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Plan of the talk

• Motivations!

• Desiderata in a notion of pseudo-metric!

• Kantorovich metric!

• Generalized Kantorovich metric
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Motivation

• Formalizing the notion of information 
leakage in concurrent systems  !

!

• Methods for measuring information leakage 
in a concurrent system and verifying that it 
is protected against privacy breaches
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Information leakage and privacy breaches
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Leakage via correlated observables

• Protecting sensitive information is one of the fundamental issues in 
computer security.!

!
!
!
!

• In several cases Encryption and Access Control can be very 
effective.  However, in this talk we focus in the case in which the 
leakage of secret information happens through the correlation 
with public information. This requires a different approach. !

!
• The notion of “publicly observable” is subtle and crucial. !

• It may be combined from different sources!

• It may depend on the power of the adversary
5



Leakage through correlated observables
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Password checking

Election tabulation

Timings of decryptions



Focus on Quantitative 
information leakage

1. It is usually impossible to prevent leakage 
completely.  Hence we need a quantitative 
notion of leakage. It is usually convenient to 
reason in terms of  probabilistic knowledge 

2. Often methods to protect information use 
randomization to obfuscate the link between 
secrets and observables
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Randomized methods

• Differential privacy [Dwork et al.,2006] is a notion of privacy 

originated from the area of Statistical Databases!

• The problem: we want to use databases to get statistical 

information (aka aggregated information), but without 

violating the privacy of the people in the database
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An example: Differential Privacy



The problem

• Statistical queries should not reveal private information, but it is not 

so easy to prevent such privacy breach. !

• Example: in a medical database, we may want to ask queries that help to figure the 

correlation between a disease and the age, but we want to keep private the info 

whether a certain person has the disease.

name age disease

Alice 30 no

Bob 30 no

Don 40 yes

Ellie 50 no

Frank 50 yes

Query:                                 
What is the youngest age of a 
person with the disease?!
!
Answer:                        !
40!
!
Problem:                        !
The adversary may know that 
Don is the only person in the 
database with age 40
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The problem

name age disease

Alice 30 no

Bob 30 no

Carl 40 no

Don 40 yes

Ellie 50 no

Frank 50 yes

Alice Bob

Carl Don

Ellie Frank

k-anonymity: the answer always partition 
the space in groups of at least k elements
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• Statistical queries should not reveal private information, but it is not 

so easy to prevent such privacy breach. !

• Example: in a medical database, we may want to ask queries that help to figure the 

correlation between a disease and the age, but we want to keep private the info 

whether a certain person has the disease.



Many-to-one

• This is a general principle of (deterministic) approaches 
to protection of confidential information: Ensure that 
there are many secrets that correspond to one 
observable

Secrets
Observables



The problem

Unfortunately,  the many-to-one 

approach is very fragile under 

composition:

name age disease

Alice 30 no

Bob 30 no

Carl 40 no

Don 40 yes

Ellie 50 no

Frank 50 yes

Alice Bob

Carl Don

Ellie Frank
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The problem of composition

Consider the query:                                   

What is the minimal weight of a 

person with the disease?!

Answer:  100!

Alice Bob

Carl Don

Ellie Frank

name weight disease

Alice 60 no

Bob 90 no

Carl 90 no

Don 100 yes

Ellie 60 no

Frank 100 yes
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The problem of composition

name age disease

Alice 30 no

Bob 30 no

Carl 40 no

Don 40 yes

Ellie 50 no

Frank 50 yes

Combine with the two queries:                                  

minimal weight and the minimal 

age of a person with the disease!

Answers:  40, 100!

Alice Bob

Carl Don

Ellie Frank

name weight disease

Alice 60 no

Bob 90 no

Carl 90 no

Don 100 yes

Ellie 60 no

Frank 100 yes
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name age disease

Alice 30 no

Bob 30 no

Carl 40 no

Don 40 yes

Ellie 50 no

Frank 50 yes

Alice Bob

Carl Don

Ellie Frank

name weight disease

Alice 60 no

Bob 90 no

Carl 90 no

Don 100 yes

Ellie 60 no

Frank 100 yes

Solution

Introduce some probabilistic noise 
on the answer, so that the answers 
of minimal age and minimal weight 
can be given also by other people 
with different age and weight
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name age disease

Alice 30 no

Bob 30 no

Carl 40 no

Don 40 yes

Ellie 50 no

Frank 50 yes

Alice Bob

Carl Don

Ellie Frank

Noisy answers

minimal age: !
40 with probability 1/2!
30 with probability 1/4!
50 with probability 1/4
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Alice Bob

Carl Don

Ellie Frank

name weight disease

Alice 60 no

Bob 90 no

Carl 90 no

Don 100 yes

Ellie 60 no

Frank 100 yes

Noisy answers

minimal weight:!
100 with prob. 4/7!
90  with prob. 2/7!
60  with prob. 1/7
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name age disease

Alice 30 no

Bob 30 no

Carl 40 no

Don 40 yes

Ellie 50 no

Frank 50 yes

Alice Bob

Carl Don

Ellie Frank

name weight disease

Alice 60 no

Bob 90 no

Carl 90 no

Don 100 yes

Ellie 60 no

Frank 100 yes

Noisy answers

Combination of the answers!
The adversary cannot tell for 
sure whether a certain 
person has the disease  
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• Differential Privacy [Dwork 2006]:   a randomized mechanism K provides  ε-
differential privacy if for all adjacent databases x, x′, and for all z ∈Z, we have !

!
!
!
!

• The idea is that the likelihoods of x and x′ are not too far apart, for every S 

• Equivalent to:  learning z  changes the probability of x  at most by a  factor!

• Differential privacy is robust with respect to composition of queries!

• The definition of differential privacy is independent from the prior (but this 
does not mean that the prior doesn’t help in breaching privacy!)!

• For certain queries there are mechanisms that are universally optimal, i.e. they 
provide the best trade-off between privacy and utility, for any prior and any 
(anti-monotonic) notion of utility

Differential Privacy
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p(K = z|X = x)

p(K = z|X = x

0)
 e

✏

e✏



QIF in concurrency

• We are interested in specifying and verifying quantitative 
information flow properties in concurrent systems!

!

• Representation:!

• Concurrent systems as probabilistic processes !

• Observables as (observable) traces!

• Secrets as states !
!

• In general, the properties we want to specify and verify 
are expressed in terms of probabilities of sets of traces 



Example:  Differential privacy
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s s’

  

sup

 
log

p(s |=  )

p(s0 |=  )
 ✏

Note that this is a notion of pseudo distance between s and s0



QIF in concurrency

!

• We need a notion that has good properties and that 
allows to derive conclusions about traces. In classical 
process algebra this role is typically played by 
bisimulation. 



From bisimulations to 
bisimulation metrics 

• Bisimulation is a key 
concept in standard 
concurrency theory !

• However when processes 
are probabilistic, 
bisimulation is not robust 
with respect to small 
changes of probabilities!

• Pseudo distances seems 
more suitable

0.5 0.5 0.51 0.49

0.9 0.1



Notation
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s
a! µ

µ(s1)

µ(s2)

µ(sn)

s1 s2
sn

s

a

where s is a state, a is an action,

and µ is a probability distribution

d(s, s0) : the distance between s, s0

d(µ, µ0) : the distance between µ, µ0



Desiderata I
Bisimulation is a well-understood notion, with associated a rich 
conceptual framework and useful notions and tools, hence we 
are interested in pseudo metrics that are: !

!
1. conservative extensions of the notion of bisimulation:!

!
!

2. defined via the same kind of coinductive definition, i.e., as 
greatest fixpoints of the same kind of operator
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d(s, s0) = 0 i↵ s ⇠ s0

if d(s, s0) < " then
if s

a! µ then 9µ0 s.t. s0
a! µ0 and d(µ, µ0) < "

if s0
a! µ0 then 9µ s.t. s

a! µ and d(µ, µ0) < "



Desiderata II!
3. The typical process algebra operators should be non-expansive 

wrt the pseudo metric. This is the metric counterpart of the 
congruence property, and it is useful  for compositional 
reasoning and verification:!

!
!
Note: Maybe we could be happy with a weaker property that 
would only require the expansion to be bound. !

!
4. The pseudo metric should be stronger than the one which 

defined the QIF property:!

!

where d’ is the metric used to define the QIF property
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d(op(s, s1), op(s, s2))  d(s1, s2)

d0(s, s0)  d(s, s0)



!
Consider again the formula that defines the 
pseudo metric coinductively:.  !

!
!
!
In order to do the coinductive step, we need 
to lift d from states to distributions on states. !

!
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What distance between distributions? 

if d(s, s0) < " then
if s

a! µ then 9µ0 s.t. s0
a! µ0 and d(µ, µ0) < "

if s0
a! µ0 then 9µ s.t. s

a! µ and d(µ, µ0) < "

In literature there are several notions 
of distance between distributions. 
Typical definitions are those based on 
the integration of the difference or 
some norm of the difference 0

0.1
0.2
0.3
0.4

0 1 2 3 4 5



• The distance between the two distributions would be the 
same independently from the distance between        and 

• However, the simple difference between distributions would 
not make the link between the distances in the coinductive 
step 

What distance between distributions? 
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• The Kantorovich metric allows us to get the proper lifting 
suitable for the coinductive definition:

The Kantorovich distance
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d(µ, µ0) = min
↵

X

s,s0

↵(s, s0)d(s, s0)

where ↵
X

s0

↵(s, s0) = µ(s) and
X

s

↵(s, s0) = µ0(s0)

• Transportation problem:



• The Kantorovich metric allows us to get the proper lifting 
suitable for the coinductive definition:

The Kantorovich distance
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d(µ, µ0) = min
↵

X

s,s0

↵(s, s0)d(s, s0)

where ↵
X

s0

↵(s, s0) = µ(s) and
X

s

↵(s, s0) = µ0(s0)

• Transportation problem:



Problems with standard K. metric

• Typical properties in quantitative information flow are 
not linear !
• differential privacy is only an example; the modern approaches to QIF are based 

on information theory and are far from linear!

• Hence, the typical metric approaches considered in CT 
so far are not suitable to specify / verify these properties!

• For example, there can be processes that have  finite Kantorovich distance and 
are not ∈-differentially private for any ∈!

• However, most QIF properties can be expressed in 
terms of pseudo-distances between the secrets. !

• For example,                                  (dp) is a pseudo-distance
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�s, s0. sup
 

log

p(s |=  )

p(s0 |=  )



Dual form of the K. metric
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d(µ, µ0) = sup
f

|
X

s

f(s)µ(s)�
X

s

f(s)µ0(s)|



Generalization of the K. metric
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•  In the dual form we substitute the standard difference  
between reals with the distance that we need for the 
definition of the QIF property.  Let d’ be this distance. Define:

d0(µ, µ0) = sup
f

d0(
X

s

f(s)µ(s),
X

s

f(s)µ0(s))

•  For instance, in the case of differential privacy, we have:

d0(µ, µ0
) = sup

f
log

P
s f(s)µ(s)P
s f(s)µ

0
(s)

•  We have proved that this definition satisfies all the desiderata. 
In particular, it allows a coinductive construction of a metric 
that is stronger than the original one of the QIF definition:



Summary and open problems

• We have a generalized version of the Kantorovich metric 
that satisfies the four desiderata. !

•  We don’t have a general dual form of the “transportation 
problem” kind that would allow us to compute the metric 
easily. However we have it in the case of the multiplicative 
version, corresponding to differential privacy.!

• We can handle nondeterminism in the usual way (lifting to 
the Hausdorff metric), but from the point of view of QIF, 
unrestricted nondeterminism is problematic. We don’t 
have yet an elegant solution to integrate the notion of 
restricted scheduler with a bisimulation metric.
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