
Weak Bisimulation for Probabilistic Timed Automata
and Applications to Security∗

Ruggero Lanotte, Andrea Maggiolo-Schettini and Angelo Troina
Dipartimento di Informatica, Università di Pisa

Abstract

We are interested in describing timed systems that exhibit
probabilistic behaviors. To this purpose, we define a model
of probabilistic timed automata and give a concept of weak
bisimulation together with an algorithm to decide it. We
use this model for describing and analyzing a probabilistic
non-repudiation protocol in a timed setting.

1 Introduction

Timed Automata have been introduced by Alur and Dill
[2] as an extension ofω-Automata to describe real-time sys-
tems. Timed Automata are equipped with variables mea-
suring time, calledclocks. Transitions are guarded byclock
constraints, which compare the value of a clock with some
constant, and byreset updates, which reset a clock to the
initial value 0. Extensions with probability have been pro-
posed (e.g. in [5], [11] and [12]).

In this paper we study weak bisimulation for probabilis-
tic timed automata. As the definition of weak bisimulation
requires that a time step is simulated with a sequence of
untimedτ steps followed by a time step followed by a se-
quence ofτ steps, we assume a model of timed automata
where the elapsing of time is associated with transitions and
not with states. With this assumption, a probability is as-
sociated with transitions and, therefore, the choice among
steps is done probabilistically. It is easy to see that these
Probabilistic Timed Automata recognize the same class of
languages recognized by Timed Automata.

We prove the decidability of weak bisimulation for Prob-
abilistic Timed Automata. We use the model and the men-
tioned result to describe and analyze a security problem for
a non-repudiation protocol in a timed setting.

∗This research has been supported by Progetto MURST Metodi For-
mali per la Sicurezza e il Tempo (MEFISTO).

2 Probabilistic Timed Automata

We assume a setX of variables, calledclocks. A clock
valuationoverX is a mappingv : X → IR≥0 assigning
time values to clocks. For a clock valuationv and a time
value t, v + t denotes the clock valuation such that(v +
t)(x) = v(x) + t. Moreover, given a set of clocksY ⊆ X,
with v[Y := 0] we denote the valuation that sets each clock
in Y to 0, while leaving unchanged the valuations of the
other clocks.

Let v1 andv2 be two valuations on two disjoint sets of
clocksX1 andX2; with v1 ∪ v2 we denote the valuation on
clocksX1 ∪ X2 such thatv1 ∪ v2(X) = v1(x) if x ∈ X1

andv1 ∪ v2(X) = v2(x) otherwise.
Given a set of clocksX, the most general set ofclock

constraintsoverX, denotedΦ(X), is defined by the fol-
lowing grammar, whereφ ranges overΦ(X), x, y ∈ X,
c ∈ Q and∼∈ {<,≤,=, 6=, >,≥}:

φ ::= x ∼ c |φ ∧ φ | ¬φ |φ ∨ φ | true

We write v |= φ when the clock valuationv satisfies
the clock constraintφ. Formally, v |= x ∼ q iff
v(x) ∼ q, v |= φ1 ∧ φ2 iff v |= φ1 andv |= φ2, v |= ¬φ
iff v 6|= φ, v |= φ1∨φ2 iff v |= φ1 orv |= φ2, andv |= true.

A Probabilistic Timed Automatonis a 6-tuple A =
(Σ, X,Q, q0, δ, π), where:

• Σ is a finite alphabet of actions.

• X is a finite subset of clocks.

• Q is a finite set ofstatesandq0 ∈ Q is the initial state.

• δ is a finite set oftransitions. δ ⊆ Q × Φ(X) ×
Σ ∪ {τ, λ} × 2X × Q. The symbolτ represents the
silent or internal move, and the symbolλ describes
time elapsing. For a stateq, we denote withstart(q)
the set of transitions withq as a source state, i.e. the
set{(q1, φ, a, Y, q2) ∈ δ | q1 = q}.

• π : δ → [0, 1] is a probability function. If e ∈ δ,
thenπ(e) is the probability of performing the transi-
tion e. We require that for each states it holds that∑
e∈start(s) π(e) ∈ {0, 1}.

A configurationof A is a pair (q, v) where q is a state
of A, andv is a valuation. Given the probabilistic timed
automatonA, we callSA the set of configurations ofA.
There is adiscrete stepfrom a configurations1 = (q1, v1)
to a configuration s2 = (q2, v2) through action
a ∈ Σ ∪ {τ}, written s1

a−→ s2, if there is a transi-
tion e = (q1, φ, a, Y, q2) ∈ δ such thatv1 |= φ, π(e) > 0
andv2 = v1[Y := 0].
There is a continuous step from a configuration
s1 = (q1, v1) to a configurations2 = (q2, v2) through

time t ∈ IR≥0, written s1
t−→ s2, if there is a transition

e = (q1, φ, λ, Y, q2) ∈ δ such thatv1 + t |= φ, π(e) > 0
andv2 = (v1 + t)[Y := 0].

For configurationss1 = (q1, v1), s2 = (q2, v2) andα ∈
Σ∪{τ}∪ IR≥0, we define withP (s1, α, s2) the probability
of reaching configurations2 from configurations1 through
a transition labeled withα. Formally we have:

P (s1, α, s2) =

∑
e∈Adm(s1,α,s2)

π(e)∑
e∈Adm(s1)

π(e)
,

whereAdm(s1, α, s2) is the set
{(q1, φ, λ, Y, q2) ∈ δ | v1 +α |= φ ∧ v2 = (v1 +α)[Y :=
0]} if α ∈ IR≥0, the set
{(q1, φ, α, Y, q2) ∈ δ | v1 |= φ ∧ v2 = v1[Y := 0]},
otherwise, andAdm(s1) = ∪α ∪s2 Adm(s1, α, s2).

A configuration s = (qi, vi) is called terminal iff∑
e∈Adm(s) π(e) = 0; we denote withSt the set of

terminal configurations.

An execution fragmentstarting froms0 is a finite se-
quence of stepsσ = s0

α1−→ s1
α2−→ s2

α3−→ . . .
αk−→ sk

such thats0, s1, . . . , sk ∈ SA, α1, α2, . . . , αk ∈ Σ∪ {τ, λ}
and ∀i ∈ {1, . . . , k} P (si−1, αi, si) > 0. We define
last(σ) = sk and |σ| = k. If |σ| = 0 we putP (σ) = 1,
else, if|σ| = k ≥ 1, we defineP (σ) = P (s0, α1, s1) · . . . ·
P (sk−1, αk, sk). The execution fragmentσ is calledmaxi-
mal iff last(σ) ∈ St. We denote withExecFrag(s) the set
of execution fragments starting froms.

An executionis either a maximal execution fragment or
an infinite sequences0

α1−→ s1
α2−→ s2

α3−→ . . ., where
s0, s1 . . . ∈ SA, α1, α2, . . . ∈ Σ ∪ {τ, λ} and ∀i ≥
1 P (si−1, αi, si) > 0. We denote withExec(s) the set
of executions starting froms. Finally, letσ ↑ denote the set
of executionsσ′ such thatσ ≤prefix σ′, whereprefix is the
usual prefix relation over sequences.

Assuming the basic notions of probability theory (see
e.g. [9]) we define the probability space on the executions

starting from a given configurations ∈ SA as follows. Let
ΣF (s) be the smallest sigma field onExec(S) that contains
the basic cylindersσ ↑, whereσ ∈ ExecFrag(s). The
probability measureProb is the unique measure onΣF (s)
such thatProb(σ ↑) = P (σ).

In the following,α̂ stands forα if α ∈ Σ ∪ IR≥0 and for
ε (the empty string) ifα = τ , s ∈ SA andC ⊆ SA.

Consider nowExec(τ∗α̂, C), the set of executions that
lead to a configuration inC via a sequence belonging to
the set of sequencesτ∗α̂. We defineExec(s, τ∗α̂, C) =
Exec(τ∗α̂, C) ∩ Exec(s), whereExec(s) is the set of ex-
ecutions starting froms. Finally, we define the probability
Prob(s, τ∗α̂, C) = Prob(Exec(s, τ∗α̂, C)) as in figure 1.

3 Regions

We recall the definition of clock equivalence. Configu-
rations reachable by performing a transition starting from a
given state do not depend on probability, and therefore we
may use concepts and properties given for Timed Automata.

LetA be a Probabilistic Timed Automaton; withCA we
denote the greatest constant that appears inA.

Let us consider the equivalence relation≈ over clock
valuations containing precisely the pairs(v, v′) such that:

• for each clockx, eitherbv(x)c = bv′(x)c, or bothv(x)
andv′(x) are greater thanCA, with CA the largest in-
teger appearing in clock constraints overx;

• for each pair of clocksx andy with v(x) ≤ CA and
v(y) ≤ CA it holds thatfract(v(x)) ≤ fract(v(y))
iff fract(v′(x)) ≤ fract(v′(y)) (wherefract() is
the fractional part);

• for each clockx with v(x) ≤ CA, fract(v(x)) = 0 iff
fract(v′(x)) = 0.

As proved in [2],v ≈ v′ implies that, for anyφ ∈ Φ(X)
with constants less or equal thanCA, v |= φ iff v′ |= φ.
With [v] we denote the equivalence class{v′ | v ≈ v′}. The
set of equivalence classes is finite.

We recall the definition of clock zone and its properties.
For more details see [6] and [10].

The set of clock zones onX (denoted withΨ(X)) is the
set of formulaeψ such that

ψ ::= true | false |x ∼ c |x− y ∼ c |ψ1 ∨ ψ2 |ψ1 ∧ ψ2

where∼ {<,≤,=, >,≥}, c ∈ IN andx, y ∈ X.
With ΨC(X) we denote the set of clock zones inΨ(X)

that use integer constants in[−C,C].
Let A be a Probabilistic Timed Automaton with states

in Q and clocks inX; a regionof A is a pair(q, ψ) where
q ∈ Q andψ ∈ Ψ(X).

2

Prob(s, τ∗α̂, C) =


1 if α = τ ∧ s ∈ C∑
q∈S Prob(s, τ, q) · Prob(q, τ∗, C) if α = τ ∧ s /∈ C∑
q∈S Prob(s, τ, q) · Prob(q, τ∗α, C) + Prob(s, α, C) if α 6= τ

Figure 1. Definition of Prob(s, τ∗α̂, C)

The following proposition states that the set of configu-
rations reachable by performing transitions starting from a
set of configurations expressed by a region is a region.

Proposition 3.1 If (q1, ψ1) is a region ofA ande is a tran-
sition, then the set of reachable configurations by perform-
ing e and starting from(q1, ψ1), is a region.

Now, it is obvious that the set of reachable configura-
tions can be calculated by using the proposition above,
but it is also obvious that the set of regions is not finite.
Therefore we need an approximation.

If (q, ψ) is a region ofA, we denote withApA(q, ψ) the
set{(q, v) | [v] ∩ ψ 6= false}. The following proposition,
proved in [6], states thatApA returns a region.

Proposition 3.2 (Approximation) ApA(q, ψ) is a region
ofA with constants belonging to the interval[−CA, CA].

Let (q, ψ) be a region ofA ande be a transition withq
as source state. Withpost((q, ψ), e) we denote the region
calculated as in propositions 3.1 by approximating(q, ψ)
by ApA(q, ψ). Now, it is obvious thatpost((q, ψ), e) is
a region ofA with constants in the interval[−CA, CA].
Therefore, these regions are finitely many.

The following theorem, proved in [6], states the correct-
ness of the operatorpost.

Theorem 3.3 Let R′ be the set of regions reachable with
a transitione starting in the set of regionsR. ThenR′ ⊆
post(Ap(R), e) ⊆ ApA(R′).

4 Weak bisimulation

In this section we define weak bisimulation for proba-
bilistic timed automata. In order to abstract fromτ (or inter-
nal) moves, Milner [14] introduces the notion of observable
step, which consists of a singlevisible actionα preceded
and followed by an arbitrary number (including zero) of in-
ternal moves. Such moves are described by aweak tran-
sition relation=⇒, defined as

α=⇒= (τ−→)∗ α−→ (τ−→)∗,
where−→ is the classical strong relation, and

τ=⇒= (τ−→
)∗. It is worth noting that with such a definition a weak
internal transition

τ=⇒ is possible even without performing
any internal action. For the definition of weak bisimulation

in the fully probabilistic setting, Bayer and Hermann [3]
replace Milner’s weak internal transitionss

τ=⇒ t by the
probabilityProb(s, τ∗, t) of reaching configurationt from
s via internal actions. Similarly, for visible actionsα, they
define

α=⇒ by the probabilityProb(s, τ∗α, t).
The probabilistic model we have chosen for probabilis-

tic timed automata is that of fully probabilistic systems. In
such a model, as demonstrated by Bayer and Hermanss in
[3], the two relations of weak bisimulation equivalence and
branching bisimulation equivalence do coincide. Relying
on this result, we use branching bisimulation in order to de-
cide weak bisimulation.

Definition 4.1 LetA = (Σ, X,Q, q0, δ, π) be a Probabilis-
tic Timed Automaton. A branching bisimulation onA is an
equivalence relationR onSA such that for all(s, s′) ∈ R,
C ∈ SA/R:

Prob(s, τ∗α, C) = Prob(s′, τ∗α, C) ∀α ∈ Σ∪τ∪IR≥0.

Two configurationss, s′ are called branching bisimilar on
A (denoteds ≈ s′) iff (s, s′) ∈ R for some branching
bisimulationR.
Two Probabilistic Timed AutomataA = (Σ, X,Q, q0, δ, π)
and A′ = (Σ, X ′, Q′, q′0, δ

′, π′) such thatQ ∩ Q′ = ∅
andX ∩ X ′ = ∅ are called branching bisimilar (denoted
by A ≈ A′) if, given the Probabilistic Timed Automaton
Â = (Σ, X ∪X ′, Q ∪Q′, q0, δ ∪ δ′, π̂), with

π̂(e) =
{
π(e) if e ∈ δ
π′(e) otherwise,

it holds (q0, v0) ≈ (q′0, v0), where for eachx ∈ X ∪X ′ it
holds thatv0(x) = 0.

Note that the function̂π is well defined sinceQ∩Q′ = ∅
impliesδ∩δ′ = ∅. We shall see that the choice of the initial
state ofÂ is indifferent for the computation of the branching
bisimulation equivalence classes. We have chosenq0, but
we could chooseq′0 as well.

5 Decidability of bisimulation

In this section we develop an algorithm that computes
the classes of the branching bisimulation equivalence and
decides if two configurations are branching bisimilar by
checking that they are in the same class. To do this we have
to check the condition of definition 4.1.

We extend the algorithm given for untimed systems.

3

-x = 0 ����
q0 -λ ����

q1 -λ

x ≤ 5 ����
q2 ����1

PPPPq

����
q3

����
q4

.5 a
x < 3

.5 b

-y = 0 ����
q5 -λ ����

q6 -λ

y ≤ 5 ����
q7 ����

q8-.5 a

].5 τ

Figure 2. An example

Example 5.1 Consider the automata of figure 2. In the un-
timed version the probability to reachq4 from the stateq2 is
0.5. Now, in the timed version, we observe that in stateq2,
when clockx has value smaller then3, the automaton may
execute both transitions with probability0, 5. Otherwise, if
clockx has value greater than3, the transition labeled with
a cannot be executed, and so the probability has to be re-
distributed; in such a case the probability of executing the
transition with actiona is 0, whereas the transition labeled
with b gets probability1. Therefore we need to consider the
different cases in which a subset of transitions are enabled
or not.

Moreover, one may consider to use the algorithm for the
untimed version on the region graphs of the two automata,
i.e. the graph of regions resulting by applying the successor
operator. This is not a good solution; in fact, if we consider
the clock zone reached in stateq1 we havex ≥ 0 and in
stateq6 we havey ≥ 0. Let us suppose that one wants
to compare the probability of reachingq2 from q1 with the
probability of reachingq7 from q6. Now we must check the
two probabilities for each timeα ∈ IR≥0, and so they are
equal for every time if and only ifx = y. This means that
we cannot consider the clocks separately, but we must have
formulae on all the pairs of states.

Since we have to check also the bisimilarity for states of
the same automaton, as an exampleq0 and q1, we have to
consider formulae that express conditions on the value of
clocks at stateq0 together with the value of clocks at state
q1. As an examplex1 = x2 means that the values of clocks
at stateq0 are the same of those at stateq1.

The algorithm splits a class if in the class there exist two
configurations starting from which there are two different
probabilities of reaching a certain class by performingτ∗α.

The algorithm takes a class and calculates these prob-
abilities by solving a set of pairs of systems of equalities
(rather than a pair of systems of equalities, as in the un-
timed case). The algorithm terminates when no class can be
splitted further.

5.1 The Algorithm

We define the labeling of the clocks inX by setting
X l = {xl | x ∈ X}, for any l ∈ {1, 2}. When we con-
sider two configurations(q, v) and(q′, v′) of A the set of
clocksX1 represents the clocks ofq in X, andX2 those of
q′.

Let A = (Σ, X,Q, q0, δ, π) be a fixed Probabilistic
Timed Automaton; withAl, for l ∈ {1, 2}, we represent the
fixed Probabilistic Timed AutomatonA where we rename
X with X l. We useδl, startl(q) andπl to denote the set
of transitions, the set of transitions starting fromq and the
probability function ofAl, respectively.

If Q = {q1, . . . , qn}, then a class is a functiong :
[1, n]2 → ΨCA

(X1 ∪ X2) Now, classes are finitely
many since the number of clock zones are finitely many.
A class g represents the set of pairs of configurations
((qh, vh), (qk, vk)) ofA such thatvh∪vk |= g(h, k). Hence,
with [g] we denote the set of triples(qh, qk, ψ) such that
ψ ⇒ g(h, k) representing the configuration(qh, v) and
(qk, v′) with v ∪ v′ |= ψ.

Example 5.2 The functiong such thatg(0, 2) ≡ x1 ≤ x2

and false otherwise, is a class of example 5.1. This rep-
resents the set of pairs of configurations((q0, v), (q2, v′)),
such thatv(x) ≤ v′(x).

Two classesg1 and g2 are disjoint if and only if for
each h, k it holds that g1(h, k) ∧ g2(h, k) ≡ false.
A set of disjoint classesG represents the relation
(qh, v) ≈G (qk, v′) such thatv ∪ v′ |= g(h, k), for
someg ∈ G. With ḡG andgtrue we represent the class such
that ḡG(h, k) =

∧
g∈G ¬g(h, k) and gtrue(h, k) = true,

respectively. The class̄gG represents the configura-
tions that are not bisimilar, i.e. ifv ∪ v′ |= ḡG(h, k),
then(qh, v) 6≈G (qk, v′). The classgtrue we represent the
biggest class. Moreover, ifψ is a clock zone inΨ(X1∪X2)
with g ∩ ψ we denote the class such that for eachh, k it
holds that(g ∩ ψ)(h, k) = g(h, k) ∧ ψ.

We can extend the definition ofpost over
triples. If e1 and e2 are two transitions, then with
post(qh, qk, ψ, e1, e2, g) we denote the set of triples
in [g] reachable from(qh, qk, ψ) by using the tran-
sition e1 and e2 synchronously. More precisely, if
a1 6= a2 or e1 6∈ start1(qh) or e2 6∈ start2(qk), then
post(qh, qk, ψ, e1, e2, g) is the triple (qh, qk, false),
and, otherwise, it is the triple(qr, qw, ψ′ ∧ g(r, w)),
wherepost((q, ψ), e′) = (q′, ψ′), for some statesq, q′, and
e′ = (q, φ1∧φ2, a1, Y1∪Y2, q

′)), if e1 = (qh, φ1, a1, Y1, qr)
ande2 = (qk, φ2, a2, Y2, qw). Moreover, witheT we de-
note the set ofuseless transitions∪q∈Q(q, true, τ, ∅, q).
We will use this set to describe a step of only one of the
two components.

4

A set of triples R is empty if and only if each
(qh, qk, ψ) ∈ R is such thatψ ≡ false. A set of tran-
sitionsE is enabled inR if and only if for eache ∈ E
there exists(ql, qk, ψ) ∈ R, such that ife ∈ δ1, then
post((ql, qk, ψ), e, eT , gtrue) is not empty, and, ife ∈ δ2,
thenpost((ql, qk, ψ), eT , e, gtrue) is not empty.

With F we denote the set of functionsf such that
for eachh ∈ [1, n], l ∈ [1, 2] it holds thatf(h, l) ⊆
2(2startl(qh)×2startl(qh)) and if (E,E′) ∈ f(h, l), thenE ∩
E′ = ∅. The pair(E,E′) ∈ f(h, l) represents that the
transitionsE ∪ E′ are the only ones enabled, and, if a tran-
sition in E is executed, then it takes configurations with
stateh of componentl to configurations in the same class,
and those inE′ take configurations with stateh of com-
ponent l to configurations in a different class. Since a

state can be crossed several times we use22startl(qh)
in-

stead of2start
l(qh). We will write f(R, l) to denote the set

∪(qh,qk,ψ)∈R{E ∪ E′ | (E,E′) ∈ f(h, l)}.
Let f ∈ F andEh,k = start(qh) ∪ start(qk). We

define the formulaψf =

∃t ≥ 0.
∧
h,k∈[1,n] g(h, k) ⇒

∧
l=1,2

∨
(E,E′)∈f(h,l)(∧

e∈E∪E′ φe
)
∧
(∧

e∈Eh,k\E∪E′ ¬φe
)

where ife = (qr, φ, α, Y, qw), and,ψ′ =
∨
j∈[1,n] g(w, j)

if e ∈ δ1 and
∨
j∈[1,n] g(j, w) otherwise, then

• if e ∈ E andψ′′ = φ ∧ (∃Y.Y = 0 ∧ ψ′), thenφe ≡
ψ′′[X l := X l + t], if α = λ, andφe ≡ ψ′′ otherwise.
Namely, the transitione is enabled and the reachable
configurations are ing. If e is λ-labeled, then we must
consider the time elapsing represented by the variable
t.

• if e ∈ E′ andψ′′ = φ ∧ (∃Y.Y = 0 ∧ ¬ψ′), then
φe ≡ ψ′[X l := X l + t], if α = λ, andφe ≡ ψ′

otherwise. Namely, the transitione is enabled and the
reachable configurations are not ing.

The formulaψf gives the weakest precondition such that in
a configuration represented byg one can choose to perform,
at a certain instant of time, only transitions expressed byf .
This is necessary to normalize probabilities when calculat-
ing the probability of performing a sequence expressed by
τ∗α. It is obvious that, by means of the quantifier elimi-
nation showed in [10], the formulaψf is in Ψ(X1 ∪ X2).
We note also thatJg ∩ ψf K contains the triple refined with
the conditionψf that ensures that the respective subregions
surely perform only transitions inf .

Example 5.3 Let g be a class such thatg(2, 8) ≡ x1 =
y2 and false otherwise,f(2, 1) = {(∅, E)} andf(8, 2) =
{(E′, E′′)} whereE are the transitions fromq2 to {q3, q4},

E′ is theτ -labeled transition andE′′ is the transition from
q7 to q8. We have thatψf ≡ ∃t ≥ 0.(x1 = y2) ⇒ (x1 ≥
3 ∧ y2 + t ≤ 5 ∧ x1 = y2).

If g is a class,f ∈ F andR ⊆ [gtrue], then withR1(f, g)
we denote the fixpoint of the computation such thatR0 = R
andRk is the setRk−1 joint with the set⋃
(E,E′)∈f(Rk−1,1)

{post(Rk−1, e, eT , g) | e ∈ E is τ − labeled}.

It is obvious that the fixpoint is reached in a finite sequence
of steps since the set of clock zones are finitely many. The
setR1(f, g) is the set of triples reachable by performing
a sequence ofτ transitions ofA1 while remaining ing.
Analogously we can defineR2(f, g).

If G is a set of disjoint classes,g1 ∈ G, g2 ∈ G ∪ {ḡG},
qi, qj are two states andα ∈ Σ ∪ {τ, λ}, then we define the
function split(qi, qj , α, g1, g2) that returns a functionf ∈
F such that the probability of reaching the classg2 from
configurations(qi, v) and (qj , v′), with v ∪ v′ |= ψf and
taking transitions inf , are different, ifg2 6= ḡG , and are
different from0 otherwise. Now we show how this function
computesf .

We can calculate the probability of performingτ∗α by
solving a set of systems of equalities. For the untimed case,
the probability of performing a sequence inτ∗α can be
calculated by solving a system of equalities by following
the definition of figure 1. Now, in the framework of timed
automata, the transitions enabled at a certain instant depend
on the values of clocks. Therefore we must consider all the
possible behaviors, which means to consider the possible
set of transitions performable at a certain instant, namely
eachf ∈ F . We describe now how is the system of
equalities that depends onf .

Let f ∈ F ; we use the variabley and the set of variables
yR where∅ ⊂ R ⊆ [g1 ∩ ψf]. The variableyR repre-
sents the probability of the tripleR in [g1] of reaching[g2]
by sequences inτ∗α. The variabley represents a generic
configuration ofg2.

We consider the system of equalitiesIi,f composed by
the equalityy = 1 and the set of equalitiesyR = p1 · y1 +
· · ·+ pn · yn where there exists(E,E′) ∈ f(R, 1) enabled
in R such that, ifE ∪ E′ = {e1, . . . , em}, then for each
l ∈ {1, . . . ,m} it holds that:

• if el ∈ E is τ -labeled and R′ =
post(R2(f, g1), el, {eT } ∪ f(R2(f, g1)), g1) is

not empty, thenyl = yR′ andpl = π1(el)∑
e(∈E∪E′)∩δ1 π1(e) .

Namely, we have a sequence ofτ steps while remain-
ing in the classg ∩ ψf of A2, followed by one ofA1

(possibly synchronized with one ofA2).

5

• if el ∈ E′ is α-labeled andpost(R, el, f(R, 2), g2) is

not empty, thenyl = y andpl = π1(el)∑
e∈(E∪E′)∩δ1 π1(e) .

Namely the two configurations, by synchronizing on
α, fall into g2.

• Otherwisepl = 0 andyl = y.

Analogously we can defineIj,f .
The following proposition states the relationship of the

set of equalities defined above with the probabilities of per-
forming τ∗α.

Proposition 5.4 Let (qi, v), (qj , v′) such that v ∪
v′ |= g1(i, j) ∩ ψf . Prob((qi, v), τ∗α, g2) and
Prob((qj , v′), τ∗α, g2) are equal to the solutions of the
variable yR0 of the systems of equalitiesIi,f and Ij,f , re-
spectively, whereR0 = {(qi, qj , g(i, j) ∧ ψf)}.

If p1 and p2 are the solutions of the variableyR0 of
the systems of equalitiesIi,f andIj,f , respectively, where
R0 = {(qi, qj , g(i, j) ∧ ψf)}, then, by proposition 5.4, we
have thatf is a cut if and only if p1 6= p2 if g2 6= ḡG , and,
p1 6= 0 ∧ p2 6= 0 otherwise.

Example 5.5 Let us consider the classg and the function
f of example 5.3. We want to calculate the probability of
reaching the classg′ such thatg′(3, 4) ≡ g′(3, 8) ≡ true
with the symbola. We must solve the systems:{

yR = (0.5) · y
y = 1

{
yR = (0.5) · yR + (0.5) · y
y = 1

whereR = {(q2, q7, x2 = y7∧x2 < 3)}. The first system of
equalities expresses the fact that fromq2 we can perform aa
with probability equal to0.5, and the second one expresses
the fact that fromq7 we can perform aa with probability
equal to1. Therefore we have a cut.

If there exists no cut, then the functionsplit returns a
special symbol̄f representing no function, otherwise it re-
turns a cutf . Now, if the functionf returned is not̄f , then
it determines the followingrefinementon the classg1: if
{S1, . . . , Sm} is a partition of{1, . . . , n} such that for each
h ∈ Sr andk ∈ St it holds thatf is not a cut forh andk if
and only ifr = t, then the classg1 is refined in the union of
classes{g0, g1, . . . , gm} such thatg0 = g1 ∩ ¬ψf and for
eachl ∈ [1,m] andh, k ∈ [1, n]

gl(h, k) =
{
false if {h, k} 6⊆ Sl

g1(h, k) ∧ ψf otherwise.

Example 5.6 The cutf of example 5.5 generates the refine-
ment of the classg in the classesg0 such thatg0(2, 7) ≡
x1 = y2 ∧ x1 ≥ 3 and false otherwise.

We call Ḡ the set of classes resulting by refining the
classes by using the function returned bysplit until we
reach the fixpoint starting from the classgtrue. Therefore
we have the following theorem that implies the decidability
of weak bisimulation for probabilistic timed automata.

Theorem 5.7 The setḠ can be computed with a finite num-
ber of applications of the refinement induced by the function
split and(qi, vi) ≈ (qj , vj) if and only(qi, vi) ≈Ḡ (qj , vj).

6 A Case Study: Probabilistic Non Repudia-
tion in a Timed Setting

In this section, as a case study, we model and analyze a
non-repudiation protocol that employs a probabilistic algo-
rithm to achieve a fairness property. In particular, we extend
the case study presented in [1] to a timed setting.

6.1 A Probabilistic Non-Repudiation Protocol

We consider a protocol that guarantees a non-repudiation
service with a certain probability without resorting to a
trusted third party [13]. In particular, the probabilistic pro-
tocol is fair up to a given toleranceε decided by the origina-
tor. Assume that an authentication phase precedes the pro-
tocol. We denote bySignE(M) the encryption of message
M under the private key of the entityE and with{M}K
the encryption ofM under the keyK. Finally, we uset to
denote a time stamp. The protocol can be described as fol-
lows (with the notationR→ O : Msg we denote a message
Msg sent byR and received byO):

1. R→ O : SignR(request,R,O, t)
2. O → R : SignO({M}K , O,R, t) (= M1)
3. R→ O : SignR(ack1)
4.
a.1−p O → R : SignR(Mr, R,O, t) (= Mi)

R→ O : SignR(acki)
goto step4

b.p O → R : SignR(K,R,O, t) (= Mn)
5. R→ O : SignR(ackn)

The recipientR starts the protocol by sending a signed,
timestamped request to the originatorO. O sends toR the
requested messageM ciphered under the keyK, and waits
for the ack fromR (acki represents the acknowledgment
related to messageMi). At step4 the originator makes a
probabilistic choice according top = ε. At step4a (taken
with probability 1 − p) O sends toR a random message
Mr, receives the ack and returns at step4, while at step4b
(taken with probabilityp)O sends toR the keyK necessary
to decrypt the message{M}K . Upon reception of the last
ack (ackn), related to the message containing the keyK,
the originator terminates the protocol correctly.

6

Intuitively, the non-repudiation of origin is guaranteed
by the messagesM1 andMn (signed with the private key
of O), while the non repudiation of receipt is given by the
last messageSignR(ackn). If the protocol terminates af-
ter the delivery of the last ack, both parties obtain their ex-
pected information, and the protocol is fair. If the protocol
terminates before sending the message containing the key
K, then neither the originator nor the recipient obtains any
valuable information, thus preserving fairness. A strategy
for a dishonest recipient consists in guessing the last mes-
sage containing the keyK, verifying if a received message
contains the needed key and then blocking the transmission
of the last ack. Therefore, the key to success of the pro-
tocol is the immediacy in sending back the ack messages.
The originator decides a deadline for the reception of each
ack, after which, if the ack is not received, the protocol is
stopped. Obviously, the cryptosystem must be adequately
chosen, in such a way that the time needed to verify a key,
by deciphering the message, has to be too long with respect
to the transmission time of an ack message. Anyway, a ma-
licious recipient can try to randomly guess the message con-
taining the keyK, and in this case the probability for the
recipient of guessing the last message depends on the pa-
rameterp chosen by the originator.

6.2 Security Analysis of the Protocol

In this section we describe the parties of the protocol
through the model of probabilistic timed automata. Since
we have to manage communication between agents, we dis-
tinguish input and output actions. Given an alphabet of
action typesΣType we define the set of input actions as
ΣI = {a | a ∈ ΣType} and the set of output actions as
ΣO = {a | a ∈ ΣType}. Finally, we define the alphabet
of actions asΣ = ΣO ∪ ΣI . Moreover, we assume that
output actions behave as generative actions [8], while input
actions behave as reactive actions. Generative action exe-
cutable in a state will be executed according to their proba-
bility distribution. In a state, the choice between executing
a generative action or a reactive one depends on the external
environment. If this provides a generative action with which
a reactive action may synchronize, the reactive action will
be executed with probability 1. There is still the possibil-
ity that more actions may react to the environment, and the
choice among them will be due according to a probability
distribution (in our case study this does not happen).

We considerτ andλ as generative actions.
We start with introducing the probabilistic timed au-

tomata modeling an originator and a recipient behaving
correctly. The originator (Fig. 3) is always ready to
start a communication by accepting a request, sending
the first message containingM encrypted withK (action
firstmessage) and receiving the first ack. Then, in state

-x=0 ����
q0

W

λ, x>0

?

����
q1

request
x:=0

-firstmes ����
q2

�λ, x<c
����

q3
1

)
message, 1−p

ack
x<c, x:=0

6
k

stop
x≥c, x:=0

����
q4

message, p

W

λ, x<2cM

�ack
x<c
x:=0

����
q5�correctstop -unfair

x≥2cM ����
q6

Figure 3. Representation of Orig

-y = 0 ����
r0

?

request

����
r1

Mλ

-firstmes ����
r2

6

ack

����
r3

z
λ

q

acki

message

Z
Z

Z
Z

ZZ~

����
r4

correctstop

����
r5

Figure 4. Representation of HRecip

q3, with probability1−p, it sends a random message reach-
ing stateq2 and, with probabilityp, sends the last message
containingK and reaches stateq4. We do not model value
passing, so we simply call all these actionsmessage. In
stateq2 the reception of the ack message is modeled by
the input actionack, while the expiration of the deadline
(represented by the constantc) is modeled by the action
stop executed when the clockx assumes a value greater
thanc. The fair termination of the protocol is reached when
the originator receives the last ack and performs the action
correctstop. The protocol terminates in an unfair way if
and only if the originator does not receive the ack related
to the message containingK, and in such a case it executes
the actionunfair. The constantcM used in stateq4 repre-
sents an estimation of the maximum transmission delay of
a message. In particular, it is reasonable to assume that a
message sent will always arrive at destination in timecM .

In Fig. 4, we show the automaton representing a recip-
ient that behaves correctly. The recipient starts the proto-
col by sending a request, receives the first message, sends
the first ack and reaches stater3, from where, whenever it
receives a message, it sends an ack back. The protocol ter-
minates when the input actioncorrectstop is executed. As
in the model for the originator, we represent the elapsing of
time for transmission delays throughλ transitions. For sim-
plicity we do not put conditions on such kind of transitions
in the statesr1 andr2.

In order to verify aNon-Interferencesecurity property
[7] we have to single out the high level actions and the low
level ones. It is natural to consider the actionunfair (ex-
ecuted when the protocol terminates in an incorrect way)

7

as the unique low level action of the system. Intuitively, a
low user that observes the protocol run should never see the
execution of the actionunfair.

Given two probabilistic timed automataR andQ, we de-
fine the parallel composition ofR andQ, denotedR||Q.
The set of states ofR||Q is given by the cartesian product
of the states of the two automataR andQ. Given a state
(r, q) of R||Q, the set of transitions starting from(r, q) is
obtained by the following rules:

• If from stater the automatonR can perform a gener-
ative actionα leading tor′ with probabilityp, andQ
cannot perform either a reactive actionα or any gener-
ative action in stateq, thenR||Q performs a generative
actionα with probabilityp and reaches state(r′, q).

• If from stater the automatonR can perform a gener-
ative actionα leading tor′ with probabilityp, andQ
can perform a reactive actionα leading to stateq′ and
it cannot execute any generative action, thenR andQ
synchronize andR||Q performs a generative actionα
with probabilityp and reaches state(r′, q′).

• If R can perform a generative actionα with probabil-
ity p andQ can perform a generative actionα′ with
probabilityp′, thenR||Q executes either the actionα
with probability1/2 · p or the actionα′ with probabil-
ity 1/2 · p′ which synchronizes, in both cases, with a
reactive action of the same type, if the other automaton
can perform it.

Any rule has a symmetric one.
The automata modeling originator and recipient of our

case study can synchronize through actions with type in
{request, firstmes, ack,message, correctstop}.

Now we have to formalize the non-repudiation prop-
erty to be checked. The hostile environment is represented
by the recipient that tries to obtain its expected informa-
tion without sending the last ack. According to this we
check bisimulation equivalence between the model where
both parties behave correctly and the model involving a
malicious recipient. Now we can consider the protocol
to be secure if the systemOrig||Recip is bisimilar to
Orig||HRecip for each possible malicious recipientRecip.
Formally, the protocol satisfies the non-repudiation property
if and only if:

Orig||Recip ≈ Orig||HRecip ∀Recip.

We observe that the protocol does not satisfy the security
condition. In particular, if both participants behave cor-
rectly, the unfair behavior cannot be executed; instead, it
is possible to find a malicious recipient that receives the ex-
pected information and denies sending the final ack.

In Fig. 5 we show the automaton representing a mali-
cious recipient that maximizes the probability of guessing

-y = 0 ����
r0

?

����
r1

Mλ

request

-firstmes ����
r2

6

ack

����
r3

z
λ

q

ack, 1−qi

message

Z
Z

Z
Z

ZZ}
����

r4

ack
y := 0

����
r6

-����
r5

λ, q

y > cD

?

τ, p

����
r7

�
�

�
�

��=

τ, 1−p

Figure 5. Representation of MRecip

the last message of the protocol (we assume that it knows
the probability distribution chosen by the originator). It fol-
lows a Bernoulli distribution with parameterq to decide ei-
ther to send the ack message or to try to computeM by em-
ploying the last received message (see stater4). We assume
that the time necessary to decipher the message is greater
than the constantcD. Note that ifc > cD the recipient can
send an ack even after failing to decipher the message (see
stater6). So the originator should take care of the deadlinec
chosen. Stater7 represents, instead, the state reached by the
malicious recipient when correctly guessing the last mes-
sage. Since the probability that a message received from
Orig is the last one, containing the needed key, is equal to
p, we assume that in stater5 the malicious recipient goes
to the winning stater7 with probability p and to stater6,
from which it tries to send the ack back, with probability
1− p. Such a probabilistic choice represents the frequency
that models the behavior of the malicious recipient in state
r5, even if it already knows, when reaching stater5 trying
to decipher the message, if the received key is the right one.

The probability of executing the actionunfair for the
systemOrig||HRecip is equal to0, while the probability of
executing it for the systemOrig||MRecip is (asc < cD):

z = p · q ·
∞∑
i=0

((1− p) · (1− q))i =
p · q

1− (1− p) · (1− q)
.

Given 0 < p < 1 chosen by the originator and0 < q <
1, the maximum value forz is p, obtained by takingq =
1. The recipient model, which optimizes the probability of
violating the fairness condition, is obtained by removing the
transition labeled withack from stater4 to stater3.

The consideration above gives as a result that the sys-
temsOrig||MRecip andOrig||HRecip are not bisimilar
according to definition 4.1. Moreover, since the probability
of unfairness depends on a parameter chosen by the origina-
tor, we may resort to the definition of a bisimilarity up to a
given toleranceε. Such a definition is easy to give. We only
need to relax the equality of definition 4.1 with the formula:

|Prob(s, τ∗α,C)− Prob(s′, τ∗α,C)| < ε

and then make some adjustment to the algorithm. Given

8

such a definition, the two systems will result to be bisimilar
up toε in the caseε > p.

7 Conclusion

We have considered a model of Timed Probabilistic Au-
tomata. We have presented a notion of weak bisimulation
in order to compare them and an algorithm that permits to
decide it. Finally, we have applied such a notion in the con-
text of security analysis by modeling an interesting protocol
where both time and probability play a role.

References

[1] Aldini, A., Gorrieri, R.: Security Analysis of a Prob-
abilistic Non-repudiation Protocol. In Proc. of PAPM-
PROBMIV ’02, Springer LNCS 2399, 17–36, 2002.

[2] Alur, R., Dill, D. L.: A theory of timed automata. The-
oretical Computer Science126, 183–235, 1994.

[3] Baier, C., Hermanns, H.:Weak Bisimulation for Fully
Probabilistic Processes. Theoretical Computer Science
126, 183–235, 1994.

[4] Baier, C: On Algorithmic Verification methods for
Probabilistic Systems. Habilitation thesis, Univ.
Mannheim, 1998.

[5] Beauquier, D.:On Probabilistic Timed AutomataThe-
oretical Computer Science292, 2003, 65-84.

[6] Bouyer, P.:Timed Automata May Cause Some Troubles.
BRICS RS-02-35.

[7] Goguen, J. A., Meseguer, J.:Security Policy and Secu-
rity Models. In Proc. of IEEE Symp. on Security and
Privacy, IEEE CS Press, 11–20, 1982.

[8] van Glabbeek, R.J, Smolka, S.A., Steffen, R.:Reac-
tive, Generative and Stratified Models of Probabilistic
Processes. Information and Computation,121, 1995,
59–80.

[9] Halmos, P. R.:Measure Theory. Springer-Verlag, 1950.

[10] Henzinger, T. A., Nicollin, X., Sifakis, J., Yovine, S.:
Symbolic Model Checking for Real-time Systems. Infor-
mation and Computation111(1994), 193-244.

[11] Kwiatkowska, M, Norman, G, Segala, R, Sproston, J.:
Automatic Verification of Real-time Systems with Dis-
crete Probability Distribution. ARTS’99, LNCS1601,
1999, 75–95.

[12] Kwiatkowska, M, Norman, R, Sproston, J.:Sym-
bolic Model Checking of Probabilistic Timed Automata
Using Backwards Reachability. Tech. rep. CSR-00-01,
University of Birmingham.

[13] Markowitch, O., Roggeman, Y.:Probabilistic Non-
Repudiation without Trusted Third Party. 2nd Confer-
ence on Security in Communication Network, 1999.

[14] Milner, R.: Communication and Concurrency. Pren-
tice Hall, 1989.

9

Appendix

Definition 7.1 A set of triplesR ⊆ [gtrue] is 1-defined byh
(resp.2-defined byh) if and only if for each(ql, qr, ψ) ∈ R
it holds thatl = h (resp.r = h).

Proof of Proposition 5.4
It is sufficient to prove that from every configuration reach-
able from(qi, v) and(qj , v′) while remaining ing1 ∩ ψf ,
only the transition expressed byf can be taken. If this
holds, then the thesis is a consequence of the proof of the
untimed case (see [4]).

First of all we note that, by definition of1-definedness in
h, if R is 1-defined byh, thenR(f2, g1) is 1-defined byh.
Moreover, alsopost(R2(f, g1), el, {eT }∪f(R2(f, g1)), g1)
andpost(R, el, f(R, 2), g2) are1-defined byk, for somek.

Since we consider as starting variableyR0 with R0 =
(qi, qj , g1(i, j) ∧ ψf), which is obviously1-defined, then,
by induction, each variableyR used inIi,f is 1-defined.
Moreover, by definition of post and by theorem 3.3, for con-
figuration(qh, vh) and(qk, vk) reached while remaining in
g1 ∩ ψf , there exists a variableyR such thatvh ∪ vk |= ψ,
for some(qh, qk, ψ) is inR.

Therefore, sinceR is 1-defined and by definition ofψf ,
the valuationvh ∪ vk satisfies

∧
l=1,2

∨
(E,E′)∈f(h,l)

(∧
e∈E∪E′

φe

)
∧

 ∧
e∈Eh,k\E∪E′

¬φe

 .

So there exists one and only one pair(E,E′) in f(h, 1)
enabled in the configuration(qh, vh). This implies that the
probability to take a transitione ∈ E ∪ E′ is equal to

π1(e)∑
e∈(E∪E′)∩δi π1(e) .

Therefore, by induction, we have the thesis. Similarly
we can prove the thesis for the second component.

2

Definition 7.2 LetA = (Σ, X,Q, q0, δ, π) be a probabilis-
tic timed automaton. We define inductively equivalence
relations ∼n on SA. We set∼0= SA × SA and, for
n = 0, 1, . . ., s ∼n+1 s

′ iff ∀α ∈ Σ∪{τ, λ} ∀C ∈ SA/ ∼n
it holds thatProb(s, τ∗α, C) = Prob(s′, τ∗α, C).

Lemma 7.3 LetA = (Σ, X,Q, q0, δ, π) be a probabilistic
timed automaton ands, s′ ∈ SA. Then,

s ≈ s′ ⇔ ∀n ≥ 0 s ∼n s′.

Proof: Let∼′=
⋂
n≥0 ∼n. We have to show that≈=∼′. It

easy to see that∼′ is an equivalence relation. By induction
on n we can show that∼0⊇∼1⊇ . . . ⊇≈. Hence,∼′⊇≈.

In order to show that∼′⊆≈ we prove that∼′ is a branching
bisimulation.

For eachn ≥ 0 and eachB ∈ SA/ ∼′, there exists
a unique elementBn ∈ SA/ ∼n with B ⊆ Bn. Then,
B0 = SA ⊇ B1 ⊇ B2 ⊇ . . . andB =

⋂
n≥0Bn.

Claim 1: We want to prove that ifProb(s, τ∗α,B) >
0 and B ∈ SA/ ∼′, then Prob(s, τ∗α,B) =
infn≥0Prob(s, τ∗α,Bn). In the following, we callP [Bn]
the probabilityProb(s, τ∗α,Bn). SinceB =

⋂
n≥0Bn

andBn ⊇ Bn+1, we have1 = P [B0] ≥ P [B1] ≥ . . . ≥
P [Bn]. We putr = infn≥0P [Bn]. Clearly r ≥ P [B].
We suppose, by contradiction, thatr > P [B]. Let ∆ =
r − P [B], then∆ > 0. There exists a subsetX of SA \ B
such thatP [Y] < ∆ whereY = SA \ (B ∪ X). For all
n ≥ 0, Bn = B ∪ (Y ∩ Bn) ∪ (X ∩ Bn). The setsB,
Y ∩Bn andX ∩Bn are pairwise disjoint. Hence,P [Bn] =
P [B]+P [Y ∩Bn]+P [X∩Bn] < P [B]+∆+P [X∩Bn] =
r + P [X ∩Bn]. Sincer ≤ P [Bn] we getX ∩Bn 6= ∅. As
a consequenceX ∩B 6= ∅, giving a contradiction.

Claim 2: Now, we want to prove that∼′ is a branching
bisimulation. Lets ∼′ s′ and Prob(s, τ∗α,C) > 0
for someC ⊆ SA. By Claim 1 it suffices to show that
Prob(s′, τ∗α,C) = Prob(s, τ∗α,C) for all n ≥ 1 and
C ∈ SA/ ∼n. But this directly derives from the definition
of ∼n. In fact, since for alln ≥ 1 s ∼n+1 s′, we have
Prob(s, τ∗α,C) = Prob(s′, τ∗α,C) ∀C ∈ SA/ ∼n.

2

Proof of Theorem 5.7
The algorithm terminates since the classes resulting from a
split have the conditions enclosed in those of the original
one. Actually, for eachψ the classg ∩ ψ is enclosed ing
sinceψ ∧ g(h, k) ⇒ g(h, k), for anyh, k.

Now, if the function split returns a cut, then ifg2 6= ḡG,
the refinement is correct by proposition 5.4. On the other
hand, if g2 = ḡG , then we delete the relations(q, v) ≈
(q′, v′) such that(q, v) and (q′, v′), by performingτ∗α,
can reach(q′′, v′′) and(q′′′, v′′′) with (q′′, v′′) 6≈ (q′′′, v′′′).
This is correct by definition of branching bisimulation.

Therefore, by induction and by using lemma 7.3, it
follows that the algorithm is correct.

2

10

