability is approximate is projected
out, its error is transferred to the existence probability
of the result tuple; hence, the KSM of the tuple does
not change. This also holds for the case where multiple
derived attributes are projected out, since one attribute
can be projected out at a time. A special, but trivial,
case is when an approximate derived attribute having
an exact existence probability is projected out, the KSM
error of the result tuple is reduced by the KSM error of
that attribute, as indicated by Proposition 2.
Query Planning: A Top-down Approach. In query
planning, we start from base tuples, assign a variable
indicating the error incurred by each operation, and
combine these variables into a formula using the results
from the above bottom-up analysis. Then given a target
error bound ε for the entire query (and error formula),
we traverse the query plan top-down, assign an error
bound to each variable to satisfy the target error bound.
We next consider query planning for a set of queries
that covers all cases that Claro supports.

Computing a single aggregate. Revisit query Q2,
whose query plan is illustrated in Fig. 11a. The query
plan first performs the group-by operation, which com-

19

Window

ObsStream: {time, id, xp, luminosityp}

{segNo, max_luminosityp}

σMAX(luminosity)>20

GROUPBY floor(x/L) AS segNo

AGGR MAX(luminosity)

Window

LocStream: {time, tag_id, xp, weight}

{areaNo, total_weightp}

σSUM(weight)>200

GROUPBY floor(x/L) AS areaNo

AGGR SUM(weight)

(a) Query plan for Q2 (b) Query plan for Q3

Window

ObsStream: {time, id, HTM_ID, rowcp, colcp }

{groupNo, avg_rowcp, avg_colcp}

GROUPBY HTM_ID/pow(2,24)

AGGR AVG(rowc), AVG(colc)

(c) Query plan for Q4

Window

ObsStream: {time, id, xp, luminosityp}

{segNo, sum_luminosityp}

σSUM(luminosity)>100

GROUPBY floor(x/L) AS segNo

AGGR SUM(luminosity)

(d) Query plan for Q5

ε

ε/2

ε

ε/2
 ε/2

ε/4→AVG(rowc) ε/4→AVG(colc)

ε

 ε/2 = ε1 + ε2

ε1→discretization ε2→SUM(luminosity)

σAVG(rowc)<500, AVG(colc)<500

ε

Fig. 11 Query planning for Q2-Q5

putes the tuple existence probability of an object in
each group, and then computes sum of weight for each
group using the SUM approximation algorithm, with
error ε1. After that, the selection, sum(weight) > 200,
is applied to each group. Proposition 3 bounds the error
of the selection by 2ε1. Therefore, given the target error
bound, ε, the approximate sum should have an error
bound ε1 = ε/2.

Query planning for Q3, except for computing max,
is similar, as shown in Fig. 11b. These two queries are
examples of case (1) we support.

Computing multiple independent aggregates.
Query Q4 below is a modified query taken from the Sloan
digital sky survey (SDSS) example queries. Q4 groups
object into HTM buckets, a deterministic attribute, and
computes two independent averages of rowc and colc

and returns the groups when these averages are in a
certain range. This corresponds to case (2) above.

Q4: Select HTM ID/power(2,24), AVG(rowc), AVG(colc)

From Galaxy

Group by HTM ID/power(2,24)

Having AVG(rowc) ≤ 500 and AVG(colc) ≤ 500

If the target accuracy requirements is ε, we can
assign an error bound of ε/2 to each average according
to Proposition 2. Then due to the effect of selection, the
error bound assigned to each average before selection
is set to ε/4. Note that error provisioning remains the
same if we use other aggregates than avg.

Discretization of continuous distributions. Re-
call that Q3 computes max of luminosity, a continuous
attribute. Due to the partitioning scheme of the MAX al-
gorithm, we do not need to discretize the distribution of
the input tuples in advance. Now consider Q5, a slightly
different version of Q3, that computes sum(luminosity).
This query is to detect regions with high cumulative lu-
minosity. Due to the effect of selection after sum, given a
target error bound ε, the approximation of sum can have
an error bound ε0 = ε/2. Since sum is computed for con-

tinuous random variables, we need to use discretization
as discussed in §4.6.3.

The error for sum is the sum of the discretization er-
ror and the error given to the SUM algorithm; therefore,
we can assign error bounds ε1 and ε2 for them respec-
tively, where ε′ = ε1 + ε2. Next we need to allocate the
error bound ε1 to individual tuples, given the fact that
the error accumulates across tuples. If n is the number
of tuples in a given group, then each tuple can be uni-
formly assigned an error bound of ε1/n. The allocation
of ε2 to each tuple is performed in the SUM algorithm.
(See §4.6.3 for the discussion on how to choose the error
bounds ε1 and ε2.) We have discussed discretization to
compute one aggregate, i.e., case (1). The discretization
for case (2), when multiple aggregates are computed, is
similar, hence omitted.

6 Performance Evaluation

In this section, we evaluate the performance of our
techniques for relational processing under the mixed-
type model as presented in Section 4 and compare them
with state-of-the-art techniques. We then evaluate our
approach to query planning as discussed in Section 5. We
have also conducted a case study of tornado detection
to demonstrate the effectiveness of our data model and
processing algorithms; the details are available in [29].

We use both synthetic streams with controlled prop-
erties, and real datasets and queries [25,26] for evalu-
ation. The experiments were run on a server with an
Intel Xeon 3GHz CPU and 2GB memory running Java
HotSpot 64-Bit server VM 1.6.

6.1 Joins and Aggregations under GMMs (TEP=1)

We first evaluate our techniques for joins and aggregates
under Gaussian mixture models, and compare them to
sampling and discretization methods.

20

6.1.1 Evaluation of Joins

We evaluate the techniques for joins using probabilistic
views in §4.3.1 in the context of Query Q1. We use two
streams R=(Ap) and S=(A, B), where B is determinis-
tic and then summarize similar results observed when B
is probabilistic. We then compare our techniques with
state-of-the-art solutions including a sampling technique
that constructs histograms to represent join result dis-
tributions directly from samples (which is adopted from
[11]) and a discretization technique.

Input data. The R stream is an object location
stream from an RFID inference system [26] where each
tuple has a Gaussian distribution (using a mixture dis-
tribution will not incur more cost given our closed-form
solution). The S stream, produced by our temperature
simulator, contains tuples according to the underlying
function between temperature and location, with added
noise. The query-specified update window size (UW)
on S is 1, i.e., containing the most recent temperature
reading from each sensor. R and S tuples arrive at the
same rate. Throughput measures the number of R tuples
pipelined through the join.

Histogram-based sampling. For each R tuple,
this method takes samples from the distribution of R.Ap.
It then attempts to extend each sample a for R.Ap with
a sample b for S.B. To do so, it searches all S tuples
in the update window for the two S tuples whose S.A
values are closest to the given sample a. It then applies
linear interpolation to the S.B values in these two tuples,
with added random noise to facilitate later histogram
construction, to obtain a sample b. Finally it uses all the
samples (a, b) to construct an equi-depth 2-dimensional
histogram as an approximate distribution for each join
result (Ap, Bp). The histogram setting H(k, µ) depends
on the number of buckets per dimension, k, and the
number of samples per bucket, µ.

Discretization. For each R tuple, we discretize its
continuous distribution R.Ap into equally spaced dis-
crete points (as in [23]). For each discrete point a, we
extend it with a value b for S.B via linear interpolation
as above, without adding noise. The join result is a dis-
crete distribution containing pairs (a, b). A parameter
of this technique is the number of discrete points used.

Expt 1: Sampling and discretization versus
regression. We compare histogram-based sampling and
discretization with our join technique using global or
local regression. We first use a linear function to gen-
erate the temperature stream with added noise. The
local regression region (LRR) is set to be 20. As seen in
Fig. 12(a), histogram-based sampling and discretization
fail to approximate true result distributions (KS ≥ 0.38)
while our regression techniques are much more accurate

(KS ≤ 0.10). This is because sampling and discretization
consider only two S points in interpolation when match-
ing a R point, thus sensitive to errors in temperature
readings (in S). In contrast, our regression-based view
uses more points to better estimate the underlying func-
tion and the random noise. The accuracy of sampling
improves as more samples are used to construct the
histogram, e.g., from H(2,5) to H(10,10). However, after
a certain point, increasing k does not help, e.g., from
H(10,10) to H(20,10), because when k is large, each
bucket is very small and the samples in each bucket
mostly fit the noise added during interpolation.

Fig. 12(b) shows that even when we tolerate a high
KS values (≤ 0.4), sampling is already very slow: the
throughput of H(10,10) is 33 tuples/sec and that of
H(20,10) is 4. For discretization, as the number of dis-
crete points increases, the accuracy improves but the
throughput decreases. However, the accuracy is still low
even for a large number of points. Our global regres-
sion gains a throughput of 1544 and local regression
gains 52609, outperforming sampling and discretization
methods by 2 to 4 orders of magnitude.

Expt 2: Global versus local regression. We next
use a quadratic function to generate the temperature
stream and compare global versus local regression. The
sampling and discretization techniques perform poorly
again, so we omit its results here. Since local regression
is sensitive to the number of data points available, we
vary its local regression region LRR in a wide range. As
Fig. 12(c) shows, global regression has poor accuracy
since its global linearity assumption is not true any more.
The KS of local regression (UW=1) first improves as an
increased region gives more points for regression, but
then it degrades because the region is too large to meet
the local linearity assumption—local regression becomes
more like global regression.

A further optimization for local regression is to en-
large the update window UW, e.g., using the most recent
5 readings from each sensor. The rationale behind this
is that the underlying function usually changes slowly,
hence using some old tuples from the past few sec-
onds will not add much stale information. We observe
improved KS with UW=5 and 10 in Fig. 12(c), but
reduced throughput since regression uses more points
in Fig. 12(d). Despite that, local regression outperforms
global regression by a wide margin. If we choose a reason-
able setting, e.g., LRR=6 and UW=5, local regression
can gain both high accuracy and efficiency.

In another experiment, we generate the stream S=(A,
Bp) where the attribute B is probabilistic. As stated
in §4.3, we sample each S tuple on the attribute B,
collect all the samples into a new input S′, proceed as
if S′ has a deterministic attribute B. We have similar

21

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

H(2,5) H(10,10)H(20,10) D(10) D(1000) Global R. Local R.

K
S

 D
is

ta
n
c
e

0.457

0.384 0.400

0.611

0.419

0.007

0.100

(a) Join: Sampling, Discretization vs

Regression, linear function (Accuracy)

 1

 10

 100

 1000

 10000

 100000

H(2,5) H(10,10)H(20,10) D(10) D(1000) Global R. Local R.

T
h
ro

u
g
h
p
u
t 1567.8

35.12

4.07

2789.4

41.90

1544.3

52609.4

(b) Join: Sampling, Discretization vs

Regression, linear funct. (Throughput)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

3 6 12 24 48

K
S

 D
is

ta
n
ce

Local Regression Region

Global R. UWS = 1
Local R. UWS = 1
Local R. UWS = 5

Local R. UWS = 10

(c) Join: Global vs Local Regression,

quadratic function (Accuracy)

 1000

 10000

 100000

 1e+06

3 6 12 24 48

T
h
ro

u
g
h
p
u
t

Local Regression Region

Local R. UWS = 1
Local R. UWS = 5

Local R. UWS = 10
Global R. UWS = 1

(d) Join: Global vs Local Regression,

quadratic function (Throughput)

 10

 100

 1000

 10000

 100000

 10 100

T
h
ro

u
g
h
p
u
t

Window Size

Approx. w/ CF fitting
Exact Derivation

(e) AVG: Throughput of approx. and

exact algorithms

(f) AVG: A fitted distribution for

the result of 5 tuples

 100

 1000

 10000

 100000

 10 100

T
h
ro

u
g
h
p
u
t

Window Size

CLARO Aggr.
H(20)
H(30)
H(50)

Discretization

(g) AVG: Claro vs Sampling and Dis-

cretization (Throughput)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 10 100

K
S

 D
is

ta
n
ce

Window Size

H(20)
H(30)
H(50)

Discretization
CLARO Aggr.

(h) AVG: Claro vs Sampling and Dis-

cretization (Accuracy)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0.01 0.03 0.05 0.07 0.1

T
h
ro

u
g
h
p
u
t

Maximum KS allowed

CLARO Aggr.
H(10)
H(30)

H(100)
H(150)

(i) AVG: Throughput of varying KS

Fig. 12 Experimental results for join and aggregation using our algorithms, histogram-based sampling and discretization (TEP=1)

observations about global and local regression, and their
advantages over sampling (see [27]).

If there is more than one relation, Si, that view-
depends on a given relation, R, the cost of our evaluation
technique is strictly linear in the number of relations.
This is because we can perform the join between a tuple
in R and each view Si one at a time, and this join
produces exactly one tuple for each R tuple.

6.1.2 Evaluation of Aggregations

Input data. We generate a synthetic tuple stream with
one continuous uncertain attribute. Each tuple is mod-
eled by a mixture of two Gaussian components. The
means of the two components are uniformly sampled
from [0, 5] and [5, 50] respectively to model complex
real-world distributions from asymmetric to bimodal.
The standard deviations are in [0.5, 1] and the coeffi-
cients are uniform from [0, 1]. We evaluate avg over this
stream by using tumbling windows containing N tuples.
The default KS requirement is KS ≤ 0.05.

Expt 4: Compare our algorithms. We first com-
pare two algorithms, exact derivation and approximation
using CF fitting, which constitute our hybrid solution.

We vary the window size N , since it directly affects the
result distribution and the computation needed.

Fig. 12(e) shows the throughput results in the num-
ber of tuples processed per second. As expected, the
throughput of exact derivation is high when N is small,
e.g., up to 10, but deteriorates quickly afterwards be-
cause the exact result formulas generated grow expo-
nentially in N . In contrast, CF fitting works well for
large numbers of N , e.g., after 10. This is due to the
smoother result distributions in this range, hence easier
to fit, and the one-time fitting cost being amortized over
more tuples. We observe that both algorithms satisfy
the requirement of KS ≤ 0.05. (The accuracy graphs are
omitted due to space constraints.) The hardest range
is 5 to 10 tuples, where the result distributions are
complex and require a mixture of many components to
fit, hence low throughput. An example of the true and
fitted distributions for 5 tuples is shown in Fig. 12(f).
From 15 tuples onwards, the result distributions become
smoother with fewer peaks.

We also run experiments using the VD metric and
other workloads, and observe the same trends in accu-
racy, throughput, and similar crossing points between
the two algorithms. (The details are shown in [27].)

22

The above results suggest the configuration for the
hybrid solution. When the number of tuples N is 10 or
below, we use exact derivation. After that, we switch
to CF fitting. In addition, when N is large enough (e.g.
> 30), the result distributions are mostly a smooth
Gaussian and can be computed directly using the Cen-
tral Limit Theorem (CLT). In Expt 6 below, we will use
this as an optimization when N ≥ 30.

Expt 5: Compare to histogram-based sam-
pling and discretization. We now compare our hybrid
solution with the histogram-based sampling algorithm
[11] and the discretization approach. Similar to the al-
gorithm for joins, the sampling algorithm (1) generates
k · µ samples for each tuple, (2) performs aggregation
over them to get k · µ result samples, and (3) sorts
the result samples and builds a histogram with k buck-
ets and µ samples for each bucket. Since we find the
accuracy of this algorithm to be more sensitive to k,
we vary k among 20, 30, and 50 while fixing µ to 50.
For discretization, we approximate continuous distribu-
tions using discrete points as in joins, and then use the
algorithm in [16] to compute the distribution of avg.

Figs. 12(g) and 12(h) show the results of the three
algorithms. Our hybrid algorithm outperforms all set-
tings of histograms in both throughput and accuracy.
For accuracy, only histograms with k ≥ 30 ensures KS
≤ 0.05; k = 20 violates this in the “hard” range of 5
to 15 tuples (hence their throughput is omitted). The
discretization approach offers no accuracy guarantee like
the histogram method. So we manually varied the num-
ber of points and chose the best setting that met our
accuracy requirement (see [27] for details). The through-
put of this approach is shown to be even lower than that
of histograms, especially when N is large. These results
confirm the advantages of our algorithm over sampling
and discretization since we can adapt to a given accuracy
requirement while optimizing for throughput.

Expt 6: Vary the KS requirement. To further
study our adaptivity to accuracy requirements, we vary
KS from 0.01 to 0.1. The window size N is chosen
randomly from the range [2, 50], so that we can examine
different ranges of the hybrid solution. Fig. 12(i) shows
the throughput (where the KS requirement is met).
Our algorithm outperforms the histogram algorithm for
all values of KS by at least three times. Moreover, we
can adapt to given accuracy requirements while it is
unknown if a setting of the histogram algorithm can
satisfy these requirements in advance.

6.2 Aggregations under Mixed-type Models (TEP ≤ 1)

In this section, we evaluate our approximation algo-
rithms for aggregates of mixed-type models. We com-

pare the performance of the deterministic algorithms
and the randomized algorithm based on Monte Carlo
simulation, which are presented in §4.6. They compute
(ε, δ) approximation, where the former has δ = 0 while
for the latter, we set δ to 0.1, 0.05, and 0.01 (corre-
sponding to three guarantees, 90%, 95% and 99%). Note
that for both max and sum, the result tuple existence
probability can be computed exactly, hence the KS error
is used to quantify the approximate distributions only.

The default setting for the experiments is as follows.
Each tuple has a tuple existence probability p uniformly
sampled from [0, 0.5]. A tuple, if exists, has two possible
real values uniformly sampled from [0, 20]. This way,
each tuple corresponds to a mixed type distribution
with an existence probability and two possible values,
or λ = 3 in our setting. (This data model was also used
for aggregation of uncertain data streams in [14].)

6.2.1 Evaluation of MAX

We first evaluate the performance of both the deter-
ministic algorithm for max, Dmax, and the randomized
algorithm, Rand.

Expt 7: Vary the KS requirement. We vary
the KS bound ε in a common range [0.01, 0.1]. The
window size W is uniformly sampled from [10, 1000].
Fig. 13(a) shows the throughput of the algorithms. The
deterministic algorithm, Dmax, is 10 to 1000 times faster
than the randomized algorithm, Rand, for all ε values
tested. This is because Dmax can use a small number
of intervals to approximate the distribution (e.g., 20-
50), whereas Rand uses hundreds to tens of thousands
samples, hence worse performance. We also observe
that Dmax is more accurate than Rand, because it sets
its parameter ε′, to meet the worst case scenario (i.e.,
reaching the maximum generation log U).

Expt 8: Varying the number of values per tu-
ple. We next study the effect of the number of values
per tuple, λ. We vary λ from 2 to 200, and set W = 100
and ε = 0.01. Fig. 13(b) shows the throughput results.
As expected, the cost of Dmax increases with λ due to
the costs of the first two steps of Dmax depending on
λ. However, the number of intervals in the approximate
max distribution does not increase linearly in λ—it is
bounded according to Theorem 3. Overall, the through-
put of Dmax is better than that of Rand by at least one
order of magnitude.

We also perform an experiment to compute the dis-
tribution of max using discretization and the extensional
semantics [7]. As for avg in Expt 5, this approach has no
accuracy guarantee. Overall, we observe that its through-
put is up to 10 times lower than Dmax. The details are
omitted due to space constraints, but available in [27].

23

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0.01 0.02 0.03 0.04 0.05 0.1

T
h
ro

u
g
h
p
u
t

KS Requirement (epsilon)

Det
Rand(90%)
Rand(95%)
Rand(99%)

(a) MAX: Varying ε

 100

 1000

 10000

 100000

 1e+06

 1e+07

 2 20 50 100 150 200

T
h
ro

u
g
h
p
u
t

Num Values Per Tuple (lambda)

Det
Rand(90%)
Rand(95%)
Rand(99%)

(b) MAX: Varying λ

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 200 400 600 800 1000

T
h
ro

u
g
h
p
u
t

Window Size (W)

Det
Rand(90%)
Rand(95%)
Rand(99%)

(c) SUM: Varying W (ε = 0.01)

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 200 400 600 800 1000

T
h
ro

u
g
h
p
u
t

Window Size (W)

Det
Rand(90%)
Rand(95%)
Rand(99%)

(d) SUM: Varying W (ε = 0.05)

 100

 1000

 10000

 100000

 0.01 0.02 0.03 0.04 0.05 0.1

T
h
ro

u
g
h
p
u
t

KS Requirement (epsilon)

Det
Rand(90%)
Rand(95%)
Rand(99%)

(e) SUM: Varying ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

T
E

P

k (selection predicate SUM > k*StdDev)

Chebyshev Inequa.
Approximate

Exact

(f) Query 2 - Estimating TEP

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0.01 0.03 0.05 0.1

T
h
ro

u
g
h
p
u
t

KS Requirement (epsilon)

Det
Rand(90%)
Rand(95%)
Rand(99%)

(g) Query 2 - Throughput

 0

 2000

 4000

 6000

 8000

 10000

 0.01 0.03 0.05 0.1

T
h
ro

u
g
h
p
u
t

KS Requirement (epsilon)

Det
Rand(90%)
Rand(95%)
Rand(99%)

(h) Query 3 - Throughput

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0.03 0.05 0.1 0.2

T
h
ro

u
g
h
p
u
t

KS Requirement (epsilon)

Det
Rand(90%)
Rand(95%)
Rand(99%)

(i) Query 5 - Throughput

Fig. 13 Experimental results of algorithms for MAX, SUM (TEP ≤ 1), and query planning

6.2.2 Evaluation of SUM

We now evaluate the performance of the deterministic
algorithm for sum, Dsum, using the optimizations shown
in §4.6.3, and the randomized algorithm, Rand.

Expt 9: Varying the window size. We vary W

from 10 to 1000 for two values of ε, 0.01 and 0.05.
Figs. 13(c) and 13(d) show the throughput. For ε =
0.01, Dsum is faster than Rand in all settings because
Rand uses a number of samples proportional to 1/ε2,
while Dsum uses about 1/ε intervals to estimate the
distribution. The throughput of Dsum decreases with
W , since the additive error bound of Dsum requires
provisioning error bounds to W tuples. For ε = 0.05,
Dsum is slightly slower than Rand for W ≤ 600 due to
the reduced benefit from ε. However, for larger values of
W , CLT applies, yielding a high throughput of millions
of tuples per second. If we keep increasing ε, CLT starts
to apply earlier, e.g., when W = 150 for ε = 0.1.

Expt 10: Varying the KS requirement. We
compare the two algorithms with ε from 0.01 to 0.1.
W is uniformly taken from [1, 100], so that CLT cannot
apply. Fig. 13(e) shows that the throughput of Dsum is
comparable to higher than Rand for the high-precision
range [0.01, 0.03]. This confirms that to gain high accu-
racy, Rand needs a very large number of samples and de-

grades its performance quickly. When we do not require
high accuracy, Rand can be used for good throughput.

Summary: The above experiments, considered as
a micro-benchmark, offer insights into our techniques
and their performance compared to sampling techniques.
We observed that our algorithms for joins and aggre-
gations under GMMs consistently outperform an exist-
ing histogram-based technique. Under more complex
mixed-type models, our deterministic algorithm for max
is constantly faster than our randomized algorithm us-
ing Monte Carlo simulation by orders of magnitude. For
sum, there is a tradeoff between the two algorithms—the
deterministic algorithm is more efficient for sum of tuples
with a small number of possible values (e.g., Bernoulli
variables) under high accuracy requirements, while the
randomized algorithm is preferable for other cases.

6.3 Approximate Query Answers

We now evaluate the performance of four queries, Q2 to
Q5, whose query plans are shown in Section 5.
Expt 11: Q2. To run this query, we first obtain a stream
of inferred object locations, each of which is modeled by
a Gaussian distribution, by running inference [26] over a
raw RFID reading stream. This query computes the sum
of object weights per group and checks if it exceeds 200.
Although the weight of an object is deterministic, each

24

object belongs to a group with a probability, resulting
in the sum of Bernoulli variables, or λ = 2 (see Fig. 2).
This is a common case for aggregation on a deterministic
attribute under tuple uncertainty. Given a query accu-
racy requirement ε, the predicate “sum > 200” requires
assigning an error bound ε/2 to the SUM algorithm.

We first compare our deterministic algorithm (with
ε = 0.05) with an alternative method that uses only
the moments of the sum distribution to estimate the
TEP when evaluating the having predicate “sum > v”.
This method cannot return the distribution of sum in the
query result, so we restrict the comparison to computing
TEP only. Since the mean and variance of sum can
be computed from the input tuples using the linearity
property, we use the Chebyshev’s inequality to derive an
upper bound of the TEP. Fig. 13(f) shows the estimates
of the TEP as we vary the threshold v in the predicate.
As seen, using the Chebyshev’s inequality can be very
inaccurate, thus confirming the need to use the sum
distribution to compute the TEP.

We next compare the performance of the determin-
istic algorithm, Dsum, and the randomized algorithm,
Rand, to compute query result distributions. Fig. 13(g)
shows that Dsum is faster than Rand. This is because
smaller error bounds are provisioned to the aggregates
to account for the having predicate, which causes Rand
to use more samples. Also, since λ is 2 in this query, the
cost of Dsum is smaller compared to Fig. 13(e).

Expt 12: Q3. For the next three queries, we use a
dataset from the Sloan digital sky survey (SDSS) project
[25], where the uncertain attributes are modeled by
Gaussian distributions. Q3 computes the maximum of lu-
minosity per group and selects groups where max(luminosity)
> 20. The main difference from Q2 is that the aggregate
attribute is continuous. Hence, we set the universe size
U = 40000, assuming a high measurement precision of
three decimal places.

We again consider an alternative method that esti-
mates the TEP of result tuples using only the moments
of the max distribution and summarize the result here.
Since the state-of-the-art technique [14] can only com-
pute the mean of max, we use the Markov’s inequality
to derive an upper bound for the TEP. We observe that
using this technique can give inaccurate estimates, e.g.,
the error of the TEP can be as high as 0.6.

We now compare our deterministic and randomized
algorithms, Dmax and Rand. Dmaxoutperforms Rand
under all chosen accuracy requirements ε, as shown in
Fig. 13(h), especially for high ε. This confirms that
Dmax still performs well for large numbers of values
per tuple λ by bounding the number of intervals in
the distribution of max. Compared to Fig. 13(a), the
throughput decreases for small ε, because this is the

case when the update time is roughly proportional to
1/ε (since λ is large), as shown in Theorem 3.
Expt 13: Q4. This query computes avg(rowc) and
avg(colc) for objects grouped according to the deter-
ministic attribute HTM ID. The result TEP of an
object in a group after group-by is deterministic (either
0 or 1). Since rowc and colc follow Gaussian distribu-
tions in the dataset, their avg are also Gaussian and can
be computed exactly with high throughput of millions
tuples per second. As a variant, we compute max instead
and observe that using Dmax is 2 to 10 times faster than
using Rand for this query (it is similar to Fig. 13(h),
except for provisioning smaller error bounds).
Expt 14: Q5. This query is similar to Q3, but com-
putes sum(luminosity). Fig. 13(i) shows the throughput
of two algorithms, Dsum and Rand. Since luminosity is
continuous-valued, we use discretization before comput-
ing sum. Therefore, Dsum has two types of errors: errors
from estimation of the input tuple, or discretization
errors, and errors from approximating sum. Both errors
accumulate with the number of tuples, having Dsum
provision a small error bound per tuple. We observe
that Dsum performs worse than Rand, which indicates
that Rand is useful for computing the sum of continuous
distributions or distributions with a large number of
possible values.

Summary: We have applied our techniques for
query planning to handle error occurrence and prop-
agation in conditioning and aggregation queries on the
real datasets. We observed that for max, our determinis-
tic algorithm, even with continuous input, hence a large
number of values per tuple, outperforms the randomized
counterpart, whereas for sum, our deterministic algo-
rithm works well for Bernoulli variables or tuples with a
few values, but further discretization of continuous dis-
tributions makes it less desirable than our randomized
algorithm. Overall, we can process thousands of tuples
per second for most queries tested.

7 Related Work

Have discussed the existing work closely related to ours
in previous sections, we now survey the broader areas.

Probabilistic databases with discrete uncer-
tainty. Much of existing work on probabilistic databases,
e.g., [2,3,7,22,30], uses discrete distributions to model
tuple and attribute uncertainty. Then query evaluation
is based on the possible worlds semantics. Our work
considers data naturally characterized by continuous
distributions, precluding the existing techniques for dis-
crete distributions. This motivates our work to seek new
data models, the formal semantics, and consider rela-
tional processing for continuous-valued data. The most

25

relevant work on discrete uncertain data is estimating
the probability of a predicate aggregate in the having
clause using Monte Carlo simulation and returning the
expectations of the uncertain attributes in query results
[7,21]. In contrast, our work aims to compute full result
distributions and explores a range of both deterministic
and randomized algorithms.

Probabilistic databases with continuous un-
certainty. An existing work [5] considers uncertainty
modeled by continuous distributions and uses integra-
tion for operations such as aggregates, as we discuss in
§4.4. The ORION [23] system is designed to support
continuous uncertainty, but it mostly focuses on prob-
abilistic modeling and considers a subset of relational
operations, i.e., selection, projection, and join. Two
recent workshop papers [1,24] also consider the exten-
sion of probabilistic databases with continuous-valued
attributes. While they mainly present the motivation
or initial design, they make similar arguments as in
this paper for a suitable model for continuous random
variables and the need to compute distributions. There
are proposals to use discretization and employ possible
worlds semantics for relational processing [1,23]. This is
however inefficient as we show empirically in §6.

Probabilistic stream processing has gained re-
search attention recently. Existing work [6,15,16] adopts
the finite and discrete tuple model as in probabilistic
databases, and is not directly applicable for continuous
uncertainty. Besides, most of these techniques compute
the mean or a few higher moments of result distributions
[6,15]. We show in §6.3 that knowing a few moments of
aggregates is not enough to answer queries accurately.

8 Conclusions and Future Work

In this paper, we presented the Claro system for un-
certain data stream processing. We proposed the mixed-
type data model that captures tuple existence uncer-
tainty and employs Gaussian mixture distributions to
characterize continuous uncertain attributes. We defined
the semantics for relational processing under the mixed-
type model. We proposed advanced techniques for rela-
tional processing to obtain exact, closed-form solutions
when possible, and fast approximation with bounded
errors in this model. We also presented a technique for
query planning for complex queries that meets query
accuracy requirements. Our experimental results show
that Claro outperforms sampling methods in both
accuracy and throughput for most workloads tested.

For future work, we plan to extend this work in
new directions including query optimization, correla-
tion among multiple aggregates and across tuples, and
support for user-defined functions.

Acknowledgements. This work was supported in part
by the National Science Foundation under the grants IIS-
0746939, IIS-0812347, EEC-0313747, and CCF-0953754,
and in part by the National Security Agency under the
grant H98230-09-1-0044.

References

1. P. Agrawal and J. Widom. Continuous uncertainty in trio.

In MUD Workshop, 2009.
2. L. Antova et al. Fast and simple relational processing of

uncertain data. In ICDE, 983–992, 2008.
3. O. Benjelloun et al. Uldbs: Databases with uncertainty and

lineage. In VLDB, 953–964, 2006.
4. G. Cassella et al. Statistical Inference. Duxbury, 2001.
5. R. Cheng et al. Evaluating probabilistic queries over impre-

cise data. In SIGMOD, 551–562, 2003.
6. G. Cormode and M. Garofalakis. Sketching probabilistic data

streams. In SIGMOD, 281–292, 2007.
7. N. N. Dalvi and D. Suciu. Efficient query evaluation on prob-

abilistic databases. VLDB J., 16(4):523–544, 2007.
8. A. DasGupta. Asymptotic theory of statistics and probability.

Springer Verlag, 2008.
9. A. Deshpande and S. Madden. MauveDB: supporting model-

based user views in database systems. In SIGMOD, 2006.
10. Y. Diao et al. Capturing data uncertainty in high-volume

stream processing. In CIDR, 2009.
11. T. Ge and S. B. Zdonik. Handling uncertain data in array

database systems. In ICDE, 1140–1149, 2008.
12. C. Guestrin et al. Distributed regression: an efficient frame-

work for modeling sensor network data. In IPSN, 2004.
13. R. Jampani et al. Mcdb: a monte carlo approach to managing

uncertain data. In SIGMOD, 687–700, 2008.
14. T. S. Jayram et al. Efficient aggregation algorithms for prob-

abilistic data. In SODA, 346–355, 2007.
15. T. S. Jayram et al. Estimating statistical aggregates on prob-

abilistic data streams. ACM TODS, 33(4), 2008.
16. B. Kanagal et al. Efficient query evaluation over temporally

correlated probabilistic streams. In ICDE, 2009.
17. R. H. Lopes et al. The two-dimensional kolmogorov-smirnov

test. In Proc of the XI Int’l Workshop on Advanced Com-

puting and Analysis Techniques in Physics Research, 2007.
18. G. McLachlan and D. Peel. Finite Mixture Models. Wiley-

Interscience, 2000.
19. Y. Qi et al. Threshold query optimization for uncertain data.

In SIGMOD, 315–326, 2010.
20. C. Ré et al. Event queries on correlated probabilistic streams.

In SIGMOD, 715–728, 2008.
21. C. Re and D. Suciu. The trichotomy of having queries on a

probabilistic database. In VLDBJ, 2009.
22. P. Sen et al. Exploiting shared correlations in probabilistic

databases. In VLDB, 2008.
23. S. Singh et al. Database support for probabilistic attributes

and tuples. In ICDE, 1053–1061, 2008.
24. D. Suciu et al. Embracing uncertainty in large-scale compu-

tational astrophysics. In MUD Workshop, 2009.
25. A. S. Szalay et al. Designing and mining multi-terabyte as-

tronomy archives. In SIGMOD, 451–462, 2000.
26. T. Tran et al. Probabilistic inference over RFID streams in

mobile environments. In ICDE, 2009.
27. T. T. L. Tran el al. Claro: Modeling and processing uncertain

data streams. UMass Amherst, 2011. http://www.cs.umass.

edu/~ttran/pubs/claro-tr.pdf.
28. T. T. L. Tran et al. Conditioning and aggregating uncertain

data streams: Going beyond expectations. In PVLDB, 2010.

26

29. T. T. L. Tran et al. Pods: A new model and processing
algorithms for uncertain data streams. In SIGMOD, 2010.

30. D. Z. Wang et al. Bayestore: Managing large, uncertain data

repositories with probabilistic graphical models. In VLDB,
2008.

31. J. Widom. Trio: A system for integrated management of
data, accuracy, and lineage. In CIDR, 262–276, 2005.

