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Abstract. The bisimilarity pseudometric based on the Kantorovich lift-
ing is one of the most popular metrics for probabilistic processes proposed
in the literature. However, its application in verification is limited to lin-
ear properties. We propose a generalization of this metric which allows to
deal with a wider class of properties, such as those used in security and
privacy. More precisely, we propose a family of metrics, parametrized on
a notion of distance which depends on the property we want to verify.
Furthermore, we show that the members of this family still character-
ize bisimilarity in terms of their kernel, and provide a bound on the
corresponding metrics on traces. Finally, we study the case of a met-
ric corresponding to differential privacy. We show that in this case it is
possible to have a dual form, easier to compute, and we prove that the
typical constructs of process algebra are non-expansive with respect to
this metrics, thus paving the way to a modular approach to verification.

1 Introduction

Originally proposed in the seminal works of Desharnais et al. [17,18], the bisimi-
larity pseudometric based on the Kantorovich lifting has become very popular in
the process algebra community. One reason of this success is that, when dealing
with probabilistic processes, metrics are more suitable than equivalences, since
the latter are not robust wrt small variation of probabilities. Another impor-
tant reason is that, thanks to the dual presentation of the Kantorovich lifting
in terms of the mass transportation problem, the metric can be computed using
linear programming algorithms [4,7,2]. Furthermore, this metric is an extension
of probabilistic bisimilarity, in the sense that two states have distance distance 0
if and only if they are bisimilar. In fact, the metric also shares with bisimilarity
the fact of being based on a similar coinductive definition. More precisely, it is
defined as the greatest fixpoint of a transformation that has the same structure
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as the one used for bisimilarity.1 This allows to transfer some of the concepts
and methods that have been extensively explored in process algebra, and to use
lines of reasoning which the process algebra community is familiar with. Along
the same lines, a nice property of the Kantorovich bisimilarity pseudometric is
that the standard operators of process algebra are not expansive wrt it. This
can be seen as a generalization of the result that bisimulation is a congruence,
and can be used in a similar way, for compositional reasoning and verification.

Last but not least, the Kantorovich bisimilarity metric provides a bound on
the corresponding distance on probabilistic traces [12] (corresponding in the
sense that the definition is based on the same Kantorovich lifting). This means
that it can be used to verify certain probabilistic properties on traces. More
specifically, it can be used to verify properties that are expressed in terms of
difference between probabilities of sets of traces. These properties are linear, in
the sense that the difference increases linearly wrt variations on the distributions.

Many properties, however, such as several privacy and security ones, are not
linear. This is the case of the popular property of differential privacy [19], which
is expressed in terms of ratios of probabilities. In fact, there are processes that
have small Kantorovich distance, and which are not ε-differentially private for
any finite ε. Another example are the properties used in quantitative information
flow, which involve logarithmic functions on probabilities.

The purpose of this work is to generalize the Kantorovich lifting to obtain
a family of metrics suitable for the verification of a wide class of properties,
following the principles that:

i. the metrics of this family should depend on a parameter related to the class
of properties (on traces) that we wish to verify,

ii. each metric should provide a bound on the corresponding metric on traces,
iii. the kernel of these metric should correspond to probabilistic bisimilarity,
iv. the general construction should be coinductive,
v. the typical process-algebra operators should be non-expansive,
vi. it should be feasible to compute these metrics.

In this paper we have achieved the first four desiderata. For the last two, so
far we have studied the particular case of the multiplicative variant of the Kan-
torovich metric, which is based on the notion of distance used in the definition
of differential privacy. We were able to find a dual form of the lifting, which
allows to reduce the problem of its computation to a linear optimization prob-
lem solvable with standard algorithms. We have also proved that several typical
process-algebra operators are non-expansive, and we have given explicitly the
expression of the bound. For some of them we were able to prove this result in a
general form, i.e., non-expansiveness wrt all the metrics of the family, and with
the bound represented by the same expression.

1 In the original definition the Kantorovich bisimilarity pseudometric was defined as
the greatest fixpoint, but such definition requires using the reverse order on metrics.
More recently, authors tend to use the natural order, and define the bisimilarity
metric as the least fixpoint, see [12,1,2]. Here we follow the latter approach.
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As an example of application of our method, we show of to instantiate our
construction to obtain the multiplicative variant of the Kantorovich metric, and
how to use it to verify the property of differential privacy.

All proofs are given in the report version of this paper [11].

Related Work. Bisimulation metrics based on the standard Kantorovich distance
have been used in various applications, such as systems biology [25], games [9],
planning [13] and security [8]. We consider in this paper discrete state spaces.
Bisimulation metrics on uncountable state spaces have been explored in [18]. We
define bisimulation metrics as fixed point of an appropriate functor. Alternative
characterizations were provided in terms of coalgebras [6] and real-valued modal
logics [18]. The formulation of the Kantorovich lifting as primal and dual linear
program is due to [5].

Verification of differential privacy has been itself an active area of research.
Prominent approaches based on formal methods are those based on type sys-
tems [22] and logical formulations [3]. Earlier papers [26,27] define a bisimulation
distance, which however suffered from the fact that the respective kernel relation
(states in distance 0) does not fully characterize probabilistic bisimilarity.

2 Preliminaries

2.1 Labelled Concurrent Markov Chains

Given a set X , we denote by Prob(X), Disc(X) the set of all and discrete prob-
ability measures over X respectively; the support of a measure μ is defined as
supp(μ) = {x ∈ X |μ(x) > 0}. A labelled concurrent Markov chain (henceforth
LCMC) A is a tuple (S,A,D) where S is a countable set of states, A is a count-
able set of action labels, and D ⊆ S × A ×Disc(S) is a transition relation. We

write s
a−→ μ for (s, a, μ) ∈ D.

An execution α is a (possibly infinite) sequence s0a1s1a2s2 . . . of alternating

states and labels, such that for each i : si
ai+1−→ μi+1 and μi+1(si+1) > 0. We

use lstate(α) to denote the last state of a finite execution α. We use Exec∗(A)
and Exec(A) to represent the set of finite executions and of all executions of A,
respectively. A trace is a sequence of labels in A∗ ∪ Aω obtained from execu-
tions by removing the states. We use [ ] to represent the empty trace, and � to
concatenate two traces.

A labelled Markov chain (henceforth LMC) A is a fully probabilistic LCMC,
namely a LCMC where from each state of A there is at most one transition
available. We denote by L(s) and π(s) the label and distribution of the unique
transition starting from s (if any).

In a LMC A, a state s of A induces a probability measure over traces as
follows. The basic measurable events are the cones of finite traces, where the
cone of a finite trace t, denoted by Ct, is the set {t′ ∈ A∗ ∪Aω|t ≤ t′}, where ≤
is the standard prefix preorder on sequences. The probability induced by s on a
cone Ct, denoted by Pr[s � Ct], is defined recursively as follows:
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Pr[s � Ct] =

⎧
⎨

⎩

1 if t = [ ]
0 if t = a�t′ and a �= L(s)
∑

si
μ(si)Pr[si � Ct′ ] if t = a�t′ and s

a−→ μ
(1)

This probability measure is extended to arbitrary measurable sets in the σ-
algebra of traces in the standard way. We write Pr[s � σ] to represent the
probability induced by s on the set of traces σ.

2.2 Pseudometrics

A pseudometric is a relaxed notion of a normal metric in which distinct elements
can have distance zero. We consider here a generalized notion where the distance
can also be infinite, and we use [0,+∞] to denote the non-negative fragment of
the real numbers R enriched with +∞. Formally, an (extended) pseudometric on
a setX is a functionm : X2 → [0,+∞] with the following properties:m(x, x) = 0
(reflexivity), m(x, y) = m(y, x) (symmetry), and m(x, y) ≤ m(x, z) + m(z, y)
(triangle inequality). A metric has the extra condition that m(x, y) = 0 implies
x = y. Let MX denote the set of all pseudo-metrics on X with the ordering
m1 	 m2 iff ∀x, y.m1(x, y) ≤ m2(x, y). It can be shown that (MX ,	) is a
complete lattice with bottom element ⊥ such that ∀x, y.⊥(x, y) = 0 and top
element � such that ∀x, y.�(x, y) = ∞.

The ball (wrt m) of radius r centered at x ∈ X is defined as Bm
r (x) =

{x′ ∈ X : m(x, x′) ≤ r}. A point x ∈ X is called isolated iff there exists
r > 0 such that Bm

r (x) = {x}. The diameter (wrt m) of A ⊆ X is defined as
diamm(A) = supx,x′∈Am(x, x′). The kernel ker(m) is an equivalence relation on
X defined as

(x, x′) ∈ ker(m) iff m(x, x′) = 0

3 A General Family of Kantorovich Liftings

We introduce here a family of liftings from pseudometrics on a set X to pseu-
dometrics on Prob(X). This family is obtained as a generalization of the Kan-
torovich lifting, in which the Lipschitz condition plays a central role.

Given two pseudometric spaces (X, dX), (Y, dY ), we say that f : X → Y is 1-
Lipschitz wrt dX , dY iff dY (f(x), f(x

′)) ≤ dX(x, x′) for all x, x′ ∈ X . We denote
by 1-Lip[(X, dX), (Y, dY )] the set of all such functions.

A function f : X → R can be lifted to a function f̂ : Prob(X) → R by taking
its expected value. For discrete distributions (countable X) it can be written as:

f̂(μ) =
∑

x∈X μ(x)f(x) (2)

while for continuous distributions we need to restrict f to be measurable wrt
the corresponding σ-algebra on X , and take f̂(μ) =

∫
fdμ.

Given a pseudometric m on X , the standard Kantorovich lifting of m is a
pseudometric K(m) on Prob(X), defined as:
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K(m)(μ, μ′) = sup{|f̂(μ)− f̂(μ′)| : f ∈ 1-Lip[(X,m), (R, dR)]}
where dR denotes the standard metric on reals. For continuous distributions we
implicitly take the sup to range over measurable functions.

Generalization. A generalization of the Kantorovich lifting can be naturally
obtained by extending the range of f from (R, dR) to a generic metric space
(V, dV ), where V ⊆ R is a convex subset of the reals2, and dV is a metric on V .

A function f : X → V can be lifted to a function f̂ : Prob(X) → V in the same

way as before (cfr. (2)); the requirement that V is convex ensures that f̂(μ) ∈ V .
Then, similarly to the standard case, given a pseudometric space (X,m) we

can define a lifted pseudometric KV (m) on Prob(X) as:

KV (m)(μ, μ′) = sup{dV (f̂(μ), f̂(μ′)) : f ∈ 1-Lip[(X,m)(V, dV )]} (3)

The subscript V in KV is to emphasize the fact that for each choice of (V, dV )
we may get a different lifting. We should also point out the difference between
m, the pseudometric on X being lifted, and dV , the metric (not pseudo) on V
which parametrizes the lifting.

The constructed KV (m) can be shown to be an extended pseudometric for
any choice of (V, dV ), i.e. it is non-negative, symmetric, identical elements have
distance zero, and it satisfies the triangle inequality. However, without extra
conditions, it is not guaranteed to be bounded (even if m itself is bounded). For
the purposes of this paper this is not an issue. In the report version [11] we show
that under the condition that dV is ball-convex (i.e. all its balls are convex sets,
which holds for all metrics in this paper), the following bound can be obtained:

KV (m)(μ, μ′) ≤ diamm(supp(μ) ∪ supp(μ′))

Examples. The standard Kantorovich lifting is obtained by taking (V, dV ) =
(R, dR). When 1-bounded pseudometrics are used, like in the construction of the
standard bisimilarity metric, then we can equivalently take V = [0, 1].

Moreover, a multiplicative variant of the Kantorovich lifting can be obtained
by taking (V, dV ) = ([0, 1], d⊗) (or equivalently ([0,∞), d⊗)) where d⊗(x, y) =
| lnx−ln y|. The resulting lifting is discussed in detail in Section 5 and its relation
to differential privacy is shown in Section 5.1.

4 A General Family of Bisimilarity Pseudometrics

In this section we define a general family of pseudometrics on the states of an
LCMC which have the property of extending probabilistic bisimilarity in the
usual sense. Following standard lines, we define a transformation on state pseu-
dometrics by first lifting a state pseudometric to a pseudometric on distributions

2 V could be further generalized to be a convex subset of a vector space. It is unclear
whether such a generalization would be useful, hence it is left as future work.
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(over states), using the generalized Kantorovich lifting defined in previous sec-
tion. Then we apply the standard Hausdorff lifting to obtain a pseudometric on
sets of distributions. This last step is to take into account the nondeterminism
of the LCMC, i.e., the fact that in general, from a state, we can make transitions
to different distributions. The resulting pseudometric naturally corresponds to
a state pseudometric, obtained by associating each set of distributions to the
states which originate them. Finally, we define the intended bisimilarity pseu-
dometric as the least fixpoint of this transformation wrt the ordering 	 on the
state pseudometrics (or equivalently, as the greatest fixpoint wrt the reverse of
	). We recall that m 	 m′ means that m(s, s′) ≤ m′(s, s′) for all s, s′ ∈ S.

Let A = (S,A,D) be a LCMC, let (V, dV ) be a metric space (for some convex
V ⊆ R), and let M be the set of pseudometrics m on S such that diamm(S) ≤
diamdV (V ). Recall that inf ∅ = diamdV (V ) and sup ∅ = 0.

Definition 1. The transformation FV : M → M is defined as follows.

FV (m)(s, t) = max{ sup
s

a−→μ

inf
t

a−→ν

KV (m)(μ, ν), sup
t

a−→ν

inf
s

a−→μ

KV (m)(ν, μ)}

We can also characterize FV in terms of the following zigzag formulation:

Proposition 1. For any ε ≥ 0, FV (m)(s, t) ≤ ε if and only if:

– if s
a−→ μ, then there exists ν such that t

a−→ ν and KV (m)(μ, ν) ≤ ε,

– if t
a−→ ν, then there exists μ such that s

a−→ μ and KV (m)(ν, μ) ≤ ε.

The following result states that KV and FV are monotonic wrt (M,	).

Proposition 2. Let m,m′ ∈ M. If m 	 m′ then:

FV (m)(s, s′) ≤ FV (m
′)(s, s′) for all states s, s′

KV (m)(μ, μ′) ≤ KV (m
′)(μ, μ′) for all distributions μ, μ′

Since (M,	) is a complete lattice and FV is monotone on M, by Tarski’s
theorem [24] FV has a least fixpoint, which coincides with the least pre-fixpoint.
We define the bisimilarity pseudometric bmV as this least fixpoint:

Definition 2. The bisimilarity pseudometric bmV is defined as:

bmV = min
{
m ∈ M|FV (m) = m

}
= min

{
m ∈ M|FV (m) 	 m

}

In addition, if the states of A are finite, then the closure ordinal of FV is ω
(cf: [17], Lemma 3.10). Hence we can approximate bmV by iterating the function
FV from the bottom element:

Proposition 3. Assume S is finite. Let m0 = ⊥ and mi+1 = FV (mi). Then
bmV = supimi.

Next section shows that bmV is indeed a bisimilarity metric, in the sense that
its kernel coincides with probabilistic bisimilarity.
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4.1 Bisimilarity as 0-distance

We now show that under certain conditions, the pseudometric constructed by
KV (m) characterizes bisimilarity at its kernel. Recall that the kernel ker(m) of
m is an equivalence relation relating states at distance 0.

Given an equivalence relationR on S, its lifting L(R) is an equivalence relation
on Disc(S), defined as

(μ, μ′) ∈ L(R) iff ∀s ∈ S : μ([s]R) = μ′([s]R)

where [s]R denotes the equivalence class of s wrt R.
To obtain the characterization result we assume that (a) the set of states is

finite, and (b) the distance dV is non-discrete. Under these conditions, the kernel
operator and the lifting operator commute (cfr. [15] for the analogous property
for the standard Kantorovich lifting).

Lemma 1. If S is finite and dV is non-discrete, then L(ker(m)) = ker(KV (m)).

We recall the notions of probabilistic bisimulation and bisimilarity, following
the formulation in terms of post-fixpoints of a transformation on state relations:

Definition 3.

– The transformation B : S × S → S × S is defined as: (s, s′) ∈ B(R) iff

• if s
a−→ μ, then there exists μ′ such that t

a−→ μ′ and (μ, μ′) ∈ L(R),

• if s′
a−→ μ′, then there exists μ such that s

a−→ μ and (μ′, μ) ∈ L(R).
– A relation R ⊆ S×S is called a bisimulation if it is a post-fixpoint of R, i.e.

R ⊆ B(R).

It is easy to see that B is monotonic on (2S×S,⊆) and that the latter is a
complete lattice, hence by Tarski’s theorem there exists the greatest fixpoint of
B, and it coincides with the greatest bisimulation:

Definition 4. The bisimilarity relation ∼⊆ S × S is defined as:

∼ = max{R |R = B(R)} = max{R |R ⊆ B(R)} =
⋃

{R |R ⊆ B(R)}

We are now ready to show the correspondence between pre-fixpoint metrics
and bisimulations. Using Lemma 1, we can see that the definition of B corre-
sponds to the characterization of FV in Proposition 1, for ε = 0. Hence we have:

Proposition 4. For every m ∈ M, if FV (m) 	 m then ker(m) ⊆ B(ker(m)),
i.e., ker(m) is a bisimulation.

As a consequence, ker(bmV ) ⊆∼. The converse of Proposition 4 does not hold,
because the fact that ker(m) ⊆ B(ker(m)) does not say anything about the
effect of FV on the distance between elements that are not on the kernel. How-
ever, in the case of bisimilarity we can make a connection: consider the greatest
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metric m∼ whose kernel coincides with bisimilarity, namely, m∼(s, s
′) = 0 if

s ∼ s′ and m∼(s, s
′) = diamdV (V ) otherwise. We have that FV (m∼) 	 m∼, and

therefore ∼= ker(m∼) ⊆ bmV . Therefore we can conclude that the kernel of the
bisimilarity pseudometrics coincides with bisimilarity.

Theorem 1. ker(bmV ) = ∼ for every (V, dV ),

4.2 Relation with Trace Distributions

In this section, we show the relation between the bisimilarity metric bmV and the
corresponding metric on traces, in the case of LMCs (labeled Markov chains).
Note that we restrict to the fully probabilistic case here, where probabilities on
traces can defined in the way shown in the preliminaries. The full case of LCMCs
can be treated by using schedulers, but a proper treatment involves imposing
scheduler restrictions which complicate the formalism. Since these problems are
orthogonal to the goals of this paper, we keep the discussion simple by restricting
to the fully probabilistic case.

The distance between trace distributions (i.e. distributions over Aω) will be
measured by the Kantorovich lifting of the discrete metric. Given (V, dV ), let
δV = diamdV (V ). Then let dmδV be the δV -valued discrete metric on Aω , defined
as dmδV (t, t

′) = 0 if t = t′, and dmδV (t, t
′) = δV otherwise.

ThenKV (dmδV )(μ, μ
′) is a pseudometric on Prob(Aω), whose kernel coincides

with probabilistic trace equivalence.

Proposition 5. KV(dmδV )(μ, μ
′)=0 iff μ(σ)=μ′(σ) for all measurable σ⊆Aω.

The following theorem expresses that our bisimilarity metric bmV is a bound
on the distance on traces, which extends the standard relation between proba-
bilistic bisimilarity and probabilistic trace equivalence.

Theorem 2. Let μ = Pr[s � · ] and μ′ = Pr[s′ � · ]. Then KV (dmδV )(μ, μ
′) ≤

bmV (s, s
′)

It should be noted that, although the choice of KV (dmδV ) as our trace distri-
bution metric might seem arbitrary, this metric is in fact of great interest. In the
case of the standard bisimilarity pseudometric, i.e. when (V, dV ) = ([0, 1], dR),
this metric is equal to the well-known total variation distance (also known as
statistical distance), defined as tv(μ, μ′) = supσ |μ(σ) − μ′(σ)|:

K(dmδV ) = tv (4)

Theorem 2 reduces to the result of [12] relating the total variation distance to
the bisimilarity pseudometric. Moreover, in the case of the multiplicative pseudo-
metric, discussed in the next section, KV (dmδV ) is the same as the multiplicative
distance between distributions, discussed in Section 5.1, which plays a central
role in differential privacy.
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Table 1. The standard Kantorovich metric and its multiplicative variant

Standard K(m)(μ, μ′) Multiplicative K⊗(m)(μ, μ′)

maxf |f̂(μ)− f̂(μ′)| maxf | ln f̂(μ)− ln f̂(μ′)|
Primal subject to subject to

∀s, s′. |f(s)− f(s′)| ≤ m(s, s′) ∀s, s′. | ln f(s)− ln f(s′)| ≤ m(s, s′)

min�
∑

i,j 	ijm(si, sj) min ln z

Dual subject to subject to

∀i, j. 	ij ≥ 0 ∀i, j. 	ij , ri ≥ 0

∀i. ∑j 	ij = μ(si) ∀i.∑j 	ij − ri = μ(si)

∀j. ∑i 	ij = μ′(sj) ∀j. ∑i 	ije
m(si,sj) − rj ≤ z · μ′(sj)

5 The Multiplicative Variant

In this section we investigate the multiplicative variant of the Kantorovich pseu-
dometric, obtained by considering as distance dV the ratio between two numbers
instead than their difference. This is the distance used to define differential pri-
vacy. We show that this variant has a dual form, which can be used to compute
the metric by using linear programming techniques. In the next section, we will
show how to use it to verify differential privacy.

Definition 5. The multiplicative variant K⊗ of the Kantorovich lifting is de-
fined as the instantiation of KV with ([0, 1], d⊗) where d⊗(x, y) = | lnx− ln y|.

It is well known that the standard Kantorovich metric has a dual form which
can be interpreted in terms of the Transportation Problem, namely, the lowest
total cost of transporting the mass of one distribution μ to the other distribution
μ′ given the distance m between locations (in our case, states). The dual form
is shown in Table 1. Note that both the primal and the dual forms are linear
optimization problems. The dual form is particularly suitable for computation,
via standard linear programming techniques.

For our multiplicative variant, the objective function of the primal form is not
a linear expression, hence the linear programming techniques cannot be applied

directly. However, since ln f̂(μ) − ln f̂(μ′) = ln f̂(μ)

f̂(μ′)
and ln is a monotonically

increasing function, the primal problem is actually a linear-fractional program.
It is known that such kind of program can be converted to an equivalent lin-
ear programming problem and then to a dual program. The dual form of the
multiplicative variant obtained in this way is shown in Table 1. (For the sake

of simplicity, the table shows only the dual form of ln f̂(μ)− ln f̂(μ′). The dual

form of ln f̂(μ′)− ln f̂(μ) can be obtained by simply switching the roles of μ and
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μ′.) Hence, the multiplicative pseudometric can be computed by using linear
programming techniques.

5.1 Application to Differential Privacy

Differential privacy [19] is a notion of privacy originating from the area of statis-
tical databases, which however has been recently applied to several other areas.
The standard context is that of an analyst who wants to perform a statistical
query to a database. Although obtaining statistical information is permitted,
privacy issues arise when this information can be linked to that of an individual
in the database. In order to hide this link, differentially private mechanisms add
noise to the outcome of the query, in a way such that databases differing in a
single individual have similar probability of producing the same observation.

More concretely, let X be the set of all databases; two databases x, x′ ∈ X
are adjacent, written x � x′, if they differ in the value of a single individual. A
mechanism is a function M : X → Prob(Z) where Z is some set of reported val-
ues. Intuitively, M(x) gives the outcome of the query when applied to database
x, which is a probability distribution since noise is added.

Let tv⊗ be a multiplicative variant of the total variation distance on Prob(Z)
(simply called “multiplicative distance” in [23]), defined as:

tv⊗(μ, μ
′) = sup

Z
| ln μ(Z)

μ′(Z)
|

Then differential privacy can be defined as follows.3

Definition 6. A mechanism M : X → Prob(Z) is ε-differentially private iff

tv⊗(M(x),M(x′)) ≤ ε ∀x � x′

Intuitively, the definition requires that, when run on adjacent databases, the
mechanism should produce similar results, since the distance between the corre-
sponding distributions should be bounded by ε (a privacy parameter).

In our setting, we assume that the mechanism M is modelled by a LMC, and
the result of the mechanism running on x is the trace produced by the execution
of the LMC starting from some corresponding state sx. That is, Z = Aω and

M(x) = Pr[sx � ·] (5)

The relation between differential privacy and the multiplicative bisimilarity met-
ric comes from the fact that tv⊗ can be obtained as the K⊗ lifting of the discrete
metric on Aω.

Lemma 2. Let δV = diamd⊗([0, 1]) = +∞ and let dmδV be the discrete metric
on Aω. Then tv⊗ = K⊗(dmδV ).

3 The definition can be generalized to an arbitrary set of secrets X equipped with a
“distinguishability metric” dX [10]. The results of this section extend to this setting.
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s1 s2

s

nook

a

0.9 0.1

t1 t2

t

nook

a

0.999 0.001

(a) bm(s, t) = 0.099 while ε = ln 100.

s′1 s′2

s′

nook

a

0.8 0.2

t′1 t′2

t′

nook

a

0.3 0.7

(b) bm(s′, t′) = 0.5 while ε′ = ln 3.5.

Fig. 1. The bisimilarity pseudometric bm does not imply differential privacy

Let bm⊗ be the instantiation of the bisimilarity metric bmV with K⊗. The
above Lemma, together with Theorem 2, imply the following result, which makes
bm⊗ useful to verify differential privacy:

Theorem 3. Let M be the mechanism defined by (5), and assume that

bm⊗(sx, sx′) ≤ ε for all x � x′

Then M satisfies ε-differential privacy.

Note that the use of the multiplicative bm⊗ is crucial in the above result. The
following example shows that the standard bisimilarity metric bm (generated by
the original Kantorovich lifting) may be very different from the level of differ-
ential privacy, which is expected, since bm bounds the additive total variation
metric (Theorem 2 and (4)) instead of the multiplicative tv⊗.

Example 1. Consider the processes s, t shown inFig. 1 (a).We have that bm(s, t) =
0.1− 0.001 = 0.099 while their level of differential privacy is ε = ln 0.1

0.001 = ln 100.
Moreover, for the processes s′, t′ shown in Fig. 1 (b) we have bm(s′, t′) = 0.7−0.2 =
0.5 while their level of differential privacy is ε′ = ln 0.7

0.2 = ln 3.5. Using the original
Kantorovich metric, s and t are considered more indistinguishable than s′ and t′,
in sharp contrast to the corresponding differential privacy levels.

Approximate differential privacy. An approximate, also known as (ε, δ) version of
differential privacy is also widely used [20], relaxing the definition by an additive
factor δ. It requires that:

M(x)(Z) ≤ eεM(x′)(Z) + δ ∀x � x′, Z ⊆ Z
The α-distance on distributions is proposed in [3] to capture (ε, δ)-differential
privacy. For two real numbers a, b and a skew parameter α ≥ 1, the α-distance
between a and b is max{a− αb, b − αa, 0}. An instantiation of the Kantorovich
lifting based on the α-distance seems promising for extending Theorem 3 to the
approximate case; we leave this extension as future work.

Weak probabilistic anonymity. Weak probabilistic anonymity was proposed in
[16] as a measure of the degree of protection of user’s identities. It is defined in
a way similar to differential privacy, with the crucial difference (apart from the
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lack of an adjacency relation) that it uses the (additive) total variation instead
of the multiplicative one. Formally, let X contain the users’ identities, and let
M : X → Prob(Z) be the system in which users operate. We say that M is
ε-weakly probabilistically anonymous iff tv(M(x),M(x′)) ≤ ε for all x, x′ ∈ X .

For systems modelled by LMCs, by (4) and Theorem 2, we have that if
bm(sx, sx′) ≤ ε for all x, x′ ∈ X , thenM satisfies ε-weak probabilistic anonymity.
Hence bm can be used to verify this anonymity property.

6 Process Algebra

Process algebras allow to syntactically describe probabilistic processes in terms of
a small set of well-understood operators. The operational semantics of a process
term is a LCMC with transitions derived from SOS rules.

In order to specify and verify systems in a compositional manner, it is neces-
sary that the behavioral semantics is compatible with all operators of the lan-
guage that describe these systems. For behavioral equivalence semantics there is
the common agreement that compositional reasoning requires that the consid-
ered behavioral equivalence is a congruence wrt all operators. On the other hand,
for behavioral metric semantics there are several proposals of properties that op-
erators should satisfy in order to facilitate compositional reasoning [18,1]. In this
section we will show that the standard non-recursive process algebra operators
are non-expansiveness [18] (as most prominent compositionality property) with
respect to the bisimilarity metric.

We introduce a simple probabilistic process algebra that comprises the follow-
ing operators i) constants 0 (stop process) and ε (skip process); ii) a family of
n-ary prefix operators a.([p1] ⊕. . .⊕[pn] ) with a ∈ Act , n ≥ 1, p1, . . . , pn ∈ (0, 1]
and

∑n
i=1 pi = 1; iii) binary operators ; (sequential composition), + (al-

ternative composition), +p (probabilistic alternative composition), | (syn-
chronous parallel composition), ‖ (asynchronous parallel composition), and
‖p (probabilistic parallel composition). We assume a set of actions Act with

the distinguished action
√ ∈ A to denote successful termination. The operational

semantics of all operators is specified by the rules in Table 2.
We use distribution terms in the target of rules (right hand side of the

conclusion of the rules) in order to describe distributions. We briefly recall
the semantics of distribution terms of [21,14]. The expression δ(x) denotes a
Dirac distribution on x. The expression μ; δ(y) denotes a distribution such that
(μ; δ(y))(x; y) = μ(x), the expression μ ⊕p ν denotes a distribution such that
(μ⊕p ν)(x) = pμ(x) + (1− p)ν(x), and (μ ‖ ν)(s ‖ t) = μ(s)ν(t).

The probabilistic prefix operator expresses that the process a.([p1]t1 ⊕ . . .⊕p

lus[pn]tn) can perform action a and evolves to process ti with probability pi.
The sequential composition and the alternative composition are as usual. The
synchronous parallel composition s | t describes the simultaneous evolution of
processes s and t, while the asynchronous parallel composition t ‖ t describes
the interleaving of s and t where both processes can progress by alternating
at any rate the execution of their actions. The probabilistic alternative and
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Table 2. Probabilistic process algebra operators

ε
√
−−→ δ(0) a.

n⊕

i=1

[pi]xi
a−→

n⊕

i=1

piδ(xi)

x
a−→ μ a �= √

x; y
a−→ μ; δ(y)

x
√
−−→ μ y

a−→ ν

x; y
a−→ ν

x
a−→ μ

x+ y
a−→ μ

y
a−→ ν

x+ y
a−→ ν

x
a−→ μ y

a−→ ν

x | y a−→ μ | ν
x

a−→ μ

x ‖ y
a−→ μ ‖ δ(y)

y
a−→ ν

x ‖ y
a−→ δ(x) ‖ ν

x
a−→ μ y

a−→�
x+p y

a−→ μ

x
a−→� y

a−→ ν

x+p y
a−→ ν

x
a−→ μ y

a−→ ν

x+p y
a−→ μ⊕p ν

x
a−→ μ y

a−→�
x ‖p y

a−→ μ ‖p δ(y)

x
a−→� y

a−→ ν

x ‖p y
a−→ δ(x) ‖p ν

x
a−→ μ y

a−→ ν

x ‖p y
a−→ μ ‖p δ(y)⊕p δ(x) ‖p ν

probabilistic parallel composition replaces the nondeterministic choice of their
non-probabilistic variants by a probabilistic choice. The probabilistic alterna-
tive composition s+p t evolves to the probabilistic choice between a distribution
reached by s (with probability p) and a distribution reached by t (with proba-
bility 1− p) for actions which can be performed by both processes. For actions
that can be performed by either only s or only t, the probabilistic alternative
composition s+p t behaves just like the nondeterministic alternative composition
s + t. Similarly, the probabilistic parallel composition s ‖p t evolves to a prob-
abilistic choice between the nondeterministic choices of asynchronous parallel
composition of s and t.

We start by showing an important auxiliary property how the distance be-
tween convex combinations of probability distributions relates to the distance
between the combined probability distributions.

Proposition 6. Let μ1, μ2, μ
′
1, μ

′
2 ∈ Disc(X) and p ∈ [0, 1]. Then

K⊗(bm⊗)(pμ1+(1−p)μ2, pμ
′
1+(1−p)μ′

2) ≤ max(K⊗(bm⊗)(μ1, μ2),K⊗(bm⊗)(μ
′
1, μ

′
2))

Non-expansiveness is the most wildly studied compositionality property stat-
ing that the distance between composed processes is at most the sum of the
distance between its parts.

Definition 7. A n-ary operator f is non-expansive wrt a pseudometric m if

m(f(s1, . . . , sn), f(t1, . . . , tn)) ≤
n∑

i=1

m(si, ti)

Now we can show that all (non-recursive) operators of the probabilistic process
algebra introduced above are non-expansive. In fact, we will provide upper bounds
on distance between the composed processes which are in case of the (nondeter-
ministic and probabilistic) alternative composition even stricter than the non-
expansiveness condition.
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Theorem 4. Let s, t, s′, t′ be probabilistic processes. Then

1. bm⊗(s; t, s
′; t′) ≤ bm⊗(s, s

′) + bm⊗(t, t
′)

2. bm⊗(s+ t, s′ + t′) ≤ max(bm⊗(s, s
′), bm⊗(t, t

′))
3. bm⊗(s+p t, s

′ +p t
′) ≤ max(bm⊗(s, s

′), bm⊗(t, t
′))

4. bm⊗(s | t, s′ ‖ t′) ≤ bm⊗(s, s
′) + bm⊗(t, t

′)
5. bm⊗(s ‖ t, s′ ‖ t′) ≤ bm⊗(s, s

′) + bm⊗(t, t
′)

6. bm⊗(s ‖p t, s ‖p t′) ≤ bm⊗(s, s
′) + bm⊗(t, t

′)

A similar result can be gained for the bisimilarity metric bm based on the
standard Kantorovich lifting. This generalizes a similar result of [18] which con-
sidered only PTSs without nondeterministic branching and only a small set of
process combinators.

For the generalized bisimilarity metric bmV we can formulate a similar result
for the nondeterministic alternative composition.

Theorem 5. Let s, t, s′, t′ be probabilistic processes. Then

bmV (s+ t, s′ + t′) ≤ max(bmV (s, s
′), bmV (t, t

′))

7 Conclusion and Future Work

We have proposed a family of Kantorovich pseudometrics depending on the
notion of distance used to specify properties over traces. We have developed the
theory of this notion, and showed how we can use it to verify the corresponding
kind of properties. We have also showed that for the multiplicative variant, which
is an interesting case because it corresponds to differential privacy, it is possible
to give a dual form that makes the metric computable by standard techniques.

Future work include the investigation of methods to compute other members
of this family, and of conditions that make possible a general dual form.
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