
Chapter 58

The traveling salesman problem

The traveling salesman problem (TSP) asks for a shortest Hamiltonian cir-
cuit in a graph. It belongs to the most seductive problems in combinatorial
optimization, thanks to a blend of complexity, applicability, and appeal to
imagination.
The problem shows up in practice not only in routing but also in vari-
ous other applications like machine scheduling (ordering jobs), clustering,
computer wiring, and curve reconstruction.
The traveling salesman problem is an NP-complete problem, and no
polynomial-time algorithm is known. As such, the problem would not fit
in the scope of the present book. However, the TSP is closely related to
several of the problem areas discussed before, like 2-matching, spanning
tree, and cutting planes, which areas actually were stimulated by ques-
tions prompted by the TSP, and often provide subroutines in solving the
TSP.
Being NP-complete, the TSP has served as prototype for the development
and improvement of advanced computational methods, to a large extent
utilizing polyhedral techniques. The basis of the solution techniques for
the TSP is branch-and-bound, for which good bounding techniques are
essential. Here ‘good’ is determined by two, often conflicting, criteria: the
bound should be tight and fast to compute. Polyhedral bounds turn out to
be good candidates for such bounds.

58.1. The traveling salesman problem

Given a graph G = (V,E), a Hamiltonian circuit in G is a circuit C with
V C = V . The symmetric traveling salesman problem (TSP) is: given a graph
G = (V,E) and a length function l : E → R, find a Hamiltonian circuit C of
minimum length.

The directed version is as follows. Given a digraph D = (V,A), a directed
Hamiltonian circuit, or just a Hamiltonian circuit, in D is a directed circuit C
with V C = V . The asymmetric traveling salesman problem (TSP or ATSP)
is: given a digraph D = (V,A) and a length function l : A → R, find a
Hamiltonian circuit C of minimum length.
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In the context of the traveling salesman problem, vertices are sometimes
called cities, and a Hamiltonian circuit a traveling salesman tour. If the ver-
tices are represented by points in the plane and each pair of vertices is con-
nected by an edge of length equal to the Euclidean distance between the two
points, one speaks of the Euclidean traveling salesman problem.

58.2. NP-completeness of the TSP

The problem of finding a Hamiltonian circuit and (hence) the traveling sales-
man problem are NP-complete. Indeed, in Theorem 8.11 and Corollary 8.11b
we proved the NP-completeness of the directed and undirected Hamiltonian
circuit problem. This implies the NP-completeness of the TSP, both in the
undirected and the directed case:

Theorem 58.1. The symmetric TSP and the asymmetric TSP are NP-
complete.

Proof. Given an undirected graph G = (V,E), define l(e) := 0 for each edge
e. Then G has a Hamiltonian circuit if and only if G has a Hamiltonian circuit
of length ≤ 0. This reduces the undirected Hamiltonian circuit problem to
the symmetric TSP.

One similarly shows the NP-completeness of the asymmetric TSP.

This method also gives that the symmetric TSP remains NP-complete if
the graph is complete and the length function satisfies the triangle inequality :

(58.1) l(uw) ≤ l(uv) + l(vw) for all u, v, w ∈ V .

Indeed, to test if a graphG = (V,E) has a Hamiltonian circuit, define l(uv) :=
1 if u and v are adjacent and l(uv) := 2 otherwise (for u 6= v). Then G has
a Hamiltonian circuit if and only if there exists a traveling salesman tour of
length ≤ |V |.

Garey, Graham, and Johnson [1976] and Papadimitriou [1977a] showed
that even the Euclidean traveling salesman problem is NP-complete. (Simi-
larly for several other metrics, like l1.) More on complexity can be found in
Section 58.8b below.

58.3. Branch-and-bound techniques

The traveling salesman problem is NP-complete, and no polynomial-time
algorithm is known. Most exact methods known are essentially enumerative,
aiming at minimizing the enumeration. A general framework is that of branch-
and-bound. The idea of branch-and-bound applied to the traveling salesman
problem roots in papers of Tompkins [1956], Rossman and Twery [1958],
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and Eastman [1959]. The term ‘branch and bound’ was introduced by Little,
Murty, Sweeney, and Karel [1963].

A rough, elementary description is as follows. Let G = (V,E) be a graph
and let l : E → R be a length function. For any set C of Hamiltonian circuits,
let µ(C) denote the minimum length of the Hamiltonian circuits in C.

Keep a collection Γ of sets of Hamiltonian circuits and a function λ : Γ →
R satisfying:

(58.2) (i)
⋃

Γ contains a shortest Hamiltonian circuit;
(ii) λ(C) ≤ µ(C) for each C ∈ Γ .

A typical iteration is:

(58.3) Select a collection C ∈ Γ with λ(C) minimal. Either find a circuit
C ∈ C with l(C) = λ(C) or replace C by (zero or more) smaller
sets such that (58.2) is maintained.

Obviously, if we find C ∈ C with l(C) = λ(C), then C is a shortest Hamilto-
nian circuit.

This method always terminates, but the method and its efficiency heavily
depend on how the details in this framework are filled in: how to bound (that
is, how to define and calculate λ(C)), how to branch (that is, which smaller
sets replace C), and how to find the circuit C.

As for branching, the classes C in Γ can be stored implicitly: for example,
by prescribing sets B and F of edges such that C consists of all Hamiltonian
circuits whose edge set contains B and is disjoint from F . Then we can split C
by selecting an edge e ∈ E\(B∪F ) and replacing C by the classes determined
by B ∪ {e}, F and by B,F ∪ {e} respectively.

As for bounding, one should choose λ(C) that is fast to compute and close
to µ(C). For this, polyhedral bounds seem good candidates, and in the coming
sections we consider a number of them.

For finding the circuit C ∈ C, a heuristic or exact method can be used. If
it returns a circuit C with l(C) > λ(C), we can delete all sets C′ from Γ with
λ(C′) ≥ l(C), thus saving computer space.

58.4. The symmetric traveling salesman polytope

The (symmetric) traveling salesman polytope of an undirected graph G =
(V,E) is the convex hull of the incidence vectors (in R

E) of the Hamiltonian
circuits. The TSP is equivalent to minimizing a function lTx over the traveling
salesman polytope. Hence this is NP-complete.

The NP-completeness of the TSP also implies that, unless NP=co-NP, no
description in terms of inequalities of the traveling salesman polytope may be
expected (Corollary 5.16a). In fact, as deciding if a Hamiltonian circuit exists
is NP-complete, it is NP-complete to decide if the traveling salesman polytope
is nonempty. Hence, if NP6=co-NP, there exist no inequalities satisfied by
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the traveling salesman polytope such that their validity can be certified in
polynomial time and such that they have no common solution.

58.5. The subtour elimination constraints

Polynomial-time computable lower bounds on the minimum length of a
Hamiltonian circuit can be obtained by including the traveling salesman poly-
tope in a larger polytope (a relaxation) over which lTx can be minimized in
polynomial time.

Dantzig, Fulkerson, and Johnson [1954a,1954b] proposed the following
relaxation:

(58.4) (i) 0 ≤ xe ≤ 1 for each edge e,
(ii) x(δ(v)) = 2 for each vertex v,
(iii) x(δ(U)) ≥ 2 for each U ⊆ V with ∅ 6= U 6= V .

The integer solutions of (58.4) are precisely the incidence vectors of the Hamil-
tonian circuits. If (ii) holds, then (iii) is equivalent to:

(58.5) (iii’) x(E[U ]) ≤ |U | − 1 for each U ⊆ V with ∅ 6= U 6= V .

These conditions are called the subtour elimination constraints.
It can be shown with the ellipsoid method that the minimum of lTx over

(58.4) can be found in strongly polynomial time (cf. Theorem 5.10). For this
it suffices to show that the conditions (58.4) can be tested in polynomial
time. This is easy for (i) and (ii). If (i) and (ii) are satisfied, we can test (iii)
by taking x as capacity function, and test if there is a cut δ(U) of capacity
less than 2, with ∅ 6= U 6= V .

No combinatorial polynomial-time algorithm is known to minimize lTx

over (58.4). In practice, one can apply the simplex method to minimize lTx
over the constraints (i) and (ii), test if the solution satisfies (iii) by finding
a cut δ(U) minimizing x(δ(U)). If this cut has capacity at least 2, then x

minimizes lTx over (58.4). Otherwise, we can add the constraint x(δ(U)) ≥ 2
to the simplex tableau (a cutting plane), and iterate. (This method is implicit
in Dantzig, Fulkerson, and Johnson [1954b].)

Branch-and-bound methods that incorporate such a cutting plane method
to obtain bounds and that extend the cutting plane found to all other nodes
of the branching tree to improve their bounds, are called branch-and-cut.

System (58.4) generally is not enough to determine the traveling salesman
polytope: for the Petersen graph G = (V,E), the vector x with xe = 2

3
for

each e ∈ E satisfies (58.4) but is not in the traveling salesman polytope of G
(as it is empty).

Wolsey [1980] (also Shmoys and Williamson [1990]) showed that if G is
complete and the length function l satisfies the triangle inequality, then the
minimum of lTx over (58.4) is at least 2

3
times the minimum length of a

Hamiltonian circuit. It is conjectured (cf. Carr and Vempala [2000]) that
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for any length function, a lower bound of 3

4
holds (which is best possible).

Related results are given by Papadimitriou and Vempala [2000] and Boyd
and Labonté [2002] (who verified the conjecture for n ≤ 10).

Maurras [1975] and Grötschel and Padberg [1979b] showed that, if G is
the complete graph on V and 2 ≤ |U | ≤ |V |−2, then the subtour elimination
constraint (58.4)(iii) determines a facet of the traveling salesman polytope.

Chvátal [1989] showed the NP-completeness of recognizing if the bound
given by the subtour elimination constraints is equal to the length of a short-
est tour. He also showed that there is no nontrivial upper bound on the
relative error of this bound.

58.6. 1-trees and Lagrangean relaxation

Held and Karp [1971] gave a method to find the minimum value of lTx over
(58.4), with the help of 1-trees and Lagrangean relaxation.

Let G = (V,E) be a graph and fix a vertex, say 1, of G. A 1-tree is a subset
F of E such that |F ∩ δ(1)| = 2 and such that F \ δ(1) forms a spanning tree
on V \ {1}. So each Hamiltonian circuit is a 1-tree with all degrees equal to
2.

It is easy to find a shortest 1-tree F , as it consists of a shortest spanning
tree of the graph G − 1, joined with the two shortest edges incident with
vertex 1. Corollary 50.7c implies that the convex hull of the incidence vectors
of 1-trees is given by:

(58.6) (i) 0 ≤ xe ≤ 1 for each e ∈ E,
(ii) x(δ(1)) = 2,
(iii) x(E[U ]) ≤ |U | − 1 for each nonempty U ⊆ V \ {1},
(iv) x(E) = |V |.

Then (58.4) is equivalent to (58.6) added with (58.4)(ii).
The Lagrangean relaxation approach to find the minimum of lTx over

(58.4) is based on the following result. For any y ∈ R
V define

(58.7) ly(e) := l(e)− yu − yv

for e = uv ∈ E, and define

(58.8) f(y) := 2y(V ) + min
F

ly(F ),

where F ranges over all 1-trees. Christofides [1970] and Held and Karp [1970]
observed that for each y ∈ R

V :

(58.9) f(y) ≤ the minimum length of a Hamiltonian circuit,

since if C is a shortest Hamiltonian circuit, then f(y) ≤ 2y(V )+ly(C) = l(C).
The function f is concave. Since a shortest 1-tree can be found fast, also

f(y) can be computed fast. Held and Karp [1970] showed:
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Theorem 58.2. The minimum value of lTx over (58.4) is equal to the max-
imum value of f(y) over y ∈ R

V .

Proof. This follows from general linear programming theory. Let Ax = b be
system (58.4)(ii) and let Cx ≥ d be system (58.6). As (58.4) is equivalent to
Ax = b, Cx ≥ d, we have, using LP-duality:

(58.10) min
Ax = b
Cx ≥ d

lTx = max
y, z

z ≥ 0

yTA + zTC = lT

yTb+ zTd

= max
y

(yTb+ max
z ≥ 0

zTC = lT − yTA

zTd) = max
y

(

yTb+ min
Cx≥d

(lT − yTA)x
)

= max
y

f(y).

The last inequality holds as Cx ≥ d determines the convex hull of the inci-
dence vectors of 1-trees.

This translates the problem of minimizing lTx over (58.4) to finding the
maximum of the concave function f . We can find this maximum with a
subgradient method (cf. Chapter 24.3 of Schrijver [1986b]). The vector y

(the Lagrangean multipliers) can be used as a correction mechanism to urge
the 1-tree to have degree 2 at each vertex. That is, if we calculate f(y), and
see that the 1-tree F minimizing ly(F ) has degree more than 2 at a vertex
v, we can increase ly on δ(v) by decreasing yv. Similarly, if the degree is less
than 2, we can increase yv. This method was proposed by Held and Karp
[1970,1971].

The advantage of this approach is that one need not implement a lin-
ear programming algorithm with a constraint generation technique, but that
instead it suffices to apply the more elementary tools of finding a shortest
1-tree and updating y. More can be found in Jünger, Reinelt, and Rinaldi
[1995].

58.7. The 2-factor constraints

A strengthening of relaxation (58.4) is obtained by using the facts that each
Hamiltonian circuit is a 2-factor and that the convex hull of the incidence
vectors of 2-factors is known (Corollary 30.8a) (this idea goes back to Robin-
son [1949] for the asymmetric TSP and Bellmore and Malone [1971] for the
symmetric TSP, and was used for the symmetric TSP by Grötschel [1977a]
and Pulleyblank [1979b]):

(58.11) (i) 0 ≤ xe ≤ 1 for each edge e,
(ii) x(δ(v)) = 2 for each vertex v,
(iii) x(δ(U)) ≥ 2 for each U ⊆ V with ∅ 6= U 6= V ,
(iv) x(δ(U) \ F )− x(F ) ≥ 1− |F |

for U ⊆ V , F ⊆ δ(U), F matching, |F | odd.
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Since a minimum-length 2-factor can be found in polynomial time, the in-
equalities (i), (ii), and (iv) can be tested in polynomial time (cf. Theorem
32.5). Hence the minimum of lTx over (58.11) can be found in strongly pol-
ynomial time.

System (58.11) generally is not enough to determine the traveling sales-
man polytope, as can be seen, by taking the Petersen graph G = (V,E) and
xe := 2

3
for each edge e.

Grötschel and Padberg [1979b] showed that, for complete graphs, each
of the inequalities (58.11)(iv) determines a facet of the traveling salesman
polytope (if |F | ≥ 3). Boyd and Pulleyblank [1991] studied optimization over
(58.11).

58.8. The clique tree inequalities

Grötschel and Pulleyblank [1986] found a large class of facet-inducing inequal-
ities, the ‘clique tree inequalities’, that generalize the ‘comb inequalities’ (see
below), which generalize both the subtour elimination constraints (58.4)(iii)
and the 2-factor constraints (58.11)(iv). However, no polynomial-time test of
clique tree inequalities is known.

A clique tree inequality is given by:

(58.12)
r

∑

i=1

x(δ(Hi)) +
s

∑

j=1

x(δ(Tj)) ≥ 2r + 3s− 1,

where H1, . . . , Hr are pairwise disjoint subsets of V and T1, . . . , Ts are pair-
wise disjoint proper subsets of V such that

(58.13) (i) no Tj is contained in H1 ∪ · · · ∪Hr,
(ii) each Hi intersects an odd number of the Tj ,
(iii) the intersection graph of H1, . . . , Hr, T1, . . . , Ts is a tree.

(Here, the intersection graph is the graph with vertices H1, . . . , Hr, T1, . . . , Ts,
two of them being adjacent if and only if they intersect. Each Hi is called a
handle and each Tj a tooth.)

Theorem 58.3. The clique tree inequality (58.12) is valid for the traveling
salesman polytope.

Proof. It suffices to show that each Hamiltonian circuit C satisfies:

(58.14)

r
∑

i=1

dC(Hi) +

s
∑

j=1

dC(Tj) ≥ 2r + 3s− 1.

We apply induction on r, the case r = 0 being easy (as it implies s = 1). For
each i = 1, . . . , r, let βi be the number of Tj intersecting Hi.
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If there is an i with dC(Hi) ≥ βi, say i = 1, then, by parity, dC(H1) ≥ β1+
1. The sets H2, . . . , Hr, T1, . . . , Ts fall apart into β1 collections of type (58.13),
to which we can apply induction. Adding up the inequalities obtained, we get:

(58.15)

r
∑

i=2

dC(Hi) +

s
∑

j=1

dC(Tj) ≥ 2(r − 1) + 3s− β1.

Then (58.14) follows, as dC(H1) ≥ β1 + 1.
So we can assume that dC(Hi) ≤ βi−1 for each i. For all i, j, let αi,j := 1

if Tj ∩ Hi 6= ∅ and C has no edge connecting Tj ∩ Hi and Tj \ Hi, and let
αi,j := 0 otherwise. Then

(58.16) dC(Tj) ≥ 2 + 2

r
∑

i=1

αi,j ,

since C restricted to Tj falls apart into at least 1 +
∑r

i=1
αi,j components

(using (58.13)(i)).
Moreover, for each i = 1, . . . , r, there exist at least βi − dC(Hi) indices j

with αi,j = 1. Hence

(58.17)

s
∑

j=1

dC(Tj) ≥ 2s+ 2

r
∑

i=1

s
∑

j=1

αi,j ≥ 2s+ 2

r
∑

i=1

(βi − dC(Hi))

≥ 2s+ r +

r
∑

i=1

(βi − dC(Hi)) = 2r + 3s− 1−
r

∑

i=1

dC(Hi),

since
∑r

i=1
βi = r + s − 1, as the intersection graph of the Hi and the Tj is

a tree with r + s vertices, and hence with r + s− 1 edges.
(58.17) implies (58.14).

Notes. Grötschel and Pulleyblank [1986] also showed that, if G is a complete graph,
then any clique tree inequality determines a facet if and only if each Hi intersects
at least three of the Tj .

The clique tree inequalities are not enough to determine the traveling salesman
polytope, as is shown again by taking the Petersen graph G = (V, E) and xe := 2

3

for all e ∈ E.
The special case r = 1 of the clique tree inequality is called a comb inequality,

and was introduced by Grötschel and Padberg [1979a] and proved to be facet-
inducing (if G is complete and s ≥ 3) by Grötschel and Padberg [1979b].

The special case of the comb inequality with |H1 ∩Tj | = 1 for all j = 1, . . . , s is
called a Chvátal comb inequality, introduced by Chvátal [1973b]. The special case of
the Chvátal comb inequalities with |Tj | = 2 for each j = 1, . . . , s gives the 2-factor
constraints (58.11)(iv) (since 2x(F ) +

∑
f∈F

x(δ(f)) = 4|F |).
No polynomial-time algorithm is know to test the clique tree inequalities, or the

comb inequalities, or the Chvátal comb inequalities. Carr [1995,1997] showed that
for each constant K, there is a polynomial-time algorithm to test the clique tree
inequalities with at most K teeth and handles. (This can be done by first fixing
intersection points of the Hi ∩ Tj (if nonempty) and points in Tj \ (H1 ∪ · · · ∪ Hr),
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and next finding minimum-capacity cuts separating the appropriate sets of these
points (taking x as capacity function). We can make them disjoint where necessary
by the usual uncrossing techniques. As K is fixed, the number of vertices to be
chosen is also bounded by a polynomial in |V |.)

Letchford [2000] gave a polynomial-time algorithm for testing a superclass of the
comb inequalities in planar graphs. Related results are given in Carr [1996], Fleis-
cher and Tardos [1996,1999], Letchford and Lodi [2002], and Naddef and Thienel
[2002a,2002b].

58.8a. Christofides’ heuristic for the TSP

Christofides [1976] designed the following algorithm to find a short Hamiltonian
circuit in a complete graph G = (V, E) (generally not the shortest however). It
assumes a nonnegative length function l satisfying the following triangle inequality :

(58.18) l(uw) ≤ l(uv) + l(vw)

for all u, v, w ∈ V .
First determine a shortest spanning tree T (with the greedy algorithm). Next,

let U be the set of vertices that have odd degree in T . Find a shortest perfect
matching M on U . Now ET ∪ M forms a set of edges such that each vertex has
even degree. (If an edge occurs both in ET and in M , we take it as two parallel
edges.) So we can make a closed path C such that each edge in ET ∪M is traversed
exactly once. Then C traverses each vertex at least once. By shortcutting we obtain
a Hamiltonian circuit C′ with l(C′) ≤ l(C).

How far away is the length of C′ from the minimum length µ of a Hamiltonian
circuit?

Theorem 58.4. l(C′) ≤ 3

2
µ.

Proof. Let C′′ be a shortest Hamiltonian circuit. Then l(T ) ≤ l(C′′) = µ, since C′′

contains a spanning tree. Also, l(M) ≤ 1

2
l(C′′) = 1

2
µ, since we can split C′′ into

two collections of paths, each having U as set of end vertices. They give two perfect
matchings on U , of total length at most l(C′′) (by the triangle inequality (58.18)).
Hence one of these matchings has length at most 1

2
l(C′′). So l(M) ≤ 1

2
l(C′′) = 1

2
µ.

Combining the two inequalities, we obtain

(58.19) l(C′) ≤ l(C) = l(T ) + l(M) ≤ 3

2
µ,

which proves the theorem.

The factor 3

2
seems quite large, but it is the smallest factor for which a

polynomial-time method is known. Don’t forget moreover that it is a worst-case

bound, and that in practice (or on average) the algorithm might have a much
better performance.

Wolsey [1980] showed more strongly that (if l satisfies the triangle inequality)
the length of the tour found by Christofides’ algorithm, is at most 3

2
times the

lower bound based on the subtour elimination constraints (58.4). If all distances
are 1 or 2, Papadimitriou and Yannakakis [1993] gave a polynomial-time algorithm
with worst-case factor 7

6
. Hoogeveen [1991] analyzed the behaviour of Christofides’

heuristic when applied to finding shortest Hamiltonian paths.


