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How To Quantify the Amount of Privacy?

Definition (Standard Definition of Differential Privacy)

A query mechanism A is e-differentially private if for any two adjacent
databases u; and uy, i.e. which differ only for one individual, and any
property Z, the probability distributions of .4(u;), .A(u.) differ on Z at most by
e, namely,

PrlA(ui) € Z] < e - PrlA(uz) € Z].

The lower the value ¢ is, the better the privacy is protected.

Some Merits of Differential Privacy

@ Strong notion of privacy.

@ Independence from side knowledge.

@ Robustness to attacks based on combining various sources of
information.

@ Looser restrictions between non-adjacent secrets.
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Introduction

Motivation

@ The model: Concurrent systems modeled as probabilistic automata.
@ The measure of the level of privacy: Differential privacy
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Introduction

Motivation

@ The model: Concurrent systems modeled as probabilistic automata.
@ The measure of the level of privacy: Differential privacy

To verify differential privacy properties for concurrent systems
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Our Model

A probabilistic automaton is a tuple (S, s, A, D)
@ S: afinite set of states;
@ S € S: the start state;
@ A: afinite set of action labels;
@ D C S x A x Disc(S): a transition relation. We also write s — .

Definition (Concurrent Systems with Secret Information)

Let U be a set of secrets. A concurrent system with secret information A is a
mapping of secrets to probabilistic automata, where A(u),u € U is the
automaton modelling the behavior of the system when running on u.
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How to Reason about Probabilistic Observations?

@ A scheduler ¢ resolves the non-determinism based on the history of a
computation, inducing a probability measure over traces.
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How to Reason about Probabilistic Observations?

@ A scheduler ¢ resolves the non-determinism based on the history of a
computation, inducing a probability measure over traces.

Probabilities of finite traces

Let a be thg history up to the current state s. Theﬁprobability of observing a
finite trace t starting from «, denoted by Pr¢[« > t], is defined recursively as

follows.
1 if t is empty,
PCr[aD'F]z 0 ift=a"t, C(a)=s —» pandb #a,
>, u(si) Pre[aasi > U] ift =a"t" and ¢(a) =s = L.

-
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An example: A PIN-Checking System

PI’C[A(Ul > alﬁ] = . PI’C[.A(UZ > alﬁ]

)
Pre¢ [.A(Ul > alm] . Pre¢ [A(Uz) > alﬁ]
Pl’g [.A(Ul > agﬁ] PI’C [A(Uz) > agﬁ]
Pl’g [.A(Ul > azm] = PI’C [A(Uz) > azﬁ]
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Differential Privacy in the Context of Concurrent Systems

@ The scheduler can easily break many security and privacy properties.

@ We consider a restricted class of schedulers, called admissible
schedulers.

@ make them unable to distinguish between secrets in the histories.

Definition (Differential Privacy in Our Setting)

A concurrent system A satisfies e-differential privacy (DP) iff for any two
adjacent secrets u, u’, any finite trace t and any admissible scheduler ¢:

PrA(u) & t]<e°. PCr[A(u’) >t
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The PIN-Checking System Revisited

Definition (Differential Privacy in Our Setting)

A concurrent system A satisfies e-differential privacy (DP) iff for any two
adjacent secrets u, u’, any finite trace t and any admissible scheduler (:

PrLA(u) & t]<e- PCr[A(u') > 1]

| \

Example
Prg[.A(Ul) > alo_k] = 0.6 PFC[A(Uz) > alo_k] = 04
Pr¢[A(ui) > aino] = 0.4 Prc[A(uz) > aino] = 0.6
Prg[.A(Ul) > azo_k] = 0 PFC[A(Uz) > azo_k] = 0
PI’C[A(U;L) > azm] = 0 PI’C[A(Uz) > azﬁ] =0
In this case, the level of differential privacy ¢ = In g
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Neighboring processes have neighboring behaviors.

@ For example: behavioural equivalences
9 A(u) ~ A(u’) = Secrecy [Abadi and Gordon, the Spi-calculus]

The property of differential privacy requires that the observations generated
by two adjacent secrets are probabilistically close.
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Neighboring processes have neighboring behaviors.

@ For example: behavioural equivalences
9 A(u) ~ A(u’) = Secrecy [Abadi and Gordon, the Spi-calculus]

The property of differential privacy requires that the observations generated
by two adjacent secrets are probabilistically close.

Verification Technique

@ Behavioural approximation:Pseudometrics on processes.

@ Find a pseudometric m on states of a concurrent system for two
adjacent secrets u, u’, such that:

m(A(u), A(u")) < e = A(u) and A(u’) are e-differentially private.
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sed Bijection Pseudometric

The Accumulative Bijection Pseudometric

It stems from the work of
@ Michael C. Tschantz, Dilsun Kaynar, and Anupam Datta.
Formal verification of differential privacy for interactive systems. ENTCS
2011.

We reformulate the notion of approximate similarity proposed in the above
work in terms of a pseudometric, and exhibit its properties as a distance
relation.
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Definitions

We define an approximate bisimulation relation:

Definition (Accumulative Bisimulation)

Arelation R €S x S x [0, €] is an e-accumulative bisimulation iff for all
(s,t,c) e R:

o s % pimpliest - v with uLP(R, c)v

o t %5 v impliess -2 p with P (R, c)v

Xu, Chatzikokolakis, Lin Metrics for Differential Privacy in Concurrent Systems



Two Pseudometrics The Accumulative Bijection Pseudometric
The Amortised Bijection Pseudometric
Comparison

Definitions

First, lift a relation over states to a relation over distributions.

Definition (D-Approximate Lifting)

;LL:D(R,C)I/ iff 3 bijection 3 : supp(u) — supp(v) such that

©(s)
Vs € su 1 (s,B(s),c+0) € R where = max |In—
pP() : (5, B(S), € +0) o= max |2

We define an approximate bisimulation relation:

Definition (Accumulative Bisimulation)

Arelation R €S x S x [0, €] is an e-accumulative bisimulation iff for all
(s,t,c) e R:

o s % pimpliest - v with uLP(R, c)v

o t %5 v impliess -2 p with P (R, c)v

Xu, Chatzikokolakis, Lin Metrics for Differential Privacy in Concurrent Systems



Two Pseudometrics The Accumulative Bijection Pseudometric

The Amortised Bijection Pseudometric

We can now define a pseudometric based on accumulative bisimulation as:

m®(s,t) = min{e|(s,t,0) € R for some e-accumulative bisimulation R}

Proposition

mP is a pseudometric, that is:
o (reflexivity) mP(s,s) =0
@ (symmetry) mP(s1,s;) = mP(sy,s:)
@ (triangle inequality) mP(s1,s3) < mP(s1,S2) + mP (s, s3)

Xu, Chatzikokolakis, Lin Metrics for Differential Privacy in Concurrent Systems



Two Pseudometrics The Accumulative Bijection Pseudometric
The Amortised Bijection Pseudometric

Verification of differential privacy using mP

A concurrent system A is e-differentially private if m®(A(u), A(u’)) < e for
any two adjacent secrets u and u’.

Xu, Chatzikokolakis, Lin Metrics for Differential Privacy in Concurrent Systems



Two Pseudometrics

Example

The following relation is a In 2-accumulative bisimulation between A(u;) and
.A(Uz).
R = { (A(Ul),A(Uz),O), (Slvtlaln g)

(827t27|n%)7 (537t37|n g)}

Thus m®(A(u1), A(uz2)) = In 3, system A is In 3-differentially private.
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Two Pseudometrics The Accumulative Bijection Pseudometric
The Amortised Bijection Pseudometric

The Use of the Privacy Budget May Be a bit Wasteful?

mbP is useful for verifying differential privacy. However,
@ the amount of leakage is only accumulated.

@ the accumulation is the same for all branches, and equal to the worst
branch.

Xu, Chatzikokolakis, Lin Metrics for Differential Privacy in Concurrent Systems



Two Pseudometrics The Accumulative Bijection Pseudometric
1 Bijection Pseudometric

Consider the above example. mP gives oo for the distance between .4(u;)
and A(uy).
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Two Pseudometrics The Accumulative Bijection Pseudometric

The Amortised Bijection Pseudometric

A0

0.6.°.04 06,204

] @, no
ok i ok no
o o @
; a; (1%9 ap
06,504 0.6.2.0.4 0.4.9.0.6 04206

e \7 71 u, . \7 71 b

ok ok ok ok

(o] o o o
Assume that the scheduler executes the a;-branch. The ratios of probabilities
for A(u1) and A(u.) producing the same finite sequences:

(awoazfo) = ($88) =1
(alﬁ azm) * 611& L=

(alﬁ agﬁ)*alﬁ agﬁ L=

BlO MW
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Two Pseudometrics The Accumulative Bijection Pseudometric

The ised Bijection Pseudometric
CDHI})E\V Ison

The Amortised Bijection Pseudometric

We employ amortised bisimulation relation from:
@ Astrid Kiehn and S. Arun-Kumar.
Amortised bisimulations. In FORTE, 2005.
@ Gerald Littgen and Walter Vogler.
Bisimulation on speed: A unified approach. Theor. Comuput. Sci., 2006.

The privacy budget in each simulation step may be either reduced due to a
negative difference of probabilities, or increased due to a positive difference.
Hence, the long-term budget might get amortised.
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The Amortised Bijection Pseudometric
Comparison

Definitions

We define amortised bisimulation:

Definition (Amortised bisimulation)

Arelation R €S X S X [—¢, €] is an e-amortised bisimulation iff for all
(s,t,c) e R:

o s -2 yimpliest -2 v with uLA(R, c)v

o t % vimplies s = p with uLA(R, c)v
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Two Pseudometrics The Accumulative Bijection Pseudometric
The Amortised Bijection Pseudometric
Comparison

Definitions

First, define the corresponding lifting:

Definition (A-Approximate Lifting)

/LL:A(R, c)v iff 3 bijection 8 : supp(u) — supp(v) such that

. w(s)
Vs € supp(y) : (s, B(s),c +In u(ﬁ(S))) <%

We define amortised bisimulation:

Definition (Amortised bisimulation)

Arelation R €S X S X [—¢, €] is an e-amortised bisimulation iff for all
(s,t,c) e R:

o s -2 yimpliest -2 v with uLA(R, c)v

o t % vimplies s = p with uLA(R, c)v
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Comparison

Verification of differential privacy using m#

Similarly to the previous section, we can finally define a pseudometric on
states as:

m”(s,t) = min{e| (s,t,0) € R for some e-amortised bisimulation R}

Proposition

m* is a pseudometric.

Xu, Chatzikokolakis, Lin Metrics for Differential Privacy in Concurrent Systems



Two Pseudometrics The 3ijection Pseudometric
The Amortised Bijection Pseudometric

Comparison

Verification of differential privacy using mA

Similarly to the previous section, we can finally define a pseudometric on
states as:

m”(s,t) = min{e| (s,t,0) € R for some e-amortised bisimulation R}

Proposition

m* is a pseudometric.

A concurrent system A is e-differentially private if m”(A(u), A(u’)) < e for
any two adjacent secrets u and u’.
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The Amortised Bijection Pseudometric

Comparison

Indeed, a Thriftier Use of the Privacy Leakage Budget

()0”‘04 06A04

-
o ® 0
no Ok
r/z (l1

0.4, . EN 06 [)4 2 ()6

% g
o

The following relation is an amortised bisimulation between A(u;) and A(uy).
R ={ (A(u1), A(uz),0), (s2,t2,In3), (ss,t5,In3), (ss,t3,In 3),
(S4,1,0), (Ss,t5,In3), (Se,te,In2), (ss,t5,In2),
(s7,t7,In ), (ss,t5,0), (Ss,t5,In3)}
Thus m*(A(u1), A(uz)) = In 2, system A is In 2-differentially private.
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The Amor
Comparison

Comparison of the Two Pseudometrics

The latter pseudometric is more liberal than the former one. Define m; < m;:
Vs, t:my(s,t) > my(s,t).

Proposition

omP<mt

Xu, Chatzikokolakis, Lin Metrics for Differential Privacy in Concurrent Systems
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Relations with probabilistic bisimilarity ~

Moreover, [Desharnais:2002:LICS] has proposed a criterion on
pseudometrics m for probabilistic processes.

o m(s,t)=0&s~t

where the corresponding lifting operation p; £(R)u2 with respectto s ~ t is:
for all equivalence class E € S/ ~, ui(E) = p2(E).

We investigate their relation with bisimilarity ~.

Proposition

The following hold:
o mP(s,t)=0=s~1t
o mi(s,t) =0=s~t

Xu, Chatzikokolakis, Lin Metrics for Differential Privacy in Concurrent Systems



Non-expansive Process Operators A Probabilistic Process calculus: CCSp

Outline

a Non-expansive Process Operators
@ A Probabilistic Process calculus: CCS,
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A Probabilistic Process calculus: CCS,

The syntax of CCSp

a == a | a | 7T prefixes
2 aP |P|Q | P+Q | &,y 0P| (va)P | 0  processes

o
o]
|
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A Probabilistic Process calculus: CCS,

The syntax of CCSp

a == a | a | 7T prefixes
P,Q = aP |P|Q|P+Q | @Dy piPi | (va)P | O processes
>
The semantics of CCSp

ACT —— PROB

aP — 5(P) @ig Pi Pi — Ei Pi Pi

Py P

SsuM1 —— PAR1

P+Q —u PIQ —nlQ

P-4 5(P) Q% 5(Q P%u a#aad
COM 7 Q) RES

P|Q —4(P'|Q") (va)P = (va)u

-
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Non-expansive Process operators

If m(P,Q) < ¢, where m € {m® m*}, then
o m(a.P,a.Q) <e
mM(PR & (1 —p)P,pR & (1 —p)Q) < e
mR+P,R+Q) <c¢
m((va)P, (va)Q) < e
m(R|P,R|Q) <e.

o
o
o
o
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The Dining Cryptographers Protocol
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An application to the Dining Cryptographers Protocol

The Dining Cryptographers Protocol

The Probabilistic Automata of the Dining Cryptographers

mo

Master(mg)

‘,_—

| daa ada \ ada
dd T ddd & aad aad
a
aad aad

Let bob1b, and cocic, represent two inner states of Master(mp) and

daa
& d

) Master (mg)

Master(ml)

Master (m;) respectively. There exists a bijection function f between them:
CoC1Cr = f(boblbz) = bo(bl (&) 1)b2



The Dining Cryptographers Protocol

An application to the Dining Cryptographers Protocol

{(Master (mo), Master (my), 0)} U { (bobs bz, f (bobabz), | In 125) | bo, by, by €
{0,1} } forms a | In $2;|-accumulative bisimulation relation.
Thus m® (Master (mo), Master (m1)) < |In ££5].

Proposition

A DCP with three cryptographers and with probability-p biased coins is
| In 25 |-differentially private.

Xu, Chatzikokolakis, Lin Metrics for Differential Privacy in Concurrent Systems



The Dining Cryptographers Protocol

An application to the Dining Cryptographers Protocol

{(Master (mo), Master (my), 0)} U { (bobs bz, f (bobabz), | In 125) | bo, by, by €
{0,1} } forms a | In $2;|-accumulative bisimulation relation.
Thus m® (Master (mo), Master (m1)) < |In ££5].

Proposition

A DCP with three cryptographers and with probability-p biased coins is
| In 25 |-differentially private.

4

Proposition (An extension to n fully connected cryptographers)

A DCP with n fully connected cryptographers and with probability-p biased
coins is | In $%; |-differentially private.
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Summary

We have investigated two pseudometrics on states:

@ The first pseudometric is a reformulation of the notion proposed by
Tschantz et al.

@ The second one is designed such that the total privacy leakage bound
gets amortised, thus more liberal than the first one.

@ The closer processes are in the pseudometrics, the higher level of
differential privacy they can preserve.

@ Relations with bisimilarity; Nonexpansiveness study w.r.t. process
combinators; An application to DCP.

@ Outlook

9 To investigate a new pseudometric, adapted from the metric & la Kantorovich
proposed by [Desharnais:2002:LICS], to fully characterise bisimilarity, and
release the bijection requirement.

Xu, Chatzikokolakis, Lin Metrics for Differential Privacy in Concurrent Systems



Summary

Thank you for your attention!

Questions?
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