
Decidability Results for Parametric Probabilistic Transition Systems
with an Application to Security

Ruggero Lanotte
Dipartimento di Scienze della Cultura, Politiche e dell’Informazione - Università dell’Insubria
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Abstract

We develop a model of Parametric Probabilistic Tran-
sition Systems. In this model probabilities associated with
transitions may be parameters, and we show how to find
instances of parameters that satisfy a given property and
instances that either maximize or minimize the probability
of reaching a given state. We show, as an application, the
model of a probabilistic non repudiation protocol. The the-
ory we develop, allows us to find instances that maximize
the probability that the protocol ends in a fair state (no par-
ticipant has an advantage over the others).

1 Introduction

Many formalisms have been proposed to specify and ver-
ify systems in which the behavior is controlled by decisions
that can be taken at each state of the system, based on a
probabilistic choice [2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 18,
20, 21]. Such frameworks have been used to describe and
analyze fault tolerant systems, randomized algorithms and
communication protocols. To model systems of this kind
it may be useful to represent probabilities as parameters
which can be instantiated such that the system enjoys some
given property.

In this paper we develop a model of Parametric Prob-
abilistic Transition Systems and we show how to find in-
stances of parameters that satisfy a given property and in-
stances that either maximize or minimize the probability of
reaching a given state.

In Section 2 we recall some basic notions. In Section 3
we introduce Parametric Probabilistic Transition Systems.

In Section 4 we tackle the problem of existence of instances
of parameters which satisfy a given property and of finding
optimal instances. In Section 5, as an application, we show
the model of a probabilistic non-repudiation protocol. In
Section 6 we anticipate some future work.

2 Basic notions

With α, β, . . . we denote parameters assuming real val-
ues. An instance u is a function assigning a real value to
each parameter.

We define the set P of polynomial terms over parameters
as follows:

τ ::= c | c · α | τ1 + τ2 | τ1 · τ2

where τ, τ1, τ2 ∈ P , c ∈ IR and α is a parameter. A polyno-
mial term is a linear term if it is constructed without oper-
ation τ1 · τ2. With Par(τ) we denote the set of parameters
appearing in the term τ .

An instance u extends to P as follows:

u(c) = c

u(c · α) = c · u(α)
u(τ1 + τ2) = u(τ1) + u(τ2)
u(τ1 · τ2) = u(τ1) · u(τ2).

We define the set Φ of formulae as follows:

φ ::= τ ∼ τ ′ | ¬φ1 | φ1 ∨ φ2 | φ1 ∧ φ2

where φ, φ1, φ2 range over Φ, τ, τ ′ are in P , and ∼∈ {<
,≤,=,≥, >}. A formula in Φ is linear iff all terms τ ∈ P
appearing in φ are linear. With Par(φ) we denote the set of
parameters appearing in φ.
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Let φ ∈ Φ and u be an instance; we say that u satisfies
φ, written u |= φ, iff

u |= τ ∼ τ ′ iff u(τ) ∼ u(τ ′)
u |= ¬φ1 iff u 6|= φ1

u |= φ1 ∨ φ2 iff either u |= φ1 or u |= φ2

u |= φ1 ∧ φ2 iff both u |= φ1 and u |= φ2.

A known property of formulae in Φ is the following.

Theorem 2.1 For each φ ∈ Φ, it is decidable in exponen-
tial time w.r.t. the size of φ whether there exists an instance
u such that u |= φ.

3 Parametric Probabilistic Transition Sys-
tems

Definition 3.1 A Parametric Probabilistic Transition Sys-
tem S is a quadruple (Q, q0, T r, λ) such that:

• Q is a set of states;

• q0 ∈ Q is the initial state;

• Tr ⊆ Q×Q is a set of transitions;

• λ : Tr → P is a function assigning to each transition
(q, q′) a term τ representing the probability of taking
that transition.

If q is a state, then with Start(q) we denote the set of
transitions with source q in S, namely the set {(qi, qj) ∈
Tr | qi = q}. Moreover, with Par(S) we denote the set of
parameters appearing in the terms assigned by λ to transi-
tions.

Example 3.2 Consider the Parametric Probabilis-
tic Transition System of Figure 1. As an exam-
ple, we have λ((q2, q5)) = α1 + α2, Start(q2) =
{(q2, q1), (q2, q3), (q2, q5)}, and Par(S) = {α1, α2}.

A run of S is a possible infinite sequence of steps of the
form ω = q0 → q1 → . . . where (qi, qi+1) is in Tr. The
length of ω, denoted length(ω), represents the number of
transition between states performed by the run and is equal
to n if ω is the finite run q0 → q1 → · · · → qn, and∞ oth-
erwise. With Pathfin(S) (resp. Pathful(S)) we denote
the set of finite (resp. infinite) runs of S.

Let k ≤ length(ω); with ω(k) we denote the state qk
and with ω(k) we denote the run q0 if k = 0, and the run
q0 → q1 → · · · → qk, otherwise.

If k = length(ω), then we say that ω is a prefix of ω′ if
and only if length(ω′) ≥ k and ω = (ω′)(k).

Definition 3.3 An instance u is well defined for a Paramet-
ric Probabilistic Transition System S if and only if for each
transition e of S we have that u(λ(e)) ∈ [0, 1], and, for
each state q of S, it holds that

∑

e∈Start(q) u(λ(e)) = 1.
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Figure 1. A Parametric Probabilistic Transi-
tion System.

Example 3.4 The instance u1 such that u1(α1) =
u1(α2) = 1

4 , and the instance u2 such that u2(α1) = 0,
u2(α2) =

1
2 are well defined for the Parametric Probabilis-

tic Transition System of Figure 1. The instance u3 such that
u3(α1) = u3(α2) = 1 is not well defined.

If ω is a finite run q0 → q1 → · · · → qn and u is a
well defined instance for S, then we denote with µ(ω, u)
the probability of ω according to u and we compute µ(ω, u)
as follows:

µ(ω, u) =

{

1 if n = 0
µ(ω(n−1), u) · u(λ((qn−1, qn))) if n > 0

Assuming the basic notions of probability theory (see
e.g. [12]), the measure µu defined on the set Pathful(S)
is the unique measure such that

µu({ω | ω ∈ Pathful(S) ∧ ω′ is a prefix of ω}) = µ(ω′, u)

for any ω′ ∈ Pathfin(S).

4 Reachability Problem and Decidability Re-
sults

In this section we consider the problem of computing
the probability of reaching a certain state. We tackle this
problem in a parametric setting, hence we consider exis-
tence, search and optimization of a well defined instance.

Let q be a state of S and u be a well defined instance for
S. With Pu(q, S) we denote the probability of reaching the
state q with the instance u, more precisely

Pu(q, S) = µu({ω ∈ Pathful(S) | ∃k : ω(k) = q}).

We note that the set {ω ∈ Pathful(S) | ∃k : ω(k) = q}
is measurable, and hence the probability P u(q, S) is well
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defined.

With Adm(q) ⊂ Q we denote the set of states that can
be crossed for reaching the state q from the initial state
q0 of S. We assume that q 6∈ Adm(q). Moreover with
AdmTr(q, q′) ⊂ Tr we denote the set of transitions start-
ing from q′ and reaching a state in Adm(q) ∪ {q}, more
precisely the set

AdmTr(q, q′) = {(q′, q′′) ∈ Tr | q′′ ∈ Adm(q) ∪ {q}}.

Example 4.1 Let us consider the Parametric Probabilis-
tic Transition System S of the example in Figure 1.
We have that Adm(q4) = {q0, q1, q2}. Moreover,
we have that AdmTr(q4, q1) = {(q1, q2), (q1, q4)} and
AdmTr(q4, q2) = {(q2, q1)}.

Proposition 4.2 P u(q, S) is equal to the solution of xq0 of
the following system of linear equations:

xq = 1 ∧
∧

q′∈Adm(q)

xq′ =
∑

(q′,q′′)∈AdmTr(q,q′)

u(λ((q′, q′′))) · xq′′ .

Proof. By induction on the length of runs of S, and from
the fact that

Pu(q, S) =
∑

(q0,q′)∈Start(q0)

u(λ((q0, q
′))) · Pu(q, Sq′)

where Sq′ is S with q′ as initial state, and since
Pu(q, S) = 0 if q is not reachable from the initial
state of S. 2

4.1 The Problem of existence of an instance

Let S be a Parametric Probabilistic Transition System,
q be a state of S, αq be a parameter not in Par(S) and φ

be a formula such that Par(φ) = Par(S) ∪ {αq}. With
Set(S, q, φ) we denote the set of well defined instances u
such that u |= φ and u(αq) = Pu(q, S). The parameter
αq appearing in φ represents the value of the probability
Pu(q, S).

Theorem 4.3 (Existence) For any Parametric Probabilis-
tic Transition System S, state q and formula φ, it is decid-
able whether Set(S, q, φ) 6= ∅ in exponential time w.r.t. the
size of S.

Proof. Given a Parametric Probabilistic Transition System
S = (Q, q0, T r, λ), a state q ∈ Q and a formula φ we build
the formula φ̄ as follows:

φ̄ = φ ∧ αq = xq0 ∧ φ1 ∧ φ2 ∧ φ3

where φ1 is the formula

xq = 1 ∧
∧

q′∈Adm(q)

xq′ =
∑

(q′,q′′)∈AdmTr(q,q′)

λ((q′, q′′)) · xq′′ .

and φ2 is the formula
∧

e∈Tr

λ(e) ∈ [0, 1]

and φ3 is the formula
∧

q′∈Q

∑

e∈Start(q′)

λ(e) = 1.

An instance u satisfying the formula φ̄ is such that
u |= φ, u(αq) = Pu(q, S) and u is well defined for S. As a
consequence Set(S, q, φ) = {u | u |= φ̄}. By Theorem 2.1
it is decidable in exponential time to check the existence
of an instance u that satisfies φ̄, hence, it is also decidable
in exponential time w.r.t. the size of S to check whether
Set(S, q, φ) 6= ∅. 2

Example 4.4 Let us suppose the Parametric Probabilistic
Transition System S of example of Figure 1. We want to
know whether there exists an instance in the set

Set(S, q5, (αq5 > α1 ∧ α1 > 0)).

This set is not empty if and only if the following formula is
satisfiable:

αq5 > α1

∧ α1 > 0
∧ αq5 = xq0
∧ xq5 = 1
∧ xq3 = xq5
∧ xq2 = (α1 + α2) · xq5 +

1
4 · xq3 +

1
4 · xq1

∧ xq1 = α1 · xq2
∧ xq0 = 1

4 · xq1 +
1
3 · α1 · xq2 + ( 3

4 −
1
3 · α1) · xq3 .

But the formula above is a formula in Φ, and so, by Theorem
2.1, it is decidable to check its satisfiability.

4.2 Finding a solution

We consider now the problem of finding an instance
in Set(S, q, φ) such that u(αq) = c, for a given value
c ∈ [0, 1]. Actually, Theorem 4.3 answers the problem of
existence of an instance but does not give one. To find an
instance in Set(S, q, φ) is a harder problem with respect
to the problem of existence of an instance. Hence, to have
decidability, we must consider some restrictions. More
precisely, we consider Parametric Probabilistic Transition
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System S with at most one parameter.

Let τ be a term such that Par(τ) = {β}, for some β. the
degree of τ , denoted with dg(τ), is the maximum natural n
such that τ = cn · β

n + · · ·+ c1 · β + c0 and cn 6= 0.

Definition 4.5 A Parametric Probabilistic Transition Sys-
tem S has degree at most k for q if and only if |Par(S)| ≤ 1,
dg(λ(e)) ≤ k, for any e ∈ Tr, and





∑

q′∈Adm(q)

max{dg(λ(e)) | e ∈ AdmTr(q, q′)}



 ≤ k.

Hence, a Parametric Probabilistic Transition System S has
degree at most k for q if and only if

1. S has at most one parameter,

2. Each term labeling a transition has degree at most k,
and

3. The sum of the degrees of the terms with maximum
degree appearing in the admissible transitions of each
state in Adm(q) are less or equal to k.

Example 4.6 Let us consider the Parametric Probabilistic
Transition System S of example of Figure 1 such that α2 =
1
4 . We have that S has degree at most 2 for q4. Actually,
Par(S) = {α1}, each transition has a label with degree
equal to either 1 or 0, and

max{dg(λ(e)) | e ∈ AdmTr(q4, q0)} = 1,

max{dg(λ(e)) | e ∈ AdmTr(q4, q1)} = 1,

and

max{dg(λ(e)) | e ∈ AdmTr(q4, q2)} = 0.

Actually, there exist terms appearing in admissible transi-
tions of q0 and q1 with degree equal to 1, and no parameter
appears in the unique admissible transition of q2. There-
fore, we have that 1 + 1 + 0 = 2 and hence S has degree
at most 2 for q4. In the same manner, S has degree at most
3 for q5. Moreover, if we do not instantiate the parameter
α2, the Parametric Probabilistic Transition System S has
no degree at most k, for any k.

Theorem 4.7 For each Parametric Probabilistic Transition
System S with degree at most 2 for q, and for each linear
formula φ and a value c ∈ [0, 1], a well defined instance u,
such that u ∈ Set(S, q, φ) and u(αq) = c, can be found in
polynomial time w.r.t. the size of S.

Proof. First of all, by proposition 4.2, we have that the
possible values that xq0 can assume are those expressed by
the system of equations Eq that is equal to

xq = 1 ∧
∧

q′∈Adm(q)

xq′ =
∑

(q′,q′′)∈AdmTr(q,q′)

λ((q′, q′′)) · xq′′ .

We prove that, if S is a Parametric Probabilistic Transi-
tion System with degree at most 2 for q and Par(S) = {β},
then there exist two terms τ1 and τ2 such that Par(τi) =
{β} and dg(τi) ≤ 2, for i = 1, 2, and the set of solutions of
xq0 is expressed by τ1

τ2
.

Actually, Eq is of the form Ax = b, where A is the
matrix of coefficients of Eq, x is the vector of variables xq′ ,
for q′ ∈ Adm(q), and b is a vector with value 1 for the
element at the position of xq and value 0 for the elements at
the other positions. Therefore, the solution of xq0 is equal to
the Aq

AS
, where Aq is the determinant of the matrix A where

the column of position xq is replaced with b, and AS is the
determinant of the matrix A.

By induction on the computation of the determinant, we
have that xq0 = τ1

τ2
, for some terms τ1 and τ2 such that

Par(τi) = {β} and dg(τi) ≤ 2, for i = 1, 2.
Now, we must consider the case that c = τ1

τ2
but this

is equivalent to τ1 − c · τ2 = 0. Hence, by solving the
polynomial τ1 − c · τ2 of degree 2 we have two cases. The
polynomial has not solution in the interval [0, 1] and there-
fore Set(S, q, φ) is empty. The polynomial has at least a
solution in the interval [0, 1]. Let c′ and c′′ be the solutions
in [0, 1] (if there exist only one solution, then we suppose
that c′ = c′′). Hence, we must find a solution in the space

(β ∈ {c′, c′′})∧
∧

e∈Tr

λ(e) ∈ [0, 1]∧
∧

q′∈Q

∑

e∈Start(q′)

λ(e) = 1

where β is the unique parameter in Par(S).
Now each occurrence of λ(e) is at most a polynomial of

degree 2 and so
∧

e∈Tr

λ(e) ∈ [0, 1] ∧
∧

q′∈Q

∑

e∈Start(q′)

λ(e) = 1.

can be substituted with a liner formula by resolving the
polynomials of degree 2. Actually, each formula c2 · β2 +
c1 · β + c0 ∼ 0, where c2, c1, c0 ∈ IR, can be written as a
finite (at most 2) disjunction of formulae of the form β ∈ I ,
where I is an interval.

Hence, the resulting formula is linear, and therefore
finding a solution is decidable. Moreover, since computing
the determinant takes a polynomial time, the same holds
for finding a solution. 2

Example 4.8 Consider the Parametric Probabilistic Tran-
sition System S of Figure 1. We look for an instance u such
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that Pu(S, q4, α1 ≥
1
2 ) is equal to 1

6 . Now, by solving the
system of linear equations introduced in Proposition 4.2, we
have that

αq4 = xq0 =
α2

1 + 2 · α1 − 3

3 · α1 − 12
=

1

6
.

So we must find a value for α1 such that 6α2
1+9α1−6 = 0.

The solutions are α1 ∈ {−2,
1
2}. We must check whether

these solutions are admissible. First of all we require that
α1 ≥

1
2 . Hence−2 is not an admissible solution1. It is easy

to check that for α1 = 1
2 , we have that λ(e) ∈ [0, 1], for all

transitions e, and
∑

e∈Start(q′) λ(e) = 1, for each state q′.

4.3 The Problem of finding the Maxi-
mum/Minimum instance

Now we consider the case in which one wants either to
maximize or to minimize the probability of reaching a cer-
tain state. This problem may have an interesting application
in practice, as we shall show.

Theorem 4.9 (Maximizing/Miniminizing) For any Para-
metric Probabilistic Transition System S having degree at
most 1 for q and linear formula φ, it is decidable in polyno-
mial time w.r.t. the size of S to find an instance u such that,
for each u′ ∈ Set(S, q, φ), it holds that u(αq) ≥ u′(αq)
(resp. u(αq) ≤ u′(αq)).

Proof. By following the proof of Theorem 4.7 we have that
xq0 = τ1

τ2
where both τ1 and τ2 have degree less or equal to

1.
Now by mimicking the proof of Theorem 4.3 it is suffi-

cient to maximize (minimize) the function τ1
τ2

in the space
φ′ that is equal to

φ∧αq ∈ [0, 1]∧
∧

e∈Tr

λ(e) ∈ [0, 1]∧
∧

q′∈Q

∑

e∈Start(q′)

λ(e) = 1.

Since αq = τ1
τ2

we can substitute in φ′ each occurrence
of αq with τ1

τ2
.

Each atomic formula of φ′ is of the form c1 ·
τ1
τ2

+
c2 · β ∼ c3 where β is the unique parameter of S and
Par(τi) = {β}, for i = 1, 2. Hence this formula
is equivalent to (c1 · τ1 + c2 · τ2 · β ∼ c3 · τ2 ∧ τ2 > 0) ∨
(c3 · τ2 ∼ c1 · τ1 + c2 · τ2 · β ∧ τ2 < 0).

Since dg(τi) ≤ 1, for i = 1, 2, then the formula above is
a formula with terms of degree at most 2.

Hence φ′ can be expressed as the composition of formu-
lae of the form, c′′ · β2 + c′ · β + c ∼ 0, which can be
substituted with a linear formula by resolving the polyno-
mial c2 · β2 + c1 · β + c0.

1Note that a valuation with α1 = −2 is also not well defined.

Therefore, φ′ is equivalent to a disjunction of formulae
of the form β ∈ I , where I is an interval.

Now the maximum (resp. minimum) of τ1
τ2

in a space
which is a finite disjunction of formulae of the form β ∈ I ,
where I is an interval, can be easily found.

Actually, the maximum of τ1
τ2

is when d
dβ

τ1
τ2

= 0 but,
since dg(τ1) ≤ 1 and dg(τ2) ≤ 1, we have that

d

dβ

τ1

τ2
=
c1 · β + c2

(τ2)2
,

for some c1, c2 ∈ IR.
Therefore, if c1 > 0, then τ1

τ2
is increasing in

(−∞,− c2
c1
), decreasing in (− c2

c1
,∞), and the point − c2

c1
is

the maximum. Moreover, if c1 < 0, then τ1
τ2

is decreasing
in (−∞,− c2

c1
), increasing in ( c2

c1
,∞), and the point − c2

c1
is

the minimum. Finally, if c1 = 0, then τ1
τ2

is always either
increasing or decreasing (depending on the sign of c2).

Since computing the determinant takes a polynomial
time w.r.t. the size of S, the same holds for the problem
of finding a maximal (minimal) solution.

2

5 An Application: Probabilistic Non-
Repudiation

In this section, as an application, we model and analyze a
non-repudiation protocol that employs a probabilistic algo-
rithm to achieve a fairness property. This protocol has been
studied, from different points of view, also in [1, 15, 16].

5.1 A Probabilistic Non-Repudiation Protocol

We consider a protocol that guarantees a non-repudiation
service with a certain probability without resorting to a
trusted third party [19]. In particular, such a probabilistic
protocol is fair up to a given tolerance ε decided by the
originator. Assume that an authentication phase precedes
the protocol. We denote by SignE(M) the encryption of
message M under the private key of the entity E and with
{M}K the encryption of M under the key K. Finally, we
use t to denote a time stamp. The protocol can be described
as follows (with the notation R → O : Msg we denote a
message Msg sent by R and received by O):

1. R→ O : SignR(request, R,O, t)
2. O → R : SignO({M}K , O,R, t) (= M1)
3. R→ O : SignR(ack1)
4.
a.1−p O → R : SignO(Mr, O,R, t) (= Mi)

R→ O : SignR(acki)
goto step 4

b.p O → R : SignO(K,O,R, t) (= Mn)
5. R→ O : SignR(ackn)

5



The recipient R starts the protocol by sending a signed,
timestamped request to the originator O. This sends to R

the requested message M ciphered under the key K, and
waits for the ack from R (acki represents the acknowledg-
ment related to messageMi). At step 4 the originator makes
a probabilistic choice according to p. At step 4a (taken with
probability 1− p) O sends to R a random message Mr (i.e.
a dummy key), receives the ack and returns to step 4, while
at step 4b (taken with probability p) O sends to R the key
K necessary to decrypt the message {M}K . Upon recep-
tion of the last ack (ackn), related to the message containing
the key K, the originator terminates the protocol correctly.
We suppose that each acki message carries the following
semantics: ”R acknowledges having received message Mi

from O”. This could be easily obtained, for instance, by as-
suming that each acki message contains an hash of message
Mi.

Intuitively, the non-repudiation of origin is guaranteed
by the messages M1 and Mn (signed with the private key of
O), while the non repudiation of receipt is given by the last
message SignR(ackn). If the protocol terminates after the
delivery of the last ack, both parties obtain their expected in-
formation, and the protocol is fair. If the protocol terminates
before sending the message containing the key K, then nei-
ther the originator nor the recipient obtains any valuable in-
formation, thus preserving fairness. A strategy for a dis-
honest recipient consists in guessing the last message con-
taining the key K, verifying whether a received message
contains the needed key and then blocking the transmission
of the last ack. Therefore, for the success of the protocol,
it is necessary that the ack messages are sent back immedi-
ately. The originator decides a deadline for the reception of
each ack, after which, if the ack is not received, the protocol
is stopped. Obviously, the cryptosystem must be adequately
chosen, in such a way that the time needed to verify a key,
by deciphering the message, is longer than the transmission
time of an ack message. Anyway, as we will see in the next
section, a malicious recipient can try to randomly guess the
message containing the key K, and in this case the proba-
bility for the recipient of guessing the last message depends
on the parameter p chosen by the originator.

5.2 Parametric Analysis of the Protocol

In this section we describe the protocol by using the
model of Parametric Probabilistic Transition System. In
particular we use two parameters, p and q. On the one
hand, we assume that the originator follows a Bernoulli dis-
tribution with parameter p to decide either to send the real
key or to send a dummy key (see step 4 of the protocol).
On the other hand, we assume that the recipient follows a
Bernoulli distribution with parameter q to decide either to
send the ack message or to try to compute M by employing
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Figure 2. Parametric Representation of the
Protocol.

the last received message. In Figure 2 we show a parametric
Probabilistic Transition System modelling the communica-
tion between the originator and the recipient according to
the parameters p and q.

With the transition (q0, q1) we model the recipient start-
ing a communication with the originator by sending a re-
quest, the originator sending the first ciphered message and
the recipient acknowledging such a message. In state q1 the
originator sends, with probability 1−p, a dummy key reach-
ing state q2 and, with probability p, sends the last message
containing K and reaches state q3. In state q2 the recipient
sends an ack to the originator with probability 1 − q go-
ing back to state q1, while with probability q the recipient
uses the dummy key in order to decipher the first message,
fails and the protocol is stopped. In this case, state qF is
reached. Intuitively state qF models a situation in which
the protocol ends in a fair way (both participants receive
their expected information or neither the originator nor the
recipient obtains any valuable information). In state q3 the
recipient sends the last ack with probability 1− q and fairly
terminates the protocol, and tries to decipher the first mes-
sage with the last received key (in this case the correct key
K) with probability q. In this case, without sending the last
ack, the recipient breaks the fairness of the protocol (state
qU represents the situation in which the protocol ends in an
unfair way).

We suppose q to be a fixed constant and not a parameter,
we want to find an instance for p (chosen by the originator)
that maximizes the probability of reaching state qF and min-
imizes the probability of reaching state qU . In this manner
the originator can choose the best value for p that minimizes
the probability that the protocol ends in an unfair way.

Assuming S the Parametric Probabilistic Transition Sys-
tem of Figure 2, and assuming q = 1

2 (namely, the at-
tacker throws a coin to decide whether decipher the key
or not). We want to find a well defined instance u such
that ∀u′ ∈ Set(S, qF , true) u(αqF

) ≥ u′(αqF
) (namely,

an instance that maximizes the probability of having a fair
communication).

Actually, given q = 1
2 the Parametric Probabilistic Tran-

sition System of figure 2 has degree at most 1 for qF . Fol-
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lowing the proof of Theorem 4.9 and the system of linear
equations of Proposition 4.2, we get xq0 = 1

1+p
. Now, we

must find the maximum of the function 1
1+p

, that one has
for the value of p such that

d

dp

1

1 + p
=

−1

(1 + p)2
= 0

But −1 < 0 and then the function is decreasing in
(−∞,∞). Hence the maximum is for p = 0 and
P (p=0)(S, qF , true) = 1. Therefore the probability of an
attack decreases if the number of messages sent by R is big.
Hence the originator must choose a value of p small enough.
As an example, if the originator wants a probability of fair
communication equal to 0.999, then it is sufficient to ap-
ply Theorem 4.7 which gives 1

1+p
= 0.999, and therefore

p = 0.001
0.999 .

6 Conclusions and Future Works

In this paper we have developed a model of Paramet-
ric Probabilistic Transition Systems. In this model proba-
bilities associated with transitions may be parameters. We
have shown how we can find instances of parameters that
satisfy a given property and instances that either maximize
or minimize the probability of reaching a given state. As an
application we have shown the model of a probabilistic non
repudiation protocol.

As a future work we plan to extend our study to Proba-
bilistic Labeled Transition Systems, where transitions from
state to state are labeled by actions. These are the actions
selected by an environment and to which the system reacts.
For each label there is a transition probability distribution
which gives the probability distribution of the possible fi-
nal states for a given initial state. In a discrete setting this
is the model considered by [17]. Models with continuous
state space or continuous time (or both) have been consid-
ered (see, for instance, [11]). We want to define and study
parameterized versions of these formalisms.
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