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ABSTRACT 

 

Query Processing for Large-Scale XML Message Brokering 

by 

Yanlei Diao 

Doctor of Philosophy in Computer Science 

University of California, Berkeley 

Professor Michael J. Franklin, Chair 

 

Emerging distributed information systems such as Web services, personalized content 

delivery, and event monitoring require increasingly flexible and adaptive infrastructures. 

Recently, the publish/subscribe model has gained acceptance as a solution for the loose 

coupling of systems in terms of communication. Meanwhile, with respect to content, XML 

(Extensible Markup Language) is becoming a de facto standard for online data exchange. I 

propose an approach that integrates publish/subscribe and XML and, in particular, exploits 

declarative XML queries to offer flexibility and adaptivity in distributed systems. This 

approach is based on building XML message brokers, which I define as middleware 

components that perform three main functions: filtering, transformation, and routing of XML 

messages based on user-specified queries. 

In this dissertation, I present YFilter/ONYX, an XML brokering system that provides the 

brokering functions for large numbers of queries over high volume message flows. I describe 

the architectural design of this system and its underlying technologies for providing 

efficiency and scalability. A key innovation is the exploitation of commonalities among 

queries; specifically, I present a series of novel sharing techniques that YFilter employs for 
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filtering and more sophisticated transformation. A second innovation is the leveraging of 

relational techniques in the new context of XML message brokering; YFilter uses an 

effective mapping from XML transformation to relational query processing, which allows 

known relational techniques to be applied to achieve simplicity and performance of XML 

transformation. A third innovation is the design of a distributed system, called ONYX, that 

pushes declarative queries into the network for content-based routing and incremental 

processing of messages. I report on the results of extensive performance studies, 

demonstrating the efficiency and scalability of YFilter/ONYX under a wide variety of XML 

document types and query workloads. 

In conclusion, YFilter/ONYX provides three key components, namely, filtering, 

transformation, and routing, for high-volume XML message brokering. As the adoption of 

XML-based distributed infrastructures gains momentum, the techniques developed in 

YFilter/ONYX and the results reported herein provide a foundation for building large-scale, 

high-function distributed information systems. 

 

 

 ______________________________________________  
   Professor Michael J. Franklin, Chair                        Date 

 



 

 i 

ACKNOWLEDGEMENTS 

 

I would like to thank my research advisor Professor Michael Franklin for his continued 

guidance and support during my graduate study at the University of California, Berkeley. He 

is the one who brought me to the world of systems research and taught me many things 

necessary for being a successful researcher. In particular, he showed me how to conduct 

convincing experimental studies, how to do critical thinking and writing, and how to give 

clear, punchy presentations; he also helped me develop the ability to think on the spot and 

brainstorm ideas, which was so much lacking in me at the beginning of this study. I also 

thank him for sharing with me his astute sense of what is and what will be important. I am 

grateful for the numerous meetings that he had with me to discuss my research problems and 

to guide me through them with his profound knowledge in many diverse areas. I feel even 

more indebted to the countless hours that he spent away from his family improving my 

writing and representations. Without his invaluable support and constant guidance, I could 

not have completed this dissertation. 

I also want to thank Professor Joseph Hellerstein for his infectious enthusiasm for 

database research, supportive inspiration, deep and accurate advice, and wonderful critiques. 

My gratitude also goes to Professor Ion Stoica for his constant interest in my research, his 

insightful comments on important issues of my work, and his valuable advice on system 

modeling and performance analysis from a networking expert’s perspective. I also want to 

acknowledge Professor Ray Larson for participating in my doctoral committee. And, I thank 

Dr. Michael Carey and Professor Donald Kossmann for their helpful mentoring in academic 

and personal settings. 



 

 ii 

Special thanks go to Professor Hongjun Lu, who introduced me to the database field and 

encouraged me to pursue my Ph.D. study at UCB in the first place. Although he can no 

longer be with us, his dedication to database research has motivated me and will continue to 

motivate me in the many years to come. 

I would like to express my sincere gratitude to my colleagues in the YFilter/ONYX team. 

Special thanks to Shariq Rizvi for inspiring conversations and hard work that led to the 

development of the ONYX system, to Anil Edakkunni for his one-year commitment to the 

YFilter code release and maintenance, and to Eugene Wu for leveraging YFilter to a complex 

event processor. I also thank the undergraduate helpers for their assistance in developing the 

parser, user interface, and demonstration of the YFilter system. I am proud to be part of the 

YFilter team with them. 

My appreciation also goes to other members of the database group at UC Berkeley. I 

acknowledge Amol Deshpande, Sailesh Krishnamurthy, Sirish Chandrasekaran, and Fred 

Reiss for their valuable insight, patience for numerous questions, and willingness to work 

through technical details with me. I owe thanks to Samuel Madden for providing advice on 

issues of academic career, and Mehul Shah for helping me develop strategies for dealing with 

criticisms and frustrations. I am also grateful to the following friends that helped foster new 

ideas and stimulating discussions: David Liu, Matt Denny, Ryan Heubsch, Boon Thau Loo, 

and Shawn Jeffery. Finally, I thank all my groupmates for their cooperation during work, 

sympathy and companionship before paper deadlines, and entertainment after work. They 

made my office a wonderful place to be and my years of study at UC Berkeley an enjoyable 

and memorable journey. 



 

 iii 

The research work was made possible by the financial support from many agencies and 

groups including the National Science Foundation, Boeing, IBM, Intel, Microsoft, Siemens, 

and the UC MICRO program. 

Last but not least, I am deeply indebted to my parents and sister for their unconditional 

love, everlasting faith in me, and encouraging support for my years of pursuit in academic 

career. They gave me the strength to overcome the innumerable obstacles that I encountered 

during my PhD study. I dedicate this dissertation to them. 



 

 iv 

TABLE OF CONTENTS 

 

1 Introduction...................................................................................................................1 

1.1 Middleware Infrastructures..................................................................................1 

1.2 XML Message Brokering.....................................................................................3 

1.2.1 XML Message Brokers...............................................................................4 

1.2.2 Example Applications................................................................................7 

1.2.3 Current Industrial Initiatives.......................................................................9 

1.3 Challenges..........................................................................................................11 

1.4 Focus of this Dissertation...................................................................................13 

1.4.1 Unifying Themes......................................................................................14 

1.4.2 Main Components ....................................................................................15 

1.4.3 Scope........................................................................................................17 

1.5 Contributions......................................................................................................18 

1.6 Summary............................................................................................................20 

2 Background .................................................................................................................21 

2.1 Extensible Markup Language (XML)................................................................21 

2.2 XML Query Language.......................................................................................23 

2.2.1 Path Expressions.......................................................................................24 

2.2.2 For-Where-Return Expressions................................................................26 

2.3 Traditional XML Query Processing...................................................................29 

2.4 Stream-based XML Query Processing...............................................................33 

2.4.1 Event-Based XML Query Processing.......................................................33 

2.4.2 A Finite State Machine-Based Approach.................................................35 



 

 v 

2.4.3 Indexing of Queries..................................................................................36 

2.5 Summary............................................................................................................37 

3 Related Work...............................................................................................................38 

3.1 Design Space for XML Message Brokering......................................................38 

3.2 Other Related Work ...........................................................................................42 

3.2.1 Information Retrieval ...............................................................................43 

3.2.2 Database Technologies.............................................................................44 

3.2.3 Networking Technologies.........................................................................46 

3.2.4 Programming Languages..........................................................................47 

3.3 Summary............................................................................................................48 

4 Basic Filtering with YFilter.........................................................................................50 

4.1 Introduction........................................................................................................50 

4.2 Architecture of the Filtering Engine..................................................................52 

4.3 Shared Structure Matching ................................................................................54 

4.3.1 Query Representation: A Combined NFA with an Output Function .......54 

4.3.2 Constructing a Combined NFA ................................................................55 

4.3.3 Implementing the NFA Structure.............................................................58 

4.3.4 Executing the NFA ...................................................................................58 

4.3.5 Discussion.................................................................................................61 

4.4 Performance of Structure Matching...................................................................62 

4.4.1 Algorithms................................................................................................62 

4.4.2 Experimental Set-up.................................................................................64 

4.4.3 Efficiency and Scalability.........................................................................67 

4.4.4 Experiment 3: Varying the maximum depth............................................73 



 

 vi 

4.4.5 Experiment 4: Varying Non-determinism................................................75 

4.4.6 Experiment 5: Maintenance cost ..............................................................79 

4.5 Related Work .....................................................................................................80 

4.6 Summary............................................................................................................81 

5 Advanced Query Support for Filtering........................................................................82 

5.1 Value-Based Predicate Evaluation.....................................................................82 

5.1.1 The Inline Approach.................................................................................83 

5.1.2 Selection Postponed (SP) .........................................................................85 

5.1.3 Performance of Value-based Predicate Evaluation..................................89 

5.2 Nested Path Expressions....................................................................................92 

5.2.1 Preliminaries.............................................................................................92 

5.2.2 Query Decomposition...............................................................................93 

5.2.3 Query representation.................................................................................94 

5.2.4 Query evaluation.......................................................................................95 

5.2.5 Support of Multiple Levels of Path Nesting.............................................97 

5.2.6 Evaluation of Nested Path Expressions....................................................98 

5.3 Related Work ...................................................................................................102 

5.4 Summary..........................................................................................................103 

6 XML Transformation ................................................................................................104 

6.1 Introduction......................................................................................................104 

6.2 Problem Statement...........................................................................................106 

6.3 YFilter Transformation Architecture...............................................................108 

6.3.1 Architectural Overview ..........................................................................108 

6.3.2 PathTuple Streams..................................................................................110 



 

 vii 

6.4 Basic Approaches.............................................................................................111 

6.4.1 Shared Matching of “For”  Clauses.........................................................112 

6.4.2 Shared Matching of “Where”  Clauses....................................................115 

6.4.3 Shared Matching of “Return”  Clauses....................................................118 

6.5 Simplifying Post-Processing............................................................................120 

6.5.1 Sufficient Conditions..............................................................................121 

6.5.2 Optimization of Post-Processing Plans...................................................122 

6.6 Shared Post-Processing....................................................................................123 

6.6.1 Query Rewriting .....................................................................................124 

6.6.2 Sharing Techniques................................................................................125 

6.6.3 Query Plan Construction and Execution ................................................128 

6.7 Experimental Evaluation..................................................................................129 

6.7.1 Experimental Setup ................................................................................129 

6.7.2 Shared Path Matching – Non-recursive Data.........................................132 

6.7.3 Shared Path Matching – Recursive Data................................................136 

6.7.4 Scalability ...............................................................................................138 

6.7.5 On Shared Query Execution...................................................................140 

6.7.6 Summary of Experiments.......................................................................142 

6.8 Related Work ...................................................................................................142 

6.9 Summary..........................................................................................................143 

7 Internet-Scale XML Data Dissemination..................................................................145 

7.1 Introduction......................................................................................................145 

7.1.1 Challenges..............................................................................................146 

7.1.2 Contributions..........................................................................................147 



 

 viii 

7.2 System Model ..................................................................................................148 

7.2.1 Service Interface.....................................................................................149 

7.2.2 Two Planes of Content-Based Processing..............................................150 

7.3 Query Plane......................................................................................................154 

7.3.1 An Operator Network Based Model .......................................................154 

7.3.2 Routing Table Construction ...................................................................156 

7.3.3 Incremental Message Transformation....................................................161 

7.4 Data Plane........................................................................................................163 

7.4.1 Holistic Message Processing..................................................................163 

7.4.2 Efficient XML Transmission..................................................................164 

7.5 Query Population Partitioning .........................................................................167 

7.6 Broker Architecture.........................................................................................171 

7.7 Related Work ...................................................................................................174 

7.8 Summary..........................................................................................................176 

8 Future Work ..............................................................................................................177 

9 Concluding Remarks.................................................................................................180 

Appendix A: Description of the XFilter Approach.........................................................182 

Appendix B: Description of the Hybrid Approach..........................................................186 

Appendix C: Data Structures and Pseudo-code for Inline...............................................188 

Appendix D: Data Structures and Pseudo-Code for SP..................................................191 

Appendix E: Proof of Claims..........................................................................................193 

Bibliography ....................................................................................................................198 

 



 

 ix 

LIST OF FIGURES 

 

Figure 1.1: Overview of an XML Message Broker………………………………………….....4 

Figure 1.2: Filtering of XML Messages in YFilter…………………………………………....15 

Figure 1.3: Filtering and Transformation of XML Messages in YFilter………………….......16 

Figure 1.4: Filtering, Transformation, and Routing in ONYX..……………………………....17 

Figure 2.1: An Example XML Document………………………………………………….....22 

Figure 2.2: A Tree Representation of an XML Document.…………………..…………….....30 

Figure 2.3: A Navigational Query Plan for Query 4.………………………....…………….....31 

Figure 2.4: An Index-based Query Plan for Query 4.……..............................……………......32 

Figure 2.5: An Example of the SAX API.……................................................…………….....34 

Figure 2.6: A Path Expression and its Corresponding FSM.……...............................……......35 

Figure 3.1: Design Space for XML Message Brokering.……....................................…….......39 

Figure 4.1: Architecture of the YFilter Filtering System……....................................…….......53 

Figure 4.2: An NFA-based Representation of Path queries…....................................…….......55 

Figure 4.3: NFA Fragments of Basic Location Steps.….............................................…….......56 

Figure 4.4: Merging NFA Fragments….............................................……………………........57 

Figure 4.5: An Example of NFA Execution.….............................................…………..….......61 

Figure 4.6: Varying number of distinct queries (NITF, D=6, W=0.2, DS=0.2)….....................68 

Figure 4.7: Varying number of queries (with duplicates) (NITF, D=6, W=0.2, DS=0.2)…......69 

Figure 4.8: Component costs for processing queries containing duplicates (NITF, D=6, 

W=0.2,DS=0.2)…...............................................................................................................70 

Figure 4.9: Varying number of distinct queries (Auction, D=8, W=0.2, DS=0.2)………….....72 

Figure 4.10: Varying number of distinct queries (DBLP, D=8, W=0.2, DS=0.2)…………......73 



 

 x 

Figure 4.11: Varying maximum depth (NITF, Q=50,000, W=0.2, DS=0.2)………………......74 

Figure 4.12: Varying wildcard probability (NITF, Q=50,000, D=10, DS=0)……………........76 

Figure 4.13: Varying “ //”  probability  (NITF, Q=10,000, D=10, W=0) …………………........77 

Figure 5.1: Predicate Storage for Inline……………………………....…………………..........84 

Figure 5.2: Predicate Storage for SP………………………………....………………….......…86 

Figure 5.3: A sample query, its NFA, and the NFA execution…………….……………..........87 

Figure 5.4: Varying number of queries (D=6, W=0.2, DS=0.2)…………….………................89 

Figure 5.5: Varying number of predicates (D=6, Q=50000, W=0.2, DS=0.2)...……............…91 

Figure 5.6: Effect of predicate sorting (D=6, Q=50000, W=0.2, DS=0.2)...………..............…92 

Figure 5.7: An example NP-Filter operator and its match filtering process...………................96 

Figure 5.8: Varying number of queries (D=6, W=0.2 DS=0.2, P=0)...……….……..................99 

Figure 5.9: Varying number of queries (D=6, W=0.2 DS=0.2, NP=1)...……..……................101 

Figure 6.1: YFilter Transformation Architecture.....……..……...............................................109 

Figure 6.2: An Example of the Path Matching Output….…..…...............................................111 

Figure 6.3: A Query Plan using PathSharing-F……...….…..…...............................................113 

Figure 6.4: A Query Plan Using PathSharing-FW.……...….…..….........................................117 

Figure 6.5: A Query Plan Using PathSharing-FWR.……...….…..…......................................119 

Figure 6.6: Shared Post-Processing Example.………..…...….…..…......................................127 

Figure 6.7: MQPT of Three Alternatives (Bib, Q=5000, PP=1, RP=2, DSProb=0.2).............132 

Figure 6.8: Varying RP (Bib, Q=5000, PP=1, DSProb=0.2, Opt(q+dtd))................................135 

Figure 6.9: Varying PP (Bib, Q=5000, RP=2, DSProb=0.2, Opt(q+dtd))………………........136 

Figure 6.10: MQPT of Three Alternatives (Book, Q=10000, PP=1, RP=2, DSProb=0.2).......137 

Figure 6.11: Varying Q(Bib, PP=1, RP=2, DSProb=0.2, Opt(q+dtd))......................................139 



 

 xi 

Figure 6.12: Varying number of unique query plans (Book, PP=1, RP=2, DSProb=0.2, 

Opt(q+dtd))……………………………………………………………………………..141 

Figure 7.1: Architecture of ONYX..........................................................................................149 

Figure 7.2: Message Routing Based on Content......................................................................151 

Figure 7.3: Three Example Queries and their Operator Network Representation...................155 

Figure 7.4: Examples of Constructing Routing Tables Using a Disjunctive Normal Form....158 

Figure 7.5: Wire size of XML messages..................................................................................166 

Figure 7.6: Processing delay for XML transmission................................................................167 

Figure 7.7: Random query partitioning vs. PEP.......................................................................170 

Figure 7.8: Broker Architecture...............................................................................................172 

Figure A.1: A Path Nodes of Queries and a Query Index in XFilter.......................................183 

Figure E.1: Two duplicate tuples, their path expression and a document tree………………194 

Figure E.2: A document tree with no recursive nodes in field i.…………………………….195 

Figure E.3: Two tuples with recursive nodes in field i, their path expression, related DTD 

graph, and the element path in the document…………….…………………………….197 

 



 

 xii 

LIST OF TABLES 

 

Table 1: Characteristics of three DTDs...................................................................................64 

Table 2: Workload parameters for query and document generation.......................................65 

Table 3: Number of distinct queries out of randomly generated queries  (NITF, D=6, W=0.2, 

DS=0.2)............................................................................................................................70 

Table 4: Characteristics of documents and queries as maximum depth varies.......................74 

Table 5: Cost of inserting 1000 queries (ms) (NITF, D=6, W=0.2, DS=0.2) .........................80 

Table 6: Profile on nested path processing (Q=50,000, D=6, W=0.2, DS=0.2)....................100 

Table 7: Workload parameters for query generation.............................................................131 

Table 8: Costs (ms) of operators (PathSharing-FWR) ..........................................................134 

Table 9: Profile for 5000 queries (PathSharing-FWR)..........................................................134 

Table 10: Costs (ms) of operators (PathSharing-FWR, Book) ..............................................137 

Table 11: Profile for 10000 queries (PathSharing-FWR, Book) ...........................................137 

Table 12: Costs(ms) as Q varies - PathSharing-FWR (Book DTD) ......................................139 

Table 13: Costs (ms) as Q varies - PlanSharing (Book DTD)...............................................141 

Table 14: System tasks over the two planes of processing....................................................153 

 

 



 

1 

1 Introduction 

Distributed information systems provide users with an integrated view of geographically 

distributed information and the ability to access the information through a universal service 

interface. Conceptually, these systems contain three layers in a vertical software stack: 

presentation to the user at the top, resource management at the bottom, and a middleware 

layer in between. It is in the middleware layer where the integration of disparate information 

systems takes place.  

Advances in middleware technology have been driven by the growing needs of 

distributed applications such as personalized content delivery [UserLand Software, 2005; 

QuoteMedia, 2005], online procurement [Ariba, 2005; BEA Systems, 2002], human resource 

management [Oracle-PeopleSoft, 2005; Taleo, 2005], network and application monitoring 

[NetLogger, 2002; Ganglia, 2005], etc. These applications usually require a myriad of 

autonomous systems to be integrated over wide-area networks; accordingly, distributed 

systems supporting these applications need to be built on flexible and adaptive 

infrastructures. A variety of middleware infrastructures have been developed to meet the 

challenges that these applications present. 

1.1 Middleware Infrastructures 

Traditional middleware infrastructures are tightly coupled. Distributed systems built in a 

tightly coupled way are inflexible, brittle, and cannot adapt to changes in the underlying 

systems. Tight coupling can occur at two abstract levels in the integration of disparate 

systems: 
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• At the lower communication level, tightly coupled systems use static point-to-point 

connections between senders and receivers (e.g., using Remote Procedure Call [Birrell 

and Nelson, 1984]). This means that a sender needs to know all its receivers before 

sending a piece of data. Such communication does not scale to large, dynamic systems 

where senders and receivers join and leave frequently.  

• Tight coupling can also occur at the higher content level, often in cases of remote 

database access. To access a database, an application needs to have precise knowledge of 

the database schema (i.e., its structure and internal data types). Furthermore, the 

application is at risk of breaking when the remote database schema changes. 

It has become clear that tightly coupled infrastructures are inappropriate for modern 

Internet-based applications [Bosworth, 2002; Carges, 2005]. To bridge the gap between 

traditional middleware technology and the needs of modern applications, the computing 

industry has made tremendous efforts to devise new middleware infrastructures. A promising 

approach is message-oriented middleware (MOM) [IBM, 2002; TIBCO Software, 2002; 

Oracle, 2005] where data to be exchanged is encoded in messages; these messages are 

moved from senders to receivers through asynchronous queues. Beyond basic message 

queuing, however, MOM-based platforms have been constantly improving to incorporate 

advanced features. Of particular importance are the following two technology trends:  

• Publish/subscr ibe [Oki et al., 1993]: Publish/subscribe is a many-to-many 

communication model that directs the flow of messages from senders to receivers based 

on receivers’  data interests. In this model, publishers (i.e., senders) generate messages 

without knowing their receivers; subscribers (who are potential receivers) express their 

data interests, and are subsequently notified of the arrival of messages from a variety of 
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publishers that match their interests. Publish/subscribe has gained acceptance as a 

solution for the loose coupling of systems at the communication level. 

• Extensible Markup Language (XML) [Bray et al., 2004]: At the content level, XML is 

becoming a de facto standard for data exchange on the Internet. The reasons for this 

widespread adoption are twofold. First, XML is flexible, extensible, and self-describing, 

so it is suitable for encoding data in a format (including both structure and content types) 

that senders and receivers can agree upon. Such XML-based generic formats enable 

heterogeneous systems to exchange data without knowing how the data is actually 

represented in the individual systems. Second, a large suite of XML technologies and 

toolkits developed recently allow system designers to add enhanced functionality as part 

of data exchange, e.g., message validation and transformation. For these reasons, XML 

has been recognized as a solution for the loose coupling of systems at the content level. 

These two trends lead to XML message brokering, the approach that I take in this dissertation 

for building flexible, high-function distributed information systems.  

1.2 XML Message Brokering 

XML message brokering is an emerging middleware infrastructure that leverages recent 

industrial trends. Compared to existing middleware infrastructures such as RPC-based and 

publish/subscribe-based middleware, XML message brokering has two distinct features: 

• It integrates publish/subscribe and XML to provide a high degree of flexibility at both the 

communication and content levels in distributed information systems. 

• It further exploits declarative XML queries to increase the functionality of these systems. 

Declarative XML queries are high-level statements of user interests applied to XML data. 

These queries can be used to encode user/application-specific logic for handling 
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messages in transit (e.g., filtering and transforming them), and can be embedded in the 

underlying infrastructure of a distributed system to efficiently realize such logic. 

1.2.1 XML Message Brokers 

In this emerging middleware paradigm, XML message brokers are the key middleware 

components that serve as central exchange points for messages sent between systems. Figure 

1.1 shows the basic context in which a message broker operates. In this figure, the three main 

components are: 

Publishers: Publishers can be many types of information providers such as news 

agencies, database systems, monitoring applications, etc. They publish information by 

creating XML messages. An XML message is structured into two main parts: a header and a 

payload. The header provides application-specific information such as authentication, 

priority, routing and processing instructions, etc. The payload is the content of the message. 

Depending on the application, the payload can be a news article, a stock quote, a weather 

forecast, a technical report, or even a large collection of data items exported from a database.  

Subscr ibers: Subscribers can be end users or applications. They register their data 

interests with a message broker. For example, a subscriber may be interested in messages 

XML 

Message 

Broker 

XML 
messages Queries 

Query 
results 

Figure 1.1: Overview of an XML Message Broker 

Publishers Subscr ibers 
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that contain stock quotes of IBM or weather forecasts for San Francisco. These interest 

specifications can be written in an XML query language such as XPath [Clark and DeRose, 

1999] or XQuery [Boag et al., 2003]; specifications written in these languages are essentially 

declarative XML queries. Subscribers’  interest specifications are sometimes also referred to 

as subscriptions or profiles. In this document, the terms “query” , “subscription” , and 

“profile”  are used interchangeably.    

XML message broker : In its simplest form, a message broker operates as a central 

server between publishers and subscribers. The two sets of inputs to the broker are queries 

and continuously arriving XML messages (which are referred to as streams of XML 

messages).  

• Inside the broker, arriving queries are stored as continuous queries that are applied to all 

incoming messages. These queries remain effective until they are explicitly deleted.  

• Incoming messages are processed on-the-fly against all of the stored queries. For each 

message, the processing determines the set of queries that are matched by the message; a 

query result is further created for each matched query. A result can be a copy of the 

original message or a new, customized message, depending on the requirements of the 

corresponding query. After a message is processed, all of its query results are delivered to 

the relevant subscribers in a timely fashion.  

Having described the inputs and output of XML message brokers, I now present the core 

broker functionality. It is important to note that the term “message broker”  has been used in 

many ways in the middleware industry; for example, it is often used to refer to message-

oriented middleware that supports the publish/subscribe communication model [BEA, 2002; 

IBM, 2002]. While such brokers can handle XML-encoded messages and perform simple 
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routing tasks based on the message header, they do not fully exploit the potential that XML 

brings to the messaging world.  

In this dissertation, I define XML message brokers as middleware components that 

provide visibility into both the header and the payload of XML messages and that implement 

application-specific logic for handling such messages. Specifically, given a set of queries and 

a stream of messages, XML message brokers perform three main functions:  

• Filter ing matches messages against query predicates that represent the data interests of 

specific subscribers. In a broad sense, query predicates are constraints applied to various 

fragments of XML messages (a detailed description is provided in Chapter 2.2). For each 

message, the result of filtering is a set of queries whose predicates are satisfied. 

• Transformation restructures messages according to query-specific requirements. 

Besides predicates, a query can also contain a transformation component specifying what 

fragments to extract from a matching message and how to arrange these fragments in a 

resulting message. Applying such queries to an incoming message results in a collection 

of customized messages, one for each query that is matched by the message.  

• Routing involves transmission of messages over wide-area networks. So far, I have 

described message brokers in a simple setting; that is, brokers operate as central servers. 

In scenarios such as Internet-scale data dissemination, however, a network of brokers can 

be deployed to collaboratively provide the message brokering functionality. In such 

cases, subscribers register queries and information providers publish messages in a 

distributed fashion; accordingly, message brokers perform a third function to direct 

messages from their publishing sites to locations where relevant queries reside and 

finally to subscribers whose queries have been satisfied.  
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1.2.2 Example Applications 

XML message brokering can be used to support a wide range of emerging applications. In 

the following, I describe two of them.  

Personalized News Delivery: With an increasing supply of information, personalized 

news delivery has become important to news readers for time savings and better matching of 

information preferences [Chesnais et al., 1995; Yan and Garcia-Molina, 1999; Yahoo!, 

2005]. Today, news providers are adopting XML-based formats to publish news articles 

online. The News Industry Text Format (NITF) [IPTC, 2004] is the most commonly used 

XML vocabulary among news publishers worldwide, including the New York Times, 

Agence France Press, and ANSA Italy. Given articles marked up with NITF tags, a 

personalized news delivery service could allow users to express a wide variety of interests, 

e.g., “all the sports news” , “all the articles written by John Smith” , “all the articles referring 

to the one whose document id is 1234” , and “all the events that will take place in San 

Francisco this weekend” . This service could also allow users to specify which portions of the 

relevant articles, e.g., title and abstract only, should be returned. As soon as a new article is 

published online, this service delivers the article to all interested users in their required 

format.  

An emerging XML-based technology, Really Simple Syndication (RSS) [UserLand 

Software, 2005], enables similar yet simpler news services: RSS allows news publishers to 

create updated headlines and delivers these headlines to users according to their URL- and/or 

keyword-based preferences. In comparison, RSS offers limited personalization functionality 

by supporting only simple interest specifications and returning results in a fixed headline 

format.  
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The desired personalized news delivery services can be built directly using XML 

message brokering. Users register their interests through a Graphical User Interface that 

helps users create XML queries and sends these queries to a message brokering system. The 

system continuously receives XML-encoded news articles from various publishers either by 

requesting the publishers to push those articles or by using a crawler to fetch the newly 

published ones. Internally, the system matches the incoming articles against the entire set of 

queries, transforms the articles into customized results for each matched query, and delivers 

these personalized results to the relevant users. 

Application Integration: A second example application where XML message brokering 

can play an important role is Application Integration, whose goal is to allow disparate, 

independently-developed applications to work together. As an example, consider an online 

quotation system that finds the best price for a product. The system is composed of two types 

of application: buyers and suppliers. Through a form-based web front end, a buyer creates 

requests for price quotations for particular products. Each request must be checked against a 

set of relevant suppliers, each of which offers its price for the product. After the quotations 

are returned to the buyer, they are compared so that the best price can be reported. There are 

two difficulties in integrating these two types of application to build the desired quotation 

system. First, buyers may not have a priori knowledge of the set of relevant suppliers. 

Second, some of the suppliers may be legacy systems that use proprietary formats internally 

and cannot understand requests encoded in a different format. 

These difficulties can be overcome by using a message brokering system and adopting a 

common XML format for encoding requests for price quotations. Suppliers submit queries to 

the system describing the categories of products that they provide. If some of the suppliers 

are legacy systems, their queries also specify how the request messages encoded in the 
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common format should be transformed to their internal format. On the other side, buyers 

create request messages and send them to the brokering system. The system matches these 

messages with suppliers’  queries, transforms the messages according to the requirements of 

the matching suppliers (if necessary), and finally directs the messages in the right format to 

the relevant suppliers. 

Beyond these two application examples, there are many other scenarios where XML 

message brokering can play a central role. These include online auctions [Ariba, 2005], stock 

tickers [QuoteMedia, 2005], human resource management [Oracle-PeopleSoft, 2005; Taleo, 

2005], network and application monitoring [NetLogger, 2002; Ganglia, 2005], etc. In these 

scenarios, message brokering functionality would facilitate the development of sophisticated 

logic for interaction among disparate distributed systems.  

1.2.3 Current Industrial Initiatives 

Due to its potential for enabling the development of large-scale, high-function distributed 

applications such as those described above, XML message brokering has drawn increasing 

interest from the middleware and networking industries. Currently, some of the leading 

middleware companies are developing brokering functionalities similar to those described 

above but have not yet deployed them. Also, a number of pioneering networking companies 

have implemented restricted brokering functionalities in network-oriented settings. In the 

following, I briefly describe these efforts. 

Next-generation message brokers. Middleware providers have accepted that XML is 

becoming the universal language of Internet data exchange. As a result, leading middleware 

providers such as Microsoft [Microsoft, 2004] and BEA Systems [BEA Systems, 2005] have 

initiated efforts to design next-generation message brokers that aim to provide a pipeline of 

sophisticated operations between inbound and outbound XML messages. Specifically, these 
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operations validate and reformat inbound messages, e.g., based on the product identifiers 

contained in the messages, retrieving the corresponding product names from a database and 

writing the names to the messages; furthermore, these operations filter the messages to 

determine the set of recipients, transform them to create outbound messages in recipient-

specific formats, and finally deliver the resulting messages to the recipients. These message 

brokers provide a complex flow of operations for message processing and have some aspects 

of the core brokering functionalities, such as filtering and transformation, as defined in this 

dissertation.  

Application-Aware Network Infrastructures. The XML wave is also heading to the 

telecommunications world with leading service providers such as Cisco Systems developing 

Application-Aware Network Infrastructures (AANI). AANI is based on a vision for the 

transition from packet-oriented networks to intelligent application-oriented networks that 

consolidate network and application infrastructures to secure, rationalize, integrate, and 

accelerate applications. Unlike traditional networks that operate on packets or URLs, 

application-oriented networks operate on entire messages, including all of the content and its 

semantics. They provide not only connectivity but also message-level access control, 

filtering, transformation, routing, and many other operations according to business policies.  

Compared to the brokering functionalities described in this dissertation, AANI providers 

have focused on a simpler language for encoding application logic and relied heavily on 

hardware-based solutions to achieve the performance, simplicity, and security required for 

wide adoption. Among them, Cisco Systems has recently released its first batch of 

Application-Oriented Networking Modules [Cisco Systems, 2005] that can be installed in 

Cisco routers and switches for application-level intelligence, real-time visibility of message 

content, and cost-effective ownership of consolidated network and application 
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infrastructures. DataPower Technology [DataPower Technology, 2005] offers newly-

developed product lines that enable secure Web services, XML performance improvement, 

and high speed connectivity among legacy, binary and XML systems. Solace Systems 

[Solace Systems, 2005] has also debuted with Multiservice Message Routers that provide 

intelligent routing of application traffic and enhanced operations control that can be 

beneficial to both applications (e.g., policy enforcement) and network performance (e.g., 

message prioritization). 

These industrial initiatives provide compelling evidence that XML message brokering 

will become a crucial component of the overall emerging IT (Information Technology) 

infrastructure. The research presented in this dissertation is of particular relevance to such 

technology advancement; in fact, important ideas and techniques developed in this research 

have gained attention and adoption from some of the companies listed above. Compared to 

the fairly basic functionalities that existing commercial products offer, however, this 

dissertation aims at higher levels of functionality and thus needs to respond to greater 

challenges. In the following, I present the technical challenges that this dissertation 

addresses, describe its unifying themes, and highlight its contributions.  

1.3 Challenges 

XML message brokering brings many new challenges that have not been addressed in related 

work, particularly XML query processing, which has been intensively studied in the database 

literature. The differences between XML message brokering and XML query processing lie 

in the fact that XML message brokers are deployed on the Internet to integrate widely-

dispersed, independently-administrated systems and to support new applications. Such 

deployment environments raise a number of challenges including: 
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Scale of processing. A predominant requirement of XML message brokering is 

scalability. Specifically, message brokering systems must scale along dimensions of message 

volume, query population, and distribution of the system. 

• Message volume: The message volume is determined by the number of messages per 

second arriving at the system and the message size. Depending on the application, the 

message rate can range up to tens of thousands per second. For example, network and 

application monitoring systems such as NetLogger [NetLogger, 2002] can receive up to a 

thousand messages per second; NASDAQ real-time data feeds [NASDAQ, 2005] include 

approximately 60,000 messages per second during the market hours. The message size 

can vary from 1 kilobyte (e.g., XML-encoded stock quote updates) to 20 kilobytes (e.g., 

XML news articles). To process messages as they arrive, XML message brokers must be 

able to keep up with such high-volume message flows. 

• Query population: The query population in a XML message brokering system can also 

span a wide range, reaching millions of queries for applications such as personalized 

newspaper generation and mobile operators providing stock quote updates. In the 

presence of high volumes of messages and large numbers of queries, a key challenge is to 

efficiently search the huge set of queries to find those that can be matched by a message 

and construct complete query results for them. 

• Distribution: Due to the scale of message volume and query population, high-

performance XML message brokering may require the use of a network of message 

brokers to distribute the query population and spread the message processing load. When 

queries are placed on a large set of brokers, another issue is to quickly identify the set of 

brokers hosting queries to which a specific message is relevant. Once such brokers are 

identified, queries on those brokers can be processed as before in parallel. 
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Robustness in dynamic environments. A second requirement of message brokers is the 

ability to perform well in highly-dynamic environments. In such environments, subscribers 

are likely to join and leave and the data interests of existing subscribers may also evolve over 

time. The frequency of query updates due to these reasons can vary from daily to something 

much more frequent. As a result, message brokers see a constantly changing collection of 

queries and need to react quickly to query changes without adversely affecting processing of 

incoming messages. This issue has been largely ignored by research on XML query 

processing.  

Handling schema-less data. Message brokers receive XML messages from various 

systems that use internal (not publicly shared) processes to create messages. Even if those 

systems use the same schema for publication, XML schemas designed for heterogeneous 

systems are typically general enough that different processes can create messages with 

significant variability in structure and content. Furthermore, in Internet-based environments, 

it is not uncommon that message brokers receive XML messages without knowing which 

schema the messages are based on. These phenomena dictate that XML message brokering 

cannot be implemented using techniques that rely on the knowledge of schema or the 

structure of data. As a result, XML message brokering is radically different from traditional 

database research that depends heavily on such knowledge for query processing and 

optimization. 

1.4 Focus of this Dissertation 

After describing XML message brokers and identifying their associated challenges, I now 

present the focus of this dissertation, including its unifying themes, main technical 

components, and scope. 
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1.4.1 Unifying Themes 

The previous section identified three challenges in the context of XML message brokering: 

scale of processing, robustness for query updates, and ability to handle schema-less data. 

These challenges have shaped the design principles of this dissertation research:  

• Schema-independent query processing: Message brokers must be implemented using 

techniques that only require the knowledge of queries for preparing execution plans 

against which arriving messages are evaluated on-the-fly, but can exploit schemas, if 

present, to optimize such execution plans for improved performance. 

• Incremental query update: Message brokers must also be built using techniques that 

allow execution plans of queries to be updated incrementally, that is, the change of one 

query does not affect other existing queries. 

• Shared query processing: XML message brokering systems deployed on the Internet 

can contain large numbers of queries (as described in Section 1.3); in these systems, 

significant commonalities among queries are likely to exist. Query processing strategies 

that ignore such commonalities may perform redundant work that wastes system 

resources and harms overall performance. Therefore, desirable strategies should be able 

to exploit such commonalities. To this end, novel techniques need to be devised to 

identify common portions among queries and effectively share their processing.  

• Reuse of traditional query processing techniques: XML query processing is complex; 

efficient processing for a large set of XML queries is even more challenging. On the 

other hand, there has been thirty years’  research on high-performance query processing in 

traditional (typically, non-XML) database systems. It is crucial to reuse, where possible, 

traditional query processing techniques in the XML-based message brokering context for 

simplicity and performance.  
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• In-network query processing: As the brokering system expands into a network of 

brokers, routing every incoming message to all the brokers wastes computation power 

and network bandwidth if the message is irrelevant to the queries on some of the brokers. 

In such cases, queries can be propagated across the network to bring intelligence to the 

network routing fabric, to provide flexibility in choosing locations to place broking 

functionality, and to enhance overall system performance. 

1.4.2 Main Components 

In this dissertation, I propose, develop, and evaluate YFilter/ONYX, an XML message 

brokering system that allows users/applications to encode their logic for handling messages 

using declarative queries and to embed such logic in the underlying infrastructure of an 

integrated distributed system. The development of this system follows the unifying themes 

presented in the previous section, and takes place in three major phases:  

The initial phase of development focuses on the support for filtering of XML messages. 

The system developed for this purpose is called YFilter. An overview of YFilter is presented 

in Figure 1.2. Given a set of queries that have been received, for each incoming message, 

YFilter identifies the subset of queries that are matched by the message. Research issues 

explored in this phase include shared processing of queries for efficient and scalable filtering, 

XML 
messages 

Filtered 
messages 

 

Filter ing 

YFilter  

Figure 1.2: Filtering of XML Messages in YFilter 

Queries 
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integrating advanced query features in such shared processing, and incremental maintenance 

of the system upon query updates. These issues and the complete solutions that YFilter 

provides for XML filtering are discussed in Chapters 4 and 5. 

In the second phase of this research, the YFilter system is extended to also transform 

messages for customized result delivery. This extension is illustrated in Figure 1.3. As this 

figure shows, a transformation module is added to YFilter which processes the output of the 

filtering module and creates customized messages as the final results. The research in this 

phase is centered on how to support shared processing among transformation queries that 

incorporate filtering queries as basic components. Details on the transformation extension of 

YFilter are provided in Chapter 6. 

In the third phase of this research, the filtering and transformation functionality of 

YFilter is extended into a distributed system called ONYX. The basic architecture of ONYX 

is shown in Figure 1.4. ONYX employs a network of message brokers that collaboratively 

provide high scalability and high functionality. Each message broker in this network runs a 

YFilter instance to filter and transform messages. In addition, each broker contains a routing 

component to efficiently forward messages to the downstream brokers that are interested in 
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Figure 1.3: Filtering and Transformation of XML messages in YFilter 
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the messages. Interestingly, the routing component is also built on YFilter technology. The 

ONYX system is presented in detail in Chapter 7.  

1.4.3 Scope 

XML message brokering is a broad area covering many query processing and architectural 

issues. This dissertation focuses on the core issues related to providing the brokering 

functions while meeting the challenges identified in the previous section. To stay focused, 

several simplifying assumptions are made:  

Type of query processing: This research focuses on queries written in standard XML 

query languages such as XPath [Clark and DeRose, 1999] and XQuery [Boag et al., 2003]. 

Such queries are applied only to individual messages, for example, to filter and restructure 

the messages. Message processing with such queries does not involve any interaction across 

message boundaries, and is referred to as stateless. Stateless processing is in contrast to 

stream query processing [Chandrasekaran et al, 2003; Motwani et al., 2003; Abadi et al., 

2003] that maintains state over a long stream of messages (as described in Section 3.2.2). 

Support of such stateful processing is a main focus of future work.  
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Message processing model: Message brokers in this research use a simple execution 

model: messages are processed one-at-a-time in order of arrival; a message is processed in its 

entirety before processing is initiated for the next message. Other message processing models 

can be used. That discussion is beyond the scope of this dissertation. 

Range of message routing: Distributed brokering systems route messages from the 

publishing sites to the locations of relevant subscribers. Message routing in this research 

covers the range from the publishing sites to the brokers hosting queries relevant to specific 

messages. The last-hop routing from these query-resident brokers to the subscribers involves 

a wide variety of communication mechanisms depending on the devices that subscribers use. 

This issue is a research topic in its own right and is not explicitly addressed in this 

dissertation. 

1.5 Contributions 

The main contributions of this dissertation can be summarized as follows. 

First, I  identify XML message brokers as key middleware components that per form 

three main functions on continuously ar r iving messages on behalf of subscr ibers: 

filtering, transformation, and routing. To the best of my knowledge, this work is the first 

that attempts to address all three issues in the context of XML message brokering.  

Second, for  XML filter ing, I  devise a novel Nondeterministic Finite Automaton 

(NFA)-based approach that aggressively exploits commonalities among quer ies for  

shared processing. By doing so, YFilter provides an order-of-magnitude performance 

benefit over previous solutions that exploit less or no sharing. It is also highly scalable, 

supporting up to 100’s of thousands of distinct queries with a single processor. Furthermore, 

it requires only a small maintenance cost for query updates, thus providing a robust solution 

to XML filtering in dynamic environments. 



 

19 

Third, for  XML transformation, I  develop an approach to shared processing of 

transformation quer ies that combines YFilter  and relational query processing 

techniques. The success of this approach hinges on the efficient and scalable foundation that 

YFilter provides for filtering and an effective use of relational query processing. This is the 

first algorithm in the literature that supports XML transformation for a large set of queries, 

i.e., 10’s of thousands of them.  

Fourth, I  implemented all of the above techniques and evaluated their  effectiveness 

with detailed per formance analyses of this implementation. Results of these analyses 

demonstrate the efficiency and scalability of YFilter under a wide variety of XML document 

types and query workloads. 

Fifth, I  released YFilter  1.0, a freely available software system containing the 

filter ing engine. This release has been used in research projects for grid monitoring 

[GridICE, 2005] and event processing, and has served as an exemplary implementation of 

such functionality for product-oriented development [Taleo Co., 2005]. Recently, it has also 

been integrated into Apache Hermes [Apache Hermes, 2004] to provide an implementation 

of the Web Services Notification specifications [OASIS MSN TC, 2005]. 

Sixth, I  extend YFilter  into a distr ibuted broker ing system, ONYX, that employs a 

network of brokers with routing capabilities to provide Internet-scale XML 

dissemination services. ONYX pushes queries into the core of the broker network so that 

intelligent algorithms can be used to route messages and to choose appropriate locations to 

most efficiently place brokering functionality. This dissertation shows that such in-network 

query processing enables a distributed brokering system to achieve high scalability as well as 

high functionality.  
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Finally, I  propose a number of important open problems in the area of XML 

message broker ing to which my disser tation work has led. These problems address the 

needs of emerging applications, such as stateful publish/subscribe and complex event 

processing.  

1.6 Summary 

The Information Technology industry is moving towards building large-scale, high-function 

distributed information systems. Middleware infrastructures play a key role in building such 

systems. In particular, XML message brokering is emerging as an infrastructure that can 

meet demanding scalability and functionality requirements. In this chapter, I introduced 

XML message brokering, identified its main functions and implementation challenges, 

outlined the key insights for developing solutions that are able to meet such challenges, and 

summarized the YFilter/ONYX system that provides crucial components for building this 

new infrastructure. 

The remainder of this dissertation presents the YFilter/ONYX system, its core 

techniques, and results of experimental evaluation of these techniques in greater detail. 

Chapter 2 provides background on the technical context in which the dissertation research is 

conducted. Chapter 3 covers related work. Chapters 4 and 5 describe basic filtering and 

filtering with advanced query support in YFilter, respectively. Chapter 6 discusses YFilter’s 

transformation component. Chapter 7 presents the ONYX extensions to YFilter for 

distributed brokering, with a focus on routing capabilities. Chapter 8 discusses remaining 

open issues and sketches directions for future work. Chapter 9 concludes the dissertation. 
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2 Background 

In this chapter, I provide the technical context for the work presented in the subsequent 

chapters. I begin with a description of the Extensible Markup Language (XML) that is used 

to encode messages in middleware systems. I then describe the XML query language that is 

used in YFilter/ONYX for subscribers to write their interest specifications. I also present an 

overview of XML query processing in both traditional and stream-based settings, which 

discusses some underlying technologies that YFilter/ONYX uses for developing XML 

message brokering functionality.  

2.1 Extensible Markup Language (XML) 

Extensible Markup Language [Bray et al., 2004], abbreviated as XML, is a self-describing, 

flexible, and extensible text format that was originally designed to meet the challenges of 

large-scale electronic publishing. XML is playing an increasingly important role in the 

exchange of a wide variety of data on the Internet and in enterprise intranets.  

XML describes a class of data objects that are generally called XML documents. XML 

messages, which were mentioned in the previous chapter, are a special type of XML 

document. XML provides a mechanism for tagging document content to provide a detailed 

description of its organization. Specifically, XML allows a document to take a hierarchical 

structure that consists of a root element and sub-elements; elements can be nested to any 

depth. Figure 2.1 shows an example XML document that contains a technical report. In this 

example, the root element is report; it contains a sub-element section that in turn contains 

three sub-elements: title, section (a nested, second-level section), and figure. 
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An XML element starts with a start-tag enclosed by a pair of angle brackets. The start tag 

consists of a tag name and an optional list of attribute specifications. In the above example, 

the report element does not contain any attributes but its sub-element section contains two 

attributes: id with a value “ intro”  and difficulty with a value “easy” . An XML element ends 

with a matching end-tag that is marked by a ‘ /’  symbol before the tag name in its enclosing 

brackets. The content of an element resides between its start- and end- tags, and can contain 

not only sub-elements but also text data. For example, the first title element in Figure 2.1 has 

the text data “Pub-Sub” . 

A general set of rules for a document’s elements and attributes can be defined in a 

Document Type Definition (DTD) [Bray et al., 2004] or an XML schema [Thompson et al., 

2004]. A DTD or XML schema specifies information about a class of documents including 

all possible structures of documents in the class and the domains of values that attributes in 

those documents can take. It is important to note, however, that the query processing 

<?xml version="1.0" ?>  
<repor t> 

<section id=“ intro”  difficulty=“easy”>   
<title>Pub-Sub</title>   

  <section difficulty=“easy”>   
   <figure source=“g1.jpg”> 
    <title>XML Processing</title> 
   </figure>   
  </section> 
  <figure source=“g2.jpg”> 
   <title>Scalability</title> 
  </figure> 
 </section> 
</repor t> 

Figure 2.1: An Example XML Document 
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techniques described in this dissertation do not require DTDs or XML schemas, but can 

exploit them, if present, to optimize query processing for improved performance1. 

XML’s tagging mechanism and associated technologies for defining rules for such 

tagging result in three key properties of XML: self-description, flexibility, and extensibility. 

XML is self-describing because it supports the use of element tags to describe document 

content. XML is flexible because DTDs and XML schemas allow significant variance in the 

structure and content of documents; for example, an element, attributes of an element, or text 

data of an element can be optional, and elements of the same tag name can appear multiple 

times inside the same enclosing element. Furthermore, XML is extensible because DTDs and 

XML schemas can be defined and modified by any user. This extensibility is fundamentally 

different from the HyperText Markup Language (HTML) [Raggett et al., 1999], which uses a 

pre-defined, fixed set of tags. It is these three properties that have pushed XML to the 

forefront of electronic publishing and online information exchange. 

2.2 XML Query Language 

Having described XML document structure, I now present an XML Query Language that is 

used in this dissertation to encode subscribers’  interest specifications. 

 XQuery [Boag et al., 2003] is a declarative language for querying XML data. It is 

designed to be broadly applicable to many types of XML data sources. XQuery is commonly 

used to locate and extract elements and attributes from XML documents and also to construct 

                                                   

1 An XML Schema provides richer information than a DTD (e.g., robust and extensible data 
typing). The information that the work in this thesis exploits for query optimization relates to the 
structure of documents and is provided by both types of definition. Therefore, XML schema and 
DTD are treated similarly in this work. 
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new XML documents using the extracted entities. In this research, I focus on a subset of 

XQuery for expressing queries over XML messages to filter and transform them.  

2.2.1 Path Expressions 

A basic, common form of XQuery expressions are path expressions that can contain 

constraints over both structure and content of XML fragments.2 In this dissertation, path 

expressions are used to write query specifications for filtering of XML messages.  

Path expressions are based on a view in which an XML document is a tree of nodes. 

Given this view, path expressions are essentially patterns that are matched to nodes in the 

XML tree. A path expression consists of a sequence of one or more location steps. Each 

location step consists of an axis, a node test and zero or more predicates. An axis specifies 

the hierarchical relationship between nodes. This dissertation focuses on two common axes: 

the child axis “ /”  (i.e., nodes at adjacent levels), and the descendent axis “ //”  (i.e., nodes 

separated by any number of levels). In the simplest and most common form, a node test is a 

name test, which is specified by either an element name or a wildcard operator (“* ” ) that 

matches any element name. 

Each location step can also include one or more predicates to further refine the selected 

set of element nodes. A predicate, delimited by ‘ [’  and ‘ ]’  symbols, is applied to the element 

node addressed at a location step. Predicates can specify constraints on the text data or the 

attributes of the addressed element nodes. In this dissertation, such predicates are referred to 

as value-based. In addition, predicates may also include other path expressions, which are 

called nested path expressions. Nested paths are relative paths with respect to the location 
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steps where their enclosing predicates reside; accordingly, they are evaluated in the context 

of each of the element nodes that their enclosing predicates address. 

For a concrete example, consider a user who is interested in the title of each figure in a 

technical report. She can express her interest using Query 1 below (based on a DTD from the 

XQuery use cases [Chamberlin et al., 2003]). This query specifies that the root element of the 

document must be report and this element must contain a figure element somewhere inside 

(i.e., a “ //”  location step) which in turn contains a child element title (i.e., a “ /”  location step). 

 

Query 1:  $doc/report//figure/title 

 

Query 1 is evaluated against each document to which the leading variable $doc is bound. 

For each document, it returns a query result that contains all the title elements matching the 

entire path expression, listed in their document order. For example, applying this query to the 

example document in Figure 2.1 creates a result with two matching title elements: 

 

<title>XML Processing</title> 

<title>Scalability</title> 

 

For a more complex example, suppose that the user is interested in those sections that are 

marked as “easy”  (thus, suitable for all readers) and contain a title that is “Pub-Sub” . She can 

express these requirements using Query 2 below. This query specifies two constraints on a 

matching section element: (1) its attribute difficulty must have a value “easy” , which is 

                                                                                                                                                       

2 Path expressions are also defined in the XPath 1.0 specification [Clark and DeRose, 1999] that 
is largely a subset of XQuery. 
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specified as a valued-based predicate; and (2) it must have a child element title whose text 

data is “Pub-Sub” , which is expressed using a nested path expression. Note that the ‘@’  

symbol in the first predicate indicates that “difficulty”  refers to an attribute of the section 

element. In contrast, “ title”  in the second predicate does not have a preceding ‘@’  symbol, so 

it refers to a child element of the section element.  

 

Query 2:  $doc//section[@difficulty = “easy”][title = “Pub-Sub”] 

 

When evaluated against the example document in Figure 2.1, Query 2 returns the top-

level section element as the result: 

 

<section id=“intro” difficulty=“easy”> 
 <title>Pub-Sub</title> 
 <section difficulty=“easy”> 
  <figure source=“g1.jpg”> 
   <title>XML Processing</title> 
  </figure> 
 </section> 
 <figure source=“g2.jpg”> 
  <title>Scalability</title> 
 </figure> 
</section> 
 

2.2.2 For-Where-Return Expressions 

XQuery also allows customized XML documents to be created using For-Where-Return 

expressions. For-Where-Return expressions are a high-level language construct that 

combines matching and restructuring of XML data. These expressions provide a powerful 

way to specify requirements for transforming XML messages. 
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YFilter/ONYX supports a subset of For-Where-Return expressions. In this subset, an 

expression contains: 

• A for clause containing a variable name and a path expression; followed by 

• An optional where clause that contains a set of conjunctive predicates, each of which 

takes the form of a triplet: a relative path expression, an operator, and a constant; 

followed by 

• A return clause that contains interleaved constant tags and relative path expressions, 

where all constant tags have a matching close tag. 

The semantics of the For-Where-Return expression is as follows. The for clause creates 

an ordered sequence of variable bindings to element nodes. The where clause, if present, 

restricts the set of bindings passed to the return clause. The return clause is invoked once for 

each variable binding. At each invocation of the return clause, tags cause the construction of 

new element nodes and path expressions select nodes from the current variable binding; if 

multiple nodes are selected for a path expression, they are grouped and listed in their 

document order. The final result of the For-Where-Return expression is an ordered sequence 

of the results of these invocations. 

Continuing with the example from the previous section, the user who issued Query 2 can 

instead use Query 3 below (whose for and where clauses together express requirements 

equivalent to those of Query 2) to transform a matching section element to a new_section 

element containing the elements selected from the original section using path expressions 

“ /title” , and “ //figure” . 
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Query 3:  for   $s in  $doc//section[@difficulty = “easy”] 
where   $s/title = “Pub-Sub” 
return  <new_section> 
   {$s/title} 
   {$s//figure} 
  </new_section> 

 

Applying Query 3 to the document in Figure 2.1 produces the result below. Compared to 

the result for Query 2 shown in the previous section, the result here (1) uses a new tag name 

for the top-level element, (2) includes only a subset of the elements contained in the 

matching section element, and (3) organizes the selected elements in a way such that the title 

elements (note there is only one in this example) are all placed before the figure elements, 

and elements of the same tag name (title or figure) are listed in their document order. 

 

<new_section> 
 <title>Pub-Sub</title> 
 <figure source=“g1.jpg”> 
  <title>XML Processing</title> 
 </figure> 
 <figure source=“g2.jpg”> 
  <title>Scalability</title> 
 </figure> 
</new_section> 

 

So far, I have described XML and a subset of XQuery that are used in this dissertation to 

encode messages and subscriptions, respectively. Next, I present an overview of processing 

XQuery queries over XML data, which is referred to as XML query processing in the sequel. 

XML message brokering shares some of the underlying technologies with XML query 

processing, but also uses more advanced query processing techniques.  
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2.3 Traditional XML Query Processing 

In this section, I describe XML query processing in a traditional setting, that is, where 

queries are posed against XML data that is persistently stored in a database. There is a large 

body of work in this area in the database literature. It is not my intention here to provide a 

thorough survey of this area. Rather, my goal is to provide some basics that are necessary for 

understanding this dissertation. The interested reader is referred to [Florescu and Kossmann, 

2004] for additional information on query processing in XML databases. 

As in relational query processing, XML query processing needs a data model to describe 

the data for querying. A widely used XML data model is Infoset [Cowan and Tobin, 2004]. 

In this model, an XML database is a forest of rooted, labeled trees. Many types of nodes can 

exist in a tree; the common types include the document node, element node, attribute node, 

and text node. A document node is the pseudo-root of the tree and points to the top-level 

element node. An element node corresponds to an element and is labeled with the name of 

the element. It contains an ordered list of child element nodes and text nodes (in their 

document order) and an unordered list of attribute nodes. An attribute node is labeled with its 

attribute name and stores the value of the attribute. A text node simply contains a string of 

characters that reside between two XML tags. The tree representation for the example 

document in Figure 2.1 is shown in Figure 2.2, where solid edges are used for ordered nodes 

and dashed edges are used for unordered nodes. It is important to note that this model is 

purely conceptual, that is, it is independent of the actual storage structure used in a particular 

XML database. 

I now briefly discuss how an XML Database Management System (XDMS) executes an 

XQuery query. When a query is issued to an XDMS, the compiler of the XDMS parses the 
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query and creates an execution plan that determines how to search and process the stored 

XML data to produce a query result. Then, the runtime system of the XDMS executes the 

plan to generate the query result. For a concrete example, consider Query 4, a simple path 

expression with a value-based predicate.  

 

Query 4:   $doc/report//section[@difficulty = “hard”]  

 

A simplified execution plan for Query 4 is illustrated in Figure 2.3. As this figure shows, 

an XML query plan naturally includes navigational access to XML data. The common 

navigational operations include: (1) GetChildren - for each input node, navigate one level 

down to find the child nodes with a particular name; and (2) GetDescendant - for each input 

node, perform a depth-first search of the subtree rooted at that node to retrieve all the 

descendant nodes with a particular name. In the plan shown in Figure 2.3, the navigational 

operations are followed by a selection ( ) that chooses a subset of the input nodes by 

“ XML”  

“ Pub-Sub”  

“ Scalability”  

@id=“ intro”  

@difficulty=“ easy

@source=“ g1.jpg

@source=“ g2.jpg
 

title 
section 

 

figure 
 

title 

 

 
section 

 
figure 

title 

 

 
repor t 

@difficulty=“ easy

Figure 2.2: A Tree Representation of an XML Document 

root 
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checking the value-based predicate. While navigational access is intuitive and easy to 

implement, it is often inadequate for efficient query processing. In cases when a tree has a 

large structure of nodes, traversal all the way from the root is inefficient for finding a few 

matching nodes that reside deeply in the tree. 

An XDMS solves this problem by building indexes over nodes in an XML tree and using 

index-based access to speed up query processing. Many types of indexes have been proposed 

[McHugh and Widom 99; Zhang et al., 2001; Jagadish et al., 2002; Halverson et al., 2003]. 

An example is the element index (E-index). An E-index records the occurrences of an 

element name inside a collection of documents. Assume that an XML document is parsed to 

a sequence of items that are either a tag or a text word. An occurrence of an element name is 

then indexed by (1) its document number, (2) its position in the document, specified by the 

positions of its start- and end- items, e.g., starting at the 2nd item and ending at the 19th item, 

and (3) its nesting level in the document, e.g., 2 levels from the root. An E-index is sorted in 

increasing order of the document number, and then in increasing order of start- and end- 

items. It is obvious that E-indexes can be used to quickly retrieve all occurrences of a 

particular element name. In addition, they can be used to evaluate the containment 

relationships specified by the axes: They allow “A//B”  to be evaluated by checking the 

GetChildren: report 

GetDescendant: section 

 @difficulty = “hard”  

Figure 2.3: A Navigational Query Plan for Query 4 
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positional containment between these elements, i.e., if the start-item of A occurs before that 

of B and the end-item of A after that of B. “A/B”  can be evaluated by further checking if B 

occurs one level below A. 

Let us revisit Query 4. An E-index, when present, enables a query plan such as that 

shown in Figure 2.4. At the bottom, this plan uses the E-Index to find all of the occurrences 

of report and section. After filtering sections using the value-based predicate, it then 

evaluates the “ //”  containment between reports and sections using the positional information 

that these occurrences carry. Compared to the navigational plan in Figure 2.3, the index-

based plan avoids sequential search of the entire document and can provide a significant 

performance gain when the document is large and the number of sections is relatively small.  

I end this brief discussion of query processing in XML databases by highlighting two key 

features of such processing: (1) query-initiated execution, that is, the execution of a query is 

triggered by the arrival of the query, and (2) index-based data access, that is, indexes are 

built over data and used to speed up query processing. In the next section I show how query 

processing in other environments can differ remarkably from query processing of this type.  

IndexScan: report IndexScan: section 

 @difficulty = “hard”  

ContainmentTest: “ //”  

Figure 2.4: An Index-based Query Plan for Query 4 
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2.4 Stream-based XML Query Processing 

In an emerging paradigm for XML query processing, XML data continuously arrives from 

external sources, and queries are evaluated every time when a new data item is received. 

Such XML query processing is referred to as stream-based. A distinctive feature of stream-

based processing is the ability to process data as it arrives. This is a natural fit for XML 

message brokering where messages need to be filtered and transformed on-the-fly. 

Furthermore, in cases where incoming messages are large, stream-based processing also 

allows query execution to start long before those messages are completely received, thus 

reducing the delay in producing results. The work presented in this dissertation is conducted 

in the stream-based setting. 

2.4.1 Event-Based XML Query Processing 

Stream-based XML query processing can be performed at the granularity of a document or a 

smaller constituent piece of a document. Some of the earlier Continuous Query systems such 

as NiagaraCQ [Chen et al., 2000] execute queries when new documents arrive. Documents 

in these systems are simple and small, e.g., stock quote updates and event notifications. As 

XML gains popularity in a wide range of applications, XML documents have been used for 

encoding data of diverse types (e.g., astronomy data [NASA, 2003] and biological data 

[SECSG, 2004]) and immense sizes (e.g., the equivalent of a database’s worth of data). To 

provide efficient processing also for such large documents, more recent systems such as 

XFilter [Altinel and Franklin, 2000], Tukwila [Ives et al., 2002], and the BEA Stream 

Processor [Florescu et al., 2004] support fine-grained query processing upon arrival of a 

start-tag, end-tag, or text data of an element.  
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Fine-grained XML query processing can be implemented via event-based APIs. A well 

known example is the SAX interface [Megginson, 2000], which reports low-level parsing 

events incrementally to the calling application. Figure 2.5 shows an example of how a SAX 

interface breaks down the structure of the sample XML document from Figure 2.1 into a 

linear sequence of events. “Start document”  and “end document”  events mark the beginning 

and the end of the parse of a document. A “start element”  event carries information such as 

the name of the element and its attributes. A “characters”  event reports a text string residing 

between two XML tags. An “end element”  event corresponds to an earlier “start element”  

event and marks the close of that element. To use the SAX interface, the application 

receiving the events must implement handlers to respond to different events. In particular, 

stream-based XML query processors can use these handlers to implement event-driven query 

processing.  

< Start Document 
< Start Element:   report 
< Start Element:   section 
< Start Element:  title 
   Characters: Pub/Sub 
> End  Element:    title 
< Start Element:   section 
< Start Element:   figure 
< Start Element:  title 
   Characters:  XML Processing 
> End  Element:    title 
> End  Element:    figure 
> End  Element:    section 
  … 
> End  Element:    section 
> End  Element:   report 
> End Document 

Figure 2.5: An Example of the SAX API 
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2.4.2 A Finite State Machine-Based Approach 

A popular approach to event-driven XQuery processing has been to adopt some form of 

Finite State Machine (FSM) to represent path expressions [Altinel and Franklin 2000; Ives et 

al., 2002]. This approach is based on the observation that a path expression written using the 

axes (“ /” , “ //” ) and node tests (element name or “* ” ) can be transformed into a regular 

expression. Thus, there exists an FSM that accepts the language described by such a path 

expression [Hopcroft and Ullman 1979].  

Both XFilter [Altinel and Franklin 2000] and Tukwila [Ives et al., 2002] create an FSM 

for each path expression by mapping the location steps of the path expression to machine 

states. Figure 2.6 shows an example FSM created for a simple path expression, where the 

two concentric circles represent the accepting state of this FSM. Arriving XML documents 

are then parsed with an event-based parser (e.g., a SAX parser). The events raised during 

parsing are used to drive the execution of query FSMs; in particular, “start element”  events 

drive the FSMs through their various transitions, and “end element”  events cause the FSMs 

to backtrack. A path expression is said to match a document if during parsing, the accepting 

state for that path is reached.  

/ report // section 

(a) path expression (b) a corresponding FSM 

report section 
*  

Figure 2.6: A Path Expression and its Corresponding FSM 
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2.4.3 Indexing of Queries 

As stream-based systems are deployed on the Internet, it is likely that the set of queries will 

be large. This is particularly true with XML filtering systems [Altinel and Franklin 2000; 

Diao et al, 2002; Chan et al., 2002; Green et al., 2003] that usually evaluate hundreds of 

thousands of path expressions against incoming XML documents. In such cases, it is 

prohibitively expensive to use a brute force approach that iterates over the query set and 

executes them one at a time.  

Researchers from a number of projects have observed that XML filtering is essentially 

the inverse problem of querying a database. In a traditional database system, a large set of 

data is stored persistently. Queries, coming one at a time, search the data for results. Indexes 

enable the data to be searched without having to sequentially scan it. In an XML filtering 

system, a large set of queries is persistently stored. Documents or their parsing events, 

coming one at a time, drive the matching of the queries. Accordingly, indexing the queries 

can enable selective matching of documents to queries.  

Based on this insight, an important optimization for XML filtering has been to build an 

index over the queries, and to use the parsing events of a document to probe the query index. 

This approach quickly results in a smaller set of queries that can be potentially matched by 

the document. As such, significant work can be saved by avoiding processing queries for 

which the document is irrelevant. XFilter was the first filtering system to exploit this idea. It 

builds a dynamic index over the states of query FSMs; this index identifies the states that the 

FSM execution is attempting to match at a particular moment. The content of the index 

constantly changes as parsing events drive the execution of the FSMs (see [Altinel and 

Franklin, 2000] or Appendix A of this dissertation for details). 
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XFilter, however, is still subject to scalability problems as it ignores another important 

opportunity for optimization – sharing in query processing. In large-scale filtering systems, 

significant commonalities are likely to exist among queries. By creating an FSM per query, 

XFilter fails to exploit such commonalities, thus performing redundant work. In contrast, this 

dissertation research proposes advanced query indexing structures in which common query 

fragments share their representation in the query indexes and thus are processed at most 

once. 

I conclude the discussion on stream-based XML query processing by summarizing its 

two key features: (1) data-driven, incremental processing, that is, query processing is driven 

by the arrival of data and, in particular, is performed incrementally upon arrival of fine-

grained XML parsing events; and (2) indexing over queries, which allows selective 

matching of incoming documents to a large set of queries.  

2.5 Summary 

In this chapter, I provided technical background for the XML message brokering 

functionality presented in this dissertation. I described the Extensible Markup Language 

(XML) for encoding messages and a subset of the XQuery query language for specifying 

filtering and transformation requirements. I also presented an overview of XML query 

processing in both traditional and stream-based settings, which covered XML technologies 

such as the XML data model, event-based parsing, Finite-State Machine-based approaches, 

and query indexing. These techniques provide a foundation for XML message brokers.  
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3 Related Work 

In this chapter, I provide a survey of academic and industrial work related to XML message 

brokering. I first describe the design space for XML message brokers and show how the 

unexplored areas of the space motivate the research described in this dissertation. I then 

present a broad overview of other work related to the architectural and query-processing 

issues of XML message brokering. In later chapters, more detailed comparisons are made to 

particularly relevant research. 

3.1 Design Space for XML Message Brokering 

In this section, I present a design space for XML message brokering, including relevant 

industrial products and research projects, and describe the position of this dissertation in 

relation to those efforts.  

Figure 3.1 shows a diagram illustrating the design space. The diagram consists of two 

dimensions. The Y-axis relates to the style of processing. In a coarse-grained fashion, this 

design space considers centralized and distributed processing. Distributed processing spreads 

the processing load and has the potential for truly Internet-scale message brokering services; 

not surprisingly, distributed processing requires more sophisticated processing techniques. 

The X-axis relates to the expressiveness of message brokering services, which is determined 

by the data model and query language that the message brokers support. From the least to the 

most expressive, there are four categories. 
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Subject-based: In subject-based systems, publishers label each message with a subject 

from a pre-defined set or hierarchy. For example, the subject of a message can be “stock 

quote”  or “sports/golf” . Users subscribe to the messages having a specific subject; that is, 

user queries specify a subject of interest. In these queries, users can also apply a selector to 

the message header (e.g., a conditional expression over the data fields in the header [Sun 

Microsystems, 2002]) to refine the set of relevant messages within a particular subject. A 

query result is a “yes”  or “no”  answer, indicating if a message has matched the query. In the 

positive case, the message is delivered to the corresponding user. The expressiveness of 

subject-based systems is restricted by the opaqueness of the message content; that is, these 
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Yes    No 
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based 
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systems simply treat message payloads as text strings without exploiting the richness of 

content that XML provides.  

Most commercial publish/subscribe systems are subject-based. Among them, the widely-

used ones include TIBCO Rendezvous [TIBCO Software, 2002], MQ Series 

publish/subscribe [IBM, 2002], JMS publish/subscribe [Sun Microsystems, 2002], Microsoft 

BizTalk Server [Microsoft, 2004], and Streams Advanced Queuing [Oracle, 2005]. Some of 

them use centralized computing [Oracle, 2005], as they are built on a database system and 

provide a unified interface for applications to access a message queue or a database. Others 

support distributed processing [TIBCO Software Inc., 2002; IBM, 2002; Sun Microsystems, 

2002; Microsoft, 2004], as such systems are designed to integrate widely dispersed 

information providers and consumers that belong to different administrative domains. 

Complex predicate-based: In the second category, publish/subscribe systems model 

message content as a set of attribute-value pairs. A stock quote represented in this model is 

illustrated in the lower part of Figure 3.1. These systems allow user queries to contain a set of 

predicates connected using “and”  and “or”  operators to specify constraints over values of the 

attributes. More specifically, a predicate is a comparison between an attribute and a constant 

using relational operators such as equality (‘=’ ), greater-than (‘>’ ), or less-than (‘<’ ). For 

example, a predicate-based query applied to the stock quote shown in Figure 3.1 can be 

“Symbol=‘X’  and (Change > 1 or Volume > 50000)” . Query answers are still “yes”  or “no” , 

resulting in relevant messages being delivered to their interested users.  

There have been a number of research projects on complex predicate-based message 

filtering. Le Subscribe [Fabret et al., 2001] and Xlyeme [Nguyen et al., 2001] are predicate-

based systems that use centralized processing. They employ sophisticated filtering algorithms 
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based on indexing predicates and clustering queries according to the common constituent 

predicates. Gryphon [Aguilera et al., 1999] and Siena [Carzaniga and Wolf, 2003] are 

distributed predicate-based systems that aggregate user queries into compact, precise in-

network data structures that can be used to efficiently route messages to relevant systems or 

other nodes in the network. 

XML filter ing: The third category of message brokers starts to exploit the richness of 

XML-encoded messages. Here, message content can take a hierarchical structure, as 

illustrated in Figure 2.1 from Section 2.1, which encompasses repetition of element names 

(e.g., a purchase order contains multiple line items), recursion of elements (e.g., a section 

contains a nested section), and attributes and text data. User queries are written using path 

expressions, a small yet common subset of XQuery as described in Section 2.2.1. Query 

answers are “yes”  or “no”  as before. By combining rich XML structure and path expressions, 

XML filtering provides greater expressiveness in specifying data interests, resulting in 

potentially more accurate filtering of messages.  

A large number of solutions to XML filtering have been developed in the database 

community. These solutions emphasize the efficient processing of a set of queries and are 

typically centralized. XFilter [Altinel and Franklin, 2000] and Index-Filter [Bruno et al., 

2003] construct indexes over the queries. YFilter [Diao et al., 2002; Diao et al., 2003], which 

is presented in Chapters 4 and 5 of this dissertation, XTrie [Chan et al., 2002], and XMLTK 

[Gupta and Suciu, 2003; Green et al., 2004] also exploit the commonalities among queries. 

These solutions are discussed and compared in Chapters 4 and 5. 

While the database community has focused on centralized solutions to XML filtering, the 

networking community has explored solutions in distributed environments. The distributed 
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solutions focus on networking issues such as in-order-delivery and network resilience 

[Snoeren et al., 2001] or minimizing space requirements at routers [Chand et al., 2003]. For 

query processing, however, they use either a general-purpose XML toolkit to process queries 

one at a time or an XML filtering approach (e.g., XTrie) that is not designed to handle 

demanding query workloads. As a result, these solutions cannot scale for the large user 

communities that many Internet-based applications such as stock tickers [NASDAQ, 2005] 

and personalized news delivery [UserLand Software, 2005] are facing. 

XML filter ing and transformation: The last category, XML filtering and 

transformation, extends the previous one by also transforming messages to provide 

customized results. Such transformation is needed for application integration, 

personalization, and adaptation to wireless devices (recall the example applications given in 

Section 1.2.2). To support message transformation, queries are written using a richer subset 

of XQuery, in particular, the For-Where-Return expressions as described in Section 2.2.2. 

YFilter provides the first algorithm in the literature that can support transformation for 

large numbers of queries. This topic is discussed in Chapter 6. ONYX further extends YFilter 

by incorporating filtering and transformation functionality into distributed computing, thus 

gaining substantial benefits such as aggregated bandwidth and computing power. ONYX is 

presented in detail in Chapter 7.  

3.2 Other Related Work 

The design space presented in the previous section covers the systems and projects most 

relevant to XML message brokering. Besides those, this dissertation is also related to a large 

body of research work in the Information Retrieval (IR), database, networking, and 
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programming language communities. I now briefly survey the relevant research in these 

areas, focusing on the work that has not been discussed previously.  

3.2.1 Information Retrieval  

The modeling and matching of user profiles have been extensively investigated in the context 

of Information Filtering and Selective Dissemination of Information research, e.g., [Foltz and 

Dumais 1992]. User profiles in these scenarios are intended for unstructured, text-based 

systems and typically use sets of keywords to represent user interests. In general, IR profile 

models can be classified as either Boolean or similarity-based. The former model is based on 

an exact match semantics with profiles consisting of keywords connected by Boolean 

operators. The latter model uses a fuzzy match semantics, in which a similarity value is 

assigned to every (document, profile) pair. A document with similarity to a profile over a 

certain threshold is said to match the profile [Salton 1989; Belkin and Croft 1992; Cetintemel 

et al. 2000].  

The Stanford Information Filtering Tool (SIFT) [Yan and Garcia-Molina 1994; Yan and 

Garcia-Molina 1999] is an Internet news filtering system that supports both profile models. 

SIFT builds keyword-based indexes over profiles and uses these indexes to match incoming 

documents with the profiles. It also provides several simple schemes to spread the filtering 

work to a cluster of machines so that bottlenecks and critical failure points can be avoided.  

YFilter/ONYX differs from keyword-based filtering in that it is targeted at application 

domains in which data is encoded in XML and user queries take advantage of the rich 

semantic and structural information embedded in the data for more precise filtering and 

result customization. In addition, ONYX addresses the data dissemination problem in 
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distributed environments and offers scalable services by using intelligent algorithms for 

routing and incremental processing of messages. 

3.2.2 Database Technologies 

The past decade has witnessed significant changes in research directions in the database 

community; of particular relevance to YFilter are the shift from traditional database 

processing to Internet-oriented query processing and the surge of XML-based research. I 

examine the related efforts in the following. 

Continuous Query Systems. Continuous Queries (CQ) are standing queries that allow 

users to get new results whenever an update of interest occurs. Such queries are especially 

useful in Internet-based environments comprising large amounts of frequently changing 

information. Much of the CQ research [Terry et al. 1992; Liu et al. 1999; Chen et al., 2000; 

Chen et al., 2002; Madden et al., 2002] has focused on stateless query processing (as 

described in Section 1.4.3) in a relational setting; that is, updates are relational tuples and 

queries use simple relational operators, mostly selections, to filter these updates. Due to the 

relational model used, these systems do not address the challenges of matching constraints 

over the structure of data. Some of the CQ techniques, however, can be applied to XML 

message brokering, if the latter can be mapped to a relational domain. Chapter 6 presents 

such a mapping from XML transformation to relational processing, which enables YFilter to 

use CQ techniques for improved performance and scalability. 

Tr iggers. Triggers [Stonebraker, 1990; Widom and Finklestein, 1990; Schreier et al., 

1991] in traditional database systems are similar to CQ. However, triggers are a complex 

mechanism that can involve predicates over many data items and can initiate updates to other 

data items. Thus, trigger solutions are typically not optimized for fast matching of individual 
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items to vast numbers of relatively simple queries. Some more recent work, however, has 

addressed the issue of scalability for simple triggers by grouping predicates into equivalence 

classes and using predicate indexing techniques [Hanson et al 1999]. This work has not 

addressed the XML-related issues, such as matching constraints over structure and 

integrating structure matching with value-based predicate evaluation, that YFilter handles. 

Relational Stream Management Systems. There has been a significant amount of 

activity on the topic of handling continuous, rapid, and time-varying tuple streams, which 

results in the development of a number of stream management systems including TCQ 

[Chandrasekaran et al, 2003], STREAM [Motwani et al., 2003], and Aurora [Abadi et al., 

2003]. These systems support complex continuous queries that compute aggregate values 

over a period of time called a window (i.e., stateful processing as described in Section 1.4.3). 

Their associated research explores a set of key issues including adaptivity [Chandrasekaran 

et al, 2003], approximation [Motwani et al., 2003], shared processing [Chandrasekaran et al, 

2003; Motwani et al., 2003], and Quality-of-Service [Abadi et al., 2003]. These systems 

differ from YFilter in that they perform stateful processing but only for relational tuple 

streams. In contrast, YFilter supports processing over individual messages (i.e., stateless) and 

focuses on XML-related challenges such as structure matching and message transformation. 

How to extend YFilter/ONYX to also support computation across message boundaries is a 

main direction of future work and is further discussed in Chapter 8. 

Stream-Based XQuery processors. XQuery evaluation has been studied in the context 

of continuously arriving XML parsing events (as described in Section 2.4). XQuery 

processors developed in this setting use a variety of techniques to achieve efficiency, e.g., 

FSM-based matching of path expressions [Ives et al., 2002], transducer-based processing of 
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For-Where-Return expressions [Ludascher et al., 2002], and pipelined execution with lazy 

evaluation [Florescu et al., 2004]. There systems, however, focus on processing of individual 

queries, and thus are not suitable for large-scale XML filtering and transformation.   

3.2.3 Networking Technologies 

The ONYX system presented in this dissertation is a distributed XML brokering system that 

extends YFilter’s filtering and transformation functionality with routing capabilities. ONYX 

is related to many systems that have been developed in the networking community; the 

connection hinges on the common interest in large-scale data dissemination from a myriad of 

information providers to large numbers of receivers. Although networking research generally 

does not exploit declarative queries, the trend is clear: information processing systems and 

networking systems are converging to solve the Internet-scale data dissemination problem. 

ONYX represents one effort towards such convergence. 

Multicast. Multicast allows a source to send the same content to multiple receivers. 

Though bandwidth-efficient, IP multicast [Ballardie et al., 1993; McCanne et al., 1996] is 

hard to deploy because of being a network layer paradigm. This has lead to application-layer 

solutions like Overcast [Jannotti et al., 2000] and i3 [Stoica et al, 2002]. Proposals have also 

been made to augment IP multicast with content-based routing features [Opyrchal et al., 

2000; Shah et al., 2002]. However, none of this work gives the user fine-grained ways of 

specifying their interests, like a powerful query language over XML. 

Content Distr ibution Networks (CDN). CDNs provide an infrastructure that delivers 

static or dynamic Web objects to clients on request from nearby Web caches or data replicas 

[Dilley et al., 2002; IBM, 2005], thus offloading the main website. Recent work has focused 

on allowing the user to specify coherence requirements over data [Shah et al., 2003]. This 



 

47 

 

differs from ONYX, as it deals with content delivery upon request, rather than continuous 

query processing over streaming messages, and it does not give the user a powerful query 

language to specify her interests. 

Distr ibuted publish/subscr ibe systems. Distributed publish/subscribe systems support 

the complex predicate-based model (as described in Section 3.1) and provide many-to-many 

communication between publishers and subscribers. These systems construct routing tables 

from user queries to efficiently forward packets [Carzaniga and Wolf, 2003; Aguilera et al., 

1999; Banavar et al., 1999], and also compare such routing to alternative schemes with 

varying query properties [Opyrchal et al., 2000; Mühl et al., 2002]. Many of the results 

reported can be applied in the context of ONYX. In comparison, ONYX addresses a more 

challenging problem, as support for rich XML messages and queries leads to increased 

complexity of routing table construction, data forwarding, and query processing. 

3.2.4 Programming Languages 

YFilter/ONYX is also related to a family of programming languages that deal with 

communication and object sharing among distributed entities. Much of the work centers 

around the Linda programming language developed at Yale University and ideas that have 

been spawned from the work on the Linda system. 

Linda [Carriero and Gelernter, 1989; Gelernter and Carriero, 1992] is a parallel 

programming extension to popular programming languages, such as C (C-Linda) and Fortran 

(Fortran-Linda). It is based on a logically global, associative memory called the tuple space 

in which clients can read and write objects called tuples. A tuple contains a set of attributes 

that can be used for clients to selectively choose which objects to access. As such, tuple 
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spaces provide inter-process communication and synchronization that is logically 

independent of the underlying computer or network architecture.  

Tuple spaces have many commercial implementations with various improvements. Sun 

Microsystems adapted many of the ideas behind Linda to their Java environment. The 

resulting technology, called JavaSpaces [Sun Microsystems, 2000], is a unified platform-

independent mechanism for communication, coordination, and sharing of objects between 

Java technology-based network resources. TSpaces from IBM combines sophisticated 

database functionality with communication middleware [IBM, 2000]. It is essentially a set of 

network communication buffers (similar to tuple spaces) with database capabilities for 

reliable storage (but without the use of complex SQL queries).  

The idea of loosely coupling applications has been taken a step further by combining the 

notion of tuple spaces with that of self-describing XML documents. XML Tuple Spaces 

[Rogue Wave Software, 2004] allow developers to take advantage of the loosely coupled 

nature of XML, the use of Web services for communication between remote locations, and 

the ability to search for data using a simple subset of an XML query language.  

The programming languages and systems described above differ from YFilter/ ONYX in 

two main aspects. First, they use a traditional request-based communication model; they 

cannot dynamically push information to clients based on their specified interests, which is a 

fundamental requirement for XML message brokers. Second, they do not provide a powerful 

language for filtering and transformation.  

3.3 Summary 

In this chapter, I discussed academic and industrial work related to the YFilter/ONYX 

system presented in this dissertation. The discussion shows that none of that work completely 
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addresses the challenges that arise in the context of large-scale, high-function XML message 

brokering. In particular, relational query processing techniques do not address XML-related 

issues such as matching constraints over structure and message transformation; XML query 

processing systems do not scale along both dimensions of query population and distribution; 

Networking solutions have generally not exploited the rich content of XML messages or 

incorporated efficient processing of user queries in the routing paradigm; Programming 

languages for distributed object sharing use a communication model inadequate for XML 

message brokering and lack a powerful query language. 
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4 Basic Filtering with YFilter 

In this chapter, I describe the first technical component of my dissertation research, namely, 

the YFilter approach to XML filtering. This chapter explores sharing in matching the basic 

structure of queries. The discussion of how to extend such shared processing to handle 

advanced query features including value-based predicates and nested path expressions is 

postponed until the next chapter. 

4.1 Introduction 

As described in Chapter 2, XML filtering systems provide fast, on-the-fly matching of XML 

documents to large numbers of query specifications. Queries in these systems usually contain 

path expressions that can be used to specify constraints over both the structure and content of 

XML documents. Such queries are referred to as path queries in this dissertation. A formal 

description of the filtering problem is the following: 

Given (1) a set Q = Q, …, Qn of path queries, where each Qi has an associated 

query identifier, and (2) a stream of XML documents, compute, for each document D, 

the set of query identifiers corresponding to the path queries that are matched by D 

(i.e., a non-empty result can be returned for each of these queries). 

It is important to note that XML filtering returns a set of query identifiers for each 

incoming document; in other words, it provides a Boolean result for processing a document 

against a query. A Boolean result can be created for a query as long as a single matching 

element can be identified from the document being processed. Thus, complex issues in 

XQuery processing related to multiple matches are not relevant here, which enables 
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simplified, high-performance query processing. These issues, which dramatically increase 

the complexity of query processing, are considered for XML transformation in Chapter 6.  

This chapter focuses on the first main challenge of XML filtering: the efficient and 

scalable matching of the structure of path expressions, which lays the foundation for high-

performance XML filtering. As described in Chapter 3, XFilter [Altinel and Franklin 2000], 

the first published XML filtering system, has shown that an approach using event-based 

parsing and Finite State Machines (FSMs) can provide the basis for structure-oriented 

matching of path expressions. By creating a separate FSM per path query, however, XFilter 

could perform redundant work. This is especially true in large-scale filtering systems where 

significant commonalities among queries are likely to exist.  

Based on this insight, YFilter uses a novel approach that exploits such commonalities by 

using a single, combined FSM to represent all path expressions. The combined FSM 

naturally supports the sharing of processing for all common prefixes among path expressions. 

Furthermore, the combined FSM is implemented as a Nondeterministic Finite Automaton 

(NFA). The NFA-based implementation has several practical advantages including: 1) a 

relatively small number of machine states required to represent even large numbers of path 

expressions, 2) the ability to support complicated document types (e.g., with recursive 

nesting) and queries (e.g., with multiple wildcards and descendent axes), and 3) incremental 

maintenance of the machine upon query updates.  

To investigate the impact of shared path matching, a detailed performance study has been 

conducted using XFilter, YFilter, and a hybrid approach that does more sharing than XFilter 

but less than YFilter. The results of this study show that YFilter’s shared path matching 

approach can provide order-of-magnitude performance improvements over XFilter and the 
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hybrid approach while preserving the flexibility to support a wide variety of document types 

and query workloads 

The remainder of this chapter is organized as follows. Section 4.2 describes the 

architecture of the YFilter filtering system. Section 4.3 describes the NFA-based path 

matching algorithm. Section 4.4 presents a detailed performance analysis. Section 4.5 covers 

work related to specific techniques presented in this chapter. Section 4.6 concludes this 

chapter. 

4.2 Architecture of the Filtering Engine 

The architecture of the YFilter filtering system is shown in Figure 4.1. The primary inputs to 

the engine are user queries and XML messages. For each incoming message, the output 

consists of a set of identifiers indicating the users to which the message should be delivered. 

The basic components of the YFilter filtering system are: 

• XQuery parser : The XQuery parser parses arriving queries and sends the parsing results 

to the compiler. 

• Query Compiler : The compiler constructs an execution plan for each arriving query and 

merges this plan with a global query plan by sharing the common portions of these plans. 

For filtering purposes, the global query plan primarily contains an NFA representing all 

of the path queries. 

• XML parser : Each incoming XML message is run through an event-based XML parser 

(e.g., a SAX parser). The parser produces parsing events and passes them to the runtime 

system to drive query execution. 
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• Runtime: For XML filtering, the runtime system uses a component, called a shared path 

matching engine, to match incoming messages with the NFA-based representation of 

path queries. When processing a message, this engine uses the XML parsing events to 

drive the NFA through its various transitions; in this way, it matches all path queries in a 

shared fashion. As mentioned above, this engine returns a set of identifiers indicating the 

queries that are matched by the message. 

• Message factory: Query processing results are fed to the message factory that prepares 

messages for final delivery. 

The query compiler and the shared path matching engine constitute the core processor of 

YFilter. In the following sections, I focus on techniques used in these two components. 

Query Processor

RuntimeRuntime

Query CompilerQuery Compiler

Quer iesQuer ies

Shared Path 
Matching Engine

XML messagesXML messages

Message
Factory

Set of QIds

Event-based
XML Parser

XQuery 
Parser

Filtered 
XML messages

Filtered 
XML messages

Global query plan

parsing eventsparsing events

Figure 4.1: Architecture of the YFilter Filtering System 
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4.3 Shared Structure Matching 

In this section, I describe the YFilter approach to structure-based matching for large numbers 

of path queries.  

4.3.1 Query Representation: A Combined NFA with an Output Function 

YFilter uses a novel approach that identifies commonalities among path queries and shares 

the processing among them. In this approach, rather than representing each path query as an 

FSM individually, YFilter combines all queries into a single FSM in the form of a 

Nondeterministic Finite Automaton (NFA). The NFA has two key features: (1) there is one 

accepting state for each path query and (2) the common prefixes of the paths are represented 

only once.  

Figure 4.2 shows an example of such an NFA representing eight path queries. A circle 

denotes a state. Two concentric circles denote an accepting state; such states are also marked 

with the IDs of the queries they represent. A directed edge represents a transition. The 

symbol on an edge represents the input that triggers the transition. The special symbol “* ”  

matches any element. The symbol “ε”  is used to mark a transition that requires no input. In 

the figure, shaded circles represent states shared by queries. Note that the common prefixes 

of all the queries are shared.  Also note that the NFA contains multiple accepting states. 

While each query in the NFA has only a single accepting state, the NFA represents multiple 

queries. Identical (and structurally equivalent) queries share the same accepting state (recall 

that at this point in the discussion, predicates are not being considered). 

This NFA can be formally defined as a Moore Machine [Hopcroft and Ullman 1979]. 

The output function of the Moore Machine here is a mapping from the set of accepting states 
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to a partitioning of identifiers of all queries in the system, where each partition contains the 

identifiers of all the queries that share the accepting state. 

4.3.2 Constructing a Combined NFA 

Having presented the basic NFA model used by YFilter, I now describe an incremental 

process for NFA construction and maintenance.  The shared NFA shown in Figure 4.2 was 

the result of applying this process to the eight queries shown in that figure. 

The four basic location steps in the subset of XQuery that this work supports are “ /a” , 

“ //a” , “ /* ”  and “ //* ” , where “a”  is an arbitrary symbol from the alphabet consisting of all 

elements defined in a DTD, and “* ”  is the wildcard operator. Figure 4.3 shows the directed 

graphs, called NFA fragments, that correspond to these basic location steps. 

Note that in the NFA fragments constructed for location steps with “ //” , there is an ε-

transition moving to a state with a self-loop. This ε-transition is needed so that when 

combining NFA fragments representing “ //”  and “ /”  steps, the resulting NFA accurately 

maintains the different semantics of both steps (which will be explained shortly below).  The 
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Figure 4.2: An NFA-based Representation of Path queries 
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NFA for a path expression, denoted as NFAp, can be built by concatenating all the NFA 

fragments for its location steps. The final state of this NFAp is the (only) accepting state for 

the expression. 

NFAps are combined into a single NFA as follows: There is a single initial state shared by 

all NFAps. To insert a new NFAp, the combined NFA is traversed until either: 1) the 

accepting state of the NFAp is reached, or 2) a state is reached for which there is no transition 

that matches the corresponding transition of the NFAp. In the first case, that final state is 

made an accepting state (if it is not already one) and the query ID is added to the query set 

associated with the accepting state.  In the second case, a new branch is created from the last 

state reached in the combined NFA. This branch consists of the mismatched transition and 

the remainder of the NFAp.  Figure 4.4 provides four examples of this process. 

Figure 4.4 (a) shows the process of merging a fragment for location step “ /a”  with a state 

in the combined NFA that represents a “ /b”  step.  This process does not combine the edge 

marked by “a”  and the edge marked by “b”  into one marked by “a,b”  as in a standard NFA, 

because the states after edge ‘a’  and edge ‘b’  differ in their outputs, so they cannot be 

combined. For the same reason, this process treats the “* ”  symbol in the way that it treats the 

other symbols in the alphabet, as shown in Figure 4.4 (b). 
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Figure 4.3: NFA Fragments of Basic Location Steps 
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Figure 4.4 (c) shows the process of merging a “ //a”  step with a “ /b”  step, while Figure 4.4 

(d) shows the merging of a “ //a”  step with a “ //b”  step. Here it can be seen why the ε-

transition is needed in the NFA fragment for “ //a” . Without it, when the fragment is 

combined with the NFA fragment for “ /b” , the latter would be semantically changed to “ //b” . 

The merging process for “ //* ”  with other fragments (not shown) is analogous to that for “ //a” . 

The “* ”  and “ //”  operators introduce Non-determinism into the model. “* ”  requires two 

edges, one marked by the input symbol and the other by “* ” , to be followed. The descendent 

operator “ //”  means the associated node test can be satisfied at any level at or below the 

current document level.  In the corresponding NFA model, if a matching symbol is read at 

the state with a self-loop, the processing must both transition to the next state, and remain in 

the current state awaiting further input. 

It is important to note that because NFA construction in YFilter is an incremental 

process, new queries can easily be added to an existing system. This ease of maintenance is a 

key benefit of the NFA-based approach. 
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Figure 4.4: Merging NFA Fragments 



 

58 

 

4.3.3 Implementing the NFA Structure 

The previous section described the logical construction of the NFA model. For efficient 

execution, the NFA is implemented using a hash table-based approach, which has been 

shown to have low time complexity for inserting/deleting states, inserting/deleting 

transitions, and actually performing the transitions [Watson 1997]. 

In this approach, a data structure is created for each state, containing: 1) The ID of the 

state, 2) type information (i.e., if it is an accepting state or a //-child as described below), 3) a 

small hash table that contains all the legal transitions from that state, and 4) for accepting 

states, an ID list of the corresponding queries. 

The transition hash table for each state contains [symbol, stateID] pairs where the 

symbol, which is the key, indicates the label of the outgoing transition (i.e., element name, 

“* ” , or “ε” ) and the stateID identifies the child state that the transition leads to.  Note that the 

child states of the “ε”  transitions are treated specially. Recall that such states have a self-loop 

marked with “* ”  (see Figure 4.3).  For such states (called “ //-child”  states), the self-loop is 

not indexed in the transition hash table.  As described in the next section, this is possible 

because transitions marked with “ε”  are treated specially by the execution mechanism. 

4.3.4 Executing the NFA 

Having walked through the logical construction and physical implementation, I now describe 

the execution of the machine. Following the XFilter approach, YFilter executes the NFA in 

an event-driven fashion; as an arriving document is parsed, the events raised by the parser 

callback the handlers and drive the transitions in the NFA. In addition, YFilter employs a 
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stack-based mechanism to deal with two issues that arise in event-based NFA execution over 

XML data:  

• Backtracking in the structure: The nesting of XML elements requires that when an “end-

of-element”  event is raised, NFA execution must backtrack to the states it was in when 

the corresponding “start-of-element”  was raised. The stack mechanism facilitates such 

backtracking.  

• Non-determinism: Since many states can be active simultaneously in an NFA, the run-

time stack mechanism is also used to track multiple active paths.  

Details of the execution algorithm are described in the following handlers. 

Start Document Handler: When an XML document arrives to be parsed, the execution 

of the NFA begins at the initial state. That is, the common initial state is pushed to the 

runtime stack as the active state. 

Start Element Handler: When a new element name is read from the document, the NFA 

execution follows all matching transitions from all currently active states, as follows. For 

each active state, four checks are performed. 

1) First, the incoming element name is looked up in the state’s hash table.  If it is present, 

the corresponding stateID is added to a set of “ target states” . 

2) Second, the “* ”  symbol is looked up in the hash table. If it exists, its stateID is also 

added to the set of target states. Since the “* ”  symbol matches any element name, a 

transition marked by it is always performed. 

3) Then, the type information of the state is checked. If the state itself is a “ //-child”  state, 

then its own stateID is added to the set, which effectively implements a self-loop 

marked by the “* ”  symbol in the NFA structure. 
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4) Finally, to perform an ε-transition, the hash table is checked for the “ε”  symbol, and if 

one is present, the //-child state indicated by the corresponding stateID is processed 

recursively, according to the three rules above.3 

After all the currently active states have been checked in this manner, the set of “ target 

states”  is pushed onto the top of the run-time stack.  They then become the “active”  states for 

the next event.  If a state in the target set is an accepting state, the identifiers of all queries 

associated with the state are collected and added to an output data structure.4 

End Element Handler: When an end-of-element is encountered, backtracking is 

performed by simply popping the top set of states off the stack. 

Finally, it is important to note that, unlike a traditional NFA, whose goal is to find one 

accepting state for an input, the NFA execution here must find all matching queries.  Thus, 

even after an accepting state has been reached for a document, the execution must continue 

until the document has been completely processed. 

An example of this execution model is shown in Figure 4.5.  On the left of the figure is 

the index created for the NFA of Figure 4.2. The number on the top-left of each hash table is 

a state ID and hash tables with a bold border represent accepting states. The right of the 

figure shows the evolution of the contents of the runtime stack as an example XML fragment 

is parsed. In the stack, each state is represented by its ID. An underlined ID indicates that the 

state is a //-child. 

 

                                                   

3 Note that this process traverses at most one additional level, since //-child nodes cannot 
themselves contain an “ε”  symbol. 
4 If predicate processing is not needed, the accepting state can be marked as “visited”  to avoid 
processing matched queries more than once. 
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4.3.5 Discussion 

The discussion in the previous sections showed the key benefits of using an NFA-based 

implementation of the combined FSM: substantial reduction in machine size and incremental 

construction and maintenance of the machine. Of course, it is reasonable to be concerned that 

using an NFA could lead to performance problems due to (for example) the need to support 

multiple transitions from each state. A standard technique for avoiding such overhead is to 

convert the NFA into an equivalent DFA [Hopcroft and Ullman 1979]. A straightforward 

conversion could theoretically result in severe scalability problems due to an explosion in the 

number of states. But, as pointed out in [Green et al. 2003], this explosion can be avoided in 

many cases by placing restrictions on the types of documents and queries supported, and 

lazily constructing the DFA. 

Results of a detailed performance study (presented in the next section), however, indicate 

that concerns about NFA performance in this environment are unwarranted. In fact, in the 

YFilter system, path evaluation (using the NFA) is sufficiently fast, that it is typically not the 

dominant cost of filtering. Rather, other costs such as document parsing are in many cases 
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more expensive than the basic path matching, particularly for systems with large numbers of 

similar queries. Thus, while it may in fact be possible to further improve path matching 

speed, the substantial benefits of flexibility and incremental maintenance provided by the 

NFA model outweigh any marginal performance improvements that remain to be gained by 

even faster path matching. 

4.4 Performance of Structure Matching 

In this section, I examine YFilter’s path matching performance in the absence of predicate 

evaluation. Recall that the development of YFilter was motivated by the desire to share 

processing during path evaluation. As such, the focus of this performance study is on the 

impact of such shared processing. 

4.4.1 Algorithms 

This study compares the performance of XFilter, YFilter, and a hybrid approach that serves 

as a middle point between XFilter and YFilter with respect to the amount of sharing 

exploited. The hybrid approach is used to help quantify the performance impact of improved 

shared path matching.  

XFilter  [Altinel and Franklin 2000]. As described in Section 2.4, XFilter creates an FSM 

for each path query and builds a dynamic index over the states of FSMs to efficiently match 

the structure of path queries. Among a few indexing methods proposed in XFilter, the 

experiments presented in the following sections used the List Balance technique, as it was 

shown to provide better performance overall than the other indexing methods. To help 

understand the results of comparison of XFilter and YFilter reported below, details on the 

query indexes and execution algorithm that XFilter uses are provided in Appendix A.  
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A Hybr id Approach. The hybrid approach is an improved version of XFilter, which 

exploits some path sharing, but not as much as YFilter. In Hybrid, queries are decomposed 

into substrings containing only “ /”  operators (i.e., they are split at “* ”  and “ //”  operators). 

The processing of these substrings is shared, but the processing of the operators between 

these substrings is done individually for each query. A more detailed description of this 

approach is provided in Appendix B. 

Independently of the research on YFilter, Chan et al. developed several algorithms for 

XML filtering under the name “XTrie”  [Chan et al. 2002]. XTrie uses a “minimal 

decomposition”  of queries that is identical to the decomposition that the Hybrid approach 

uses. Furthermore, Hybrid’s execution model is similar in spirit to the “eager TRIE”  version 

of XTrie in that matching of substrings is shared among queries and transitions between 

substrings are handled on an individual query basis. It is worth noting that “eager TRIE”  is 

not the best performing approach studied by Chan et al. Other optimizations, orthogonal to 

the issue of sharing, have been developed in that work. 

Despite the similarity between Hybrid and XTrie [Chan et al. 2002], I do not claim to do 

a direct comparison with that work. However, Chan et al. did compare their approaches to 

XFilter with List Balance, so as discussed in the following sections, it is possible to gain 

some insight into the relative performance of the YFilter techniques and the variants of 

XTrie.  

A Simple Optimization. Also, for both XFilter and Hybrid, this study uses a simple 

optimization that is important in some of the workloads, namely, that identical queries are 

represented in the system only once. This is done by pre-processing the queries and 

collecting the IDs of identical queries in an auxiliary data structure. This structure is the 
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same as that used by YFilter to manage query IDs in accepting states. YFilter, of course, does 

not require such an optimization as it naturally shares processing of identical queries. 

4.4.2 Experimental Set-up 

The three algorithms (YFilter, XFilter with List Balance, and Hybrid) were implemented in 

Java. All of the experiments reported here were performed on a Pentium III 850 Mhz 

processor with 384MB memory running JVM 1.3.0 in server mode on Linux 2.4. The JVM 

maximum allocation pool was set to 250MB, so that virtual memory and other I/O-activity 

had no influence on the results. This was also verified using the Linux vmstat() command. 

Workload Generation. While, as stated previously, the three path matching algorithms 

do not require DTD information, DTDs were used to generate the workloads for the 

experiments. This section focuses on workloads generated using the NITF (News Industry 

Text Format) DTD [IPTC, 2004], which has been used in previous studies [Altinel and 

Franklin 2000; Chan et al. 2002]. Experiments were also run using two other DTDs: The 

Xmark-Auction DTD [Busse et al., 2001] from the Xmark benchmark, and the DBLP [Ley 

2001] bibliography DTD. Some characteristics of these DTDs are shown in Table 1. Note 

that all of the DTDs allow an infinite level of nesting due to loops involving multiple 

elements. 

 NITF Auction DBLP 
number of  elements names 123 77 36 
number of attributes in total 510 16 14 
maximum level of nesting allowed Infinite infinite infinite 

Table 1: Characteristics of three DTDs 

Given a DTD, the tools used to run an experiment include a DTD parser, a query 

generator, an XML generator, and an event-based XML parser supporting the SAX interface. 
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The DTD parser which was developed using a WUTKA DTD parser [Wutka 2000] outputs 

parent-child relationships between elements, and statistical information for each element 

including the probability of an attribute occurring in an element (randomly chosen between 0 

and 1) and the maximum number of values an element or an attribute can take (randomly 

chosen between 1 and 20). The output of the DTD parser is used by the query generator and 

the document generator. 

A query generator was developed to create a set of path queries based on the workload 

parameters listed in Table 2. The query generator generates random query strings according 

to the input DTD and these parameters. In order to remove some semantic redundancy that 

may be introduced by this random approach, it performs a simple rewriting step in which the 

following rules are applied in the presented order: 1) For each occurrence of “ //* ”  in a query, 

turn it into “ /* //” ; 2) If a query contains multiple consecutive “ /* //”  substrings, only keep the 

first one; and 3) If “ /* //”  occurs at the end of a query, remove “ //” . 

Parameter Range Description 

Q 1000 to 500000 Number of queries 
D 6 to 10 Maximum depth of XML documents and XPath 

queries.  
W 0 to 1 Probability of a wildcard “ * ”  occurring at a location 

step  
DS 0 to 1 Probability of “ //”  being the operator at a location step  
Distinct True or False Query strings required to be unique? 
P 0 to 20 Number of predicates per query 
NP 0 to 3 Number of nested paths per query  
RP 2, 3, 5  Max. no. of repeats of an element under a single 

parent 

Table 2: Workload parameters for query and document generation 

The query generator can be set to create workloads with or without duplicate queries.  

This later mode is referred to as the distinct mode. If duplicates are allowed, the generator is 

simply invoked Q times. Otherwise, in the distinct mode the query generator is invoked 
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repeatedly until Q syntactically unique queries are produced. Of course, in such a distinct 

workload there may be significant overlap in the query strings but no two strings will be 

identical.  Note that in most of the experiments reported in this study, the query generator is 

used in the distinct mode. 

For document generation, IBM’s XML Generator [Diaz and Lovell, 1999] was used to 

create the structure of documents. Two parameters were passed to the generator: maximum 

depth D, and RP, which specifies the maximum number of times that an element can be 

repeated under a single parent. As a default, RP is limited to 3. Then attributes of elements 

were generated according to their probabilities of occurring. The value of an element or an 

occurring attribute was randomly chosen between 1 and the maximum number of values it 

can take. 

For each DTD, a set of 200 XML documents were created. All reported experimental 

results were averaged over this set. For each experiment, a set of queries was generated 

according to the workload setting. For each algorithm run in an experiment, queries were 

preprocessed, if necessary, and then bulk loaded to build the index and other data structures. 

Then XML documents were read from disk one after another. The execution for a document 

returned a bit set, each bit of which indicates whether or not the corresponding query has 

been satisfied. A new process was used for each experiment run of an algorithm (i.e., 200 

documents), to avoid complications from Java’s garbage collector. 

Metr ics. Previous work [Altinel and Franklin 2000; Chan et al. 2002] used “ filtering 

time”  as the primary performance metric, which is the total time to process a document 

including parsing and outputting results. Noting that Java parsers have varying parsing costs, 

this study instead reports on a slightly different performance metric called “multi-query 
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processing time (MQPT)” . MQPT captures all costs attributable to the filtering algorithms 

themselves.  It is simply the filtering time minus the document parsing time. That is: 

Multi-query processing time (MQPT) = Filtering time – Document parsing time 

Filtering time = Wall clock time from the start of document parsing to the end of output 

MQPT for path matching consists of two components: path navigation and result 

collection. The former captures the cost of state transitions driven by received events. The 

latter is the cost to collect the identifiers of queries from the auxiliary data structures and to 

mark them in the result bit set. Note that when only distinct queries are used in experiments, 

the cost of result collection is negligible. 

Where appropriate, other metrics such as the number of transitions followed, the size of 

the various machines, and the costs associated with maintenance, are also reported. 

4.4.3 Efficiency and Scalability 

Having described the experimental environment, I begin my discussion of experimental 

results by presenting the MQPT results for the three alternatives as the number of queries in 

the system is increased. 

Exper iment 1: NITF. In this experiment 200 XML documents were generated using the 

NITF DTD under the workload (D = 6, RP = 3). The average length of generated documents 

is 77 in terms of start-end element pairs. The average level of nesting of elements is 5.45. 

The MQPT for the three algorithms is first examined as the number of distinct queries in 

the system is increased from 1000 to 150,000 with the probability of “* ”  and “ //”  operators 

each set to 0.2. With this setting, each query contains approximately one “* ”  operator and 

one “ //”  operator. Recall that experiments presented in this section focus on structure 
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matching only, so there are no predicates on the elements. Predicate processing is studied in 

Section 5. 

The results are shown in Figure 4.6. As can be seen in the figure, YFilter provides the 

significantly better performance than the other two across the entire range of query 

populations. XFilter is the slowest here by far, and not surprisingly, Hybrid’s performance 

lies between the two. 

As the number of queries increases, YFilter exhibits a slight cost increase and levels off 

around 30ms when Q is larger than 50,000. In contrast, the processing cost of XFilter 

increases dramatically, to 732ms at 100,000 and runs out of memory after this point, while 

Hybrid takes 344ms at this point. Thus YFilter exhibits an order of magnitude improvement 

for path matching over these other schemes.5 

The performance benefits of YFilter come from two factors. The first is the benefit of 

shared work obtained by the NFA approach. YFilter is the most effective of the three at 

                                                   

5 Note that the performance of XTrie was also compared with that of XFilter [Chan et al., 2002] 
for a similar workload. The fastest algorithm studied there, called Lazy Trie, was shown to have 
only about a 4x improvement over XFilter. 
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exploiting commonality among similar, but not exactly identical queries, as it can share all 

common prefixes of the paths. The second factor is the relatively low cost of state transitions 

in YFilter compared to the others, which results from the hash-based implementation 

described in Section 4.3.3. This was verified by comparing the improvement ratio of YFilter 

over XFilter in terms of path navigation time with that in terms of the number of transitions. 

For example, when Q is 100,000, XFilter makes 7.4 times more transitions but takes 25.2 

times longer to navigate. 

The experiment just described, like other XML filtering studies [Altinel and Franklin 

2000; Chan et al. 2002; Green et al. 2003] did not address the effect of duplicate path queries 

on the query processing time. Duplicate paths, however, are likely to exist in a large filtering 

system. For this reason, the previous experiment was re-run with the query generator set to 

not remove duplicates. Figure 4.7 shows the MQPT of three algorithms as the number 

queries in the system is varied from 1,000 to 500,000. 

Compared to Figure 4.6, YFilter still achieves a significant performance improvement 

over Hybrid and XFilter, but the differences among the algorithms are not as great. In 

particular, XFilter and Hybird seem to scale better, and the cost of YFilter increases. 
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Table 3 reports the number of distinct queries among random queries measured in this 

experiment. It shows the relatively slow increase in the number of distinct queries. Since all 

three algorithms represent identical queries only once, they all benefit from the slow 

increase, which explains the improved MQPT of Hybrid and XFilter. 

Number of random queries (x1000) 1 100 200 300 400 500 
Number of distinct queries (x1000) 0.53 15.7 24.2 30.5 35.6 40.0 

Table 3: Number of distinct queries out of randomly generated queries  
(NITF, D=6, W=0.2, DS=0.2) 

The MQPT is further decomposed into two component costs: path navigation and result 

collection. Results are shown in Figure 4.8. For each data point, the bars represent from left 

to right: YFilter, Hybrid, and XFilter. The cost of path navigation at each data point is 

consistent with that for the same number of distinct queries in Figure 4.6. The cost of result 

collection, however, becomes significant. Even though result collection was coded carefully, 

e.g. using unsynchronized data structures and avoiding ID instance copies, its cost is still 

high in this experiment, because a high percentage of path expressions match each document 

(34% here for each value of Q compared to less than 10% for most values of Q in the 

previous experiment using distinct queries). Note that in Figure 4.8, the MQPT of YFilter is 
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dominated by the cost of result collection starting from the point of Q=300,000. At this point, 

the number of query IDs collected is 9.3 times the number of state transitions YFilter makes. 

The above results for duplicate path queries indicate that experiments using distinct paths 

may tend to magnify the differences among filtering algorithms in scenarios where duplicate 

queries are likely. To exhibit a significant performance improvement in practical workloads 

containing duplicate queries, a filtering algorithm needs to outperform others by a wide 

margin, as YFilter outperforms Hybrid and XFilter. 

Similarly, for both the distinct and random workloads, document parsing is another fixed 

overhead that contributes to overall filtering time (recall that parsing is not included in 

MQPT). For example, the Xerces [Apache XML, 1999] parser used in this experiment, set in 

a non-validating mode, took 168ms on the average to parse a document, completely 

dominating the NFA-based execution in both cases. Other publicly available java parsers that 

were also tried include Java XML Pack [Sun Microsystems, 2001] and Saxon XSLT 

processor [Kay, 2001] supporting SAX 2.0. Saxon gave the best performance at 81 ms, still 

substantially more than the NFA navigation cost.6 Thus, while YFilter is not claimed to be 

the fastest possible path matching approach, it is clear that its performance for both these 

workloads is sufficiently fast that any further improvements in path navigation time will have 

at best, a minor impact on overall performance. 

 

 

                                                   

6
 I have also experimented with C++ parsers, which are much faster, but even with these parsers 

parsing time would be expected to be at best similar to the cost of path navigation with YFilter, 
particularly if YFilter were also implemented in C++! 
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Exper iment 2: Other  DTDs. Experiments were also run using two other DTDs: DBLP 

and Xmark-Auction. For these two DTDs, the maximum depth D was set to 8 in order to 

generate a relatively large set of distinct queries. The setting of W and DS is the same as the 

previous experiments. Only the results for the distinct query workload are reported below. 

Due to their DTD structures, DBLP tends to generate very short documents, while Xmark-

auction tends to produce very long ones. The RP parameter was adjusted to control the 

document lengths for these experiments. For DBLP, RP was set to 5 and the generated 

documents contain on average, 16 start and end elements pairs. For Auction, RP was set to 2, 

obtaining an average document length of 175. The results of these experiments are similar to 

those obtained using the NITF workload. They are summarized below. 

Figure 4.9 shows the MQPT results for the Xmark-Auction workload as Q is varied from 

1,000 to 100,000. It can be seen that the trends observed using NITF also hold here: YFilter 

performs substantially better than XFilter and Hybrid is in between the others. Since 

documents here are 2.3 times as long as those of NITF, all algorithms take longer to filter the 

documents. XFilter, however, is particularly sensitive to the length of documents because its 
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FSM representation and execution algorithm result in significant memory management 

overhead, which in turn invokes garbage collection much more frequently. 

When the DBLP DTD is used, all algorithms run much faster, as shown in Figure 4.10. 

However, even though the documents used here are very short, YFilter still achieves 

substantial performance improvement over XFilter (e.g., 46 times at Q=100,000). 

4.4.4 Experiment 3: Varying the maximum depth 

This experiment examines the impact of document depth on the performance of the three 

algorithms. Of particular concern is the performance of YFilter, since deep documents could 

theoretically cause an exponential blow-up in the number of active states for NFA execution. 

The NITF DTD was used in all the following experiments. The maximum depth was 

increased from 6 to 10.7 For each D value, 50,000 distinct queries were generated. 

                                                   

7Note that the value of D was stopped at 10, because in large-scale XML filtering scenarios, 
documents even that deep are quite rare. In other scenarios such as general XML query 
processing in large databases, some researchers expect that documents may be more deeply 
nested. Such scenarios are beyond the scope of this thesis; the interested reader is referred to 
[Bruno et al., 2003] for a discussion of the performance of NFA-based solutions in such settings.  
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As can be seen in Figure 4.11, the MQPT for all algorithms increases with the document 

depth, but YFilter remains the fastest. More importantly, the increase for YFilter is linear. To 

provide a better understanding these behaviours, the statistics on documents and queries used 

in this experiment are reported in Table 4. Note that the average document depth (i.e., the 

average depth of all paths in each document) and query depths do not increase as quickly as 

D. This is because the DTD dictates that many paths cannot reach a very deep level. As the 

maximum repeat RP was fixed to 3 in this experiment, a larger value of D also caused longer 

documents (i.e., more start/end element pairs) to be generated. 

Maximum Depth D 6 7 8 9 10 
Avg. Document depth  5.45 6.06 6.68 7.28 7.69 
Avg. Query depth  5.05 5.70 6.09 6.35 6.53 
Avg. Document length  77 107 154 221 271 

Table 4: Characteristics of documents and queries as maximum depth varies 

Given these statistics, the increase in MQPT of the filtering algorithms can be explained 

by two factors: the increased document length and the increased document depth.  In the case 

of YFilter, the number of state transitions made increases 5.9 times as D is increased from 6 

to 10. Much of the increase comes from the simple fact that there are 3.5 times more 

start/end element pairs in the documents when D = 10 compared to when D = 6. Although 
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the increased document depth could theoretically cause exponential increase in the number 

of transitions, it was not observed in this experiment, because in the NFA execution, most 

input elements can trigger transitions only from a limited subset of the active states. 

Note that the NITF DTD used here is one of the few complicated DTDs published online 

in terms of the number of elements allowed to be recursive (26 out of 123 elements). For this 

reason, YFilter’s performance shown in this experiment serves as a good indicator of its 

sensitivity to the maximum level of element nesting in most other practical workloads. 

4.4.5 Experiment 4: Varying Non-determinism 

In the previous experiments, the W and DS parameters (the probability of “* ”  and “ //”  

operators, respectively) were fixed at 0.20. Wildcards and “ //”  operators, however, are the 

sources of non-determinism in the NFA-based model. Thus, this set of experiments 

investigates their impact on filtering performance. In order to separate the effects of these 

two parameters, experiments here fixed one at 0 while varying the other. Note also that a 

large D value (10) was used in order to allow a reasonable number of distinct queries to be 

generated for all measured values of W and DS. 

Varying W and DS can dramatically impact the properties of the query sets produced by 

the query generator. Thus, the query generation technique was modified for these 

experiments. A large set of distinct queries was first generated using the setting (D=10, W=0, 

DS=0). Then to experiment with different W values, for each query in this set, elements were 

replaced with wildcards with probability = W; if due to this process, a query became 

identical to an existing one in the query set, the duplicate query was not added to the set.  

Query sets for the cases with varying DS were generated similarly. 
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Varying W. Figure 4.12 shows the MQPT results when W is varied from 0 to 0.8 with Q 

= 50,000.8  As can be seen in the figure, YFilter again significantly outperforms the others.  

Note also that it is much less sensitive to this parameter than the other two algorithms. The 

reason for YFilter’s low sensitivity to W is explained as follows. As W increases, the size of 

the NFA changes slowly, due to the prefix sharing among path expressions. As W is 

increased from 0, the NFA grows somewhat because the addition of wildcards adds new 

paths to the NFA. As W is further increased, the NFA size actually begins to decrease, as the 

queries become more similar to each other. In this experiment, the NFA begins with 

approximately 82,000 states (when W = 0), and increases to a high of approximately 112,000 

when W = 0.4. 

In contrast, XFilter’s performance improves with increasing W. Since XFilter does not 

store nodes for wildcards, the number of transitions it makes is reduced as wildcards are 

added. 

In this experiment, the performance of Hybrid demonstrates that it does in fact share 

common attributes with both XFilter and YFilter. When W and DS are both set to 0, Hybrid 

                                                   

8 Note that at W=1 very few distinct queries can be generated, so that case is not shown here. 
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is similar to YFilter as there is no decomposition of queries. As W (or DS) increases, Hybrid 

moves more towards XFilter due to increased query decomposition. Beyond a certain point 

(W = 0.4, here), the benefit of not processing wildcards becomes dominant, and Hybrid’s 

performance improves along with XFilter’s. 

Varying DS. Figure 4.13 shows the effect of varying DS (the probability of “ //”  

operators) from 0 to 1 with Q = 10,000 (a smaller number of queries was used here because 

XFilter was unable to complete for the mid-range values of DS with more queries). As in the 

previous experiment, YFilter has the best performance overall and is less sensitive to the 

parameter setting than the other two. 

The performance of YFilter is again largely explained by the change in the machine size. 

As DS is increased from 0 to 1, the machine size first increases because of the diversity of 

axes in location steps in queries, and then decreases, as queries become more similar to each 

other. The turning point here occurs at DS = 0.6, where the machine size is 2.8 times that at 

DS = 0, resulting in a 3.2 times increase in MQPT. The performance degradation is kept 

small due to the shared processing of “ //”  operators among multiple queries. 
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In contrast, XFilter does pay a large performance penalty as DS is increased. This penalty 

is due to the overhead it incurs when processing “ //”  operators in the presence of recursive 

elements. Recall that (as described in Section 4.4.1) in XFilter, if a location step “ //a”  can be 

matched by recursive “a”  elements, the path node of the subsequent location step will be 

promoted to its candidate list each time “ //a”  is matched. In XFilter’s implementation, if the 

subsequent location step contains a “ //”  operator (e.g. “ //b” ), its path node is simply added to 

the candidate list multiple times. However, if the next location step contains a ‘ /’  operator 

instead (e.g. “ /b” ), different instances of this path node are first created and then added to the 

candidate list to remember all the possible levels where this location step could be matched. 

Note that the probability of patterns such as “ //a/b”  first increases with DS and then 

decreases. The behavior of XFilter in this experiment is determined by multiple promotions 

of path nodes in general and the overhead of handling these particular patterns. 

In this experiment, Hybrid again exhibits characteristics of the other two algorithms. 

When DS = 0, Hybrid is similar to YFilter, and as DS is increased, it becomes more like 

XFilter. Hybrid, however, does not exhibit the bell shape, because it uses a single runtime 

stack to keep track of the active states as in YFilter, rather than promoting path nodes 

multiple times to remember different document levels as in XFilter. At DS = 1, every query 

is decomposed into single elements and the performance of Hybrid is very close to XFilter. 

XFilter actually outperforms Hybrid a little as a benefit of using List Balance. 

The experiments on non-determinism have shown that compared to the other two 

algorithms, YFilter shows relatively little sensitivity to the W and DS parameters. Due to 

prefix sharing, increasing the probabilities has only a modest effect on the size of the NFA.  
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As a result, the filtering cost of YFilter is relatively low and robust to changes in these 

parameters. 

4.4.6 Experiment 5: Maintenance cost 

The last set of experiments reported in this section deals with the efficiency of maintaining 

the YFilter structure, which is expected to be one of the primary benefits of the approach.  

Updates to the NFA in YFilter are handled as follows: To insert a query, the NFA 

representation of the query is merged with the combined NFA as described in Section 4.3.2, 

and the identifier of the query is appended to the end of the query ID list at its accepting 

state. To delete a query, the accepting state of the query is located and the query’s identifier 

is deleted from the list of queries at this state. If the list becomes empty and the state does not 

have a child state in the NFA, the state is deleted by removing the link from its parent. The 

deletion of this state can be propagated to its predecessors. An update to a query is treated as 

a delete of the old query followed by the insertion of the new one. 

Deletion is the dual problem of insertion except that modification of the list at the 

accepting state can be more expensive than appending an identifier to the list. As 

demonstrated in the previous sections, YFilter’s performance is fairly robust with respect to 

the number of queries in the system. Thus, instead of deleting queries immediately, YFilter 

adopts a lazy approach where a list of deleted queries is maintained. This list is used to filter 

out such queries before results are returned. The actual deletions can then be done 

asynchronously. Thus, this section focuses on the performance of inserting new queries. 

The cost of inserting 1000 queries was measured with varying numbers of queries 

already in the index (which can contain duplicate queries). The insert costs are shown in 

Table 5. With Q = 2000 (i.e., 2000 queries already in the NFA), it takes 77 ms to insert the 
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1000 new queries. At this point, the chance of a query being new is high, requiring new 

states to be created and transition functions to be expanded by adding more hash entries to 

the states. However, the cost drops dramatically as more queries are present in the system. 

Beyond Q=50,000, the insertion cost stabilizes around 5 ms. This is because most paths are 

already present in the index, so a new query can typically be added by simply traversing 

down a path to an existing accepting state and appending the query ID to the list at that state. 

Q (x1000) 2 4 6 8 10 10  ~  50 60    ~    500 
1000 Insertions (ms) 77 57 30 24 9 6 ≈ 5 

Table 5: Cost of inserting 1000 queries (ms) (NITF, D=6, W=0.2, DS=0.2) 

4.5 Related Work 

Much of the work related to structure-based XML filtering was discussed in Chapter 3. This 

section describes XML filtering systems in more detail and other NFA-based techniques.  

As mentioned in Section 3.1, a number of XML filtering systems have been developed to 

efficiently match a large set of path queries with streaming documents. XFilter [Altinel and 

Franklin, 2000] was described in Section 2.4 and Appendix A. CQMC [Ozen et al., 2001] 

improved upon XFilter by building an FSM for a set of queries identical in structure. XTrie 

[Chan et al. 2002] supports shared processing of query fragments containing only child (‘ /’ ) 

axes. Index-Filter [Bruno et al., 2003] builds indexes over both queries and streaming data; 

the index over data speeds up the processing of large documents but its construction 

overhead penalizes the processing of small ones. XMLTK [Green et al., 2004] converts 

YFilter’s NFA to a Deterministic Finite Automaton (DFA) to further improve the filtering 

speed while limiting the complexity of data and frequency of query updates that message 

brokers support. Compared to the above approaches, YFilter combines fast path matching, 
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flexibility, and ease of maintenance, thus providing an efficient and robust solution to XML 

filtering.  

DataGuides [Goldman and Widom, 1997; Nestorov et al., 1997] are structural summaries 

of an XML source database that can be used to browse database structure, formulate queries, 

and enable query optimization. Creating a DataGuide from a source database has been shown 

to be equivalent to converting an NFA to a DFA. The NFA-based approach in YFilter differs 

in that it is intended to represent path expressions rather than data and it must faithfully 

encode all of the expressions in their entirety, rather than just summarizing them. As a result, 

the implementations of YFilter’s NFA and DataGuides differ significantly. 

4.6 Summary 

This chapter presented an efficient approach to structure-based filtering of XML documents. 

This approach merges all path expressions into a single combined NFA to exploit overlap 

and employs a stack-based mechanism to efficiently execute the NFA over incoming 

documents. Results of a detailed performance study show that YFilter provides an order-of-

magnitude performance benefit over previous solutions. Using YFilter, path matching is no 

longer the dominant cost for XML filtering. YFilter is also highly scalable, supporting up to 

100’s of thousands of distinct queries with a single processor. Furthermore, it requires only a 

small maintenance cost for query updates, thus providing a robust solution to XML filtering 

in dynamic environments. 

The next chapter discusses how to extend YFilter’s shared structure matching to support 

advanced query predicates, and compares alternative techniques for the efficient integration 

of structure-based and predicate-based filtering. 
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5 Advanced Query Support for Filtering 

The previous chapter demonstrated the substantial performance improvements that can be 

gained by sharing structure matching through the use of an NFA. Structure matching as such 

is one part of the XML filtering problem; another part is the evaluation of predicates that are 

be applied to path expressions for additional filtering. In this chapter, I address the second 

challenge of XML filtering: predicate processing in shared structure matching.  

Shared structure matching complicates the handling of value-based predicates, which 

address attributes and text data of elements. I describe two alternative techniques for 

extending the NFA-based structure matching with support for such predicates. The results of 

a comparative study of these two techniques demonstrate some key differences between 

shared XML filtering and traditional database query processing. I also describe how YFilter 

extends the shared path matching approach to handle complex predicates that involve nested 

path expressions. 

5.1 Value-Based Predicate Evaluation 

For value-based predicates (e.g., //section[@difficulty = “easy” ]/title), one could extend the 

NFA by including predicates as labels on additional transitions between states. 

Unfortunately, such an approach would result in a potentially huge increase in the number of 

states in the NFA, and would also destroy the sharing of path expressions, the primary 

advantage of using an NFA.  

For this reason, YFilter explores two alternative approaches to implement value-based 

selections. Similar to traditional relational query processing, the placement of predicate 
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evaluation in relation to the other aspects of query processing can have a major impact on 

performance. Relational systems use the heuristic of “pushing”  cheap selections as far as 

possible down the query plan so that they are processed early in the execution. Following this 

intuition, the first approach, called “ Inline” , processes value-based predicates as soon as the 

relevant state is reached during structure matching. The second, called Selection Postponed 

(SP), waits until an accepting state is reached during structure matching, and only at that 

point, applies all the value-based predicates for those queries whose structure has been 

matched. Below, I discuss these two alternatives in more detail, and compare their 

performance experimentally. 

Note that in the following description I focus on the processing of predicates on attributes 

but not text data. Predicates on element data require additional bookkeeping because the data 

(if present) is delivered by the parser in separate “characters”  events that may arrive at any 

time between the “start element”  event and its corresponding “end element”  event. Support 

for such predicates is discussed at the end of this section. 

5.1.1 The Inline Approach 

In the Inline approach, the information stored in each state of the NFA is extended to include 

any predicates that are associated with that state. These predicates are stored in a table, as 

shown in Figure 5.1. Since multiple path expressions may share a state, this table can include 

predicates from different queries, so (Query Id, Predicate Id) pairs are used to identify the 

predicates in the table. 

Inline works as follows: When a start-of-element event is received, the NFA transitions 

as described in Section 4.3.4.  For each state reached, the predicates stored there are checked. 

For each query, bookkeeping information is maintained, indicating which predicates of that 
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query have been satisfied. When an accepting state is reached, the bookkeeping information 

for the queries of that state is checked, and those queries for which all predicates have been 

satisfied are returned as matches. 

While such an approach sounds conceptually simple, there are several issues to consider. 

The first is the potential benefit of checking predicates early. The failure of a predicate at a 

state does not necessarily stop processing along that path because there may be other queries 

sharing the state that did not fail.  Furthermore, if a query contains a “ //”  prior to a predicate, 

then even if the predicate fails, the query effectively remains active due to the non-

determinism introduced by that axis. For these reasons, the common query optimization 

heuristic of “pushing selects”  to earlier in the evaluation process is not as likely to be 

effective in this environment. 

A second issue is that, due to the nested structure of XML documents, it is possible that 

backtracking will occur during the NFA processing. Such backtracking further complicates 

the task of tracking the predicates that have been satisfied. For example, consider Query 5= 

“ //a[@a1=v1][@a2=v2]”  that contains a location step with two predicates (on two different 

attributes a1 and a2 of “a”  elements).  If care is not taken during backtracking, a fragment 

 QueryId  PredicateId  property   operator   value 

…             …                …             …            … 

a  

a a 

a  

a  *  

a  

a  

Figure 5.1: Predicate Storage for Inline 
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such as “<a a1=v1> </a> <a a2=v2> </a>”  could erroneously be determined to match Query 5 

even though the attributes are associated with different “a”  elements. This problem can be 

solved by “undoing”  changes made to the predicate bookkeeping information for a state 

when backtracking from that state. 

Unfortunately, the above solution does not solve a similar problem that exists for 

recursively nested elements. Consider Query 5 when applied to a fragment with nested “a”  

elements: “<a a1=v1> <a a2=v2> </a> </a>” . In order to distinguish between the two “a”s 

additional bookkeeping information must be kept. This additional information identifies the 

particular element that caused each predicate to be set to true. During the final evaluation for 

a query at its accepting state, the query is considered to be satisfied only if all predicates 

attached to the same location step are satisfied by the same element. The Inline approach is 

described in more detail in Appendix C. 

5.1.2 Selection Postponed (SP) 

Effort spent evaluating predicates with Inline will be wasted if ultimately, the structure-based 

aspects of a query are not satisfied. The Selection Postponed (SP) approach avoids this 

problem by delaying predicate processing until after the structure matching has been 

completed. SP has several other potential advantages. First, since the predicates on different 

elements in a query are treated as conjunctions, a short-cut evaluation method is possible; 

when a predicate of a query fails, the evaluation of the remaining predicates of that query can 

be avoided.9 Second, there is no need to extend the NFA backtracking logic as for Inline. 

                                                   

9
 Note however, that with predicate evaluation it becomes possible to visit a given accepting state 

multiple times, due to predicate failure. Such short-cut predicate evaluation only saves work for a 
single visit. 
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In SP, the predicates are stored with each query, as shown in Figure 5.2. The predicates 

of a query are indexed by the “step number”  field.  When an accepting state is reached in the 

NFA, selections are performed in bulk for each query associated with the state. If all 

predicates of a query evaluate to true, then the query is satisfied. 

In order to delay selection, however, the NFA must be extended to retain some additional 

history about the states visited during structure matching. The reason for this is demonstrated 

by the following example. Consider Query 6 and an XML document fragment as shown in 

Figure 5.3. When element ‘b’  of the document is parsed, the NFA execution arrives at the 

accepting state of this query in the NFA (also shown in Figure 5.3). When selection 

processing is performed for the predicate in Query 6, the processing needs to decide on 

which of the two ‘a’  elements encountered during parsing to apply the predicate. 

A naïve method would be to simply check all of the ‘a’  elements encountered. 

Unfortunately with more “ //”  operators in a query or more recursive elements in the 

document, searching for matching elements for predicate evaluation could become as 

expensive as running the NFA again for this query. Instead, the SP approach extends the 

 step number   property    operator   value 

…                   …              …            … 

a  

a a 
{ Q1}  

{ Q3}  

{ Q8}  

a  

a  

 

*  

a  

a  

Figure 5.2: Predicate Storage for SP 



 

87 

 

NFA execution to output not only query IDs, but a list of path matches. Each path match 

provides a list of document elements that should participate in predicate evaluation. 

For example, at the accepting state for Query 6, the NFA execution would report the two 

path matches “a_1 b”  and “a_2 b” , where a_1 represents the first ‘a’  element and a_2 

represents the second (nested) ‘a’  element. Since predicates are indexed by “step number” , it 

is easy for the selection operator to determine which elements need to be tested. For the 

XML fragment shown in Figure 5.3, the first path match does not satisfy Query 6 because 

a_1 does not satisfy the predicate, but the second path match does. 

The NFA execution is extended to output these path matches by linking the states in the 

runtime stack backwards towards the root. That is, for each target state reached from an 

active state, the NFA execution adds a predecessor pointer for the target state and sets the 

pointer to the active state. Then the target state with the pointer is later pushed onto the 

runtime stack. An example is shown in Figure 5.3, which includes the content of the stack for 

the accepting state of the sample query after the XML fragment was read. 

For each state that is an accepting state, the NFA execution can traverse backwards to 

find the sequence of state visits that lead to the accepting state. Note that elements that 

trigger transitions to “ //-child”  states (along self-loops) can be ignored in this process, as they 

Runtime Stack 

Query 6: //a[@a1=v2]//b 

3 1 
ε 

*  

2 
a 

5 
ε 

*  

4 
b 

An XML fragment: 
<a a1=v1>  
<a a1=v2> 
<b></b></a></a> 

 5 

  3      4 
    3     4 

  2      3 

1 

Figure 5.3: A sample query, its NFA, and the NFA execution 
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do not participate in predicate evaluation. Returning to the example in Figure 5.3, there are 

two sequences of state visits, namely “2 3 5”  and “3 4 5”  that the NFA took when elements 

a_1, a_2 and b were read. After eliminating the elements that trigger transitions to “ //-child”  

states for each state sequence, the two sequences of matching elements, “a_2 b”  and “a_1 b” , 

can be generated for predicate evaluation. 

Note that the technique of linking states in the runtime stack using predecessor pointers 

in SP is similar in spirit to “backward chaining”  used in PathStack and TwigStack [Bruno et. 

al. 2002]. The idea in both is to use backward pointers to store partial or complete matches of 

path expressions. The difference is that here SP uses a single runtime stack with backward 

pointers to store matches for all path expressions, while PathStack requires a stack for each 

query node. 

The evaluation data structures and pseudo-code for predicate evaluation using SP are 

presented in Appendix D. Note that SP requires no bookkeeping information and that the 

evaluation code is simple and straightforward. 

Finally, as mentioned above, predicates on element data cannot be evaluated with other 

value-based predicates in a query, because the element data is not returned when the “start 

element”  event is encountered. The fact that selection in SP is decoupled from the event-

based processing makes it possible to treat selections involving such predicates simply as 

blocking operators. To collect information for such selection operators, the elements carried 

by the path matches are extended to include a data field called “ text” . When a “characters”  

event is received, the data returned by this event is appended to the “ text”  field in the 

corresponding element. This field is known to be complete when the corresponding “end 
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element”  event is encountered. At that moment, selection operators blocked on this field will 

be signaled to become unblocked. 

5.1.3 Performance of Value-based Predicate Evaluation 

Having described the Inline and SP approaches to value-based selection, I now present 

results from an experimental study comparing their performance. The NITF DTD was used 

for all experiments presented in this section. For query generation, the parameter P (see 

Table 2) was used to determine the number of predicates that appear in each query. Such 

predicates are distributed over the location steps uniformly at random. Distinct queries are 

used in all of the experiments. 

The first experiment examines the relative performance of Inline and SP as Q is varied 

from 1,000 to 500,000. Figure 5.4 shows the MQPT of the two approaches for the cases P=1 

and P=2. 

As can be seen in the figure, SP outperforms Inline by a wide margin. When P=1, for 

example, SP takes 375 ms to process 200,000 queries, while Inline takes 1170 ms more. To 

understand these results, recall the three major differences between Inline and SP. 
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• Structure matching and value matching: Inline performs early predicate evaluation 

before knowing if the structure is matched, and this early predicate evaluation does not 

prune future work. In contrast, SP performs structure matching to prune the set of queries 

for which predicate evaluation needs to be considered. 

• Conjunctive predicates in a query: In Inline, evaluation of predicates in the same query 

happens independently at different states, while in SP, the failure of one predicate in a 

query stops the evaluation of the rest of predicates immediately. 

• Bookkeeping: Inline requires bookkeeping information for the final evaluation of a 

query. The maintenance cost includes setting the information and undoing it during 

backtracking. Note that in addition to reduced MQPT, bookkeeping overhead causes 

Inline to run out of memory, for Q above 400,000. 

When the number of predicates per query is doubled (P=2, also shown in Figure 5.4) both 

approaches suffer an increase in MQPT. The differences between the approaches, however, 

are more pronounced. For example, for 200,000 queries containing two predicates each, 

Inline takes 1534 ms more than SP. Inline also experiences a tremendous increase in the 

bookkeeping overhead, and runs out of memory with 100,000 queries earlier than P=1. 

Figure 5.5 shows the MQPT of the two approaches as the number of predicates per query 

is varied from 0 to 20 for a relatively small number of queries (Q =50,000). As can be seen in 

the figure, a large number of predicates compounds the poor performance of Inline. In 

contrast, SP is much less sensitive to the number of predicates per query. As P increases, the 

increased cost in SP results from a larger number of invocations of predicate evaluation and 

longer evaluation periods. Luckily, the negative impact is limited by the short-cut evaluation 

strategy. 
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The previous experiment demonstrated the benefits of delaying content-based matching 

in YFilter. One of the major benefits was seen to be the ability to “short-cut”  the evaluation 

process for a query when one predicate fails. This observation raises the potential to further 

improve the chances of such short-cut evaluation by evaluating highly-selective predicates 

first, as is done by most relational query optimizers. 

If statistics on documents are kept, then the selectivity of predicates on attributes can be 

estimated from the probability of an attribute occurring in an element and the number of 

values this attribute can take. Examples of equality predicates on attributes of element “a”  

are given as follows: 

selectivity ([@attr])         = probability of the attribute occurring in element ‘a’ . 

selectivity ([@attr=’v’ ]) = Selectivity[@attr] / max. # of values attribute “attr”  can take. 

The selectivity estimates for predicates involving other comparison operators can be derived 

in a similar way. If predicates are attached to a wildcard in a location step, simple 

assumptions are made about their selectivity. Other formulas are omitted here. 
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A simple experiment was performed to examine the potential performance benefits of 

predicate reordering in the SP approach. Figure 5.6 shows the MQPT for SP with and 

without sorting, as P is varied from 0 to 20 for Q=50,000. The results indicate that as 

expected, additional benefits can indeed be gained by predicate sorting, particularly for cases 

with large numbers of predicates. 

5.2 Nested Path Expressions 

In the previous section, I described two approaches for value-based predicate evaluation in 

YFilter. As the experimental results show, SP outperforms Inline by a wide margin. The key 

feature of SP is that predicate evaluation is postponed until after path matching and is 

performed by “post-processing”  the path matching results. YFilter’s technique for handling 

nested path expressions leverages this post-processing of path matches. 

5.2.1 Preliminaries 

I begin the discussion on supporting nested paths by more clearly specifying the interface 

between the NFA-based path matching and the post-processing operators. This interface is 

based on path match structures that identify the document elements that caused the NFA to 
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reach an accepting state. During parsing document elements are given unique identifiers. 

Each time an accepting state is reached, the NFA outputs a path match structure for each 

query associated with that state. At an accepting state that represents a path expression of n 

location steps, each structure generated is simply a list of identifiers of the n elements that 

matched the path expression. 

The elements that path matches reference are stored in memory resident data structures 

created in document parsing. These data structures hold attributes and text data of the 

corresponding elements which could be used by any operators in post-processing. 

5.2.2 Query Decomposition 

The original work on XFilter [Altinel and Franklin, 2000] proposed using query 

decomposition to handle nested path expressions. In this approach, the nested paths are 

extracted from the main path expressions and processed individually. A post-processing 

phase is used to link matched paths back together to determine if an entire query expression 

has been matched. The advantage of such an approach is that the path matching component 

remains untouched. YFilter follows a similar approach, using the NFA/post-processing 

interface described above. In YFilter, however, this approach has the significant additional 

benefit that it naturally allows shared path matching to be exploited for nested path 

expressions. 

In the following, I describe the approach by addressing how the nested paths are 

represented and how they are evaluated. I also present results from a performance study of 

the implementation of nested paths in YFilter. 
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5.2.3 Query representation 

For ease of exposition, I initially assume only one level of path nesting in queries. In other 

words, a nested path does not itself contain any nested paths. I then relax this assumption in 

Section 5.2.5. For such queries, I define three terms: A main path is the remaining structure 

of a query after all the nested paths are removed. An anchor step of a nested path is a 

location step in the main path where that nested path is attached to the main path. An 

extended nested path is a nested path pre-pended with the prefix of the main path up to its 

anchor step. 

In this approach, when a query containing nested paths is parsed, it is decomposed into a 

list of absolute paths: the main path and any extended nested paths. For example, consider: 

 

Query 7 = “/a[d]//b[e/f]/c”  

 

It contains two nested paths “d”  and “e/f” . Query decomposition produces a main path, 

“ /a//b/c” , and two extended nested paths, “ /a/d”  and “ /a//b/e/f” . These paths are assigned 

identifiers consisting of (QueryId, PathId) pairs, where the main path has PathId 0 and the 

nested paths are numbered sequentially. All of the paths are then inserted individually into 

the NFA with these identifiers. The interface described above is slightly extended here so 

that the NFA returns path matches to queries using the Query Ids with the Path Ids attached 

to the matches for the use inside those queries. 

Post-processing is implemented using operators called Nested Path Filters (NP-Filter). 

Each NP-Filter is associated with a single query. Under the assumption of a single level of 

nesting, only one NP-Filter is required per query. The NP-Filter contains information for 
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each path of its associated query. For each nested path, it stores the position of its anchor step 

in the main path. This position will identify the last element shared between the extended 

nested path and the main path. The NP-Filter also contains for each path (main and nested) a 

store to keep the path matches corresponding to that path.10 

5.2.4 Query evaluation 

As previously stated, queries containing nested paths are processed in two phases, path 

matching and post-processing of the path matching results. The first phase is completely 

done by the NFA as described in Section 4.3. Thus, the processing of the common prefixes is 

shared among all the paths, e.g., between main paths and extended nested paths and among 

the extended nested paths themselves. Upon obtaining a new path match, the NFA delivers it 

to the queries containing the path, together with the PathId of this path in each of those 

queries. The recipient queries hold this path match in one of its stores identified using the 

attached PathId. 

Post-processing is performed inside each NP-Filter at the end of document processing. 

This processing consists of the following steps: 

1) Store check: If any of the stores of the constituent paths of the query is empty, then 

return False. 

 

 

                                                   

10 In the implementation, a path match store is allocated for each unique path expression and 
shared among all queries containing this path, so an NP-Filter only contains pointers to these 
shared stores.  Due to this sharing, the stores contain path matches in their entirety, even though 
any one query may not need all of the elements. 
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2) Filter construction: Otherwise, a filter is constructed for each nested path from its 

corresponding store by extracting the set (no duplicates) of element ids that appear at the 

anchor step position of the nested path. 

3) Match filtering: The path match structures of the main path are then pipelined through 

all the nested path filters. For each main path match, a nested path filter is applied to the 

element identifier at the corresponding anchor step position. If the filter does not contain 

this element identifier, the main path match is evicted. If a main path match passes all 

the filters, the query is evaluated to True and the NP-Filter stops. 

Figure 5.7 shows the three constituent paths of Query 7 and an NP-Filter operator for it, and 

illustrates the post-processing performed for this query. On the left of the figure, data 

structures maintained in the NP-Filter are shown in the upper box. In the list of anchor step 

positions, the list element at index 1 corresponds to the first nested path (i.e., PathId 1), 

indicating that the anchor step of this nested path is at position 1 in the main path. The list 

NP-Filter (q6) 
 
 
Index (PathId)      0   1 2 
  
Anchor step positions         1  2  
 
Pointers to stores                   
 

a1   b1  c1 
a2   b2  c2 
a2   b3  c2 
a3   b4  c3 

a2   d1  
a3   d2  
a3   d3   

a1   b1  e1   f1 
a3   b4  e2   f2 stores 

main  
path 

 

nested 
path 1 

 

nested 
path 2 

 

PathId = 0: /a//b/c        PathId = 1: /a/d           PathId = 2: /a//b/e/f 
 

Query 7 = /a[d]//b[e/f]/c 
 

a1   b1  c1 
a2   b2  c2 
a2   b3  c2 
a3   b4  c3 

a3   b4  c3 main  
path 

a2   a3 b1   b4 

position = 1 

a2   d1  
a3   d2  
a3   d3   

a1   b1  e1   f1 
a3   b4  e2   f2 

nested 
path 1 

nested 
path 2 

position = 2 

Figure 5.7: An example NP-Filter operator and its match filtering process 
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element at index 2 keeps the position information for the second nested path. In the store list, 

three pointers link to the stores that contain path matches for the three constituent paths. 

The right part of the figure illustrates the execution of the NP-Filter. The arrows drawn 

top-down depict filter construction for the two nested paths. Anchor step positions are used 

to extract element ids for each filter. The arrow below the filters illustrates pipelining the 

main path matches through these two filters. The first main path match is eliminated by the 

first filter, because the identifier of the ‘a’  element in this match is not contained in the filter. 

The next two matches are removed by the second filter. Finally the last main path match 

passes both filters, and the query is evaluated to True. 

5.2.5 Support of Multiple Levels of Path Nesting 

In the above description, I assumed that nested path expressions do not themselves contain 

nested paths. The approach, however, can be extended to support an arbitrary number of 

levels of path nesting. First, NP-Filter operators are modified so that they can be configured 

to output one or all the matches retained from the nested path filters. The rest of the 

extension is outlined as follows. 

For each query involving multiple levels of path nesting, an NP-Filter is assigned to each 

path expression (absolute or nested) that contains nested paths in its predicates. If additional 

NP-Filters are assigned to the nested paths of this path expression, the NP-Filter of this path 

expression treats them as child operators. In this way, a hierarchy of NP-Filters is formed in 

correspondence to the hierarchy of path nesting. 

During post-processing, the hierarchy of NP-Filters is executed bottom up. NP-Filters at 

the bottom level of the hierarchy access path match stores and perform match filtering as 

described above. They output all main path matches that are retained from their nested paths 
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filters. After NP-Filters at the next level receive the path matches from their child operators, 

they start the execution and output in the same matter. This process continues until the top-

level NP-Filter finds any main path match or exhausts all the input matches. The query is 

evaluated to True in the first case and False in the second case. 

5.2.6 Evaluation of Nested Path Expressions 

This section presents a performance analysis of the YFilter approach to processing nested 

path expressions. Recall that in this approach, path matching is shared among all queries, and 

post-processing is performed on a per-query basis. This experimental study provides some 

understanding of the component costs as well as total processing cost in MQPT. 

The parameter NP (see Table 2) was used to generate a number of nested path 

expressions in each query. Such nested paths are distributed over the location steps uniformly 

at random. The depth of a nested path is determined by the difference between maximum 

depth D and the actual depth of the location step where this nested path is attached. The 

setting of parameters W and DS, is also applied to the nested paths. All queries used in the 

experiments contain only one level of path nesting. 

Varying Q and varying NP. In this experiment, the number of distinct queries was 

varied from 1000 to 200,000 for three values of NP, 1, 2 and 3. Figure 5.8 shows YFilter’s 

performance in terms of MQPT. 

An important trend is observed from this figure. As the number of queries grows, there is 

a fair amount of increase in MQPT to process the first nested paths in queries (see the case of 

NP=1). Processing additional nested paths in queries (in the cases of NP>1), however, costs 

only a little more than processing the first nested paths. Consequently, the cases of larger NP 

values exhibit efficiency and scalability very close to that in the case of NP=1. 
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For a better understanding of this result, a profiler was implemented to report the costs of 

NFA-based path matching and NP–Filter operators, and to also provide statistics that help 

explain the observed execution costs. The above experiment was re-run with the profiler 

turned on. Due to the overhead of running the profiler, the costs reported in this manner are 

higher than the costs observed while running the actual experiment. As a sample of the 

content of the report, Table 6 shows the total cost of path matching, the total cost of all NP-

Filters, and some statistics at Q=50,000. 

As Table 6 shows, when NP=1, the path matching component costs much more than NP-

Filters. The performance study in Section 4.4 has demonstrated that the NFA execution is 

very efficient. Here, the path matching cost is dominated by generation and delivery of 

multiple path matches during each of the 5988 visits to accepting states. In contrast, NP-

Filters have a relatively low cost, due to the use of the store check as the first processing step. 

In this experiment, most queries cannot have both constituent paths satisfied by a document, 

so their NP-Filters only need to perform the inexpensive store check. 

From the cases of NP=2 and NP=3 in Table 6, it can be observed that the effects of 

adding more nested paths are two-fold. First, it increases the cost of path matching, e.g. from 
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152 ms when NP=1 to 171 ms when NP=3. An analysis of this cost increase is the following. 

After the additional nested paths are added to the path matching component, they increase 

the size of the NFA as shown in Table 6 (by 36% from NP=1 to NP=3). This increase, 

however, is much less than that of the total number of nested paths, due to the path sharing 

exploited by the path matching. The increased machine size causes some more visits to 

accepting states during document processing, e.g., 12% more from NP=1 to NP=3, which in 

turn results in a slightly higher path matching cost. The small increase indicates that after 

paying the cost for the first nested paths, queries can obtain matches to most of their 

additional nested paths at no extra cost. In other words, the cost of processing the initial 

nested paths can be amortized by additional nested paths in queries. 

The second effect of adding more nested paths is the slight reduction of the cost of the 

NP-Filter operators. The additional nested paths increase query selectivity, as evidenced by 

the reduced number of query matches shown in Table 6. Due to this increased query 

selectivity, more NP-Filters can terminate due to store checks, thus improving the overall 

cost of NP-Filters slightly. 

The combination of these two effects determines the small increase in MQPT from 

processing single nested paths in queries to multiple ones in them. 

Q=50,000, NP = 1 2 3 
Path matching cost (ms) 152 160 171 
NP-Filter cost (ms) 33 30 28 
… … … … 
# of States in the NFA 42198 48523 57468 
# of accepting states hit 5988 6193 6701 
# of matched queries 3226 1837 770 
… … … … 

Table 6: Profile on nested path processing (Q=50,000, D=6, W=0.2, DS=0.2) 
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Per formance for  quer ies with mixed predicates. This experiment further investigates 

the performance of YFilter when queries contain both value-based predicates and nested path 

expressions. To do so, predicate evaluation is integrated into NP-Filters in a way that 

predicates are applied to path matches immediately after the store check. Thus, predicate 

evaluation is performed only if all constituent paths in the query are satisfied.  Similarly, the 

later steps of NP-Filter execution, namely, filter construction and match filtering, are 

executed only when all paths also pass the selection evaluation. 

To examine the performance of mixed predicates, query sets were obtained from the case 

of NP=1 of the previous experiment, and extended by adding a single value-based predicate 

to the main path of each query. Then the experiment was run by varying the number of 

queries from 1000 to 200,000 for the two cases, (NP=1, P=0) and (NP=1, P=1). Figure 5.9 

shows the MQPT results. 

It can be seen that adding a value-based predicate to queries containing nested paths 

incurs only a very modest increase in MQPT. This phenomenon can be explained by two 

factors. First, selection operators (using the SP approach) and NP-Filter operators completely 

share the overhead of path matching, e.g. the NFA-based path navigation and the more 

expensive operations to generate and deliver path matches. Second, due to the way that 
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selection evaluation is combined with NP-Filter execution, much of the predicate evaluation 

is avoided by the store check performed at the beginning of NP-Filter execution. 

Experimental results on nested path processing in YFilter can be summarized as follows: 

1) There is a fair amount of increase in MQPT to process the first nested paths in queries.  

The cost is dominated by the overhead of supporting the interface of returning path matches 

for post-processing. 2) The cost increase can be amortized through path sharing when 

processing additional nested paths in queries, which results in good efficiency and scalability 

in the cases of multiple nested paths per query. 3) This cost increase can also be recovered 

when processing value-based predicates. 

5.3 Related Work 

In the past few years, there have been a number of efforts to build large-scale, stream-based 

XML query processing systems. While most of these systems support both structure and 

value matching to some extent, they have tended to emphasize either the matching of the 

structure of path expressions [Altinel and Franklin, 2000; Chan et al., 2002; Bruno et al., 

2003; Green et al., 2003], or the processing of value-based predicates [Chen et al., 2000; 

Pereira et al. 2001]. YFilter is, to the best of my knowledge, the first study focused on 

alternative approaches to combined structure and value-based matching of queries. 

MatchMaker [Lakshmanan and Parthasarathy 2002], addresses both issues but focuses on 

disk-oriented solutions with performance characteristics that differ significantly from other 

stream-based systems. XPush [Gupta and Suciu, 2003] builds a pushdown automaton to 

support shared matching of both structure and value-based constraints. To achieve efficiency, 

however, it places constraints on the message content and the use of wildcard and descendant 

operators in queries and requires periodic reconstruction of the machine. 
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Tree pattern matching in XML databases [Bruno et al., 2002; Jiang et al., 2003] uses 

stack-based techniques for encoding partial and complete matches of path expressions in a 

manner similar to Selection Postponed. It is, however, unclear how these techniques can be 

extended to support shared matching of multiple tree patterns. In addition, these techniques 

require the use of indexes over XML data and thus are not directly applicable in streaming 

environments.   

5.4 Summary 

This chapter presented a study of integrated approaches to handling both structure-based and 

content-based filtering of XML documents. Two alternative techniques were investigated for 

integrating value-based predicate evaluation with the NFA-based structure matching. 

Experimental results comparing these techniques provide a key insight arising from this 

study, namely, that structure-based matching and content-based matching cannot be 

considered in isolation when designing a high-performance XML filtering system. In 

particular, the experiments demonstrated that contrary to traditional database intuition, 

pushing even simple selections down through the combined query plan may not be effective, 

and in fact, can be quite detrimental to performance due to the way that sharing is exploited 

in the NFA, and due to the existence of descendant operators in queries and recursive 

elements in XML documents. In addition, this chapter discussed how YFilter supports nested 

path processing and demonstrated that the solution is efficient even for large numbers of 

queries containing multiple nested paths each. 
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6 XML Transformation 

XML filtering solutions developed to date have focused on the matching of documents to 

large numbers of queries, but have not addressed the customization of output needed for 

emerging distributed information infrastructures. Support for such customization can 

significantly increase the complexity of the filtering process. In this chapter, I present the 

second major technical component of this dissertation research, which extends YFilter to 

transform XML messages on a per-query basis.  

6.1 Introduction 

As described in Section 1.2, a second requirement of XML message brokers is to transform 

XML messages according to query-specific requirements, in order to provide customized 

data delivery and to enable cooperation among disparate, loosely coupled services and 

applications. High-capacity message brokering systems must be capable of supporting 

potentially tens of thousands of transformation queries. Thus, approaches that process queries 

individually are not adequate.  

Shared processing of path expressions in YFilter has been shown to be an efficient and 

scalable foundation for XML filtering in the previous chapters. Thus, a starting point of my 

research on XML transformation is to leverage the YFilter shared path matching engine, and 

to develop alternatives for building transformation functionality on top of it. In particular, the 

research presented in this chapter addresses the following fundamental questions: 

• How, and to what extent can the shared path matching engine be exploited for 

customized result generation? 
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• What additional post-processing of path matching output is needed to support message 

customization, and how can this post-processing be done most efficiently? 

By way of answering these questions, this research has explored three techniques that 

differ in the extent to which they push work down into the matching engine. As is shown 

later in this chapter, there is an inherent tension between shared path matching and 

customized result generation. That is, aggressive path sharing requires more sophisticated 

post-processing. 

Given an efficient shared path matching engine, it is easy for post-processing to become 

the dominant component of query processing cost. In order to reduce the cost of post-

processing, the research on YFilter has developed provably correct optimizations based on 

query and DTD (if available) inspection that enable the system to eliminate unnecessary 

operations and choose more efficient operator implementations for post-processing of 

individual queries. 

YFilter has also provided a set of techniques for sharing post-processing work across 

multiple queries. These techniques are similar in spirit to approaches used in more generic 

Continuous Query processing systems, but are highly tailored for the specific case of large-

scale, high-volume XML message brokering. 

All of the above techniques have been implemented on top of YFilter’s shared path 

matching engine.  

This chapter proceeds as follows. Section 6.2 presents a problem definition. Section 6.3 

describes the system architecture. Sections 6.4 and 6.5 discuss three alternative solutions and 

a set of optimizations for them. Section 6.6 addresses shared post-processing. Section 6.7 
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presents results of a performance analysis of the above techniques. Section 6.8 concludes this 

chapter. 

6.2 Problem Statement 

As described in Section 2.2.2, query specifications for message transformation are written 

using a subset of XQuery, namely, for-where-return expressions. These expressions contain 

(1) a for clause that binds elements matching a path expression to a variable name, (2) an 

optional where clause that uses a set of conjunctive predicates to filter those element 

bindings; and (3) a return clause that retrieves fragments from each element binding using 

additional path expressions. 

For conciseness, I refer to the path expression in a for clause as the “binding path” , those 

in a where clause as “predicate paths” , and those inside a return clause as “ return paths” . 

Note that the predicate and return paths of a query are relative to the binding path of that 

query, as they are prefixed by the variable name that is defined using the binding path. Recall 

that path expressions can specify structural constraints using child “ /”  and descendent “ //”  

axes and element name tests. For ease of exposition, such paths are referred to as navigation 

paths (as they are used mainly for structural navigation). Path expressions can also contain 

value-based predicates that compare the attributes or text data of elements to a constant. In 

this research, binding paths can contain an arbitrary number of value-based predicates in any 

location step. A predicate path is a navigation path with a value-based predicate attached to 

the last location step, and itself is a complex predicate imposed on its binding path. A return 

path is simply a navigation path.  

For an incoming message, the output of query processing contains a result for each 

matched query represented in an intermediate format for efficient creation of the final 
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customized message. In a result in this intermediate format, the nodes selected from the 

message are organized into a sequence of groups, such that each group corresponds to a 

single invocation of the return clause. Inside a group, nodes are contained in a sequence of 

lists. The sequencing of lists corresponds to the ordering of the return paths in the return 

clause. Each list contains the nodes matching the return path in their document order. For 

example, the output of Query 3 from Section 2.2.2 would have the following format. 

… 

sectioni:     [ titlei1 ],      [ figurei1 , …] 

sectioni+1:  [ title(i+1)1 ],  [ figure(i+1)1 , …] 

… 

where sectioni represents a group, and the numbering …, i, i+1, … represents the ordering of 

those groups. The sequence inside a group consists of a list of identifiers of title nodes (in 

this example there is only a single title per section) followed by a list of identifiers of figure 

nodes. In the remainder of this section, this intermediate representation is referred to as the 

groupSequence-listSequence format. 

Having described the model of queries and output, I now formulate the XML 

transformation problem that this chapter addresses as follows: 

Given a large set of queries written in the specified query language, for each 

message arriving at the message broker, efficiently extract message components in 

the groupSequence-listSequence format for all queries. 

Unlike XML filtering, which returns a Boolean result for processing a message against a 

query, XML transformation requires query processing to identify all the elements matching a 

query and to retrieve from them specific message components for constructing a customized 
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message. Query processing as such has to deal with many complex issues such as ordering 

and duplicates among multiple matches; shared processing of queries in the presence of these 

issues is even more challenging. As is shown in the subsequent sections, efficient 

transformation for large numbers of queries requires significantly sophisticated query 

processing and optimization techniques that previous filtering systems do not provide.  

6.3 YFilter Transformation Architecture 

In this section, I present an architectural overview of the YFilter transformation system, and 

provide details on a particular output format that the shared path matching engine provides 

for use of the transformation extension.  

6.3.1 Architectural Overview 

The architecture of the YFilter transformation system is shown in Figure 6.1. Similar to the 

architecture presented in Section 4.2, the primary inputs are queries and XML messages. The 

output, however, is different in that for each incoming message, multiple customized 

messages are delivered to the set of relevant users. 

As described in Section 4.2, an arriving query is parsed immediately for use by the 

Query Compiler , where the execution plan of the new query is merged into a pool of shared 

query plans representing all of the queries in the system. For XML transformation, this 

shared data structure contains an NFA that represents a set of navigation paths extracted from 

those queries, and in addition, an operator network that handles the remainders of those 

queries (after certain navigation paths are taken out). Note that query compilation is 

incremental as before; that is, the execution plan of a new query is merged with the existing 

queries without recompiling any of them. 
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Incoming messages are filtered and transformed on-the-fly for the entire set of queries in 

the system. These messages need not conform to DTDs or XML schemas but, as described 

later in this chapter, such conformance can be exploited for query optimization. Internally, a 

message goes through the following processing steps: 

• Event-based XML parser : As before, the system runs an incoming message through an 

event-based XML parser. Parsing events are passed to the runtime system to drive the 

query execution. In the transformation system, they are also used to incrementally 

construct a node-labeled tree, which provides materialization of the parsed message for 

later use. Note that this node-labeled tree is conceptually similar to that presented in 

Figure 2.2 in Section 2.3, but with two noticeable differences: (1) this tree is constructed 

gradually as parsing events occur, and (2) it has customized features for high-
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performance query processing; in particular, the nodes are assigned integer identifiers 

according to a pre-order traversal of the tree. 

• Shared path matching engine: Inside the runtime system, parsing events are passed to a 

shared path matching engine that runs the NFA as described in Section 4 to match a set 

of navigation paths. The path matching results are output in a format called pathtuple 

streams, which is explained in the next subsection. 

• Transformation module: The pathtuple streams are directed to a transformation 

module, which executes the operator network on those pathtuple streams to generate 

customized results. Recall that a result is created for each matched query in the 

GroupSequence-ListSequence format. 

• Message factory: Finally, the query processing results are fed to the message factory 

where the processing results are combined with the element tags in queries and the 

resulting messages are forwarded for delivery. 

6.3.2 PathTuple Streams 

Algorithms used by the transformation module for customized result generation are 

developed in the context of a particular output format that the shared path matching engine 

provides. For a navigation path matched by an incoming message, this engine delivers a 

stream of “path-tuples”  each of which represents a unique match of this path. A path-tuple 

contains one field per location step in the path, and the value of the field is the identifier of 

the message node bound to the location step. When multiple paths are matched by a message, 

the engine delivers its output as streams of path-tuples, one stream for each path. 
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Figure 6.2(a) shows a node-labeled tree for a message fragment, where nodes are 

annotated with their assigned ids. Path-tuple streams that are output from the engine for 

different paths are illustrated in Figure 6.2(b). Take the stream for the path 

“ //section//figure” . It contains three path-tuples. Each path-tuple contains two node ids, 

representing a unique combination of the two location step bindings. 

The shared path matching engine guarantees that path-tuples in each stream are produced 

such that the node ids in the last field of the path-tuples appear in monotonically increasing 

order. This stream order is exploited in the processing algorithms as described in the 

following sections. It is also important to note that ordering on other fields of path-tuples is 

not guaranteed by the engine. 

6.4 Basic Approaches 

In this section, I present three different query processing approaches that differ in the extent 

to which they exploit the path matching engine. In all of them, a post-processing phase is 

applied to the output of the matching engine to generate the complete groupSequence-

listSequence output. Given pathtuple streams, the post-processing is done via query plans 

//section//figure //section/figure 
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using relational-style operators. In the approaches described in this section, one such query 

plan is used per XQuery query (i.e., the post-processing phase is not shared). How to share 

post-processing work is investigated in Section 6.6. 

It should be noted that much of the subtlety of developing solutions to this problem arises 

from the inherent tension between shared processing at the lower level (which is essential for 

good performance) and customized query result generation. The path matching engine 

returns the path-tuples in a stream in a single, fixed order to all queries that include the 

corresponding path. The paths, however, may be used quite differently by the various 

queries, and thus potential inconsistencies such as unintended duplicates or ordering 

problems can arise with aggressive path sharing (both of these cases will be discussed in 

detail shortly). In the following, I describe three approaches in order of increasing path 

sharing, and focus on how the additional complications raised by increased sharing are 

addressed. The approaches are additive; that is, the approaches exploiting increased sharing 

incorporate those that use less. 

6.4.1 Shared Matching of “ For”  Clauses 

The first approach uses the path matching engine to process only binding paths (i.e., paths 

that appear in for clauses).  In this approach, the navigation part of the binding path from 

each query is inserted into the engine. Then, during the processing of a message, the output 

of the engine for each path is directed to the post-processing plans for its corresponding 

queries. This approach is referred to as PathSharing-F.  Consider Query 8: 

 



 

113 

 

Query 8: <figures> 
{  

   for   $f   in   $doc//section[@id<=2]//figure 
where  $f/title = “XML processing” 
return   <figure>    

{ $f/image }    
</figure> 

} 
</figures> 

 

Figure 6.3 highlights the post-processing plan for this query under PathSharing-F. In the 

figure, the multiple arrows above the matching engine represent the streams of path-tuples 

(note that queries that have a common binding path share a common stream). The thick 

arrow denotes the stream used by Query 8, which contains the path-tuples matching the 

binding path “ //section//figure” . In the following, the last field of these path-tuples is referred 

to as the binding field, because they contain the ids of the nodes that are actually bound by 

the binding paths. These nodes are also referred to as the BoundNodes. The box above the 

thick arrow contains the post-processing execution plan. The operators in this plan are, from 

bottom-up. 

Figure 3: A query plan using PathSharing-F
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Figure 6.3: A Query Plan using PathSharing-F 
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Selection. A selection operator is placed at the bottom of a query plan to evaluate any 

value-based predicates (i.e., comparisons of the attributes or text data of elements to a 

constant) attached to a binding path. The evaluation is done for each path-tuple by checking 

predicates against the nodes referenced by the path-tuple. Selection emits only those path-

tuples for which all predicates evaluate to True. 

Duplicate Elimination (DupElim). The XQuery specification requires that duplicate 

nodes bound to a path be eliminated based on the node identity [Boag et al., 2003]. 

Accordingly, duplicates in the stream for a binding path are defined as path-tuples that 

contain the same node id in the binding field. 

Such duplicates arise when multiple path-tuples in a stream reference the same 

BoundNode. For example, consider Query 8 and the XML fragment: 

“<section id=1> <section id=2> <figure> <title> XML processing </title> </figure> 
</section> </section>” 
 

The matching engine outputs two path-tuples for the binding path. The first corresponds to 

“<section id=1> <figure>”  and the second to “<section id=2> <figure>” . These two path-

tuples reference the same BoundNode, so the second could cause redundant work and 

produce a duplicate result. 

The DupElim operator avoids these problems by ensuring that each BoundNode is 

emitted at most once. In this case, a simple scan-based DupElim operator can be used 

because as described in the previous section, path-tuples in the stream are ordered by their 

binding field. It should be noted, however, that DupElim cannot be pushed before the 

selection, because it is not known which (if any) of the path-tuples referencing the same 

BoundNode will pass the selection. 
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Where-Filter . This operator evaluates the where predicates on each path-tuple until a 

predicate evaluates to False or the entire where clause evaluates to True. Path-tuples in the 

latter case are emitted. For each path-tuple, a predicate path is evaluated with a tree search 

routine that uses a depth-first search in the sub-tree of the parsed message rooted at the 

BoundNode of the path-tuple. The search routine for a path returns True as soon as any node 

satisfying the predicate is found.  

Return-Select. This operator applies the return clause to the BoundNodes of the path-

tuples that survive the Where-Filter. It uses the tree search routine for each return path. 

Unlike the Where-Filter, however, the tree search routine here must retrieve all nodes 

matching a return path rather than stopping at the first match. 

Return-Select generates results in the groupSequence-listSequence format. Each input 

path-tuple causes the creation of a new group. The ordering of return paths in the query 

defines the sequence of lists within each group. For each list, the matches of the 

corresponding return path are placed in the order that they appear in the message. 

Recall that the results of a FLWR expression must be ordered in accordance with the 

order of the variable bindings of the for clause. Since the stream for the binding path is 

ordered in this way, and the remaining processing steps do not change that order, it is 

guaranteed that the order produced by PathSharing-F is correct. 

6.4.2 Shared Matching of “ Where”  Clauses 

PathSharing-F only uses the path matching engine to process binding paths. The next 

approach, PathSharing-FW, in addition pushes the navigation part of predicate paths from 

the where clause into the matching engine to exploit further sharing. Recall that predicate 

paths are defined to be relative to the binding paths. Since the matching engine treats all 
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paths as being independent, the predicate paths must be first extended by pre-pending their 

corresponding binding path. For example, consider Query 9: 

 

Query 9: <sections> 
{ 

for  $s   in   $doc//section 
where  $s/title=“XML”  
    and  $s/figure/title = “XML processing” 
return  <section>  

{ $s//section//title } 
{ $s/figure } 

</section> 
} 
</sections> 
 

 

The first predicate path “ /title”  is transformed into “ //section/title”  and the second 

becomes “ //section/figure /title” . These extended predicate paths, along with the binding 

path, are inserted into the matching engine. Note that since common prefixes of paths are 

shared in the matching engine, the extension of these paths does not add significantly to their 

processing cost. 

As in PathSharing-F, the path-tuple streams for each query are then post-processed by a 

query plan that executes the remaining portion of that query. This arrangement is shown in 

Figure 6.4. The stream corresponding to a binding path is passed through a selection operator 

and a DupElim operator as before. The output of the DupElim operator is then matched with 

the streams corresponding to the predicate paths. The path-tuples resulting from the matching 

process are piped to a Return-Select that works as described before. 
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In PathSharing-FW, the Where-Filter of PathSharing-F is replaced by a left-deep tree of 

semijoins with the binding path stream as the leftmost input. Recall that the predicate paths 

are extended by pre-pending them with the corresponding binding path. Thus, the common 

field on which each semijoin will match is the binding field, i.e., the last common field 

between the binding path tuples and the predicate path tuples. The result of a semijoin, 

therefore, is a stream containing only those binding path tuples that have matching predicate 

path tuples. Figure 6.4 shows an example for the leftmost semijoin. 

The semijoin operators can be implemented using a simple merge-based algorithm, if it 

is known that the predicate path streams are delivered in monotonically increasing order of 

BoundNode id.  In general, however, there are cases where such ordering cannot be assumed.  

Consider the execution of Query 9, when applied to the following XML fragment: 

“<section> <section> <figure> <title> XML processing </title> </figure> </section> 
<figure> <title> XML processing </title> </figure> </section>” 
 

Figure 4: A query plan using PathSharing-FW
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In this case, the stream for the predicate path “ //section/figure/title”  would contain a 

path-tuple corresponding to “section2 figure1 title1”  followed by a path-tuple corresponding 

to “section1 figure2 title2” , where the subscript indicates the first or the second occurrence of 

the tag name. This stream is not properly ordered by the binding field (i.e., section). In such 

cases, since the binding path stream is ordered properly, PathSharing-FW uses a hash-based 

implementation of semijoin where the binding path stream is used as the probing stream. 

Sufficient conditions for determining when the more efficient merge-based approach can be 

used are discussed in Section 6.5. Note, however, that both approaches order the output 

correctly, resulting in semantics identical to those provided by PathSharing-F. 

A final note is that duplicates in predicate path streams are not a concern, because these 

streams are only used to filter binding path tuples that have passed a DupElim operator. 

6.4.3 Shared Matching of “ Return”  Clauses 

The third alternative approach, PathSharing-FWR, aims at further increasing sharing by also 

pushing the return paths into the path matching engine. Return paths differ from predicate 

paths in that they do not constrain the set of matching binding path tuples so the semijoin 

approach cannot be used for them. Instead, outer-join semantics are required. 

Query processing here requires a slightly more specialized operator than a generic outer-

join, however, because results must be generated in the groupSequence-listSequence format. 

Thus, this thesis research has implemented an n-way outer-join operator especially for this 

purpose, which is called OuterJoin-Select. As Figure 6.5 shows, OuterJoin-Select takes as its 

leftmost input, the binding path stream resulting from the semijoins of the PathSharing-FW 

approach. It performs left outer joins on the binding field with each of the return path 

streams. Generation of the results in the required format is performed as part of the outer join 
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processing. Each path-tuple in the binding path stream causes the creation of a new group. 

The outer join between this path-tuple and a return path stream results in a new list within 

the group, containing the node ids in the last field in the return path tuples that have matched 

the binding path tuple. If no such matches are found, an empty list is kept in the group for 

this return path. 

In the implementation of PathSharing-FWR, OuterJoin-Select builds hash tables for each 

of the return path streams and then probes them in a pipelined fashion using a single scan of 

the stream emitted by the semijoin tree. In this way, the output of this operator is guaranteed 

to be ordered by the binding field. 

Note from Figure 6.5 that, DupElim operators are required on each of the return path 

streams to prevent duplicate results from being generated by OuterJoin-Select. Here, the 

notion of duplicates is defined on the combination of the binding field and the last field of the 

path-tuple, called the return field. 

Figure 5: A query plan using PathSharing-FWR
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Recall that a return path stream is always ordered by the return field. If it also arrives 

ordered by the binding field, a scan-based approach suffices for DupElim. Otherwise, 

hashing is used. 

As can be seen, PathSharing-FWR, the approach that exploits path sharing to the fullest 

extent, requires the most sophisticated post-processing. As mentioned earlier, this complexity 

results from the tension between shared path matching and result customization. It is 

important to note that this problem cannot be easily solved in the path matching engine. 

Consider a path expression that is the binding path in one query and a return path in another. 

In this case, the path-tuple stream produced for that path expression will be used (by different 

queries) as two different types of streams. Since the two types of streams have different 

notions of duplicates, duplicate elimination cannot be done in the engine, but must be done 

in a usage-specific manner during post-processing. Similar issues arise with the ordering of 

path-tuples expected by the different uses of the stream. 

6.5 Simplifying Post-Processing 

Duplicates and stream ordering are two fundamental issues that complicate post-processing 

for customized result generation. With additional knowledge however, it is sometimes 

possible to infer cases when duplicates cannot arise, or when path-tuples will arrive in a 

needed order.  In the first case, DupElim operators can be removed from the post-processing 

plans. In the second case, cheaper scan or merge-based operator implementations can be used 

in place of the more expensive hash-based ones. 
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6.5.1 Sufficient Conditions 

This thesis research has derived a set of sufficient conditions that enable the detection of 

some situations where post-processing can be simplified. These conditions involve the 

presence of “ //”  axes in queries, and the potential for recursive elements (i.e. elements that 

have the same element name and contain each other) in the messages. The first type requires 

examining the queries, and the second can be checked by examining a DTD, if present. The 

claims involving a DTD utilize a DTD element graph constructed as follows: Start at the root 

of the DTD and examine its child elements. If a node for a child element is not in the graph, 

create one. Then draw a directed edge from the parent element to each child element. Repeat 

this for all elements. 

The conditions are described in the following five claims. Correctness proofs for these 

claims are given in Appendix E. Consider a path expression p of m location steps, and the 

stream of path-tuples that match the path, with fields numbered 1..m. 

Claim 1: If p contains at most one “ //”  axis, then there will be no duplicates in the stream of 

path-tuples matching p when the path-tuples are projected on field m. 

Claim 2: If p contains n, n > 1 “ //”  axes, then if the elements of the first n-1 location steps 

containing a “ //”  axis do not appear on a loop in the DTD element graph, then there will 

be no duplicates in the stream of path-tuples matching p when the path-tuples are 

projected on field m. 

Claim 3: Partition p into two paths, one consisting of location steps 1 to i, i < m, and the 

other being a relative path consisting of the rest of the path. If claim 1 or claim 2 indicate 

that no duplicates exist for either path, then there will be no duplicates in the stream of 

path-tuples matching p when the path-tuples are projected onto fields i and m. 
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Claim 4: If there is no “ //”  axis from location steps 1 to i, 1  i < m of p, then the stream of 

path-tuples matching p will be in increasing order when projected onto field i. 

Claim 5: If p contains one or more “ //”axes within location steps 1 to i, then if for all steps j, 

j  i containing a “ //”  axis, the elements of location steps j and i do not appear on the 

same loop in the DTD element graph, then the stream of path-tuples matching p will be 

in increasing order when projected onto field i. 

6.5.2 Optimization of Post-Processing Plans 

The preceding claims enable optimizations of post-processing plans on a query-by-query 

basis as follows: 

• Claim 1 (and 2, if a DTD is present) is used to check if there can be any duplicates in the 

path-tuple stream for a binding path. Recall that duplicates for binding path tuples are 

defined on the binding field, the last field of binding path tuples. If duplicates are not 

possible, the DupElim operator for the binding path is removed. 

• Claim 3, in conjunction with Claim 1 (and 2, if a DTD is present) is used to check the 

possible existence of duplicates in the path-tuple stream for a return path.  Recall (from 

Section 6.4.3) that for return paths, duplicates are defined based on the combination of 

the binding field and the return field.  Thus, Claim 3, is tested with i set to the location of 

the binding field. If duplicates are not possible, the DupElim operator for the return path 

is removed. 

• Claim 4 (and 5, if a DTD is present) is used to check if all input streams for a semijoin or 

OuterJoin-Select are guaranteed to be ordered by the binding field, with i set to the 

location of the binding field. If yes, the merge-based versions of these operators can be 



 

123 

 

used in place of the more expensive hash-based implementation. These claims are also 

used to determine if a scan-based DupElim operator can be used for each return path. 

Consider the application of these claims for Queries 8 and 9 of the previous section using 

Pathsharing-FWR. Assume that the element “section”  is on a loop in the DTD element 

graph, but the element “ figure”  is not. For Query 8 (see Section 6.4.1), the tests for Claims 1-

3 fail, and in fact, duplicates can arise, as described in Section 6.4.1. The test for Claim 4 

also fails because of the “ //section//figure”  in the binding path. The test for Claim 5, 

however, succeeds because although the two location steps in the binding path both contain 

“ //”  axes and the element “section”  is on a DTD element loop, the element “ figure”  is not on 

any loop with “section” . Therefore all predicate and return path streams are guaranteed to be 

ordered by the binding field. Thus, cheaper operators can be used for semijoin, Outer Join-

Select and the DupElim on the return path stream. 

For Query 9 (see Section 6.4.2), if Claim 1 (or 2) and Claim 3 are applied to its query 

plan, all DupElim operators except the one for the return path “ //section//title” , can be 

removed. The remaining DupElim operator results from the presence of two “ //”s in the 

return path and the fact that element “section”  after the first “ //”  is on a DTD loop. 

The performance impact of these optimizations can be quite significant, and is studied in 

the experiments presented in Section 6.7. 

6.6 Shared Post-Processing 

So far I have presented three ways to share path matching among queries. A common feature 

of these approaches is that they all require a separate post-processing plan for each query. In 

this section I describe an initial set of techniques that can further improve sharing by 

allowing some of the post-processing work to be shared across related but non-identical 
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queries, in particular, ones that have path expressions (and hence, path-tuple streams) in 

common. 

A prerequisite to the sharing techniques described below is a way to determine which 

path expressions appear in multiple queries. The technique used here is to associate with 

each query a set of unique path identifiers corresponding to each of the paths that appear in 

it. These identifiers are returned by the path matching engine when the paths are initially 

inserted. 

The sharing techniques developed in this research are similar in spirit to techniques 

developed for shared Continuous Query (CQ) processing over (typically non-XML) data 

streams [Hanson et al., 1999; Liu et al., 1999; Chen et al., 2000; Chen et al., 2002; Madden 

et al., 2002]. Unlike the generic functionality provided in CQ systems, however, the 

approaches employed here are highly tailored for large-scale XML filtering and 

customization. For ease of exposition, I focus the discussion on the post-processing plans 

used by PathSharing-FWR with DTD-based optimizations (as described in the previous 

section), which are shown in the experimental results to outperform the other approaches in 

most cases. 

6.6.1 Query Rewriting 

As a first step to enhance sharing among queries, whenever the appropriate DTD is available, 

path expressions are rewritten into a canonical form before they are inserted into the path 

matching engine. This rewriting collapses certain expressions that are semantically (but not 

syntactically) equivalent, allowing their corresponding queries to share a single path-tuple 

stream for the path. The rewriting focuses on removing superfluous “ //”  axes. A “ //”  axis is 

superfluous if the DTD shows that there is a single path from the element before “ //”  to the 
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element after “ //” .  If so, the “ //”  axis is replaced with the deterministic sequence of ‘ /’  steps. 

For example, a return path “ figure//image”  can be rewritten to “ figure/image”  if the DTD 

shows that an image element can only be the child but not the descendent of a figure 

element. 

6.6.2 Sharing Techniques 

Most work on CQ systems considers selection and join operators in a relational (or close to 

it) framework. In contrast, my research on XML message brokering is focused a subset of 

XQuery and involves a unique set of operators and a specific data flow through these 

operators, as presented in Section 6.4. The specialized nature of this work leads to a 

particular set of sharing techniques, three of which are described below. 

Shared GroupBy for  OuterJoin-Select: In the implementation as described so far, each 

OuterJoin-Select operator does its own hashing (or scanning) of the path-tuple streams it 

consumes for return paths (i.e., all but the leftmost stream). When multiple queries share a 

common return path, this approach incurs redundant processing. This redundancy can be 

expensive, because return paths are not constrained by predicates; thus, these streams may 

carry a large number of path-tuples. 

This thesis research proposes to remove this redundancy by placing GroupBy operators 

before OuterJoin-Selects on those streams that provide return path tuples. A GroupBy 

operator groups path-tuples in a return path stream by the binding field, so that the 

subsequent OuterJoin-Select can simply get all the return path tuples matching a binding path 

tuple by obtaining the matching group. Each GroupBy operator is shared by all OuterJoin-

Selects that process the corresponding return path. Thus, their overhead is expected to be 

small. Implementationwise, if the stream of a return path is ordered by the binding field, the 
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GroupBy is scan based. Otherwise, it is hash based. Duplicate elimination, if necessary, is 

performed in a scan-based manner in the GroupBy itself. 

Having addressed return path processing, I now turn to the post-processing of binding 

paths and predicate paths. 

Selection-DupElim pull up: Shared processing of semijoins among multiple queries is 

considered first. The common relational optimization of pushing selections below joins 

makes it difficult to share join processing. Pulling selection up over joins [Chen et al., 2002] 

avoids this problem. The sharing technique proposed here pulls selections with their 

subsequent DupElim operators, if present, over semijoins, and turns semijoins into shared 

joins. Currently this technique is implemented only for queries with a single predicate path. 

The technique works as follows. Semijoins are said to have “signatures”  consisting of the 

path ids for their two inputs (a binding path on the left and a predicate path on the right). A 

shared join is created for all semijoins with the same signature. When converting a semijoin 

to a join, all path-tuple fields are retained for later use in selections. To be consistent with 

semijoin semantics, the shared joins are also implemented to preserve the order of the left 

input stream. The decision on merge- or hash- based implementation carries over from 

semijoins to shared joins. 

Shared selection: Above a shared join operator, selections can be grouped by their 

signatures [Hanson et al., 1999; Chen et al., 2000; Chen et al., 2002; Madden et al., 2002]. In 

the XML setting of this research, a predicate signature is a quadruplet (path id, level, 

attribute name, operator), where the level specifies the location step in the path containing 

the predicate. For sharing, currently only a single predicate per path is considered. Given this 

restriction, the signature for a selection above a join is simply the pair of predicate signatures 
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from the joined paths. The constant of a selection signature is the pair of constants in the two 

predicates from the joined paths. Selections with the same signatures are replaced by a 

shared selection where different constants are merged into a single index. A shared selection 

can have multiple outputs, one for each constant of the selection signature matched by the 

XML data. 

Shared joins may produce path-tuples containing the same node id in the binding field. 

Fortunately, shared joins preserve the order on the binding field in their output, so scan-based 

DupElim can be used on the selection outputs. 

An example of a shared post-processing plan is given in Figure 6.6. Here a box annotated 

with ‘ * ’  means there is a set of such operators. On top of the path matching engine there is a 

set of merged plans sharing joins and selections, and a set of GroupBy operators shared by 

OuterJoin-Selects. Each OuterJoin-Select takes the left input from one output of a merged 

plan and the rest of its inputs from the GroupBys. 

GroupBy
GroupBy

GroupBy

collection of
streamsshared path matching engine

OuterJoin-Select OuterJoin-Select OuterJoin-Select

σ

DupElim

><

*
*

σ

DupElim
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*
*

σ

DupElim
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*
*

Figure 6: Shared post-processing example
Figure 6.6: Shared Post-Processing Example 
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6.6.3 Query Plan Construction and Execution 

The construction of the shared post-processing plans is done incrementally. When a new 

query is entered into the broker, a standalone post-processing plan is first constructed for the 

query. Then its relationship to the current shared plans is determined by examining its path 

ids and signatures. Operators in the new plan are either merged with existing ones or result in 

the creation of new branches. 

The execution of such large-scale shared query plans is a non-trivial issue. NiagaraCQ 

[Chen et al., 2000; Chen et al., 2002] placed a split operator to direct the output of one 

operator to all the subsequent operators. That operator, however, copies tuples (or pointers to 

tuples) when multiple subsequent operators require them. This research experimented with a 

split operator copying tuple pointers in an initial implementation, and found that it imposed a 

significant performance overhead. CACQ [Madden et al., 2002] avoids this problem using 

tuple lineage, which records the operators that a tuple has passed or needs to pass inside the 

tuple itself. The overhead of tuple lineage, however, increases with the number of queries. 

The implementation in this thesis research used an alternative technique that places the 

pointers to path-tuples in each output of an operator in a data structure called tpList, and lets 

all the subsequent operators share the tpList(s) for their input. During query plan 

construction, each operator allocates one or more tpLists; each subsequent operator must 

remember which tpList to read from. Most operators have a single tpList. There are two 

exceptions, however. The path matching engine requires a tpList per path-tuple stream and a 

shared selection requires a tpList per constant of its signature. The tpLists in the latter cases 

can be instantiated lazily so they incur overhead only if they are actually used. 
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During post-processing execution, each operator places the pointer to each output path-

tuple to one of its tpLists. Upon completion of an operator, all the subsequent operators read 

from the desired tpLists and start their execution. A possible disadvantage of this technique 

is that the scheduler has to check all the subsequent operators even though some tpLists are 

known to be empty. The experimental results shown in Section 6.7.5 show that this overhead 

is quite small in practice. 

6.7 Experimental Evaluation 

The techniques described in the preceding sections have been implemented in the YFilter 

transformation system using its shared path matching engine. In this section, I present the 

results of a detailed performance study of this implementation. The performance of the three 

basic approaches is first compared with and without optimizations when individual post-

processing plans are used for distinct queries. Then, the scalability of these approaches and 

the impact of shared post-processing is examined. 

6.7.1 Experimental Setup 

The YFilter transformation system was written in Java. All of the experiments were 

performed on a Pentium III 850 Mhz processor with 768MB memory running IBM J2RE 

1.3.0 on Linux 2.4. The JVM maximum allocation pool was set to 600MB, so that virtual 

memory activity had no influence on the results. 

To test the system, generators for both documents and queries are needed. The document 

generator developed previously for testing the filtering algorithms was used to create XML 

documents. This generator takes a DTD as input, and produces documents that conform to 
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that DTD, according to a set of workload parameters. The default settings are used for all 

those parameters except for the following three. 

DocDepth bounds the depth of element nesting in the generated XML documents. The 

performance study here is less concerned with the absolute document depth, but rather, 

focuses on the depth of recursive elements.  This is because document depth mainly impacts 

path navigation, while deeply recursive data stresses the post-processing aspects of the 

transformation solution by requiring DupElim and hash-based operators when “ //”  axes are 

used in queries. 

The parameter MaxRepeats determines the number of times an element can repeat in its 

parent element. The original generator was modified here so that MaxRepeats can be varied 

on an individual element basis. A large value of MaxRepeats produces more matches of a 

query within a document, generating a larger result set for each matched query. 

The parameter MaxValue determines the number of values that the data of elements and 

attributes of elements can take, therefore affecting the selectivity of predicates. 

Queries were created using a query expression generator that takes the workload 

parameters shown in Table 7. This generator ensures that all generated queries are unique. 

To so do, predicates in the where clause are sorted lexicographically. Paths in the return 

clause are also sorted, since two queries that are the same except the ordering of return paths 

can share most processing with only some trivial reordering at the end. Hashing on the query 

after path sorting is used to determine if it is unique. Predicates in the generated queries take 

values from a range of size MaxValue, so this parameter determines the selectivity of 

predicates. A large value of MaxValue produces fewer matches per query, but also can 

increase the number of unique queries for scalability evaluation.  
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Parameter Values Description 
Q 5,000 – 

100,000 
The number of distinct queries. 

D1 2, 3 The maximum depth of a binding path 
PP 1 - 3 The number of predicate paths in a query 
RP 1 - 4 The number of return paths in a query 
D2 2 The maximum depth of predicate paths or the return paths 
DSProb 0 - 0.4 The probability of a “ //”  axis occurring in any location step in a 

path expression 

Table 7: Workload parameters for query generation 

This section reports on experiments with two DTDs: the Bib and Book DTDs from the 

XQuery use cases [Chamberlin et al., 2003]. The Bib DTD is used to generate non-recursive 

documents; the Book DTD is used to generate documents that can contain multiple levels of 

recursion. For each DTD, a set of 200 documents were generated using one setting of the 

workload parameters. For each run, 20 of these documents were used to warm up the JVM 

runtime compiler. Thus, all reported experimental results represent the average over 180 

documents. For each experiment, queries were generated according to a specific query 

workload setting. For a given experiment, each algorithm was run individually in a separate 

Java process. 

The main performance metric used is Multi-Query Processing Time (MQPT), which is 

the time from the scan of a parsed document starting until the last result in the 

groupSequence-listSequence format is returned to the calling program. The cost of parsing is 

not included in my reported results, but was usually below 100 milliseconds. 

A profiler was also implemented to report the cost of each operator for a run of an 

experiment. MQPT times reported here were taken with the profiler turned off. Where 

appropriate, data from runs with profiling turned on is used to explain the performance 

results. Due to the overhead of running the profiler, the costs reported in this manner are 

higher than those observed in the actual experiments. 
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6.7.2 Shared Path Matching – Non-recursive Data 

This section reports on tests with the Bib DTD, which contains no recursion. For document 

generation, DocDepth was set to 4 because the DTD allows at most four levels of element 

nesting. MaxRepeats was varied such that in each document a bib element contains 20 books 

and each book has up to five authors or editors. On average, each document contains 149 

start/end element pairs. MaxValue is set to 10. 

Expt. 1 – Basic per formance. The first experiment compares the performance of the 

three approaches for moderate query loads (i.e., Q = 5000). In this experiment, queries were 

generated using the settings D1 = 2, PP = 1, RP = 2, D2 = 2, and DSProb = 0.2. Under this 

workload, a single where clause predicate is applied to book elements bound by the for 

clause. The return clause identifies two types of sub-elements from each remaining book 

element. 

The three approaches were first run with no optimizations. The leftmost group of bars in 

Figure 6.7 (labeled “NoOpt” ) shows their MQPT (in msec). In this case, PathSharing-FW has 

the lowest cost and PathSharing-FWR has the highest. PathSharing-FW outperforms 
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PathSharing-F due to the shared path matching for all the predicates. The profiler reports that 

evaluating all predicate paths using tree search in PathSharing-F takes 386 ms, while for 

PathSharing-FW, the equivalent work takes only 231 ms (27ms for predicate path matching 

by the engine, 57ms for selection, and 147ms for semijoins). On the other hand, PathSharing-

FW handles return paths using the tree-search based Return-Select operator, at a cost of 

212ms, while PathSharing-FWR uses 648ms to perform the equivalent functionality using 

Outer Join-Selects (244ms) and DupElim for return paths (404ms) (note that there is almost 

no additional cost for processing the return paths by the engine). 

Next, the optimizations described in Section 6.5 were applied. The results are shown in 

the middle and right groups in Figure 6.7, where Opt(q) indicates optimizations based only 

on queries and Opt(q+dtd) indicates those also using the DTD. For this latter case, the path 

rewriting described in Section 6.6.1 was also applied to speed up path matching in the engine 

and in Where-Filter and Return-Select operators. The following observations can be made: 

• The query-based optimizations improve performance for all alternatives, but particularly 

for those that exploit more path sharing. PathSharing-FWR benefits significantly, 

outperforming the other two in this case. 

• More sophisticated optimizations using the DTD enable further improvements for all 

three approaches. With these optimizations, PathSharing-FWR outperforms the others by 

a wide margin. 

More detailed results for PathSharing-FWR are shown in Table 8. Three operators, 

namely, DupElim, semijoin and OuterJoin-Select, particularly benefit from the 

optimizations. With opt(q), most of the DupElim cost is avoided and the costs of semijoin 

and OuterJoin-Select are more than halved. When the DTD is also utilized, DupElim is 
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unnecessary, and semijoin and OuterJoin-Select only each require around 20 ms. Note that 

the matching engine denoted as PME in the table, is indeed a less dominant component of the 

overall cost. 

Operators PME Selection DupElim Semijoin OuterJoin 
No opt 28 61 451 140 235 
Opt (q) 27 51 15 67 112 
Opt (q+dtd) 9 42 0 18 22 

Table 8: Costs (ms) of operators (PathSharing-FWR) 

The reduced cost of the three operators is further explained by the change in the resulting 

query plans, as shown in Table 9. The improvement of DupElim arises because fewer such 

operators are needed with better optimization. The reduction in time for semijoin and 

OuterJoin-Select results from the ability to use merge-based implementations more often. For 

the Bib DTD, since no elements are on a DTD loop, Opt(q+dtd) can completely avoid 

DupElim and hash based implementations (as described in Section 6.5). 

Semijoin OuterJoin DupElim Operators 
#hash # merge #hash #merge #DupElim 

No opt 5000 0 5000 0 15000 
Opt (q) 1966 3034 1966 3034 429 
Opt(q+dtd) 0 5000 0 5000 0 

Table 9: Profile for 5000 queries (PathSharing-FWR) 

The above results demonstrate the effectiveness of the optimization techniques. In 

conjunction with these techni-ques, PathSharing-FWR provides significantly better perfor-

mance than the other two alternatives, despite its more complicated post-processing. Thus, 

the post-processing optimizations help resolve the conflict between shared path processing 

and customized result generation. 

Expt. 2 - Varying the number  of predicates. In the next experiment, the number of 

predicate paths (PP) was varied from 1 to 3. Increasing PP makes each query more selective 



 

135 

 

in addition to requiring more predicates to be evaluated. Figure 6.8 shows the results using 

Opt(q+dtd). 

The main observation is that more predicates reduce the differences among three 

alternatives. For alternatives using Return-Select, more predicates improve their MQPT 

because the extra predicates reduce the number of query matches, resulting in much less 

work for Return-Select. These savings outweigh the modest increase in cost for predicate 

evaluation. An additional observation is that with three predicates in each query, only 116 

matches were found for all 5000 queries, which explains why PathSharing-FW and 

PathSharing-FWR are so close at that point. In this workload, further increasing the number 

of predicate paths tends to result in no matches, so the parameter is not further enlarged here. 

Expt. 3 - Varying the number  of return paths. Figure 6.9 shows the results obtained 

when the number of return paths in the queries is varied from 1 to 4.  Again, only the results 

for the Opt(q+dtd) case are shown here. In this experiment, the MQPT of PathSharing-F and 

PathSharing-FW increases linearly because with the fixed query selectivity, more return 

paths require more executions of the tree search routine. PathSharing-FWR is much less 

sensitive to the increased workload, because the matching of the return paths is shared 
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among 5000 queries. Also, by using a merge-based approach, OuterJoin-Selects are efficient 

even when the number of streams involved in the outer joins increases. 

6.7.3 Shared Path Matching – Recursive Data 

In the next set of experiments, the Book DTD is used to generate documents with recursive 

elements. DocDepth is set to 5 so that up to four levels of nesting of section elements can be 

obtained. MaxRepeats is set such that there are 12 top-level section elements in each book, 

and in each section, p (i.e., paragraph), figure, and section elements are allowed to repeat 

four times. The average document length is 83 start-end element pairs. MaxValue is set to 10. 

Figure 6.10 shows the MQPT of the three alternatives when queries were generated using 

the settings: Q = 10,000, D1 = 3, PP = 1, RP = 2, D2 = 2, DSProb = 0.2. Under this 

workload, the evaluation of the for clause can bind section, paragraph (p), or figure elements 

to the variable. The results are similar to those of the previous experiments except that with 

Opt(q), PathSharing-FWR is outperformed by Path Sharing-FW, and with Opt(q+dtd) the 

advantage of Path Sharing-FWR is less pronounced. 
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The detailed performance of PathSharing-FWR is shown in Table 10. While optimization 

cuts down the cost of DupElim successfully, the costs of semijoin and OuterJoin-Select 

remain high. This is due to the recursive section elements and a fairly large number of “ //”  

axes in queries (recall that DS=0.2 for each location step). In this situation, it is likely that 

tuples generated for predicate paths and return paths are not ordered by the binding field. 

Consequently, as shown in Table 11, many semijoins and outer joins must be hash based, 

even when the best optimization is applied. 

Operators PME Selection DupElim Semijoin OuterJoin 
No opt 36 101 560 225 287 
Opt (q) 31 101 82 184 252 
Opt (q+dtd) 21 93 30 137 163 

Table 10: Costs (ms) of operators (PathSharing-FWR, Book) 

Semijoin OuterJoin DupElim 
Operators 

#hash # merge #hash #merge #DupElim 
No opt 10,000 0 10,000 0 30,000 
Opt (q) 5963 4037 5963 4037 2833 
Opt(q+dtd) 3968 6032 3968 6032 1500 

Table 11: Profile for 10000 queries (PathSharing-FWR, Book) 
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To further investigate the impact of “ //”  axes in the presence of recursive elements, 

another set of experiments was run with DSProb varying from 0.05 to 0.4. The results can be 

summarized as follows: First, regardless of any optimizations applied, the MQPT for all 

alternatives increases with the DSProb. Second, the difference between Opt(q) and Opt 

(q+dtd) is more pronounced as DSProb is increased. Recall that Opt(q) only checks how 

many times the “ //”  axis appears in path expressions. In contrast, Opt(q+dtd) also checks if 

an element after “ //”  is allowed to be recursive, and thus can be more effective. Finally, with 

a very large DSProb value, even Opt(q+dtd) has a limited effect. As a result, PathSharing-

FWR loses its performance gain over PathSharing-FW, as it requires more DupElims and 

hash-based outer joins, which offsets the benefit of shared matching of return paths. For 

example, with DSProb = 0.4 (a very high value), PathSharing-FW outperforms PathSharing-

FWR slightly (by about 4%). 

Note that experiments were also run by varying the number of predicates and number of 

return paths for the Book DTD.  The results are similar to those reported for the Bib DTD so 

they are not shown here. 

6.7.4 Scalability 

Next, experiments were conducted to test the scalability of the approaches in terms of the 

number of queries (i.e., Q). Figure 6.11 shows the MQPT for the three approaches with 

Opt(q+dtd), using Bib documents, as Q is varied from 5,000 to 40,000. To create a sufficient 

number of unique queries here, the MaxValue parameter was increased to 100 for both 

document and query generation; the other parameters are set as in the basic experiment, i.e., 

Expt. 1. 
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As can be seen in the figure, the MQPT for all three approaches grows linearly with Q. 

Since the solutions studied in this experiment do not share any post-processing, such an 

increase is to be expected.  Note also that the rate of increase is highest for PathSharing-F, 

which exploits the shared path matching engine the least.  

Similar results were obtained using the Book DTD, but with an even sharper increase in 

MQPT due to the additional impact of recursive data on post-processing costs. Table 12 

shows the detailed cost breakdown for PastSharing-FWR with Opt(q+dtd) in this case, as Q 

is varied from 10,000 to 50,000. The increasing semijoin and OuterJoin-Select costs become 

dominant as Q increases, while the costs of selection and DupElim also increase. As 

explained in Section 6.7.3, post-processing is more expensive for the Book DTD because of 

the need for hash-based operators. 

Q  10,000 20,000 30,000 40,000 50,000 
Selection 93 191 267 380 498 
DupElim 30 62 111 146 183 
Semijoin 137 320 484 659 847 
OuterJoin 163 364 592 810 1025 
Others … … … … … 
Executor  73 152 182 314 384 
Total 516 1111 1715 2344 2985 

Table 12: Costs(ms) as Q varies - PathSharing-FWR (Book DTD) 
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6.7.5 On Shared Query Execution 

The results reported in the previous section demonstrated the scalability limitations of 

approaches that share only path matching work.  This section examines the additional 

benefits to be gained by applying the techniques for sharing post-processing described in 

Section 6.6. 

In the following experiments, individual query plans were first generated for 

PathSharing-FWR with Opt(q+dtd). From these individual plans, shared execution plans 

were built using the three strategies from Section 6.6.2: pulling selections above joins, 

grouping selections, and using GroupBy on return paths for outer joins. 

The rewriting techniques as described in Section 6.6.1 were also applied the queries to 

increase commonality. Two effects of this optimization were noticed. First, as expected, it 

does reduce the number of unique paths. Furthermore, it was observed that some previously 

unique queries could completely share a query plan because their signatures became identical 

after this rewriting. 

Here, only the results obtained using the (recursive) Book DTD are reported (experiments 

with the Bib DTD tell a similar story). Figure 6.12 shows the MQPT of PathSharing-FWR 

without shared post-processing and with (labeled “Plan Sharing” ) as the number of unique 

query plans is varied from 10,000 to 100,000 (note that “Q”  is roughly 20% higher than this, 

but those queries sharing query plans with others do not incur extra cost in both algorithms 

here). As shown in the figure, shared post-processing leads to dramatic reductions in cost and 

concomitant improvements in scalability; the results here show the PlanSharing approach 

handling 100,000 unique query plans in only 472ms. 



 

141 

 

Table 13 shows the cost breakdown of PlanSharing. A comparison with Table 12 

provides insight into the reduction of the overall cost, which results from four major factors: 

• The high cost of semijoins is reduced dramatically, because joins are now shared. 

• Grouped selections reduce the selection cost (note that the cost of scan-based DupElim is 

included in the selection numbers, because it is folded into the selection operator.) 

• OuterJoin-Selects are substantially cheaper, because the GroupBy technique removes 

redundant scanning and hashing at very little cost. Note that OuterJoin-Select is the only 

operator that exhibits a noticeable increase, as in the current implementation, the outer 

joins themselves are not shared. 

• The Executor’s cost is also significantly reduced due to the reduction in query plan size. 

Q  10,000 20,000 30,000 40,000 50,000 
(Unique plans) (8,232) (16,482) (24,576) (32,736) (40,392) 
Selection 18 18 24 18 21 
GroupBy 4 3 5 6 5 
Join 18 19 19 21 17 
OuterJoin 29 58 81 117 138 
Others … … … … … 
Executor  7 16 22 28 37 
Total 105 156 212 264 317 

Table 13: Costs (ms) as Q varies - PlanSharing (Book DTD) 
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6.7.6 Summary of Experiments 

The experiments reported here have examined the performance of the three alternatives 

developed for exploiting YFilter’s shared path matching engine to provide message broker 

functionality. These experiments also investigated the performance of a suite of techniques 

for sharing post-processing among queries. The results can be summarized as follows: 

• PathSharing-FWR when combined with optimizations based on queries and DTD usually 

provides the best performance. This approach is the most aggressive of the three in terms 

of path sharing. Without optimizations, however, PathSharing-FWR performs quite 

poorly, due to high post-processing costs. 

• Optimization of query plans using query information improves the performance of all 

alternatives, and the addition of DTD-based optimizations improves them further. 

• For non-recursive data, DTD-based optimizations can remove all DupElim and hash-

based operators. Recursive data, however, stresses the post-processing of queries contain-

ing “ //”  axes and limits the effectiveness of optimizations. 

• Finally, experiments on extending PathSharing-FWR with shared post-processing 

showed excellent scalability improvements, allowing the processing of 100,000 queries 

in less than half a second. 

6.8 Related Work 

Continuous Queries (CQ) systems support shared processing of multiple standing queries 

over (typically non-XML) data streams. The concept of expression signatures was introduced 

by TriggerMan [Hanson et al 1999]. Using such expression signatures, NiagaraCQ [Chen et 

al., 2000; Chen et al., 2002] incrementally groups query plans. CACQ [Madden et al., 2002] 
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further combines adaptivity and grouping for CQ, and supports the sharing of physical 

operators among tuples. OpenCQ [Liu et al. 1999] uses grouped triggers for CQ condition 

checking. YFilter’s techniques for sharing post-processing, though similar in spirit to those 

used in some of these systems, are developed particularly for XQuery processing. 

In the context of XML stream processing, a number of XQuery processors have been 

developed. Some recent work uses transducer-based mechanisms for processing path 

expressions with qualifiers [Olteanu et al., 2003] or XQuery containing FLWR expressions 

[Ludascher et al., 2002]. Tukwila [Ives et al. 2002] represents queries using several 

individual FSMs that are generated on the fly. The BEA Stream Processor [Florescu et al., 

2004] executes queries in a pipelined fashion to the extent possible. These approaches, 

however, are developed for single query processing.  

Multi-query processing [Rosenthal and Chakravarthy, 1998; Roy et al., 2000; Sellis, 

1988] considers small numbers of queries (e.g., 10’s) and uses heuristics to approximate the 

optimal global plan. In contrast, high-volume XML message brokering presented in this 

chapter needs to handle sets of queries orders of magnitude larger in a dynamic environment. 

Thus, scalability of the approach and incremental construction of query plans are two main 

concerns unique to XML message brokering. 

6.9 Summary 

This chapter presented a shared processing approach to result customization in the context of 

high-volume XML message brokering. This approach is the first in the literature that can 

support transformation of XML messages for large numbers of queries. In particular, this 

chapter compared three different ways of exploiting the shared path matching engine of 

YFilter for this purpose. The results of a thorough performance study show that the most 
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aggressive of the three in terms of path sharing performs best, when combined with 

optimizations based on the queries and DTD. Moreover, when post-processing is also shared 

among queries, excellent scalability can be achieved. As a result of applying these 

techniques, the YFilter transformation system can handle tens of thousands of queries in sub-

second response time. 
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7 Internet-Scale XML Data Dissemination 

The preceding three chapters described how YFilter supports efficient filtering and 

transformation of XML messages for a large set (e.g., tens of thousands) of queries. YFilter, 

however, does not address the issues of deploying such XML-based services on an Internet-

scale (e.g., thousands of information providers and millions of subscribers). In this chapter, I 

address these issues in the context of incorporating filtering and transformation functionality 

in a highly scalable system. In particular, this chapter presents the architectural design of 

ONYX, a distributed system built on an overlay network of brokers running YFilter, 

identifies the technical challenges in supporting rich data dissemination functionality in this 

environment, and discusses a suite of techniques that have been developed to address these 

challenges. 

7.1 Introduction 

A large number of emerging applications, such as mobile services, stock tickers, sports 

tickers, personalized newspaper generation, network monitoring, and electronic auctions, 

have fuelled an increasing interest in Content-Based Data Dissemination (CBDD). CBDD is 

a service that delivers information to users (equivalently, applications or organizations) based 

on the correspondence between the content of the information and the user data interests. 

Publish/subscribe systems, especially recent XML-based message brokering systems, are 

well suited for providing such content-based data dissemination services.  

While filtering and transformation of XML messages has aroused significant interest in 

the database community, little attention has been paid to deploying such XML-based services 
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on an Internet-scale. In the latter scenario, services are faced with high data rates, enormous 

query population, variable query life span, and tremendous result volume. Distributed 

publish/subscribe systems developed in the networking community [Oki et al., 1993; 

Aguilera et al., 1999; Banavar et al., 1999; Carzaniga and Wolf, 2003; Carzaniga et al., 2004] 

have demonstrated their scalability in applications such as sports tickers at the Olympics 

[Gryphon, 2002]. Their services, however, are limited by the data semantics and query 

expressiveness that they support. Based on these insights, integrating XML filtering and 

transformation into distributed environments appears to be a natural approach to supporting 

large-scale XML dissemination. 

7.1.1 Challenges 

Distributed publish/subscribe systems partition the query population to multiple nodes and 

direct the message flow to the nodes hosting queries based on the content of messages (which 

is referred to as content-driven routing). Integrating XML into content-driven routing, 

however, brings the following key challenges. 

• As XML mixes structural and value-based information, content-driven routing needs to 

support constraints over both. The inherent repetition and recursion of element names in 

XML data also defeats well-known routing techniques (e.g., the counting algorithms 

[Fabret et al., 2001; Carzaniga and Wolf, 2003]) designed for simpler data models. New 

techniques for XML-based content-driven routing are needed. 

• When XML transformation is introduced to a distributed system, the best venue to 

perform such transformation is another issue to address. 

• The criteria used to partition the query population have an impact on the effectiveness of 

content-driven routing. The mixture of structure and value-based constraints in queries 
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and the repetition of element names in XML data complicate the query partitioning 

problem. 

• As the verbosity of XML results in large messages and these large messages need to be 

parsed at each routing step, alternative formats should be considered for efficient XML 

transmission. 

A number of XML query processors are available for supporting message routing and 

processing in this environment. Among them, the YFilter system described in the preceding 

chapters is the first that efficiently supports both filtering and transformation. Recall that 

YFilter represents a set of queries using an operator network on top of a Non-Deterministic 

Finite Automaton (NFA) to share processing among those queries. Using YFilter for 

distributed XML dissemination then raises the issues of distributing the NFA-based operator 

network and efficient scheduling of the operators for both query processing and content-

driven routing. 

7.1.2 Contributions 

In this chapter, I present an initial design of ONYX (Operator Network using Yfilter for XML 

dissemination), a large-scale dissemination system that delivers XML messages based on 

user specifications for filtering and transformation. The contributions of this work include 

the following. 

• ONYX leverages the YFilter system for content-driven routing. In particular, it uses the 

NFA-based operator network to represent routing tables, and provides an initial solution 

to constructing the routing tables from a distributed query population. 

• ONYX addresses the issue of how to perform incremental message transformation in the 

course of routing. 
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• In order to boost the effectiveness of routing, ONYX provides an algorithm that 

partitions the query population based on exclusiveness of data interests. 

• ONYX explores holistic message processing for sharing the work among various 

processing tasks at a node (i.e., content-driven routing, incremental transformation, and 

user query processing). Dependency-aware priority scheduling is used to support such 

sharing while providing a fast path for routing. 

• ONYX supports various formats for efficient XML transmission. 

• Last but not least, the research on ONYX includes a detailed architectural design of the 

system and offers mechanisms for building such a system. 

The remainder of this chapter is organized as follows. Section 7.2 presents the system 

model of ONYX. Sections 7.3, 7.4, and 7.5 describe the core techniques of three main 

components of ONYX, respectively. Section 7.6 provides a detailed broker architecture 

design. Section 7.7 presents concluding remarks. 

7.2 System Model 

In this section, I present the operational features of ONYX. ONYX provides content-based 

many-to-many data dissemination from publishers to end users. It consists of an overlay 

network of nodes. Most of the nodes serve as information brokers (or brokers, for short) that 

handle messages and user queries, while a few of them collaborate to provide a registration 

service. The overview is illustrated in Figure 7.1. 
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7.2.1 Service Interface 

The service interface provided by ONYX consists of several methods (some of which are 

similar to those in [Altinel et al., 1999]): 

Register a data source: A data source registers with ONYX by contacting the registration 

service and providing information about its location, the schema used, the expected message 

rate and message size, etc. (as illustrated by message 1 in Figure 7.1). The registration 

service assigns an ID to the data source, and chooses a broker as the root broker for the data 

source. The choice of the root broker is based on its topological distance to the data source, 

the bandwidth available, and the data volume expected from that source. After the service 

forwards the information about the new data source to the root broker (message 2), it returns 

the assigned ID and the address of the root broker to the data source (message 3). 

Publish data: After registration, a data source publishes its data by attaching its ID to 

each message and pushing the message to its root broker (message 4). 

Data Source Data Source Data Source 

U5 
U1 U2 U3 U4 

9 

registration  
service 

1 
4 

5 7 

3 

8 

6 

2 
Broker 

Broker 

Broker 

Broker 
Broker Broker 

Figure 7.1: Architecture of ONYX 
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Register a data interest: To subscribe, the user contacts the registration service, and 

provides his profile including his network address and a query (message 5). The registration 

service assigns an ID to this profile, and chooses a broker as the host broker for this profile 

based on the user’s location and/or the content of his query. At the end of the registration, the 

service forwards the profile and related information to the host broker (message 6), and 

returns the profile ID and host broker address to the user (message 7). Thereafter, the host 

broker will deal with all the user requests concerning that profile. 

Update a data interest: Subsequent changes to a profile (including updates and deletion) 

are sent directly to the host broker (message 8). 

Note that users do not need a method to retrieve the messages matching their interests, 

because those messages are pushed to them from the system (e.g., message 9). Additional 

methods are provided for data sources to update the schema and other information sent 

previously. 

Fault-tolerance can be achieved by having backup nodes for the registration service and 

brokers or using other techniques. That discussion is beyond the scope of this work. 

7.2.2 Two Planes of Content-Based Processing 

ONYX is an application-level overlay network. It consists of two layers of functionality. The 

lower layer, called the control plane, deals with application-level broadcast trees and gives 

each broker a broadcast tree rooted at that broker that reaches all other brokers in the 

network. Figure 7.2 shows such a tree in a network consisting of six brokers. Algorithms for 

constructing broadcast trees have been provided elsewhere (e.g., [Chu et al., 2000]). 

This section focuses on the higher layer of functionality in ONYX – content-based 

processing, which is a primary concern of this research. The operations in this layer 
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decomposed into two planes of processing - the data plane and the query plane. The data 

plane captures the flow of messages in the system while the query plane captures the flow of 

queries and query-related updates in the system. As can be seen in this chapter, the duality of 

data and query is a pervasive feature of ONYX. I now discuss the three tasks performed in 

this layer – content-driven routing, incremental transformation, and user query processing. 

Content-dr iven routing is necessary to avoid the flooding of messages to all brokers in 

the network. It builds on top of the broadcast tree described above. The routing is content-

driven because instead of forwarding a message to all the children in the broadcast tree, a 

broker sends it to only the subset that is “ interested”  in the message. This routing scheme, 

which matches a message’s content with routing table entries (or routing queries) 

representing the interests of child brokers, is in sharp contrast to the address-based IP routing 

scheme. 

Figure 7.2 shows an example of routing news articles (written using the NITF DTD 

[IPTC, 2004]) based on their content. The routing tables for Broker 1 and 4 are shown 

Data Source 

Broker 2 

Broker 3 

Broker 1 

Broker 4 

Broker 5 Broker 6 

 Broker 2: 
 /nitf/head/pubdata[@edition.area=“NY”]  

 Broker 4: 
 /nitf/head/pubdata[@edition.area=“SF”]    

 [transformation plan*] 

 Broker 5: 
 /nitf//tobject.subject[@tobject.subject.type=“Stock” ]   or 
  /nitf//tobject.subject[@tobject.subject.matter=“ fishing” ] 

 Broker 6: 
 /nitf//series[@series.name =“Tide Forecasts” ] 
 
 

message 
flow 

query  
flow 

Figure 7.2: Message Routing Based on Content 
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conceptually. The table at Broker 1 provides a routing query “ /nitf/head/pubdata 

[@edition.area= “NY” ]”  for Broker 2, which specifies that Broker 2 and its downstream 

brokers are only interested in news articles published in the “NY”  area. This table contains a 

similar routing query “ /nitf/head/pubdata[@edition.area= “SF” ]”  for Broker 4. The 

matching of a new message arriving at Broker 1 with either routing query results in routing 

the message to the corresponding child.  

The building of such routing tables by summarizing the queries of downstream brokers is 

a subtask in the query plane. The matching of messages against routing queries occurs in the 

data plane. 

Incremental transformation is the second task in the content-based processing layer. 

Interesting cases of transforming messages during routing include (1) early projection, i.e., 

removal of data, and (2) early restructuring. An example of early projection is as follows. A 

data source publishes messages containing multiple news articles. If all the user queries 

downstream of a link are interested only in a subset of the articles (e.g., those distributed in 

the area “SF”), messages can be projected onto the articles of interest before they are 

forwarded along that link using the following query. 

 

<batched-nitf> 
{ 

for  $n    in  $msg/batched-nitf/nitf 
where   $n/head/pubdata/@edition.area =“SF” 
return  $n 

} 
</batched-nitf> 
 

An example of restructuring is message transcoding based on the profiles of wireless users, 

say, when all users downstream of a link require images and comments to be removed and 
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tables to be converted to lists. Incremental transformation helps reduce message sizes and 

avoids repeated work at multiple brokers. 

In ONYX, incremental transformation is enabled by attaching transformation queries to 

the output links of brokers on the path of routing. User queries downstream of a link are 

aggregated and the commonality in their transformation requirements is extracted to form the 

transformation query. These subtasks happen in the query plane. The corresponding subtask 

in the data plane consists of transforming messages using these queries, before the messages 

are sent to the output links. 

User  query processing is the task of matching and transforming messages against 

individual user queries at their host brokers. For the user queries resident at a particular 

broker, this is the last step of message processing (although the arriving messages may be 

routed and transformed for other downstream user queries). The subtask in the query plane 

consists of issues such as indexing of user queries for which the broker is a host broker, and 

the subtask in the data plane consists of matching messages against these indexes. 

Table 14 summarizes the content-based processing tasks in ONYX and their subtasks 

over the query and data planes. 

System Task Query Plane Data Plane 

Content-driven routing build routing tables lookup in routing tables 

Incremental transformation build transformation plans execute transformation plans 

User query processing build query plans execute query plans 

Table 14: System tasks over the two planes of processing 

In the following sections, I describe three key aspects of ONYX: the query plane, the 

data plane, which both run at all brokers, and the query partitioning strategy, which is 

executed separately at the registration service. 
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7.3 Query Plane 

This section focuses on two issues in the query plane: routing table construction and the 

generation of incremental transformation plans. User query processing is not discussed here, 

as it is completely handled by YFilter. The solutions addressing those two issues are based 

on an extension of the YFilter processor. In the following, these solutions are described using 

a concise model of query representation in YFilter, which allows the reader to ignore many 

query processing details and to focus on issues relevant to content-driven routing and 

incremental transformation.  

7.3.1 An Operator Network Based Model 

YFilter builds a shared representation for all queries that it contains. At the core, a Non-

Deterministic Finite Automaton (NFA) is used to represent a set of simple linear paths and 

support prefix sharing among those paths. While the structural components of path 

expressions are handled by the NFA, for the remaining portions of the queries, YFilter builds 

a network of operators starting from the accepting states of the NFA. Each operator performs 

a specific task, such as evaluation of value-based predicates, evaluation of nested paths, or 

transformation. The operators residing at an accepting state of the NFA can be executed 

when that accepting state is reached. Downstream operators in the network are activated 

when all their preceding operators are finished. In addition, some accepting states and 

operators are annotated with query identifiers. These identifiers specify that if an annotated 

accepting state is reached or an annotated operator is successfully evaluated, the queries 

corresponding to the identifiers are satisfied. 
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Figure 7.3 shows three example queries and their operator network representation. Take 

Q1 for example. It contains a root element “ /nitf”  with two nested paths applied to it. Recall 

that YFilter decomposes the query into two linear paths “ /nitf/head/pubdata 

[@edition.area=“SF” ]” , and “ /nitf//tobject.subject [@tobject.subject.type=“Stock” ]” . The 

structural part of these paths is represented using the NFA (see Figure 7.3 (b)), with the 

common prefix “ /nitf”  shared between the two paths. The accepting states of these paths are 

state 4 and state 6, where the network of operators (represented as boxes) for the remainder 

 Q1:  $msg/nitf[head/pubdata[@edition.area=“SF” ]] 
         [.//tobject.subject[@tobject.subject.type=“Stock” ]]  

  
 Q2:  $msg/nitf[head/pubdata[@edition.area=“SF” ]] 
       [.//tobject.subject[@tobject.subject.matter=“fishing” ]] 
  
 Q3:  
   <nitf> 
   {   for $n    in  $msg/nitf 
      where  $n/head/pubdata/@edition.area =“SF”   
          and   $n//series/@series.name =“Tide Forecasts”  
      return { $n/body/body.content}   
   }  
   </nitf> (a) 

tobject. 

subject 

series pubdata 

head 

nitf 

ε 
3 5 

1 

2 

*  

4 6 7 

σ: (state 7, @series. 
 name=“Tide Forecasts”)  

transformation 

Q3 

 σ:  (state 4,  
 @edition.area=“SF”)  

σ: (state 6, @tobject. 
 subject.type=“Stock”)  

σ: (state 6, @tobject. 
 subject.matter=“ fishing”)  

Q1 Q2 

(b) 

Figure 7.3: Three Example Queries and their Operator Network Representation 
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of Q1 starts. At the bottom of the network, there is a selection (σ) operator below each 

accepting state to handle the value-based predicate in the corresponding path. For example, 

the box below state 4 specifies that the predicate on the attribute edition.area should be 

evaluated against the element that drove the transition to state 4. To handle the correlation 

between the two paths (e.g., the requirement that it should be the same nitf element that 

makes these two paths evaluate to true), YFilter applies a NP-Filter (as described in Section 

5.2) after the two selections. In this model, all operators that compare two inputs such as NP-

Filters and semijoins (as described in Section 6.4) are simply represented using a join (��) 

operator. In Figure 7.3 (b), the left most join operator is annotated with the query identifier 

Q1. This means that if the join is successfully evaluated, then Q1 is satisfied. 

The representation of Q2 follows the same two paths in the NFA as Q1 and uses the same 

selection at state 4 to process the common predicate with Q1, but it contains a separate 

selection at state 6 to evaluate the different predicate in the second path. A distinct join 

operator is built on these two selections. The representation of Q3 is similar to that of Q1 and 

Q2 for the for and where clauses, but contains an additional box for transformation using the 

return clause. 

7.3.2 Routing Table Construction 

As stated previously, a routing table conceptually consists of routing query-output link pairs, 

where each routing query is aggregated from user queries downstream of the corresponding 

output link. In this research, YFilter was chosen for implementing routing tables. The reasons 

include: (1) fast structure matching of path expressions, (2) a small maintenance cost upon 

query updates (both features above were shown in Sections 4 and 5), and (3) extensibility for 

supporting new operations using operator networks. In the following, I present the 
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representation of routing tables and mechanisms to construct them. For the purpose of 

routing, only the matching part of a query, i.e., the for and where clauses of a query written 

in XQuery, is considered. This part can be converted to a single path expression with 

equivalent semantics; therefore, it is referred to as the matching path of a query. 

In the current design, routing queries are represented using a Disjunctive Normal Form 

(DNF) of absolute linear path expressions. If a matching path contains n nested paths, it is 

decomposed into n+1 absolute linear paths (possibly with value-based predicates). The 

routing query constructed for this matching path is the conjunction of the resulting n+1 paths. 

Multiple routing queries can be connected using or operators to create a new routing query. 

Note that an alternative could be to allow any matching path to be a routing query and use or 

operators to connect them. In comparison, DNF relaxes the semantics of nested paths. The 

motivation of using DNF is that join operators used to evaluate nested paths are relatively 

expensive, whereas logical and operators between path expressions can be evaluated much 

more efficiently. 

Routing table construction from a distributed query population consists of applying three 

functions, Map( ), Collect( ), and Aggregate( ), to create routing queries in the chosen form. 

• Map( ) maps the matching path of a user query to the canonical form of a routing query; 

• Collect( ) gathers routing queries sent from the child brokers into the routing table of a 

broker; 

• Aggregate( ) merges the routing queries in the routing table of a broker with those 

mapped from the user queries at the broker, and generates a new routing query to 

represent the broker in its parent broker. 
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These three functions are illustrated for Brokers 4 and 5 in Figure 7.4(a). Broker 5 is a 

host broker with matching paths Q1 and Q2. It uses function Map( ) to create a routing query 

for each of them. Then it applies Aggregate( ) to those routing queries to generate a new one 

that will represent it in its parent (Broker 4). Note that as a leaf, Broker 5 does not contain a 

routing table. Broker 4 has child brokers Broker 5 and Broker 6, but no user queries. It uses 

the function Collect( ) to merge the routing queries sent from the child brokers into a routing 
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Figure 7.4: Examples of Constructing Routing Tables Using a Disjunctive Normal Form 
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table, and then applies Aggregate( ) to the routing table to generate a routing query that will 

represent it in its parent. 

Construction operations. Next I present the implementation of the three functions using 

YFilter. 

Map( ) takes as input a YFilter operator network representing a set of matching paths. To 

create the DNF representations of their routing queries, Map( ) simply replaces each join 

operator in the operator network with an and operator. 

Collect( ) merges routing queries sent from downstream brokers into a routing table of a 

parent broker. This operation simply merges the YFilter operator networks that represent 

those routing queries. 

Aggregate( ) performs re-labeling on a YFilter operator network. It changes all the 

identifier annotations (for queries or brokers) to the identifier of this broker, so that the 

annotated places become marks for routing to this broker. It essentially adds “or”  semantics 

to those annotated places, as encountering any one of them can cause routing of messages to 

this broker. YFilter treats broker identifiers the same as query identifiers, so these identifiers 

are simply called “ targets”  in the sequel. 

An example is shown in Figure 7.4(b). Box (a) in this figure shows the YFilter operator 

network built for queries Q1 and Q2 from Broker 5. Box (b) represents the routing query 

created for Broker 5 after applying Map( ) and Aggregate( ) to box (a). Box (c) depicts the 

result of merging box (b) with the routing query sent from Broker 6 (assumed to be the 

routing query created for query Q3 in Figure 7.4(a)). Box (d), the result of applying 

Aggregate() to box (c), will be explained shortly below. 
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Shar ing among routing quer ies. Different from the conceptual representation of a 

routing table (i.e., routing query-output link pairs), ONYX implements a routing table by 

creating a single combined operator network for all the routing queries. As a result, the 

common portions of the routing queries will be processed only once. As an example, box (c) 

in Figure 7.4(b) shows that the path leading to accepting state 4 and the selection operator 

attached to that state can be shared between the routing query for Broker 5 and that for 

Broker 6. When the commonality among routing queries is significant, the benefit of sharing 

can be tremendous. 

The or semantics introduced to routing queries, however, complicates the issue of 

sharing. When using separate operator networks for routing queries, a short-cut evaluation 

strategy can be applied in the evaluation of each routing query. Consider box (b) in Figure 

7.4(b) as an operator network created for the routing query for Broker 5. If during execution, 

one of the two targets labeled as Broker 5 is encountered, the processing for this routing 

query can stop immediately. In contrast, when using the combined operator network shown 

in box (c), after a target for Broker 5 is encountered, the processing of the combined operator 

network has to continue as the target for Broker 6 has not been reached. If care is not taken, 

some future work may be performed which only leads to the targets for Broker 5. In other 

words, naïve ways of executing a combined operator network for shared processing may 

perform wasteful work. 

To solve this problem, ONYX employs a runtime mechanism that instructs YFilter to 

ignore the processing for duplicate targets but not the processing for different targets. This 

mechanism is based on a dynamic analysis of the operator network which reports the 
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portions of the combined operator network that will only lead to the targets that have already 

been reached. 

Content generalization. Another issue to address in routing table construction is routing 

table size (i.e., the size of their operator network representation). Larger routing tables can 

incur high overhead for routing table lookup, thus slowing the critical path of message 

routing. They may also cause problems in environments with scarce memory. For these 

reasons, content generalization is introduced as an additional step that can be performed in 

Collect( ) or Aggregate( ). Generalizing the routing table essentially trades the filtering 

power (i.e., the fragment of messages that can be filtered) of the routing table for processing 

or space efficiency. 

An initial set of content generalization methods is proposed in ONYX. Some of the 

methods generalize individual path expressions with respect to their structural or value-based 

constraints. Some other methods generalize all the disjuncts in a routing query. For instance, 

one such method preserves only the path expressions common to all the disjuncts in the new 

routing query. Consider the routing table shown in box (c) in Figure 7.4(b). When applying 

Aggregate( ) to this routing table, calling this method after re-labelling the identifiers will 

result in an operator network containing a single path, as shown in box (d). This generalized 

operator network will be used to represent Broker 4 in its parent. 

7.3.3 Incremental Message Transformation 

Incremental transformation happens in the course of routing. In this subsection, I briefly 

describe the extraction of incremental transformation queries from user queries and their 

placement. 
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A transformation query for early projection can be attached to an output link at a broker, 

if (1) its for clause is shared by all the user queries downstream of the link, (2) its where 

clause generalises the where clauses of all those queries, and (3) the binding of its for clause 

provides all the information that the return clauses of those queries require. The last 

requirement implies that the return clauses of the user queries downstream cannot contain 

absolute paths or the backward axis “ ..”  to navigate outside the binding. 

Similarly, a transformation query for early restructuring can be applied to an output link, 

if conditions (1) and (2) above are satisfied, and (3) the return clauses of the downstream 

queries all contain a series of transformation steps (e.g., removing images and then 

converting tables to lists), and the first few steps are shared among all those queries. This 

transformation query will carry out the common transformation steps on matching messages 

earlier at this broker. 

When opportunities for early transformation are identified at host brokers based on the 

above conditions, incremental transformation queries representing them are generated and 

propagated to the parent broker. At the parent, these transformation queries are compared 

and the commonality among them is extracted to create a new transformation query for its 

own parent and a set of “ remainder queries”  for its output links. A remainder query is one 

that combined with the new transformation query constitutes the original transformation 

query. Each remainder query is attached to the output link where the corresponding original 

transformation query came from. The new transformation query is propagated up, and the 

above process repeats. 

A final remark is that although the algorithms for routing table construction and 

incremental transformation plan construction as presented consider all the user queries in a 
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batch, they can also be applied for incremental maintenance of routing tables or 

transformation plans. In that case, “delta”  routing/transformation queries are constructed and 

propagated, instead.  

7.4 Data Plane 

Having described the query plane, I now turn to the data plane, which handles the XML 

message flow. In the following, I describe two aspects of this plane: holistic message 

processing for various tasks and efficient XML transmission. 

7.4.1 Holistic Message Processing 

In ONYX, a single YFilter instance is used at each broker to build a shared, “holistic”  

execution plan for the routing table, incremental transformation queries, and local user 

queries (“holistic”  means that all these processing tasks are considered as a whole in the data 

plane). Processing of an XML message using this shared plan is sketched in this section. 

The execution algorithm for holistic message processing is an extension of the push-

based YFilter execution algorithm. As described in Section 6.3, elements from an XML 

message are used to drive the execution of NFA. At an accepting state of the NFA, path 

tuples are created and passed to the operators associated with the state. The network of 

operators is executed from such operators (i.e., right below accepting states) to their 

downstream operators. In YFilter, the order of operator execution is based on a First-Come-

First-Serve (FCFS) policy among the operators whose upstream operators have all been 

completed. 

In contrast to the earlier work on YFilter, however, the holistic plan contains multiple 

types of queries, i.e., routing queries, incremental transformation queries, and local user 
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queries. The first two types are on the critical path of message routing. They should not be 

delayed by the processing for local queries. Moreover, incremental transformation is useful 

only if the routing query for the corresponding link can be satisfied, which implies the 

dependency of transformation queries on the routing queries in execution. For these reasons, 

a dependency-aware priority scheduling algorithm is proposed here to support shared holistic 

message processing. 

Dependency-aware pr ior ity scheduling. In this algorithm, operators that contribute to 

routing queries are assigned high priority; among other operators, those that contribute to 

incremental transformation queries have medium priority; and the rest of the operators have 

low priority. The second priority class, however, is declared to be dependent on the first class 

with the following condition: an operator in the second class is executed only if at least one 

incremental transformation query that it contributes to has been necessitated by the 

successful evaluation of the corresponding routing query. In this implementation, an FCFS 

queue is assigned to each priority class. In addition, a wait queue is assigned to the dependent 

class. Priority scheduling works as in a typical OS, except that operators in the dependent 

class are first placed in the wait queue, and then moved to the FCFS queue when their 

dependency conditions have been satisfied. 

7.4.2 Efficient XML Transmission 

Low cost transmission of XML messages is also a paramount concern in a multi-hop 

distributed dissemination system. XML raises two challenges in this context. First, the 

verbose nature of XML can cause many redundant bytes in the messages. Second, XML 

messages need to be parsed at each broker, which can be expensive [Snoeren et al., 2001; 

Diao et al., 2003].  This section addresses these two challenges. 
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The inherent verbosity of XML has led to compression algorithms such as XMill [Liefke 

and Suciu, 2000]. Compression, however, solves only the first of the above challenges but 

not the parsing problem. A promising approach that is explored in ONYX to counter this 

problem, is using an element stream format for XML transmission. This format is an in-

memory binary representation of XML messages that can be input to the YFilter processor 

without any pre-processing or parsing. The binary format is also more space-efficient than 

raw XML because the latter has white spaces and delimiters. The “wire size”  of an XML 

message can be further reduced by compressing this binary representation. 

Schema-aware representation of XML is also explored for transmission. Given that the 

control plane can be used to broadcast the schema of a publishing source to all the brokers in 

the network, ONYX can perform schema-aware XML encoding of messages for transmission 

between brokers. In particular, ONYX uses a dictionary encoding scheme that maps XML 

element and attribute names from the schema to a more space-efficient key space. More 

advanced schema-aware optimizations can be explored to avoid storing parent-child 

relationships in the binary format, as they can be recovered from the schema. 

This experiment compared six XML transmission formats: text, binary (i.e., the element 

stream format), binary with dictionary encoding, and their corresponding compressed 

versions. Messages were generated using the YFilter XML Generator based on the NITF 

DTD. The two parameters - DocDepth (that bounds the depth of element nesting in the 

message) and MaxRepeats (that determines the number of times an element can repeat in its 

parent element) enable the creation of sets of messages with varying degrees of complexity. 

All the compression was performed using ZLIB, gzip’s library, because it outperforms XMill 
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for the relatively small-sized messages (the types of messages that ONYX mostly considers), 

as reported in [Liefke and Suciu, 2000]. 

Figure 7.5 summarizes the performance of different XML formats over the first metric, 

the wire size, for messages of different complexities. Although the element stream format 

does not remarkably outperform the text format, dictionary encoding gives promising results. 

Compression helps reduce the wire size for all formats significantly. 

Figure 7.6 presents the evaluation of these XML formats on the complementary metric of 

message processing delay. While uncompressed formats require only serializing messages at 

the sender and deserializing them at the receiver, the raw format additionally requires parsing 

and thus proves to be expensive. Compressed formats have significant costs of compression 

at the sender and decompression at the receiver. 

The choice of XML format for transmission must weigh both the wire size and 

processing delay metrics to get a combined metric. This decision will invariably be 

influenced by implementation details like the transport protocol used. For example, in the 

distributed PlanetLab testbed [PlanetLab, 2005], all the message sizes involved in the above 
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experiments gave the same transmission delay using TCP. This was attributed to the 

connection establishment time dominating in TCP for small message sizes. Thus, the 

message processing delay turned out to be a more important concern than the message size, 

making compression rather undesirable. On the other hand, if the DCP protocol [Snoeren et 

al., 2001] that sends data in redundant streams over UDP can be employed, compression may 

be useful. 

7.5 Query Population Partitioning 

Previous work on distributed publish/subscribe [Aguilera et al., 1999; Banavar et al., 1999; 

Carzaniga and Wolf, 2003] assumes that queries naturally reside on their nearest brokers, 

without considering alternative schemes for partitioning the query population. This section 

addresses the effect of query partitioning on the filtering power of content-driven routing, 

which is captured by the fraction of query partitions that a message can match. 

The discussion starts with an investigation of the properties of query partitioning and 

their effect on content-driven routing. Query similarity within a partition seems to be an 
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intuitive property, but is not effective in filtering. For example, in the ideal case that all the 

queries in one partition are “ /a/b”  and all the queries in the other partition are “ /a/c” , a 

message can still match both partitions by containing the two required elements. 

Dissimilarity between partitions is another candidate. Consider one partition with two 

queries “ //a”  and “ //b” , and the other partition with “ //c”  and “ //d” . Though these two 

partitions have little in common, it is still quite likely that a message matches both partitions. 

Mutual exclusiveness turns out to be a desired property. For example, if one partition 

requires “ /a/b[@id=1]”  and the other requests “ /a/b[@id=2]” , the chance that a message 

satisfies both can be low. The message surely cannot satisfy both if it contains only one “b”  

element. 

The next question is what path expressions can establish such mutual exclusiveness 

among query partitions. In this regard, three key observations can be made. First, structural 

constraints alone are not enough (see the first two examples above). This is because an XML 

schema can not specify that two paths are mutually exclusive in a message. In fact, path 

expressions exhibit potential exclusiveness if they involve the same structure, and contain 

value-based predicates that address the same target (e.g., an attribute or the data of a specific 

element), use the “=”  operator, but contain different values (see the third example above). 

The common part of these paths is called an exclusiveness pattern. Second, repetition of 

element names in XML messages limits the exclusiveness of such patterns. Thus, the best 

choice of an exclusiveness pattern would be one that can appear at most once in any 

message, as dictated by the schema. Third, in general the coverage of an exclusiveness 

pattern in the query population could be rather limited, due to the diversity of user data 

interests. Thus, using a single exclusiveness pattern for query partitioning could cause the 



 

169 

 

majority of queries to be placed in a partition called “don’ t care” . In that case, a set of 

exclusiveness patterns should be used. 

Par titioning based on Exclusiveness Patterns. To achieve exclusiveness of data 

interests among query partitions, ONYX uses a query partitioning scheme, called 

Partitioning based on Exclusiveness Patterns (PEP). I briefly describe the two steps of this 

scheme here, assuming for now that this algorithm can be run over the entire query 

population in a centralized fashion. (1) Identifying a set of exclusiveness patterns. PEP first 

searches the YFilter representation of the entire query population, and aggregates the 

predicates contained in the selection operators at each accepting state to exclusiveness 

patterns. These patterns are sorted by their coverage of the query population (i.e., the number 

of queries involving them). Then PEP uses a greedy algorithm to choose a set of patterns 

such that every query involves at least one pattern from the set. Heuristics can be used to 

perturb this set with other unselected patterns so that more patterns included in the set can 

appear at most once in a message, but the coverage of the query population is not sacrificed. 

(2) Partition creation. In the second step, K query partitions are created using the M patterns 

selected in the first step. To do so, the value range of each exclusiveness pattern is 

partitioned into K buckets, numbering 1, 2, …, K.  Then queries are assigned to the K*M 

buckets based on their values in the contained exclusiveness patterns. As a query must 

involve at least one of those patterns, it must belong to at least one bucket. If the query 

involves multiple patterns, it is randomly assigned to one of the matching buckets. Finally, K 

query partitions are created by assigning the queries in the i th bucket of any pattern to query 

partition i. 
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In the ideal case, where each exclusiveness pattern appears at most once in a message, a 

message can match at most M query partitions, i.e., one bucket per pattern. Thus the filtering 

power of content-driven routing, i.e., the fraction of query partitions that a message can 

match, can achieve M/K (e.g., 10 patterns, 100 partitions, and filtering power ≈ 1/10). If 

some patterns can appear multiple times in a message, their repetition degrades the filtering 

power (in many cases linearly). 

To study the potential benefit of the PEP scheme, this experiment compared its 

performance with the random query partitioning scheme that randomly assigns queries to 

partitions. The case being considered is to assign a population of 1 million queries to 200 

partitions. Every query contained two patterns, each chosen uniformly from a set of 10 

exclusiveness patterns. PEP exploited these 10 patterns for partitioning. Figure 7.7 shows 

how the percentage of the partitions that a random message matches varies with the amount 

of repetition of element names in the XML message. Clearly, the random partitioning 

scheme ends up matching almost all partitions with messages even with a small amount of 

repetition of element names. In contrast, PEP leads to many fewer partition matches. Unless 
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user interests are influenced by geography, a system that assigns user queries to the closest 

brokers will end up doing random partitioning of queries, leading to many messages being 

exchanged between the brokers of the system. 

An important remark is that in ONYX, PEP is a core algorithm for query placement used 

by the registration service. In addition to PEP, query placement also involves the decision of 

mapping query partitions to brokers, and the use of distributed protocols to perform the 

initial query partitioning and to maintain the partitions as user queries change over time. 

These issues will be further addressed in future work. 

7.6 Broker Architecture 

Having described the broker functionality in the query and data planes, I now turn to a 

discussion of the broker architecture that implements this functionality. This architecture is 

shown in Figure 7.8. It contains the following components. 

Packet Listener. This component listens to each packet arriving at the broker and based 

on the header, assigns the packet to one of the four flows: catalog packets, XML messages, 

query packets, and network control packets. 

Catalog manager. Catalog packets contain information about a data source. They may 

originate from the registration service concerning a new data source or from a registered data 

source to update information sent previously. The catalog manager parses these packets, and 

stores the information in the local catalog. If the packet is for a new data source, a new entry 

is added to the catalog including the ID of the data source, information on the data rate, the 

schema used, etc. If the information relates to a known data source, the existing entry in the 

catalog describing this data source is updated by the new information. The catalog will be 

used in other components for message validation, XML formatting, query processing, etc. 
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Message pre-processor. XML messages can come from data sources as well as other 

brokers in the system. The messages from a data source carry the source ID and are in the 

text format. On receiving such a message, the root broker of the data source validates the 

source ID attached to the message using its catalog. It also parses the message to an in-

memory representation for later routing and query processing. If the message comes from an 

internal broker, source validation is skipped. Depending on the internal representation of 

XML, the message can be in one of several formats that were discussed earlier, and will need 

suitable pre-processing like decompression, deserialization, etc. 

Query pre-processor. This is analogous to the message pre-processor in functionality, 

except that it also maintains a database of the profiles for which it is the host broker. 
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Control plane: Taking the control messages, the control plane maintains the broadcast 

tree for each root broker in the system. Specifically, it records the parent node and the child 

nodes of a broker on a particular root broker’s broadcast tree. It provides two methods for use 

of the content layer, one for forwarding messages along a broadcast tree, the other for reverse 

forwarding of queries. The control plane is also responsible for disseminating catalog 

information for the purposes of optimizing content-based processing. For example, the 

schema information can be used to optimize query processing and support schema-aware 

XML encoding. 

Data plane. The broker performs three tasks in the data plane, when receiving an XML 

message. First, it takes a sequence of steps to route the message: (a) if the broker is the root 

broker for the message, it attaches its broker identifier to the message; (b) it retrieves its 

output links in the broadcast tree that is specified by the root broker identifier attached to the 

message; and (c) it looks up in the content-based routing table to filter those output links. 

Second, for each output link selected, the broker transforms the message, if a transformation 

plan is attached to that link. Last, the broker processes the message on local queries to 

generate results. These three tasks are all realized by the YFilter processor. 

Query plane. The query plane exhibits duality with the data plane. If an arriving query is 

from a user, the local query processing plan is updated. If the query comes from another 

broker to update the routing table (i.e., it is a routing query) or the incremental 

transformation plan (i.e., it is an incremental transformation query), the modification of the 

routing table or the transformation plan will cause a new query to be generated for delivery 

to its parent broker. 
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YFilter Processor. YFilter has been described in detail in the previous three chapters. In 

ONYX, it is leveraged to build a holistic processing plan for all the processing tasks, so that 

the shared processing among the tasks is maximized. For the query plane, it is extended to 

support the routing table construction operations (as described in Section 7.3.2). For the data 

plane, its scheduler is augmented to prioritize the processing for different types of queries 

while exploiting the sharing among them (see Section 7.4.1). 

Message and query Post-processor. The results from the data plane are passed to the 

message post-processor. Results of local query processing are translated into XML messages 

for delivery to end users, while results of routing and incremental transformation are 

serialized (and possibly compressed). Queries generated from the query plane also follow the 

path of serialization and compression. 

Packet Sender. This component attaches a header to each packet, specifying the type of 

flow, the identifier of the root broker (if the packet is an XML message), and the format 

used. Then it multiplexes the four types of flows into the output channel, through a scheduler 

and a network manager that sends packets through TCP, UDP, etc. 

7.7 Related Work 

As described in Section 3, distributed publish/subscribe systems provide many-to-many 

communication between publishers and subscribers using the complex predicate-based 

model. The proposed techniques and reported results particularly relevant to ONYX are 

described in more detail below. Siena [Carzaniga and Wolf, 2003] developed efficient 

forwarding algorithms for the routers to evaluate each packet against all output link queries 

and forward the packet along the links with matched queries. It also proposed the CBCB 

(combined broadcast and content-based) routing scheme [Carzaniga et al., 2004] that 
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contains a broadcast routing protocol at a lower layer and a content-based routing protocol at 

an upper level. Gryphon [Aguilera et al., 1999; Banavar et al., 1999] proposed to organize all 

subscriptions into a Parallel Search Tree and augment each copy of it with router-specific 

annotations for event forwarding. It also compared different routing schemes; the results of 

this study indicate that using IP multicast, multi-hop routing is advantageous over flooding 

only in cases of high selectivity of subscriptions or high locality (i.e., when subscription 

patterns vary by location); otherwise, nearly all subscription brokers will have some 

subscription matching each event [Opyrchal et al., 2000]. Mühl et al. compared a number of 

schemes to distribute subscription updates among a network of brokers. Their results show 

that merging subscriptions, utilizing publishers’  description, and exploiting locality of 

subscriptions help to reduce the routing table sizes and the control traffic [Mühl et al., 2002]. 

ONYX has made a number of observations similar to the results mentioned above. To 

support rich XML structure and queries, ONYX also addresses many complex XML-related 

issues that arise in query processing, data forwarding, and routing table construction 

The transformation functionality in ONYX is related to the transcoding of Web content 

to suit the profiles of heterogeneous end users, like the users of mobile phones and hand-held 

computers [IBM, 2004]. However, such profiles usually do not provide expressiveness in 

querying content as much as the subset of XQuery that ONYX supports. In addition, 

transcoding is usually performed at either the publisher sites or the edge brokers that end 

users directly contact.  In contrast, ONYX can perform incremental message transformation 

at internal brokers to share processing work and reduce bandwidth consumption. 
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7.8 Summary 

This chapter presented a design for ONYX, a distributed system providing large-scale XML 

dissemination services. A detailed architectural description of the system was provided, and a 

variety of issues including routing table construction, query population portioning, and 

efficient message processing were addressed in the context of leveraging the YFilter query 

processor. The fundamental ideas exploited in ONYX are centered on the use of declarative 

queries (1) to enable the dissemination of high-value content to end users/applications, (2) to 

bring intelligence to the networking routing fabric (i.e., supporting content-based routing), 

(3) to provide flexibility in choosing locations to place brokering functionality (e.g., 

incremental transformation of messages), and (4) to help improve overall performance of the 

system (e.g., exploiting locality of user interests and using content-based routing as opposed 

to broadcasting). These ideas have significant potential for research and commercial impact. 

In addition, the proposed architecture and the various techniques built on YFilter technology 

provide a basis for developing scalable XML dissemination services. 

Many challenges lie ahead in order to achieve Internet-scale deployments of such XML 

dissemination services. Issues that remain to be addressed include adaptivity in routing table 

construction for load-balancing, routing table maintenance upon query updates, construction 

of network and query distribution models for performance analysis, to name just a few. These 

issues, and other future work in the area of XML message brokering, are the subject of the 

next chapter. 
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8 Future Work 

Message-based information systems are a rich source of research issues. There are a number 

of interesting avenues for future work that can be built on the contributions of this 

dissertation. In the following, I discuss the opportunities for future work in both message-

based and other emerging-types of distributed information systems.   

New tasks for  large-scale data dissemination. Research in the area of large-scale data 

dissemination can be extended by adding a number of services required by emerging 

applications. 

Stateful publish/subscribe. Currently, query processing in ONYX is performed a single 

message at a time, with no interaction across message boundaries. A number of emerging 

applications such as network monitoring and market-trend analysis require information to be 

aggregated over a stream of messages. Adding support for such information aggregation in 

ONYX raises a significant research challenge, as the system would need to maintain state 

across messages on a per-query basis in addition to routing the messages to all relevant 

queries.  

Access to historical data. ONYX currently supports queries over current and future data. 

Many emerging applications require the ability to compare the current observation with 

observations in the past. For example, users may want to be notified if the traffic pattern this 

afternoon is similar to that at this time last month. Significant challenges arise in supporting 

access to historical data in distributed environments where distributed databases are used to 

store messages. Issues that remain to be addressed include: Where are databases placed? 

Which subset of the messages does each database store? When a query arrives, does it 
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initiate the creation of a new database or can some existing database be identified for 

answering it? Finally, how can queries be continuously evaluated? 

QoS-based publish/subscribe. Quality-of-Service (QoS) based publish/subscribe takes 

into account not only content-based but also time-based constraints. In such services, each 

user provides a query and a utility function specifying her degree of satisfaction for seeing 

relevant data delivered within a time window. Integrating time constraints into content-based 

routing raises the difficult problem of how to exploit shared processing and schedule such 

processing so that user data interests and time constraints can be met simultaneously. 

A Comparative study. Another interesting task is a comparative study of the solutions to 

large-scale information dissemination. A number of dissemination systems have been 

independently developed in the database and networking communities, with the solutions 

varying from multicast to content-based routing. It will be of much benefit to devise network, 

data traffic, and query distribution models and to characterize system constraints so that these 

solutions can be fairly compared. Such a comparative study would facilitate the convergence 

of the network and information processing systems addressing the dissemination problem. 

Complex event processing for  sensor-based networks. Sensor devices such as wireless 

motes and RFID (Radio Frequency Identification) readers are gaining adoption in a growing 

number of applications for tracking and monitoring purposes. Large-scale deployment of 

these devices will soon generate an unprecedented volume of event messages. Such messages 

need to be filtered and combined to identify complex events, aggregated on different 

temporal and geographic scales, and transformed along concept hierarchies to create new 

events that reach a semantic level appropriate for end applications. During the transformation 

in a concept hierarchy, data processing history needs to be collected for end users to evaluate 
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data quality, which is crucial in areas such as environmental monitoring and disaster 

prediction.  

These requirements represent a distinct query type that is similar to yet broader than the 

class of queries supported in this dissertation research. To support such queries for complex 

event processing, significant research challenges remain to be addressed. These challenges 

include a declarative query language for specifying the requirements, an infrastructure that 

links various devices to workstations and servers with high-speed connectivity, and 

algorithms that inject declarative queries into this infrastructure and efficiently execute them. 

The techniques developed in this dissertation research can be extended to address some of 

these challenges. 

Messaging-based mobile services. Mobile applications constitute a particularly 

challenging distributed environment: the clients run a multitude of operating systems and can 

be located anywhere. Information exchange between servers and a huge, dynamic collection 

of heterogeneous clients has to rely on open, XML-based technologies. In particular, multi-

step filtering, incremental transformation, and mutual filtering between servers and clients 

are all potential areas in which XML query processing can play an important role. 

In summary, emerging distributed information systems and applications provide a myriad 

of interesting and challenging research topics related to large-scale query processing. The 

query processing techniques developed in this dissertation must be further broadened and 

enriched to rise to the challenges of these new environments. 
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9 Concluding Remarks 

The Information Technology industry is moving towards building large-scale, flexible, and 

high-function distributed information systems. XML message brokering, which integrates 

XML with the publish/subscribe interaction model and exploits declarative XML queries, has 

emerged as an infrastructure that is able to meet these requirements. In this dissertation, I 

presented YFilter/ONYX, an XML message brokering system that provides three key 

components to this new infrastructure: 

• A filtering engine that matches incoming messages against large numbers of path 

expressions. By using an NFA-based approach for shared processing, YFilter provides 

order-of-magnitude benefits over prior work while supporting a wide variety of XML 

document types and query workloads. The filtering engine has been released and is being 

used by a growing community of users. 

• A transformation module that restructures matching messages according to query-

specific requirements, resulting in customized result delivery. Built on the YFilter 

filtering engine, this module uses sophisticated techniques to further share processing 

among transformation queries. This algorithm is the first in the literature that can 

efficiently handle tens of thousands of simultaneous queries. 

• The ONYX system spreads filtering and transformation functionality into a distributed 

data dissemination network and augments the network with routing capabilities. In 

particular, it pushes declarative queries into the network to perform content-based 

routing and incremental message processing during routing. These routing extensions are 

built on YFilter technology. The notion of in-network query processing and its efficient 
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implementation using YFilter enable ONYX to achieve scalability in addition to 

functionality.  

In retrospect, I have exploited three key ideas that have proven beneficial in this 

dissertation and that can be valuable to other work in the future. First, the shared processing 

of queries is key to performance and scalability. In this research, novel techniques have been 

devised to identify and exploit commonalities among filtering and transformation queries. 

Second, despite the differences in execution models, XML query processing can leverage 

relational processing for simplicity and performance. Such leveraging requires effective 

mappings between the two models; a successful example has been the creation of pathtuple 

streams that this research uses to convert event-based XML processing to tuple-based 

relational processing, which results in effective optimizations for XML transformation. 

Third, in large-scale distributed environments for data dissemination, queries bring 

intelligence to the network routing fabric, provide flexibility in placing brokering 

functionality, and enable improvements in overall system performance.  

As XML becomes the dominant protocol for connecting disparate systems and XML-

aware application-oriented networking gains momentum, techniques such as those developed 

in this dissertation will be of increasing commercial importance. It is my hope that the ideas 

and techniques developed in YFilter/ONYX can serve as a starting point for many more 

efforts that will eventually lead to the realization of large-scale, high-performance, and high-

function data exchange and information dissemination.  
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Appendix A: Description of the XFilter Approach 

XFilter was the first published XML filtering system that supports efficient structure 

matching for a large set of path queries. As described in Section 2.4, XFilter creates a Finite 

State Machine (FSM) for each path query and uses event-based parsing to drive the 

execution of the query FSMs. This appendix provides more details on XFilter including its 

query index and execution algorithm. 

XFilter builds a dynamic index over the states of query FSMs. To do so, it implements 

the states of a FSM as path nodes. These path nodes represent the element nodes in the 

query, except wildcard (“* ” ) nodes. A path node contains the following information: 

• QueryId: A unique identifier for the path expression to which this path node belongs. 

• Position: A sequence number that determines the location of this path node in the order 

of the path nodes for the query.  The first node of the path is given position 1, and the 

following nodes are numbered sequentially. 

• RelativePos: An integer that describes the distance in document levels between this path 

node and the previous path node. This value is marked using “ -1”  if a path node contains 

a descendant (“ //” ) axis. Otherwise, it is set to 1 plus the number of wildcard nodes 

between it and its predecessor node (assuming that the first path node of a query has a 

pseudo-predecessor node). 

Figure A.1(a) shows this representation for three path expressions. 

The query index of XFilter is organized as a hash table based on the element names that 

appear in the path expressions. Associated with each unique element name are two lists: the 

candidate list and wait list. Candidate lists identify the path nodes corresponding to the states 
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that the FSM execution is attempting to match at a particular moment. Wait lists contain path 

nodes that are subsequent to the nodes in the candidate lists. The contents of these lists 

constantly change as parsing events drive the execution of the FSMs.  

The initial distribution of path nodes to candidate lists is an important contributor to 

performance. Figure A.1(b) shows the most straightforward case, where the path nodes for 

the initial states in Figure A.1(a) are placed on the candidate lists. For many situations, 

however, such an approach can be inefficient. The reason is that the first path nodes of 

queries address elements at higher levels in the documents where the sets of possible element 

names are small, thus providing poor selectivity (i.e., inadequate to reduce the number of 

queries that must be considered further). Based on this, XFilter developed the List Balance 

method that attempts to pick more selective path nodes and place them initially in the 

candidate lists. This method was shown to provide better performance overall than the basic 

indexing method.  
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-1 
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Q3 
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Figure A.1: Path Nodes of Queries and a Query Index in XFilter 
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To match the path nodes contained in the Query Index, XFilter uses a level value for each 

path node, which represents the level in the XML document at which this path node should 

be checked. Because XML does not restrict element types from appearing at multiple levels 

of a document, it is not always possible to assign this value during query parsing. Rather, this 

information needs to be updated during the evaluation of the query. XFilter’s query 

execution algorithm is implemented using the following two callback functions. 

Start Element Handler: The handler looks up the element name in the Query Index and 

examines all the nodes in the candidate list for that entry. For each node, it performs a level 

check. The purpose of the level check is to make sure that the element appears in the 

document at a level that matches the level expected by the query. If the path node does not 

contain a “ //”  axis (i.e., its RelativePos value is non-negative), the two levels must be 

identical in order for the check to succeed.  Otherwise, the level for the node is unrestricted, 

so the check succeeds regardless of the element level. 

If the check succeeds, then the node passes and the query is moved into its next state (if it 

has not been entirely matched). This is done by copying the next node for the query from its 

wait list to its candidate list (note that a copy of the promoted node remains in the wait list). 

If the RelativePos value of the copied node is not -1, its level value is also updated using the 

current level and its RelativePos value to do future level checks correctly. 

Note that in the most basic case, there is only one copy of a path node in its candidate list 

during the evaluation of a query. However, when the same element name appears in a nested 

manner at different levels of the input document and a path node related to this element name 

corresponds to a “ //”  location step, matching of the nested elements with this path node will 

cause multiple promotions of its subsequent path node. In such cases, multiple copies of the 
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subsequent path node can exist in its corresponding candidate list to reflect different 

document levels where it can be matched. 

End Element Handler: When an end element tag is encountered, the path nodes 

promoted when the corresponding “start element”  tag was encountered are deleted from the 

candidate lists in order to restore those lists to the state before reading this element. This 

“backtracking”  is necessary to handle the case where multiple elements with the same name 

appear at different levels in the document 
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Appendix B: Description of the Hybrid Approach 

The hybrid approach was used in Section 4.4 as a middle point between XFilter and YFilter 

with respect to the amount of sharing exploited. It supports shared processing of query 

fragments containing only child (‘ /’ ) axes.  

Hybrid works as follows. First, each query is decomposed into substrings containing only 

“ /”  operators (i.e., it is split at “* ”  and “ //”  operators); a list of nodes is created for the query 

with one node per substring. Each node contains four data items (QueryId, NodePosition, 

RelativePos, Level), as path nodes in XFilter. The difference is that RelativePos here 

specifies the distance in document levels from the end of the previous substring to the end of 

this substring. Then, the substrings of all of the queries are inserted into a single Trie index. 

Inside the index, a candidate list is allocated in each index node that represents the end (i.e., 

the last element) of a substring. Similar to XFilter, a candidate list here contains nodes 

representing those substrings that the current execution attempts to match. Initially, candidate 

lists only contain the nodes for the first substrings of queries. 

During the execution, input elements drive the navigation in the trie index as in YFilter, 

but without any concern for “* ”  and “ //”  operators. Each input element initiates a search 

from the root of the trie and also continues searches from index nodes that the navigation 

reached on the previous input element. As in YFilter, a runtime stack is used for maintaining 

the list of index nodes representing the current state and for backtracking. When an index 

node with a non-empty candidate list is encountered, all substring nodes in the list undergo a 

document level check. For each of those substrings that pass the level check, the expected 

level of the end of the next substring in the query is updated in the node for the next 
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substring, and that substring node is copied to its corresponding candidate list. In this way, 

the matching of a substring in the trie index is shared by all queries containing this substring, 

but the transitions between two substrings are done on a query-by-query basis using 

document level checking as in XFilter. 
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Appendix C: Data Structures and Pseudo-code for Inline 

In this appendix, I provide the data structures and the pseudo-code used in the Inline 

approach to incorporating value-based predicate evaluation in shared structure matching. The 

Inline approach was described in Section 5.1.1. 

A.1 Data Structures for Bookkeeping 

QueryEvaluation[ ] queryEvalList; 

class QueryEvaluation {  

 boolean isMatched; 

 PredicateEvaluation[ ] predEvalList; 

}  

class PredicateEvaluation {  

 int  stepNumber; 

 Set elementIdentifiers; 

}  

A.2 Pseudo-code 

QueryEvaluation[ ] queryEvalList; 

Stack elementIDStack, truePredicateStatck; 

Star t document handler : 

    if queryEvalList has not been allocated          

         allocate queryEvalList; 

    else                                                                   

         clear all data structures in queryEvalList; 

Star t element handler : 

    assign an element identifier elementID to this element Element; 
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    for each active state 

        apply rule (1) to (4) to find target states (see section 4.3.4); 

    endfor 

    List truePredicates; 

    for each target state 

(1)     for each predicate P in the local predicate table of the state 

            retrieve the P.QueryIDth  element queryEval from queryEvalList;  

            evaluate P using Element only if queryEval.isMatched is false; 

            if P is evaluated to true 

       retrieve the P.PredicateIDth element predEval from queryEval; 

       add elementID to the set elementIdentifiers in predEval; 

       add the pair (P.QueryID, P.PredicateID) to truePredicates; 

             endif 

        endfor 

        if this target state is an accepting state 

(2)         for each query Q whose identifier is in the ID list at the state  

                if all predicates contained in Q have been satisfied 

           intersect element identifier sets of all predicates that have the same step number; 

           if the intersection is non-empty for every level  

               queryEval.isMatched = true; 

                    endif 

                endif 

            endfor 

        endif 

    endfor 

    push elementID to elementIDStack; 

    push truePredicates to truePredicateStack; 
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End element handler : 

    pop the top element truePredicates from truePredicatStack;  

    pop  the top element elementID from elementIDStack; 

    for each pair (P.QueryID, P.PredicateID) of predicate P in the list truePredicates 

(3)   retrieve the P.QueryIDth  element queryEval from queryEvalList; 

        if queryEval.isMatched is false 

            retrieve the P.PredicateIDth element predEval from queryEval;             

            remove elementID from the set elementIdentifiers in predEval; 

        endif 

    endfor 

Note: (1) evaluation of a predicate; (2) final evaluation of a query; (3) undo for a predicate 
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Appendix D: Data Structures and Pseudo-Code for SP 

This appendix provides the data structures and pseudo-code used in the Selection Postponed 

(SP) approach to integrated structure and value-based processing. The SP approach was 

discussed in Section 5.1.2. 

B.1 Data Structures for Bookkeeping 

Boolean[ ] queryEvalList; 

B.2 Pseudo-code 

Boolean[ ]  queryEvalList; 

Star t document handler : 

    if queryEvalList has not been allocated           

        allocate queryEvalList; 

    else                                                                   

        clear all data structures in queryEvalList; 

    endif 

Star t element handler : 

    assign an element identifier elementID to this element Element; 

    for each active state 

        apply rule (1) to (4) to find target states (see section 4.3.4); 

        retrieve sequences of elements for the active state by following pointers from the state in the run 

time stack; 

        append Element to the end of the sequences to obtain new sequences for all target states; 

        for each target state that is an accepting state 

            for each sequence of elements 

                for each query Q whose identifier is in the ID list at the state  
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 (1)     retrieve the Q.QueryIDth element of queryEvalList;  

                 if Q is not matched  

               for each predicate P of Q 

                   retrieve an element from the sequence using P’s step number and evaluate P;  

                   if evaluation fails 

                             break; 

                          endif 

               endfor 

               if all pedicates are satisfied 

                   set the Q.QueryIDth element of queryEvalList to true; 

               endif 

           endif 

       endfor 

  endfor 

      endfor 

Note: (1) selection performed by SP. 
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Appendix E: Proof of Claims 

This appendix provides rigorous proof for the claims presented in Section 6.5.1 that can be 

used to simplify post-processing plans created for XML transformation queries. Consider a 

path expression p of m location steps, and the stream of tuples that match the path, with 

fields numbered 1..m. 

Proposition 4.1: If duplicates occur in field m of tuples in the stream, then in the path 

expression p which contains m location steps, there exist i and j, i < j ≤ m, such that both 

location steps i and j contain a “ //”  axis and the element in location step i is on a loop in 

the DTD element graph. 

Proof: Let t1 and t2 denote the two tuples containing the duplicates, and let n*  be the 

common node identifier in their last field m, as illustrated in Figure E.1. Since t1 and t2 are 

distinct tuples, there must exist at least one field where the two tuples differ. Let field i be the 

first field where they differ, 1 ≤ i < m. The shaded fields before field i in Figure E.1 represent 

the same content in both tuples. The node identifiers in field i in two tuples are denoted as ni1 

and ni2. Since they are in the same field, I know that ni1 and ni2 match the same element, i.e. 

the element in location step i of the path. Also, because i < m, ni1 and ni2 matching field i are 

both ancestors of n* matching field m in the document tree. Since all ancestors of n*  lie on a 

single document path, one of ni1 and ni2 must contain the other. This shows the element in 

location step i must be on a loop in the DTD graph. 

I then claim the axis in location step i is “ //” . To see why, let us assume the axis is ‘ /’  

instead. Then a node in field i must be a child of the node in field i-1. Since I know ni1 and ni2 

contain each other, they must have different parent nodes in field i-1, which conflicts my 
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choice of field i (recall field i is the first field where the two tuples differ). A special case is 

that field i is the first field. If the axis in the first location step is ‘ /’ , then ni1 and ni2 both have 

to be the root node, which also conflicts my choice of field i. 

In addition, let field j be the field immediately after the last field where the two tuples 

differ, j <= m. The shaded fields from field j to the end in Figure E.1 represent the same 

content in both tuples. I claim the axis in location step j is also “ //” . Again assume the axis is 

‘ /’  instead. Then a node in field j must be a child of the node in field j-1. Since two tuples 

have the same node nj in field j, they must have the same parent node of nj in field j-1, which 

conflicts my choice of field j. �  

Claims 1 and 2 follow immediately from this proposition. 

Proof of Claim 3: If claim 1 or 2 claims that there are no duplicates for p1, I know two 

matches of p1 can not have the same node identifiers for the last location step of p1. In 

addition, if claim 1 or 2 also claims that are no duplicates for p2, then I know for any node 

that matches the last location step of p1, in the sub-tree rooted at this node, there won’ t be 

matches of p2 that have the same node identifier for p2’ s last location step. Combining the 

above two facts shows that there will no duplicates in the tuples matching the original path 

when they are projected onto field i and m. �  

path
expression

t1

t2

...n i 1...... n j n*...

location step i location step j

  ...    ...      //ei    ...     //ej    ...      ...

field i field mfield j

...ni 2...... n j n*...

n i 1/n i 2

n*

n i 2/n i 1

n j

Figure E.1: Two duplicate tuples, their path expression and a document tree 
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Proposition 4.2: If tuples in the stream matching p are not in increasing order when 

projected onto field i, 1 ≤ i < m, then 

(a) there exist two tuples whose node identifiers in field i identify two nodes that contain 

each other; 

(b) there exists a field j, j ≤ i, s.t. 

� the axis of location step j in the path expression is “ //” ; 

� the element of location step j is on a loop in the DTD element graph; and 

� the element in location step i is on the same loop. 

Proof. (a) Let us look at the nodes identified by field i of the tuples. Assume there do not 

exist two nodes that contain each other. Then the sub-trees rooted at these nodes are disjoint, 

as illustrated by nodes nij (j ≥ 1) in Figure E.2. 

Also, location steps i to m are evaluated in these disjoint subtrees. Since the tuples are in 

increasing order in field m, I know that matches of the path expression are returned from one 

disjoint subtree to another in their document order. This implies that nodes for field i are also 

returned in increasing document order, which conflicts the previous assumption that tuples 

are not in increasing order in field i. 

Figure 14: A document tree with no recursive nodes in field i.

n i 1 n i nn i 2

matches of the path

Figure E.2: A document tree with no recursive nodes in field i. 
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(b) Based on the existence of two tuples whose node identifiers in field i identify two 

nodes that contain each other, I move to investigate location step i in the path expression 

which is matched by these nodes. I already know that the element in this location step is on a 

loop in the DTD graph (otherwise the nodes matching the location step cannot contain each 

other.) What to be checked is the axis of the location step. 

Case 1: Location step i contains a “ //”  axis. Then this is a special case of claim (b) with j 

= i. 

Case 2: Location step i contains a “ /”  axis. Let t1 and t2 denote the two tuples, and ni1 and 

ni2 denote the nodes in their field i. Without loss of generality, assume ni1 contains ni2. Since 

the axis of location step i is “ /” , the parent node of ni1 in t1 must also contain that of ni2 in t2. 

See Figure E.3 (a) for the illustration. Let field j be the last field before field i whose location 

step contains a “ //”  axis. Using the same argument, I know node nj,1 in field j in t1 also 

contain the node nj,2 in field j in t2. This implies the element in location step j is an element 

on a loop. Note that such a j location step containing “ //”  must exit, otherwise by using 

induction, I reveal conflicting facts that the first location step of the path contains a ‘ /’  axis 

but the two nodes in the first field of the two tuples contain each other. 

Last let us check why the elements in location step j and location step i share one DTD 

element loop. Let ej and ei be the two elements in the two location steps. Assume that ej and 

ei are not on any common loop. Given the additional facts that (1) there is a path from ej to ei 

in the document tree (which is in the content of field j to i of either tuple) and (2) both ej and 

ei are elements on loops, I know that in the DTD graph, they are on different loops with one 

or more directed bridges going from the loop containing ej to that containing ei. 
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Assume location step j’  and location step i’  are such location steps in the path expression 

that j ≤ j’  < i’  ≤ i and any location step between j’  and i’  do not contain element ej or ei. Then 

elements in location steps j’  to i’  define a unique bridge between the two loops in the DTD 

graph. Figure E.3 (b) illustrates the bridge determined by these location steps. 

Then it is important to note that, any path from ej to ei through this bridge in a document 

tree must contain one and only one path fragment corresponding to crossing the bridge (note 

that it goes one direction). Since the content of field j’  to field i’  in t1 matches location steps 

j’  to i’ , this content must be identical to that path fragment. Also, as the content of field j’  to 

field i’  in t2 matches location steps j’  to i’  on the same document path as t1, it also must 

correspond to the unique path fragment. This conflicts with the existing knowledge that the 

nodes in any field between j and i in the two tuples contain each other. So the assumption 

that ej and ei are not on any common loop is false. �  

Claims 4 and 5 follow immediately from this proposition. 

 

(b)

e j e i

  e j ... e j          e i    ...  e i
element path in
the document

fragment of the
DTD graph

path
expression

location step i 'location step j '

//ej ... /e j  /...  /e i  /... /ei

(a)

path
expression

t1

t2

......n j  1... ni 1

......n j  2... ni 2

field j field i

contains

location step j location step i

  ...    //ej       /...     /...     /ei

Figure E.3: Two tuples with recursive nodes in field i, their path expression,  
related DTD graph, and the element path in the document 



 

198 

Bibliography 

[Abadi et al., 2003] Abadi, D., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, 
S., Stonebraker, M., Tatbul, N., and Zdonik, S. Aurora: A New Model and Architecture 
for Data Stream Management. In VLDB Journal, 12(2), 120-139, August 2003. 

 
[Aguilera et al., 1999] Aguilera, M.K., Strom, R.E., Sturman, D.C., Astley, M., and Chandra, 

T.D. Matching Events in a Content-Based Subscription System. In Proc. of Principles of 
Distributed Computing (PODC’99), Atlanta, GA, May 1999. 

 
[Alonso et al., 2004] Alonso, G., Casati, F., Kuno, H., and Machiraju, V. Web Services: 

Concepts, Architectures and Applications. Springer Verlag, Heidelberg, Germany, 2004. 
 
[Altinel and Franklin, 2000] Altinel, M., and Franklin, M.J. Efficient Filtering of XML 

Documents for Selective Dissemination of Information. In Proc. of the 26th Int’ l 
Conference on Very Large Data Bases (VLDB’00), 53-64, Cairo, Egypt, September 
2000. 

 
[Altinel et al., 1999] Altinel, M., Aksoy, D., Baby, T., Franklin, J.M., Shapiro, W., and 

Zdonik, S.B. DBIS-Toolkit: Adapatable Middleware for Large Scale Data Delivery. In 
Proc. of the 1999 ACM SIGMOD International Conference on Management of Data, 
544-546, Philadelphia, PA, 1999. 

 
[Apache XML, 1999] Apache XML project. Xerces Java parser 1.2.3 Release. 

http://xml.apache.org/xerces-j/index.html, 1999. 
 
[Apache Hermes, 2004] Apache WebServices – Hermes. 

http://incubator.apache.org/hermes/, 2004. 
 
[Arasu et al., 2003] Arasu, A., Babu, S., and Widom, J. CQL: A Language for Continuous 

Queries over Streams and Relations. In Proc. of the 9th International Workshop on 
Database Programming Languages (DBPL’03), 1-19, Potsdam, Germany, September, 
2003. 

 
[Ariba., 2005] Ariba Inc. Spend Management Solutions. http://www.ariba.com/, 2005. 
 
[Ballardie et al., 1993] Ballardie, T., Francis, P., and Crowcroft, J. An Architecture for 

Scalable Inter-Domain Multicast Routing. In Proc. of the 1993 Conference on 
Applications, Technologies, Architectures and Protocols for Computer Communications 
(SIGCOMM’93), 85-95, San Francisco, CA, September 1993. 

 
[Banavar et al., 1999] Banavar, G., Chandra, T. D., Mukherjee, B., Nagarajarao, J., Strom, R. 

E., and Sturman, D. C. An Efficient Multicast Protocol for Content-Based Publish-



 

199 

 

Subscribe Systems. In Proc. of the IEEE International Conference on Distributed 
Computing Systems (ICDCS), 262-272, Austin, TX, May 1999. 

 
[BEA Systems, 2002] BEA Systems, Inc. BEA WebLogic Integration: Application 

Integration. http://bea.com/products/weblogica/server/index.shtml, 2002. 
 
[BEA Systems, 2005] BEA Systems, Inc. 2005. http://www.bea.com, 2005. 
 
[Belkin and Croft 1992] Belkin, N.J., and Croft, B.W. 1992. Information filtering and 

information retrieval: Two sides of the same coin? Communications of the ACM, 35(12), 
29-38. 

 
[Bell et al., 1990] Bell, T.C., Cleary, J.G., and Witten, I.H. Text Compression. Prentice Hall, 

Englewood Cliffs, New Jersey, 1990. 
 
[Bhide et al., 2002] Bhide, M., Deolasse, P., Katker, A., Panchgupte, A., Ramamritham, K., 

and Shenoy, P. Adaptive Push Pull: Disseminating Dynamic Web Data. IEEE 
Transactions on Computers, 51(6), 652-668, May 2002. 

 
[Birrell and Nelson, 1984] Birrell A.D., and Nelson, B.J. Implementing Remote Procedure 

Calls. ACM Transactions on Computer Systems, 2(1), 39-59, February 1984. 
 
[Boag et al., 2003] Boag, S., Chamberlin, D., Fernández, M.F., Florescu, D., Robie, J., and 

Siméon, J. XQuery 1.0: An XML Query Language. W3C Working Draft, November 
2003. http://www.w3.org/TR/xquery/. 

 
[Bosworth, 2002] Bosworth, A. Data Routing Rather than Databases: the Meaning of the 

Next Wave of the Web Revolution to Data Management. In Proc. of the 28th 
International Conference on Very Large Data Bases (VLDB'02), Hong Kong, China, 
August 2002. 

 
[Bray et al., 2004] Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., and Yergeau, F. 

Extensible Markup Language (XML) 1.0. W3C recommendation. 
http://www.w3.org/TR/2004/REC-xml-20040204/, February 2004. 

 
[Bruno et al., 2002] Bruno, N., Koudas, N., and Srivastava, D. Holistic twig joins: optimal 

XML pattern matching. In Proc. of the 2002 ACM SIGMOD International Conference 
on Management of Data (SIGMOD’02), 310-321, Madison, WI, June 2002. 

 
[Bruno et al., 2003] Bruno, N., Gravano, L., Doudas, N., and Srivastava, D.. Navigation- vs. 

Index-based XML Multi-query processing. In Proc. of the 19th International Conference 
on Data Engineering (ICDE’03), 139-150, Bangalore, India, March 2003.  

 
 [Busse et al., 2001] Busse, R., Carey, M., Florescu, D., Kersten, M., Manolescu, I., Schmidt, 

A., and Waas, F. Xmark: An XML benchmark project. 
http://monetdb.cwi.nl/xml/index.html, 2001. 



 

200 

 

 
[Carges, 2005] Carges, M. Taking SOA from “Pilot to Production”  with Service 

Infrastructure. InfoWorld SOA Executive Forum, keynote presentation. 
http://www.infoworld.com/event/soa/InfoWorld_SOA_Mark_Carges.ppt, 2005  

 
[Carriero and Gelernter, 1989] Carriero, N., and Gelernter, D. Linda in Context. 

Communications of the ACM, 32(4), 444-458, 1989. 
 
[Carzaniga et al., 2004] Carzaniga, A., Rutherford, M.J., and Wolf, A.L. A Routing Scheme 

for Content-Based Networking. In Proc. of IEEE INFOCOM 2004, Hong Kong, China, 
March 2004. 

 
[Carzaniga and Wolf, 2003] Carzaniga, A., and Wolf, A.L. Forwarding in a Content-Based 

Network. In Proc. of the 2003 Conference on Applications, Technologies, Architectures 
and Protocols for Computer Communications (SIGCOMM’03), 163-174, Karlsruhe, 
Germany, August 2003. 

 
[Cetintemel et al., 2000] Cetintemel, U., Franklin, M.J., and Giles, C.L. Self-adaptive user 

profiles for large scale data delivery. In Proc. of the 16th International Conference on 
Data Engineering (ICDE 2000), Los Alamitos, CA, USA, 622-633, 2000. 

 
[Chamberlin et al., 2003] Chamberlin, D., Fankhauser, P., Florescu, D., Marchiori, M., and 

Robie J. XML Query Use Cases. W3C Working Draft. http://www.w3.org/TR/xmlquery-
use-cases/, November 2003. 

 
[Chan et al., 2002] Chan, C., Felber, P., Garofalakis, M., and Rastogi, R. Efficient Filtering 

of XML Documents with XPath Expressions. In Proc. of the 18th Int’ l Conference on 
Data Engineering (ICDE’02), 235-244, San Jose, CA, February 2002. 

 
[Chan et al., 2002(2)] Chan, C.Y., Fan, W., Felber, P., Garofalakis, M.N., and Rastogi, R. 

Tree Pattern Aggregation for Scalable XML Data Dissemination. In Proc. of the 28th 
International Conference on Very Large Data Bases (VLDB'02), Hong Kong, China, 
August 2002. 

 
[Chand et al., 2003] Chand, R., and Felber, P. A Scalable Protocol for Content-Based 

Routing in Overlay Networks. In Proc. of the IEEE International Symposium on Network 
Computing and Applications (NCA’03), Cambridge, MA, April 2003. 

 
[Chandrasekaran et al, 2003] Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., 

Hellerstein, J.M., Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., and 
Shah, M.A. TelegraphCQ: Continuous Dataflow Processing for an Uncertain World. In 
Proc. of the 1st Biennial Conference on Innovative Data Systems Research (CIDR’03), 
Asilomar, CA, January 2003. 

 
[Chen et al., 2002] Chen, J., DeWitt, D.J., Naughton, J.F. Design and evaluation of 

alternative selection placement strategies in optimizing continuous queries. In Proc. of 



 

201 

 

the 18th Int’ l Conference on Data Engineering (ICDE’02), 345-354, San Jose, CA, 
February 2002. 

 
[Chen et al., 2000] Chen, J., Dewitt, D.J., Tian, F., and Wang, Y. NiagaraCQ: A scalable 

continuous query system for Internet databases. In Proc. of the 2000 ACM SIGMOD Int’ l 
Conference on Management of Data, 379-390, Dallas, Texas, May, 2000. 

 
[Chesnais et al., 1995] Chesnais, P.R., Muchlo, M.J., and Sheena, J.A. the Fishwrap 

Personalized News System. In Proceedings of the IEEE 2nd International Workshop on 
Cummunity Networking Integrating Multimedia Services to the Home, Princeton, NJ. 

 
[Chu et al., 2000] Chu, Y. Rao, S.G., and Zhang, H. A Case for End System Multicast. In 

Proc. of the 2000 ACM SIGMETRICS International Conference on Measurement and 
Modeling of Computer Systems, 1-12, Santa Clara, CA, June 2000. 

 
[Cisco Systems, 2002] Cisco Systems, Inc. Internet Protocol (IP) Multicast. 

http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/ipmulti.htm, 2002. 
 
[Cisco Systems, 2005] Cisco Systems, Inc. Application-Oriented Networking. 

http://www.cisco.com/en/US/products/ps6455/index.html, 2005. 
 
 [Clark and DeRose, 1999] Clark, J., and DeRose, S. XML Path Language (XPath) - Version 

1.0. http://www.w3.org/TR/xpath, November, 1999. 
 
[COR Financial Solutions, 2004] COR Financial Solutions Ltd. Salerio e2e middleware. 

http://www.corfinancialsolutions.com/salerio.htm, 2004. 
 
[Cowan and Tobin, 2004] Cowan, J. and Tobin, R. XML Information Set (Second Edition). 

W3C Recommendation 4 February 2004. http://www.w3.org/TR/xml-infoset/, 2004. 
 
[DataPower Technology, 2005] DataPower Technology, Inc. http://www.datapower.com/, 

2005. 
 
[Diao et al., 2002] Diao, Y., Fischer, P.M, Franklin, M.J., and To, R. YFilter: Efficient and 

Scalable Filtering of XML Documents. In Proceedings of the 18th International 
Conference on Data Engineering, 341-342, San Jose, CA, February, 2002. 

 
[Diao et al., 2003] Diao, Y., Altinel, M., Zhang, H., Franklin, M.J., and Fischer, P.M. Path 

Sharing and Predicate Evaluation for High-Performance XML Filtering. ACM 
Transactions on Database Systems (TODS), 28(4), 467-516, December 2003.  

 
[Diao and Franklin, 2003] Diao, Y., and Franklin, M.J. Query Processing for High-Volume 

XML Message Brokering. In Proc. of the 29th Int’ l Conference on Very Large Data 
Bases (VLDB'03), 261-272, Berlin, Germany, September 2003. 

 



 

202 

 

[Diao et al., 2004] Diao, Y., Rizvi, S., and Franklin, M.J. Towards an Internet-Scale XML 
Dissemination Service. In Proc. of the 30th Int’ l Conference on Very Large Data Bases 
(VLDB'04), 612-623, Toronto, Canada, August 2004.  

 
[Diaz and Lovell, 1999] Diaz, A.L., and Lovell, D. XML Generator. 

http://www.alphaworks.ibm.com/tech/xmlgenerator, September 1999. 
 
[Dilley et al., 2002] Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., and Weihl, 

B. Globally Distributed Content Delivery. IEEE Internet Computing, 50-58, September-
October, 2002. 

 
[Fabret et al., 2001] Fabret, F., Jacobsen, H.A., Llirbat, F., Pereira, J., Ross, K.A., and 

Shasha, D. Filtering Algorithms and Implementation for Very Fast Publish/Subscribe 
Systems. In Proc. of the 2001 ACM SIGMOD International Conference on Management 
of Data, 115-126, Santa Barbara, May 2001. 

 
[Florescu et al., 2004] Florescu, D., Hillery, C., Kossmann, D., Lucas, P., Riccardi, F., 

Westmann, T., Carey, M.J., and Sundararajan, A. The BEA Streaming XQuery 
Processor. In VLDB Journal, 13(3), 294-315, 2004. 

 
[Florescu and Kossmann, 2004] Florescu, D. and Kossmann, D. XML Query Processing. 

Tutorial for ICDE 2004. http://www.dbis.ethz.ch/research/publications/50.ppt, 2004. 
 
[Foltz and Dumais, 1992]Foltz, P.W., and Dumais, S.T. Personalized Information Delivery: 

An Analysis of Information Filtering Methods. Communications of the ACM, 35(12), 51-
60, 1992. 

 
[Ganglia, 2005] The Ganglia System. http://ganglia.info/, 2005. 
 
[Gelernter and Carriero, 1992] Gelernter, D., and Carriero, N. Coordination Languages and 

Their Significance. Communications of the ACM, 35(2), 96-107, 1992. 
 
[Goldman and Widom, 1997] Goldman, R., and Widom, J. DataGuides: Enabling Query 

Formulation and Optimization in Semistructured Databases. In Proc. of the 23rd   
International Conference on Very Large Data Bases (VLDB 1997), 436-445, Athens, 
Greece, August, 1997. 

 
[Gnome, 2001] LIBXML: the XML C parser and toolkit of Gnome. http://xmlsoft.org/, 2001. 
 
[Green et al., 2003] Green, T. J., Miklau, G., Onizuka, M., Suciu, D. Processing XML 

Streams with Deterministic Automata. In Proc. of Int’ l Conference on Database Theory 
(ICDT’03), 173-189, Siena, Italy, January 2003. 

 
[Green et al., 2004] Green, T. J., Gupta, A., Miklau, G., Onizuka, M., Suciu, D. Processing 

XML Streams with Deterministic Automata and Stream Indexes. In ACM Transactions 
on Databases (TODS), 29(4), December, 2004. 



 

203 

 

 
[GridICE, 2005] The GridICE project. http://infnforge.cnaf.infn.it/gridice/index.html, 2005. 
 
[Gryphon, 2002] The Gryphon project. http://www.research.ibm.com/gryphon/gryphon.html, 

2002. 
 
[Gupta and Suciu, 2003] Gupta, A. K., and Suciu, D. Streaming processing of XPath queries 

with predicates. In Proc. of the 2003 ACM SIGMOD International Conference on 
Management of Data, 419-430, San Diego, CA, June 2003. 

 
[Halverson et al., 2003] Halverson, A., Burger, J., Galanis, L., Krishnamurthy, R., Rao, A.N., 

Tian, F., Viglas, S., Wang, Y., Naughton, J.F., and DeWitt, D.J. In Proceedings of the 
27th International Conference on Very Large Data Bases (VLDB’03), 225-236, Berlin, 
Germany, September, 2003. 

 
[Hanson et al., 1999] Hanson, E.N., Carnes, C., Huang, L., Konyala, M., Noronha, L., 

Parthasarathy, S, Park, J.B., and Vernon, A. Scalable Trigger Processing. In Proc. of the 
15th Int’ l Conference on Data Engineering (ICDE’99), 266-275, Sydney, Australia, 
March 1999. 

 
[Hopcroft and Ullman, 1979] Hopcroft, J. E., AND Ullman, J. D. Introduction to Automata 

Theory, Languages and Computation. Addition-Wesley Pub. Co., Boston, MA, 1979. 
 
[IBM, 2000] International Business Machines. TSpaces: Intelligent Connectionware. 

http://www.almaden.ibm.com/cs/TSpaces/, 2000. 
 
[IBM, 2002] International Business Machines. WebSphere MQ Series. http://www-

306.ibm.com/software/integration/wmq/, 2002. 
 
[IBM, 2005] International Business Machines. WebSphere Application Server Network 

Deployment. http://www-306.ibm.com/software/webservers/appserv/was/network/, 2005. 
 
[IBM, 2004] International Business Machines. WebSphere Transcoding Publisher.  

http://www-306.ibm.com/software/pervasive/transcoding_publisher/, 2004. 
 
[IPTC, 2004] Internal Press Telecommunications Council. News Industry Text Format. 

http://www.nitf.org/, 2004. 
 
[Ives et al., 2002] Ives, Z.G., Halevy, A.Y., and Weld, D.S. An XML Query Engine for 
Network-Bound Data. In the VLDB Journal, 11(4), 380-402, December 2002.  
 
[Jagadish et al., 2002] Jadadish, H.V., Al-Khalifa, S., Chapman, A., Lakshmanan, L.V.S., 

Nierman, A., Paparizos, S., Patel, J.M., Srivastava, D., Wiwatwattana, N., Wu, Yuqing, 
and Yu, Cong. TIMBER: A Native XML Database. The VLDB Journal, 11(4), 274-291, 
2002. 

 



 

204 

 

[Jannotti et al., 2000] Jannotti, J., Gifford, D.K., Johnson, K.L., Kaashoek, M.F., and 
O'Toole, J.W.Jr. Overcast: Reliable Multicasting with an Overlay Network. In Proc. of 
the 4th Symposium on Operating System Design and Implementation (OSDI’00), San 
Diego, CA, October 2000. 

 
[Jiang et al., 2003] Jiang, H., Wang, W, Lu, H., and Yu, J.X.  Holistic Twig Joins on Indexed 

XML Documents. In Proc. of the 29th Int’ l Conference on Very Large Data Bases 
(VLDB’03), 273-284, Berlin, Germany, September 2003.  

 
[Kay, 2001] Kay, M. Saxon: the XSLT processor. http://users.iclway.co.uk/mhkay/saxon/, 

2001. 
 
[Le Hors et al., 2004] Le Hors, A., Le Hégaret, P., Wood, Lauren, Nicol, G., Robie, J., 

Champion, M., and Byrne, S. Document Object Model (DOM) Level 3 Core 
Specification. W3C Recommendation 7 April, 2004. http://www.w3.org/TR/DOM-
Level-3-Core/, 2004. 

 
[Lakshmanan and Sailaja, 2002] Lakshmanan, L.V.S., and Sailaja, P. On Efficient Matching 

of Streaming XML Documents and Queries. In Proc. of the 8th Int’ l Conference on 
Extending Database Technology (EDBT’02), 142-160, Prague, Czech Republic, March 
2002. 

 
[Ley, 2001] Ley, M. DBLP DTD. http://www.acm.org/sigmod/dblp/db/about/dblp.dtd, 2001. 
 
[Liefke and Suciu, 2000] Liefke, H., and Suciu, D. XMILL: An Efficient Compressor for 

XML Data. In Proc. of the 2000 ACM SIGMOD Int’ l Conference on Managemetn of 
Data, 153-164, Dallas, Texas, May, 2000. 

 
[Liu et al., 1999] Liu, L., Pu, C., Tang, W. Continual Queries for Internet Scale Event-Driven 

Information Delivery. IEEE Transactions on Knowledge and data Engineering (TKDE), 
11(4), 610-628, July 1999. 

 
[Ludascher et al., 2002] Ludascher, B., Mukhopadhyay, P., Papakonstantinou, Y. A 

Transducer-Based XML Query Processor. In Proc. of the 28th Int’ l Conference on Very 
Large Data Bases (VLDB’02), 227-238, Hong Kong, China, August 2002. 

 
[Luo et al., 2005] Luo, C., Thakkar, H., Wang, H., and Zaniolo, C. A Native Extension of 

SQL for Mining Data Streams. In Proc. of the 2005 ACM SIGMOD International 
Conference on Management of Data (SIGMOD’05), 873-875, Baltimore, MD, June 
2005.  

 
[Madden et al., 2002] Madden, S., Shah, M.A., Hellerstein, J.M., and Raman, V. 

Continuously adaptive continuous queries over streams. In Proc. of the 2002 ACM 
SIGMOD International Conference on Management of Data (SIGMOD’02), 49-60, 
Madison, WI, June 2002. 

 



 

205 

 

[McCanne et al., 2003] McCanne, S., Jacobson, V., Vetterli, M. Receiver-Driven Layered 
Multicast. In Proc. of the 1996 Conference on Applications, Technologies, Architectures 
and Protocols for Computer Communications (SIGCOMM’96), 117-130, Palo Alto, CA, 
August 2003. 

 
[McHugh and Widom 99] McHugh, J. and Widom J. Query Optimization for XML. In 

Proceedings of the 25th International Conference on Very Large Data Bases (VLDB’99), 
315-326, Edinburgh, Scotland, September, 1999. 

 
[Megginson, 2000] Megginson, D., Simple API for XML (SAX). 

http://www.saxproject.org/about.html, 2000. 
 
[Microsoft, 2004] Microsoft Corporation. BizTalk Server. http://www.microsoft.com/biztalk, 

2004. 
 
[Motwani et al., 2003] Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., 

Manku, G., Olston, C., Rosenstein, J., and Varma, R. Query Processing, Resource 
Management, and Approximation in a Data Stream Management System. In Proc. of the 
1st Biennial Conference on Innovative Data Systems Research (CIDR’03), Asilomar, CA, 
January 2003. 

 
[Mühl et al., 2002] Mühl, G., Fiege, L., Gärtner, F.C., and Buchmann, A. Evaluating 

Advanced Routing Algorithms for Content-Based Publish/Subscribe Systems. In Proc. of 
the 10th IEEE International Symposium on Modeling, Analysis, and Simulation of 
Computer and Telecommunications Systems (MASCOTS’02), Fort Worth, TX, October 
2002. 

 
[NASA, 2003] National Aeronautics and Space Administration. XML Group Resources 

Page. http://xml.gsfc.nasa.gov/, 2003. 
 
[NASDAQ, 2005] The NASDAQ Stock Market. http://www.nasdaq.com/, 2005. 
 
[Nestorov et al., 1997] Nestorov, S., Ullman, J.D., Wiener, J.L., and Chawathe, S.S. 

Representative objects: Concise representations of semistrctured hierarchical data. In 
Proc. of the 13th International Conference on Data Engineering (ICDE 1997), 79-90, 
Birmingham U.K., April, 1997. 

 
[NetLogger, 2002] The NetLogger Toolkit. http://www-didc.lbl.gov/NetLogger/, 2002. 
 
[Nguyen et al., 2001] Nguyen, B., Abiteboul, S., Cobena, G., and Preda, M. Monitoring 

XML data on the Web. In Proc. of the 2001 ACM SIGMOD International Conference on 
Management of Data (SIGMOD’01), 437-448, Santa Barbara, May 2001. 

 
[OASIS WSN TC, 2005] OASIS Web Services Notification (MSN) TC. http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wsn, 2005. 
 



 

206 

 

[Oki et al., 1993] Oki, B., Pfleugl, M., Siegel, A., and Skeen, D. The Information Bus: An 
Architecture for Extensible Distributed System. In Proc. of the 14th ACM Symposium on 
Operating System Principles (SOSP’93), 58-68, Asheville, North Carolina, December 
1993. 

 
[Olteanu et al., 2003] Olteanu, D., Kiesling, T., and Bry, F. An Evaluation of Regular Path 

Expressions with Qualifiers against XML Streams. In Proc. of the 19th Int’ l Conference 
on Data Engineering (ICDE’03), 702-711, Bangalore, India, March 2003. 

 
[Opyrchal et al., 2000] Opyrchal, L., Astley, M., Auerbach, J., Banavar, G., Strom, R., and 

Sturman, D. Exploiting IP Multicast in Content-Based Publish-Subscribe Systems. In 
Proc. of IFIP/ACM Int’ l Conference on Distributed Systems Platforms, 185-207, New 
York, NY, 2000. 

 
[Oracle, 2005] Oracle Streams Advanced Queuing. 

http://www.oracle.com/technology/products/aq/index.html, 2005. 
 
[Oracle-PeopleSoft, 2005] Oracle. PeopleSoft enterprise. 

http://www.oracle.com/applications/peoplesoft-enterprise.html, 2005. 
 
[Ozen et al., 2001] Ozen, B., Kilic, O., Altinel, M., and Dogac, A. Highly personalized 

information delivery to mobile clients. In Proc. of the 2nd ACM International Workshop 
on Data Engineering for Wireless and Mobile Access (MobiDe 2001), 35-42, Santa 
Barbara, CA, 2001. 

 
[PlanetLab, 2005] PlanetLab. http://www.planet-lab.org, 2005. 
 
[QuoteMedia, 2005] QuoteMedia, Inc. Dynamic Market Data Solutions. 

http://www.quotemedia.com/, 2005 
 
[Raggett et al., 1999] Raggett, D., Hors, A.L., and Jacobs, I. HTML 4.01 Specification. W3C 

recommendation 24 December 1999. http://www.w3.org/TR/REC-html40/, 1999.  
 
[Rodriguez, 1998] Rodriguez, P., Ross, K.W., and Biersack, E.W. Improving the WWW: 

Caching or Multicast? Computer Networks and ISDN Systems, 30(22-23,25), 2223-2243, 
November 1998. 

 
[Rosenthal and Chakravarthy ] Rosenthal, A. and Chakravarthy, U.S. Anatomy of a Modular 

Multiple Query Optimizer. In Proc. of the 14th Int’ l Conference on Very Large Data 
Bases (VLDB’88), 230-239, Los Angeles, CA, September 1988. 

 
[Rogue Wave Software, 2004] Quovadx Inc. Rogue Wave Software. 

http://www.roguewave.com/, 2004. 
 



 

207 

 

[Roy et al., 2000] Roy, P., Seshadri, S., Sudarshan, S., and Bhobe, S. Efficient and extensible 
algorithms for multi-query optimization. In Proc. of the 2000 ACM SIGMOD Int’ l 
Conference on Management of Data, 249-260, Dallas, Texas, May, 2000. 

 
[Salton, 1989] Salton, G. Automatic Text Processing. Addison-Wesley Co., Boston, MA, 

1989. 
 
[Schreier et al., 1991] Schreier, U., Pirahesh, H., Agrawal, R., and Mohan, C. Alert: An 

architecture for transforming a passive DBMS into an active DBMS. In Proc. of the 17th 
International Conference on Very Large Data Bases (VLDB 1991), 469-478, Barcelona, 
Spain, September, 1991. 

 
[SECSG, 2004] SouthEast Collaboratory for Structural Genomics. http://www.secsg.org/, 

2004.  
 
[Segall et al., 2000] Segall, B., Arnold, D., Boot, J., Henderson, M., and Phelps, T. Content 

Based Routing with Elvin4. In Proc. of AUUG2K, Canberra, Australia, June 2000. 
 
[Sellis, 1988] Sellis, T.K. Multiple-Query Optimization. ACM Transactions on Database 

Systems (TODS), 13(1), 23-52, Mar. 1988. 
 
[Shah et al., 2003] Shah, S., Dharmarajan, S., and Ramamritham, K. An Efficient and 

resilient Approach to Filtering and Disseminating Streaming Data. In Proc. of the 29th 
Int’ l Conference on Very Large Data Bases (VLDB'03), 57-68, Berlin, Germany, 
September 2003. 

 
[Shah et al., 2002] Shah, R., Jain, R., and Anjum, R. Efficient Dissemination of Personalized 

Information Using Content-Based Multicast. In Proc. of IEEE INFOCOM 2002, New 
York, NY, June 2002. 

 
[Snoeren et al., 2001] Snoeren, A.C., Conley, K., and Gifford, D.K. Mesh-Based Content 

Routing using XML. In Proc. of the 18th ACM Symposium on Operating Systems 
Principles (SOSP’01), Banff, Canada, October 2001. 

 
[Solace Systems, 2005] Solace Systems, Inc. http://www.solacesystems.com/, 2005. 
 
[Stoica et al., 2002] Stoica, I., Adkins, D., Zhuang, S., Shenker, S., and Surana, S.  Internet 

Indirection Infrastructure. In Proc. of the 2002 Conference on Applications, 
Technologies, Architectures, and Protocols for Computer Communities (SIGCOMM’02), 
73-88, Pittsburgh, PA, August 2002. 

 
[Stonebraker et al., 1990] Stonebraker, M., Jhingran, A., Goh, J., and Potamianos, S. On 

rules, procedures, caching and views in data base systems. In Proc. of the 1990 ACM 
SIGMOD Int’ l Conference on Management of Data (SIGMOD 1990), 281-290, Atlantic 
City, NJ, May, 1990. 

 



 

208 

 

[Sun Microsystems, 2000] Sun Microsystems, Inc. JavaSpaces Service Specification. 
http://www.sun.com/software/jini/specs/jini1.1html/js-title.html, 2000. 

 
[Sun Microsystems, 2001] Sun Microsystems, Inc. Java XML pack. Winter 01 update 

release. http://java.sun.com/xml/ downloads/javaxmlpack.html, 2001. 
 
[Sun Microsystems, 2002] Sun Microsystems, Inc. Java Message Service (JMS). 

http://java.sun.com/products/jms/, 2002. 
 
[Sybase, 2005] Sybase, Inc. Financial fusion message broker. 

http://www.sybase.com/products/industrysolutions/messagebroker, 2005. 
 
[Taleo, 2005] Taleo, Co. Talent Management Drives the Enterprise. 

http://www.taleo.com/en/default.php, 2005. 
 
[Terry et al., 1992] Terry, D.B., Goldberg, D., Nichols, D.A., and Oki, B.M. Continuous 

queries over append-only databases. In Proc. of the 1992 ACM SIGMOD Int’ l 
Conference on Management of Data (SIGMO 1992), 321-330, San Diego, CA, June, 
1992. 

 
[TIBCO Software, 2002] TIBCO Software, Inc. Enterprise Application Integration Solutions. 

http://www.tibco.com/solutions/tibco_eai.pdf, 2002. 
 
[Thompson et al., 2004] Thompson, H., Beech, D., Maloney, M., and Mendelsohn, N. XML 

Schema Part 1: Structures. http://www.w3.org/TR/xmlschema-1, October 2004 
 
[Tian et al., 2004] Tian, F., DeWitt, D., Pirahesh, H., Reinwald, B., Mayr, T., and 

Myllymaki, J. Implementing a Scalable XML Publish/Subscribe System Using a 
Relational Database System. In Proc. of the 2004 ACM SIGMOD International 
Conference on Management of Data, 479-490, Paris, France, June, 2004. 

 
[Tolani et al., 2002] Tolani, P.M., and Haritsa, J.R. XGRIND: A Query-Friendly XML 

Compressor. In Proc of the 18th Int’ l Conference on Data Engineering (ICDE’02), 225-
234, San Jose, CA, March 2002. 

 
[UserLand Software, 2005] UserLand Software. UserLand RSS Central. 

http://rss.userland.com, 2005. 
 
[W3C, 2002] World Wide Web Consortium. Web Services activity. 

http://www.w3.org/2002/ws/, 2002. 
 
[Watson, 1997] Watson, B.W. Practical optimization for automata. In Proc. of the 2nd 

International Workshop on Implementing Automata, 232-240, Berlin, Germany, 1997. 
 



 

209 

 

[Widom and Finklestein, 1990] Widom, J., and Finklestein, S.J. Set-oriented production rules 
in relational database systems. In Proc. of the 1990 ACM SIGMOD Int’ l Conference on 
Management of Data (SIGMOD 1990), 259-270, Atlantic City, NJ, May, 1990. 

 
[Wutka, 2000] Wutka Consulting, Inc. DTD parser. http://www.wutka.com/dtdparser.html, 

2000 
 
[Yahoo!, 2005] Yahoo! Inc. My Yahoo! http://my.yahoo.com/, 2005. 
 
[Yan and Garcia-Molina, 1994] Yan, T. W., and Garcia-Molina, H. Index Structures for 

Selective Dissemination of Information Under Boolean Model. ACM Transactions on 
Database Systems (TODS), 19(2), 332-364, June 1994. 

 
[Yan and Garcia-Molina, 1999] Yan, T. W., and Garcia-Molina, H. The SIFT Information 

Dissemination System. ACM Transactions on Database Systems (TODS), 24(4), 529-
565, December 1999. 

 
[Zhang et al., 2001] Zhang, C., Naughton, J.F., DeWitt, D.J., Luo, Q., and Lohman, G.M. On 

Supporting Containment Queries in Relational Database Management Systems. In 
Proceedings of the 2001 ACM SIGMOD International Conference on Management of 
Data, 425-436, Santa Barbara, CA, June, 2001. 


