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Abstract 2 Probabilistic Timed Automata

We are interested in describing timed systems that exhibit  \We assume a set of variables, calleatlocks A clock
probabilistic behaviors. To this purpose, we define a model valuationover X is a mappingy : X — IRZ assigning
of probabilistic timed automata and give a concept of weak time values to clocks. For a clock valuatiorand a time
bisimulation together with an algorithm to decide it. We valuet, v + t denotes the clock valuation such that+
use this model for describing and analyzing a probabilistic ¢)(z) = v(z) + t. Moreover, given a set of clocks C X,
non-repudiation protocol in a timed setting. with v[Y" := 0] we denote the valuation that sets each clock
in Y to 0, while leaving unchanged the valuations of the
other clocks.
Let v; andwv, be two valuations on two disjoint sets of
1 Introduction clocks X; and X5; with v; U vy we denote the valuation on
clocks X7 U X5 such thatv; U va(X) = vi(x) if z € X,
andv; U vy (X) = ve(z) otherwise.
Timed Automata have been introduced by Alur and Dill Given a set of clocksY, the most general set afock
[2] as an extension af-Automata to describe real-time sys-  constraintsover X, denoted®(X), is defined by the fol-

tems. Timed Automata are equipped with variables mea-|owing grammar, where ranges oved®(X), z,y € X,
suring time, calleatlocks Transitions are guarded loyock ce Qand~c {<, <, =,#,>,>}
constraints which compare the value of a clock with some

constant, and byeset updateswhich reset a clock to the Gpu=x ~cloANd|p|dV ¢|true
initial value 0. Extensions with probability have been pro-
posed (e.g. in [5], [11] and [12]). We write v |= ¢ when the clock valuationv satisfies

In this paper we study weak bisimulation for probabilis- the clock constraintp. Formally, v = z ~ ¢ iff
tic timed automata. As the definition of weak bisimulation v(z) ~ ¢, v = ¢1 A g2 iff v |= ¢1 andv = ¢o, v |E —¢
requires that a time step is simulated with a sequence ofiff v [~ ¢, v = ¢1V @2 iff v = ¢1 0rv |= 2, andv |= true.
untimedr steps followed by a time step followed by a se-
quence ofr steps, we assume a model of timed automataA Probabilistic Timed Automatoris a 6-tuple A =
where the elapsing of time is associated with transitions and(2, X, @, qo, , ), where:
not with states. With this assumption, a probability is as-
sociated with transitions and, therefore, the choice among *® X is a finite alphabet of actions.
steps is done probabilistically. It is easy to see that these . o
Probabilistic Timed Automata recognize the same class of ® X IS afinite subset of clocks.
languages recognized by Timed Automata.

We prove the decidability of weak bisimulation for Prob-
abilistic Timed Automata. We use the model and the men-
tioned result to describe and analyze a security problem for
a non-repudiation protocol in a timed setting.

e () is afinite set obtatesandqy € @ is the initial state.

e ¢ is a finite set oftransitions § C Q x ®(X) x
YU {7, A} x 2% x Q. The symbolr represents the
silent or internal move, and the symbaldescribes
time elapsing. For a statg we denote withstart(q)

*This research has been supported by Progetto MURST Metodi For- the set of transitions with as a source state, i.e. the
mali per la Sicurezza e il Tempo (MEFISTO). set{(q1,0,a,Y,q2) € §|q1 = q}.




e 1 : 6 — [0,1] is aprobability function If e € ¢,
thenr(e) is the probability of performing the transi-
tion e. We require that for each stateit holds that

ZeEstm-t(s) 7T(6) € {Ov 1}

A configurationof A is a pair (¢,v) wheregq is a state
of A, andv is a valuation. Given the probabilistic timed
automaton4, we callS 4 the set of configurations of.
There is adiscrete sterom a configurations; = (g1, v1)
to a configuration sy = (g2,v2) through action
a € X U {7}, written s; -2, s, if there is a transi-
tione = (¢1,¢,a,Y,q2) € 0 such that; = ¢, w(e) > 0
andvy, = v [Y = 0]

There is a continuous stepfrom a configuration
s1 = (q1,v1) to a configurationsy = (g2,v2) through
timet € R, written s; —— so, if there is a transition
e =(q1,0,\Y,q2) € d suchthat; +t = ¢, w(e) > 0
andvy = (v1 +t)[Y :=0].

For configurations; = (q1,v1), s2 = (g2, v2) anda €
YU {r}UIR=’, we define withP (s, a, s5) the probability
of reaching configuratios, from configurations; through
a transition labeled with. Formally we have:

ZeeAdm(sl ,00,82) 7T(6)

P =
(51’ @ 52) ZeGAdm(sl) 7T(6)

whereAdm(s1, «, s2) is the set
@, 9 A\Y, ) €d|vi+alE ¢ A v=(n+a)lY =
0]} if a € IR=?, the set

0l},

{(q1,0,0,Y,q2) € § | v1 E ¢ AN vy = v1[Y :=
otherwise, andddm(s1) = Uy Us, Adm(sy, «, s2).

A configurations = (¢;,v;) is called terminal iff
Decadm(s)T(€) = 0; we denote withS; the set of
terminal configurations.

An execution fragmenstarting froms, is a finite se-

a1 ag a3 (677
qguence of stepgs = sg — §1 — S3 —> ... — Sk
such thatsg, s1,...,8; € Sa, a1, Q9,...,ap € ZU{T, A}

andVi € {1,...,k} P(si—1,a4,8;) > 0. We define
last(o) = s, and|o| = k. If |o] = 0 we putP(c) = 1,
else, iflo] = k > 1, we defineP(c) = P(sp,a1,81) ...
P(sk_1,ag, sk). The execution fragmemt is calledmaxi-
maliff last(o) € S;. We denote withExzecFrag(s) the set
of execution fragments starting frosn
An executionis either a maximal execution fragment or

an infinite sequence, —% s; —% s, —2% ..., where
$9,81... € Sa, a1,09,... € > u {T,)\} and Vi >

1 P(s;—1,5,8;) > 0. We denote withExec(s) the set
of executions starting from. Finally, leto T denote the set
of executionsr’ such thav <., o', whereprefixis the
usual prefix relation over sequences.

starting from a given configuratione S4 as follows. Let
Y r(s) be the smallest sigma field diwec(S) that contains
the basic cylindersr 7, whereo € FExecFrag(s). The
probability measurd’rob is the unique measure @y (s)
such thatProb(c 1) = P(0).

In the following, & stands for if & € ¥ UIRZ" and for
¢ (the empty string) it = 7, s € Sy andC C Sa4.

Consider nowEzec(t*&,C), the set of executions that
lead to a configuration i€ via a sequence belonging to
the set of sequences'a. We defineEzec(s, 7*4,C) =
Exec(t*a,C) N Exec(s), whereExec(s) is the set of ex-
ecutions starting froms. Finally, we define the probability
Prob(s,7*&,C) = Prob(Exec(s,7*&,C)) asin figure 1.

3 Regions

We recall the definition of clock equivalence. Configu-
rations reachable by performing a transition starting from a
given state do not depend on probability, and therefore we
may use concepts and properties given for Timed Automata.

Let A be a Probabilistic Timed Automaton; with, we
denote the greatest constant that appears in

Let us consider the equivalence relatisnover clock
valuations containing precisely the pafisv’) such that:

o foreach clocke, either|v(z)| = |v'(z)], or bothu(x)
andv’(z) are greater tha@t'4, with C'4 the largest in-
teger appearing in clock constraints ower

e for each pair of clocks: andy with v(z) < C4 and
v(y) < Cy it holds thatfract(v(x)) < fract(v(y))
iff fract(v'(x)) < fract(v'(y)) (where fract(.) is
the fractional part);

e for each clocke with v(x) < Cy, fract(v(z)) = 0 iff
fract(v'(z)) = 0.

As proved in [2],v ~ v’ implies that, for anyy € ®(X)
with constants less or equal théh, v &= ¢ iff v/ E ¢.
With [v] we denote the equivalence clgss |v ~ v'}. The
set of equivalence classes is finite.

We recall the definition of clock zone and its properties.
For more details see [6] and [10].

The set of clock zones ol (denoted with¥ (X)) is the
set of formulae) such that

Y= true| false|x ~clz—y~c|1 Vb |1 Athe

where~ {<,<,=,>,>},c€ Nandz,y € X.

With ¥ (X) we denote the set of clock zones#{ X)
that use integer constants[inC, C].

Let A be a Probabilistic Timed Automaton with states

Assuming the basic notions of probability theory (see in @ and clocks inX; aregionof A is a pair(q, v)) where
e.g. [9]) we define the probability space on the executionsq € @ andy € U(X).



1 ifa=71TANseC
> qes Prob(s,7,q) - Prob(q,7*,C) ifa=TAs¢C
> qes Prob(s,7,q) - Prob(q, 7*a,C) + Prob(s,a,C) if a# 7

Prob(s, 7"é&,C) =

Figure 1. Definition of  Prob(s,7*&,C)

The following proposition states that the set of configu- in the fully probabilistic setting, Bayer and Hermann [3]
rations reachable by performing transitions starting from a replace Milner's weak internal transitions== ¢ by the

set of configurations expressed by a region is a region.

Proposition 3.1 If (¢1,1) is a region ofA ande is a tran-

sition, then the set of reachable configurations by perform-

ing e and starting from(¢, ¢ ), is a region.

Now, it is obvious that the set of reachable configura-
tions can be calculated by using the proposition above
but it is also obvious that the set of regions is not finite.

Therefore we need an approximation.

If (q,%) is a region ofA4, we denote withAp(q,1) the
set{(q,v) |[v] Ny # false}. The following proposition,
proved in [6], states thalp 4 returns a region.

Proposition 3.2 (Approximation) Apa(q,) is a region
of A with constants belonging to the internvjalC 4, C4].

Let (¢, ) be a region ofd ande be a transition withy

as source state. Withost((q, 1), e) we denote the region

calculated as in propositions 3.1 by approximat{ggy)
by Apa(q,v). Now, it is obvious thapost((q,v),e) is
a region of A with constants in the intervd-C4, C4].
Therefore, these regions are finitely many.

The following theorem, proved in [6], states the correct-

ness of the operatgmost.

Theorem 3.3 Let R’ be the set of regions reachable with

a transitione starting in the set of region®. ThenR' C
post(Ap(R),e) C Apa(R).

4 Weak bisimulation

probability Prob(s, 7*,t) of reaching configuration from
s via internal actions. Similarly, for visible actions they
define==- by the probabilityProb(s, 7*a, t).

The probabilistic model we have chosen for probabilis-
tic timed automata is that of fully probabilistic systems. In
such a model, as demonstrated by Bayer and Hermanss in
[3], the two relations of weak bisimulation equivalence and

'branching bisimulation equivalence do coincide. Relying

on this result, we use branching bisimulation in order to de-
cide weak bisimulation.

Definition 4.1 LetA = (%, X, @, qo, J, 7) be a Probabilis-
tic Timed Automaton. A branching bisimulation dris an
equivalence relatiorR on S4 such that for all(s, s’) € R,

Ce SA/RZ

Prob(s,7*a,C) = Prob(s’,7*a,C) Va € SUrUR=Y.

Two configurations;, s’ are called branching bisimilar on
A (denoteds =~ ') iff (s,s’) € R for some branching
bisimulationRR.

Two Probabilistic Timed Automatd = (2, X, @, qo, 0, 7)
and A’ = (3, X',Q',q},d,7') such thatQ N Q" = 0
and X N X’ = () are called branching bisimilar (denoted
by A =~ A’) if, given the Probabilistic Timed Automaton
A= (2, XUX",QUQ, q,0 U, #),with

o\ m(e) ifeed

wle) = { 7' (e) otherwise,
it holds (go,vo) =~ (g4,v0), Where for each: € X U X" it
holds thatvy(x) = 0.

Note that the functiort is well defined sinc& NQ’ = 0
impliesé Nd’ = (). We shall see that the choice of the initial
state ofA is indifferent for the computation of the branching

In this section we define weak bisimulation for proba- bisimulation equivalence classes. We have chagetut

bilistic timed automata. In order to abstract frerfor inter-

nal) moves, Milner [14] introduces the notion of observable

step, which consists of a singlésible action o preceded

and followed by an arbitrary number (including zero) of in-

ternal moves. Such moves are described hyeaktran-
sition relation—>, defined as=>= (——)* % ()",
where— is the classical strong relation, apé>= (——

we could choosg as well.

5 Decidability of bisimulation

In this section we develop an algorithm that computes
the classes of the branching bisimulation equivalence and
decides if two configurations are branching bisimilar by

)*. Itis worth noting that with such a definition a weak checking that they are in the same class. To do this we have

internal transition= is possible even without performing
any internal action. For the definition of weak bisimulation

to check the condition of definition 4.1.
We extend the algorithm given for untimed systems.



Figure 2. An example

y<5

Example 5.1 Consider the automata of figure 2. In the un-
timed version the probability to reaeh from the statey is
0.5. Now, in the timed version, we observe that in state
when clocke has value smaller theB, the automaton may
execute both transitions with probability 5. Otherwise, if
clockz has value greater thad, the transition labeled with

a cannot be executed, and so the probability has to be re-

distributed; in such a case the probability of executing the
transition with actiona is 0, whereas the transition labeled

5.1 The Algorithm

We define the labeling of the clocks i by setting
Xt = {2 |z € X}, foranyl € {1,2}. When we con-
sider two configuration$g, v) and (¢’,v") of A the set of
clocks X' represents the clocks ¢fin X, andX? those of
q.

Let A = (%,X,Q,q0,9,7) be a fixed Probabilistic
Timed Automaton; withd!, for I € {1,2}, we represent the
fixed Probabilistic Timed Automatod where we rename
X with X!, We used!, start!(q) and! to denote the set
of transitions, the set of transitions starting frgnand the
probability function of4!, respectively.

If @ = {q1,---,q.}, then a class is a function :
1,n]* — W, (X' U X?) Now, classes are finitely
many since the number of clock zones are finitely many.
A class g represents the set of pairs of configurations
((qn, vn), (qr, vi)) of A such thawvy,Uvy, = g(h, k). Hence,
with [g] we denote the set of triple§, i, %) such that
v = g(h,k) representing the configuratiofy;,v) and

with b gets probabilityl. Therefore we need to consider the (g, v') With v U v’ [= 9.

different cases in which a subset of transitions are enabled

or not.

Moreover, one may consider to use the algorithm for the

untimed version on the region graphs of the two automata,
i.e. the graph of regions resulting by applying the successor

operator. This is not a good solution; in fact, if we consider
the clock zone reached in staje we havexr > 0 and in
stategs we havey > 0. Let us suppose that one wants
to compare the probability of reaching from ¢; with the
probability of reachingy; from ¢s. Now we must check the
two probabilities for each time: € IR=", and so they are
equal for every time if and only if = y. This means that
we cannot consider the clocks separately, but we must hav
formulae on all the pairs of states.

Example 5.2 The functiong such thatg(0,2) = 2! < 22
and false otherwise, is a class of example 5.1. This rep-
resents the set of pairs of configuratiofigo, v), (g2, v')),
such that(z) < v'(z).

Two classesy; and g, are disjoint if and only if for
each h, k it holds that g, (h,k) A g2(h, k) false.
A set of disjoint classesG represents the relation
(gn,v) =g (qx,v’) such thatv U v E g(h,k), for
someg € G. With gg andg;.... we represent the class such
that gg(h, k) = Ayeg —9(h, k) and girue(h, k) = true,
respectively. The clasgg represents the configura-
tions that are not bisimilar, i.e. 6 U v [ gg(h,k),

F‘Ehen (qn,v) %#¢ (gx,v’). The classy,... we represent the

biggest class. Moreover, if is a clock zone inb (XU X?)

Since we have to check also the bisimilarity for states of with ¢ N v/ we denote the class such that for edgh it

the same automaton, as an examgleand ¢;, we have to

consider formulae that express conditions on the value of

clocks at stateyy together with the value of clocks at state
q1. As an example! = z? means that the values of clocks
at stateg, are the same of those at state

The algorithm splits a class if in the class there exist two
configurations starting from which there are two different
probabilities of reaching a certain class by performitig.

holds that(g N ¢)(h, k) = g(h, k) A .

We can extend the definition ofpost over
triples. If e; and ey are two transitions, then with
post(qn, qk, ¥, e1,e2,9) we denote the set of triples
in [g] reachable from(qp,qr,t) by using the tran-
sition e; and e, synchronously. More precisely, if
a; # az Or ey & start'(qy) or ex & start®(qx), then
pOSt(qth]caqzbaelaeQag) is the trlple (qh,qkafalse)'
and, otherwise, it is the tripldg,, qu,¥’ A g(r,w)),
wherepost((q, ), e') = (¢',v’), for some states, ¢’, and

The algorithm takes a class and calculates these probe’ = (g, d1Ap2, a1, Y1UYa,¢')), if e1 = (qn, é1, 01, Y1, ¢)

abilities by solving a set of pairs of systems of equalities

(rather than a pair of systems of equalities, as in the un-

andes = (g, ¢2, a2, Y2, qy). Moreover, wither we de-
note the set ofuselesstransitionsU,c (¢, true, 7,0, q).

timed case). The algorithm terminates when no class can beNe will use this set to describe a step of only one of the

splitted further.

two components.



A set of triples R is empty if and only if each
(qn,qx,®) € Ris such thaty) = false. A set of tran-
sitions F' is enabled inR if and only if for eache € E
there exists(q;, qx,%) € R, such that ife € §!, then
post((qr, qr, ), e, er, girue) iS NOt empty, and, it € 62,
thenpost((qi, qi, ¥), er, €, girue) IS NOt €MPLY.

With F we denote the set of functiong such that
for eachh € [1,n], I € [1,2] it holds thatf(h,l) C

(2 an) gt )y g g if (E,E") € f(h,1),thenEN

E’ = (. The pair(E,E’") € f(h,l) represents that the
transitionsE’ U E’ are the only ones enabled, and, if a tran-
sition in E is executed, then it takes configurations with
stateh of component to configurations in the same class,
and those inE’ take configurations with state of com-
ponent! to configurations in a different class. Since a

start! (q .
state can belcrossed several times we 256" “" in-
stead of2*t"t (a»)  We will write f(R,1) to denote the set
Ulgn.aep)ertE U E" | (E,E") € f(h,1)}.

Let f € F andEy = start(gn) U start(qr). We

define the formula); =

3t = 0. /\h,keu,n] g(h k) = /\1:1,2 \/(E,E/)ef(h,l)

(/\eEEUE’ ¢6) A (/\eeEh,k\EuE' “ﬁe)
where ife = (qT7¢7a7Y7 qw)! andel = \/je[l,n] g(whj)
if e € 6' andV/;(; ,,; 9(j, w) otherwise, then

e ifeec Fandy” = ¢ A (AY.Y = 0A ), theng, =
P"[X = XU 4-1],if o = )\, andg,. = ¢ otherwise.
Namely, the transitior is enabled and the reachable
configurations are ig. If e is A\-labeled, then we must

E’ is ther-labeled transition andy” is the transition from
q7 10 gs. We have thatyy = 3t > 0.(z! = ¢?) = (2 >
SAY2+t<5Axt =9?).

If gisaclassf € F andR C [gtrue), then withRy (f, g)
we denote the fixpoint of the computation such tRgt= R
and Ry, is the setRy_; joint with the set

U {post(Ri—_1,e,er,g) | e € E is T—labeled}.
(E,E’)Ef(kal,l)

It is obvious that the fixpoint is reached in a finite sequence
of steps since the set of clock zones are finitely many. The
set Ry (f, g) is the set of triples reachable by performing
a sequence of transitions ofA! while remaining ing.
Analogously we can definBs(f, g).

If G is a set of disjoint classeg; € G, g2 € G U {gg},
¢i, q; are two states and € £ U {7, A}, then we define the
function split(g;, g5, ., g1, g2) that returns a functiorf &

F such that the probability of reaching the clagsfrom
configurations(q;, v) and (g;, v'), with v Uv" = ¢, and
taking transitions inf, are different, ifgo # gg, and are
different from0 otherwise. Now we show how this function
computesf.

We can calculate the probability of performinga by
solving a set of systems of equalities. For the untimed case,
the probability of performing a sequence ifia can be
calculated by solving a system of equalities by following
the definition of figure 1. Now, in the framework of timed
automata, the transitions enabled at a certain instant depend
on the values of clocks. Therefore we must consider all the
possible behaviors, which means to consider the possible

consider the time elapsing represented by the variableset of transitions performable at a certain instant, namely

t.

if e € Efandy’ = ¢ A (3Y.Y = 0 A '), then
e = Y[X = XL+ t],if a = A\, andg. = ¢
otherwise. Namely, the transitianis enabled and the
reachable configurations are notgin

The formulay ; gives the weakest precondition such that in
a configuration represented hyne can choose to perform,
at a certain instant of time, only transitions expressed.by
This is necessary to normalize probabilities when calculat-

ing the probability of performing a sequence expressed by;, p such that. ifE U E/ — {e1

T*a. It is obvious that, by means of the quantifier elimi-
nation showed in [10], the formulay is in (X! U X?).

We note also thafg N ¢ ¢] contains the triple refined with
the conditiory); that ensures that the respective subregions
surely perform only transitions ifi.

Example 5.3 Let g be a class such thaj(2,8) = 2! =
y* and false otherwisef(2,1) = {(0, E)} and f(8,2) =
{(E’, E")} whereFE are the transitions from, to {gs, ¢4},

eachf € F. We describe now how is the system of
equalities that depends ghn

Let f € F; we use the variablg and the set of variables
yr Where) € R C [g1 N ¢s]. The variableyr repre-
sents the probability of the tripl& in [g;] of reaching[g.]
by sequences in*a. The variabley represents a generic
configuration ofgs.

We consider the system of equalitigs; composed by
the equalityy = 1 and the set of equalitiegr = p1 - y1 +
-+ + pp - yn, Where there existéE, E’) € f(R,1) enabled
...,emn}, then for each
1 €{1,...,m}itholds that:

o if ¢ € E is r-labeled and R’
pOSt(RQ(f7gl)76la{eT} U f(RQ(f7g12)7gl)
not empty, thery, = yr andp; = L))

e(€EUE’)Ns1 mi(e)

is

Namely, we have a sequencero$teps while remain-
ing in the clasg N v, of A2, followed by one ofA!
(possibly synchronized with one af?).



e if ¢, € E' is a-labeled andbost(R, e;, f(R,2),g2) IS
not empty, theryl =y andpl — m (e1)

Y ec(rurhnst ™)’
Namely the two configurations, by synchronizing on
a, fall into gs.

e Otherwisep; = 0 andy; = y.

Analogously we can defing ;.

The following proposition states the relationship of the
set of equalities defined above with the probabilities of per-
forming 7*a.

Proposition 5.4 Let (g;,v), (g;,v’) such that v U
o' (i g) N Yy Prob((qi;v), 7" a,g2) and
Prob((g;,v"), 7™, g2) are equal to the solutions of the
variable yr, of the systems of equalitids; and [; ¢, re-

spectively, wherdy = {(¢,q;, 9(i, ) A bg)}.

If p; andp, are the solutions of the variablg;, of
the systems of equalities ; and; ¢, respectively, where
Ro = {(¢,qj,9(i,7) N y)}, then, by proposition 5.4, we
have thatf is a cut if and only if p; # ps if g2 # gg, and,
p1 # 0 A pa # 0 otherwise.

Example 5.5 Let us consider the clagsand the function

f of example 5.3. We want to calculate the probability of
reaching the clasg’ such thatg’(3,4) = ¢'(3,8) = true
with the symbok. We must solve the systems:

{ {

whereR = {(qz, g7, 22 = y"Ax? < 3)}. The first system of
equalities expresses the fact that frgprwe can perform a
with probability equal td).5, and the second one expresses
the fact that frony; we can perform a with probability
equal tol. Therefore we have a cut.

yr=(0.5)-y
y=1

yr = (0.5) -yr + (0.5) - y
y=1

If there exists no cut, then the functiemlit returns a
special symbolf representing no function, otherwise it re-
turns a cutf. Now, if the functionf returned is noff, then
it determines the followingefinementon the class),: if
{S1,..., 8™} is apartition of{1,...,n} such that for each
h € S” andk € St it holds thatf is not a cut forh andk if
and only ifr = ¢, then the clasg, is refined in the union of
classeq¢’, ¢',...,¢g™} such thay® = g; N -, and for
eachl € [1,m] andh, k € [1,n]

false
g1 (h7 k) A wf

Example 5.6 The cutf of example 5.5 generates the refine-
ment of the clasg in the classeg’ such thatg®(2,7) =
! = y? Az! > 3 and false otherwise.

if {h,k} ¢ S!
otherwise.

g'(h,k) = {

We call G the set of classes resulting by refining the
classes by using the function returned /it until we
reach the fixpoint starting from the clags.... Therefore
we have the following theorem that implies the decidability
of weak bisimulation for probabilistic timed automata.

Theorem 5.7 The set; can be computed with a finite num-
ber of applications of the refinement induced by the function
split and(g;, vi) ~ (g;, v;) ifand only(g;, vi) =g (q;,v;)-

6 A Case Study: Probabilistic Non Repudia-
tion in a Timed Setting

In this section, as a case study, we model and analyze a
non-repudiation protocol that employs a probabilistic algo-
rithm to achieve a fairness property. In particular, we extend
the case study presented in [1] to a timed setting.

6.1 A Probabilistic Non-Repudiation Protocol

We consider a protocol that guarantees a non-repudiation
service with a certain probability without resorting to a
trusted third party [13]. In particular, the probabilistic pro-
tocol is fair up to a given toleraneedecided by the origina-
tor. Assume that an authentication phase precedes the pro-
tocol. We denote byign g (M) the encryption of message
M under the private key of the entity and with { M} x
the encryption of\/ under the keyK. Finally, we use to
denote a time stamp. The protocol can be described as fol-
lows (with the notatiom® — O : M sg we denote a message
M sg sent byR and received by):

1. R — O: Signg(request,R,O,t)
2. O—R: Signo{M}k,O0,R,t) (= M)
3. R— O: Signg(acky)
4.

a.i-p O—R: Signg(M,, R,O,1) (= M;)

R— O: Signg(ack;)
goto stept

b., O— R: Signg(K,R,O,t) (= M,)

5. R— O: Signg(ack,)

The recipientR starts the protocol by sending a signed,
timestamped request to the origina@r O sends toR the
requested messadé ciphered under the ke, and waits
for the ack fromR (ack; represents the acknowledgment
related to messagk/;). At step4 the originator makes a
probabilistic choice according 0 = . At step4a (taken
with probability 1 — p) O sends toR a random message
M, receives the ack and returns at stepvhile at steptb
(taken with probabilityp) O sends taR the keyK necessary
to decrypt the messade\! } . Upon reception of the last
ack (ack,), related to the message containing the kéy
the originator terminates the protocol correctly.



Intuitively, the non-repudiation of origin is guaranteed Ay 23>0 A w<2ep
by the message&/; and M,, (signed with the private key unfair
of O), while the non repudiation of receipt is given by the w;(m @
x>2cpr
message, p

ack

z<c
x:=0

last messag&ignr(ack,). If the protocol terminates af-
ter the delivery of the last ack, both parties obtain their ex-
pected information, and the protocol is fair. If the protocol
terminates before sending the message containing the key
K, then neither the originator nor the recipient obtains any
valuable information, thus preserving fairness. A strategy
for a dishonest recipient consists in guessing the last mes-
sage containing the kelf, verifying if a received message
contains the needed key and then blocking the transmission message
of the last ack. Therefore, the key to success of the pro-
tocol is the immediacy in sending back the ack messages.
The originator decides a deadline for the reception of each
ack, after which, if the ack is not received, the protocol is
stopped. Obviously, the cryptosystem must be adequately
chosen, in such a way that the time needed to verify a key,
by deciphering the message, has to be too long with respect
to the transmission time of an ack message. Anyway, a ma-
licious recipient can try to randomly guess the message con- Figure 4. Representation of H Recip
taining the keyK, and in this case the probability for the

recipient of guessing the last message depends on the pa- . . .
ramgterp chc?sen by ?he originator ¢ P P qs, With probability1 — p, it sends a random message reach-

ing stateg, and, with probabilityp, sends the last message
containingK and reaches statg. We do not model value
passing, so we simply call all these actiongssage. In
stategs the reception of the ack message is modeled by

In this section we describe the parties of the protocol the input actionuck, while the expiration of the deadline
through the model of probabilistic timed automata. Since (represented by the constaftis modeled by the action
we have to manage communication between agents, we disstop executed when the clock assumes a value greater
tinguish input and output actions. Given an alphabet of thanc. The fair termination of the protocol is reached when
action typesXr,,. we define the set of input actions as the originator receives the last ack and performs the action
¥r ={a | a € ¥y} and the set of output actions as correctstop. The protocol terminates in an unfair way if
Yo = {a@ | a € Xryp}. Finally, we define the alphabet and only if the originator does not receive the ack related
of actions as = Yo U X;. Moreover, we assume that to the message containirig, and in such a case it executes
output actions behave as generative actions [8], while inputthe actionun fair. The constant,; used in state, repre-
actions behave as reactive actions. Generative action exesents an estimation of the maximum transmission delay of
cutable in a state will be executed according to their proba-a message. In particular, it is reasonable to assume that a
bility distribution. In a state, the choice between executing message sent will always arrive at destination in time
a generative action or a reactive one depends on the external In Fig. 4, we show the automaton representing a recip-
environment. If this provides a generative action with which jent that behaves correctly. The recipient starts the proto-
a reactive action may synchronize, the reactive action will col by sending a request, receives the first message, sends
be executed with probability 1. There is still the possibil- the first ack and reaches state from where, whenever it
ity that more actions may react to the environment, and thereceives a message, it sends an ack back. The protocol ter-
choice among them will be due according to a probability minates when the input actianrrectstop is executed. As
distribution (in our case study this does not happen). in the model for the originator, we represent the elapsing of

We consider and\ as generative actions. time for transmission delays throughransitions. For sim-

We start with introducing the probabilistic timed au- plicity we do not put conditions on such kind of transitions
tomata modeling an originator and a recipient behaving in the states; andr.

stop

MESSage, 1—p

Figure 3. Representation of Orig

6.2 Security Analysis of the Protocol

correctly. The originator (Fig. 3) is always ready to In order to verify aNon-Interferencesecurity property
start a communication by accepting a request, sending[7] we have to single out the high level actions and the low
the first message containing encrypted withK (action level ones. It is natural to consider the actiomfair (ex-

firstmessage) and receiving the first ack. Then, in state ecuted when the protocol terminates in an incorrect way)



as the unique low level action of the system. Intuitively, a message
low user that observes the protocol run should never see thé. =
execution of the actioan fair.

Given two probabilistic timed automataand@, we de-
fine the parallel composition ak and @, denotedR||Q.
The set of states aR||Q is given by the cartesian product
of the states of the two automataand ). Given a state
(r,q) of R||Q, the set of transitions starting frofm, q) is
obtained by the following rules:

Figure 5. Representation of M Recip

o If from stater the automator can perform a gener-

ative actiona leading tor’ with probability p, andQ )
cannot perform either a reactive actierr any gener- the last message of the protocol (we assume that it knows

ative action in state, thenR||Q performs a generative the probability distribution chosen by the originator). It fol-

actiona with probabilityp and reaches state’, ¢). lows a Bernoulli distribution with parameterto decide ei-
ther to send the ack message or to try to compitby em-

e If from stater the automatorR? can perform a gener-  ploying the last received message (see stgteWe assume

ative actiona leading tor’ with probability p, andQ that the time necessary to decipher the message is greater
can perform a reactive actianleading to statg’ and than the constantp. Note that ifc > ¢p the recipient can

it cannot execute any generative action, tieand@ send an ack even after failing to decipher the message (see
synchronize and?||@) performs a generative acti@n staterg). So the originator should take care of the deadtine
with probabilityp and reaches state’, ¢'). chosen. State; represents, instead, the state reached by the

malicious recipient when correctly guessing the last mes-
sage. Since the probability that a message received from
Orig is the last one, containing the needed key, is equal to
p, we assume that in statg the malicious recipient goes
to the winning state; with probability p and to state,
from which it tries to send the ack back, with probability
1 — p. Such a probabilistic choice represents the frequency
that models the behavior of the malicious recipient in state
Any rule has a symmetric one. r5, even if it already knows, when reaching stagetrying
The automata modeling originator and recipient of our to decipher the message, if the received key is the right one.
case study can synchronize through actions with type in  The probability of executing the actiam fair for the
{request, firstmes, ack, message, correctstop}. systemOrig|| H Recip is equal td), while the probability of
Now we have to formalize the non-repudiation prop- executing it for the system@rig||M Recip is (asc < ¢p):
erty to be checked. The hostile environment is represented -
by the recipient that tries to obtain its expected informa- _ _ = N (1Y b-q
tion without sending the last ack. According to this we R ;((1 p)-(1-0) 1-(1-p)-(1—-q)
check bisimulation equivalence between the model where
both parties behave correctly and the model involving a Given0 < p < 1 chosen by the originator artl < ¢ <
malicious recipient. Now we can consider the protocol 1, the maximum value for is p, obtained by taking =
to be secure if the syster®rig||Recip is bisimilar to 1. The recipient model, which optimizes the probability of

e If R can perform a generative actiehwith probabil-
ity p and@Q can perform a generative actiari with
probability p’, then R||Q executes either the acti@h
with probability1/2 - p or the actiom’ with probabil-
ity 1/2 - p’ which synchronizes, in both cases, with a
reactive action of the same type, if the other automaton
can perform it.

Orig||H Recip for each possible malicious recipieRtcip. violating the fairness condition, is obtained by removing the
Formally, the protocol satisfies the non-repudiation property transition labeled witluck from stater, to staters.
if and only if: The consideration above gives as a result that the sys-
temsOrig||M Recip and Orig||H Recip are not bisimilar
Orig||Recip ~ Orig||HRecip ~ VRecip. according to definition 4.1. Moreover, since the probability

of unfairness depends on a parameter chosen by the origina-
tor, we may resort to the definition of a bisimilarity up to a
given tolerance. Such a definition is easy to give. We only
need to relax the equality of definition 4.1 with the formula:

We observe that the protocol does not satisfy the security
condition. In particular, if both participants behave cor-
rectly, the unfair behavior cannot be executed; instead, it
is possible to find a malicious recipient that receives the ex-
pected information and denies sending the final ack. |Prob(s, m*a, C) — Prob(s', 7%, C)| < ¢

In Fig. 5 we show the automaton representing a mali-
cious recipient that maximizes the probability of guessing and then make some adjustment to the algorithm. Given



such a definition, the two systems will result to be bisimilar [12] Kwiatkowska, M, Norman, R, Sproston, JSym-
up toe in the case > p. bolic Model Checking of Probabilistic Timed Automata
Using Backwards Reachabilitffech. rep. CSR-00-01,

7 Conclusion University of Birmingham.

[13] Markowitch, O., Roggeman, Y.Probabilistic Non-

We have considered a model of Timed Probabilistic Au- Repudiation without Trusted Third Part¥nd Confer-

tomata. We have presented a notion of weak bisimulation ~ ence on Security in Communication Network, 1999.

in order to compare them and an algorithm that permits to

decide it. Finally, we have applied such a notion in the con-

text of security analysis by modeling an interesting protocol
where both time and probability play a role.

[14] Milner, R.: Communication and Concurrenciren-
tice Hall, 1989.
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Appendix

Definition 7.1 A set of triplesk C [gt.] is 1-defined byh
(resp.2-defined byh) if and only if for eachq;, ¢, v) € R
it holds thatl = h (resp.r = h).

Proof of Proposition 5.4

It is sufficient to prove that from every configuration reach-
able from(g;,v) and(g;,v") while remaining ing; N ¢y,
only the transition expressed hf can be taken. If this

In order to show that’C~ we prove that-’ is a branching
bisimulation.

For eachn > 0 and eachB € S4/ ~/, there exists
a unique elemenB,, € S4/ ~, with B C B,. Then,
By =S42B1 DBy D ...andB:ﬂn>0Bn.

Claim 1: We want to prove that iProb(s, 7*«, B)
0 and B € Sa/ ~', then Prob(s,7*«a, B)
infp>oProb(s, " e, By,). In the following, we callP[B,,
the probability Prob(s, 7*a, B,,). SinceB = (),,», B
andB,, D B,1, we havel = P[By] > P[By] > ...
P[B,]). We putr = inf,>oP|[B,]. Clearlyr > P[B].

SV

<
3

Vv

holds, then the thesis is a consequence of the proof of theye suppose, by contradiction, that> P[B]. LetA =

untimed case (see [4]).

First of all we note that, by definition dfdefinedness in
h, if Ris 1-defined byh, thenR(f2, g1) is 1-defined byh.
Moreover, als@ost(Ra(f, g1), e, {er }Uf (R2(f,91)), 91)
andpost(R, e, f(R,2), g2) arel-defined byk, for somek.

Since we consider as starting variablg, with Ry =
(¢i,45,91(4, §) ANy), which is obviouslyl-defined, then,
by induction, each variablgr used inI; ; is 1-defined.
Moreover, by definition of post and by theorem 3.3, for con-
figuration (g, vy ) and(gg, vx) reached while remaining in
g1 Ny, there exists a variablgr such thawy, U v, = v,
for some(qp, qr, ) isin R.

Therefore, sincek is 1-defined and by definition af,
the valuatiornv;, U v, satisfies

AV (A

1=1,2 (E,E")ef(h,l)

So there exists one and only one pdi, E') in f(h,1)
enabled in the configuratiof, vy ). This implies that the
probability to take a transitiom € E U E’ is equal to

' (e)
Y eemupnne T (€) ) ) . o
Therefore, by induction, we have the thesis. Similarly
we can prove the thesis for the second component.

A

EEEh,k\EUE'

_‘(be

O

Definition 7.2 Let A = (¥, X, @, qo, J, 7) be a probabilis-
tic timed automaton.
relations ~,, on S4. We set~y= S4 x S and, for
n=0,1,...,8 ~q1 §iff Va e BSU{r, A} VC € S4/ ~n
it holds thatProb(s, 7*«,C) = Prob(s’, 7*a, C).

Lemma 7.3 LetA = (X, X, Q, g0, 9, 7) be a probabilistic
timed automaton ane, s’ € S4. Then,

!

s~s'evWm>0 s~,s.

Proof: Let~'= ", -, ~n. We have to show that=~". It
easy to see that’ is an equivalence relation. By induction
onn we can show thatgD~12 ... D=. Hence,~'D=.

10

r — P[B], thenA > 0. There exists a subséf of S4 \ B
such thatP[Y] < A whereY = S4 \ (B U X). For all
n >0 B,=BU(YNB,) U(XnNB,). The setsB,
Y N B, andX N B,, are pairwise disjoint. Henc&)[B,,] =
P[B]+P[YNB,]+P[XNB,] < P[B][+A+P[XNB,] =
r+ P[X N B,]. Sincer < P[B,| we getX N B,, # (. As
a consequenc& N B # (), giving a contradiction.

Claim 2: Now, we want to prove that’ is a branching
bisimulation. Lets ~' s and Prob(s,7*a,C) > 0
for someC C S4. By Claim 1 it suffices to show that
Prob(s',7*a,C) = Prob(s,7*a,C) for all n > 1 and
C € S4/ ~,. But this directly derives from the definition
of ~,. In fact, since forallh > 1 s ~,41 s, we have
Prob(s,7*a,C) = Prob(s',7*a,C) VC € Sa/ ~n.

Proof of Theorem 5.7
The algorithm terminates since the classes resulting from a
split have the conditions enclosed in those of the original
one. Actually, for each) the classy N v is enclosed iry
sincey A g(h, k) = g(h, k), foranyh, k.
Now, if the function split returns a cut, thengf # G,
the refinement is correct by proposition 5.4. On the other
hand, ifgo = gg, then we delete the relatior(g, v) =~
(¢’,v") such that(q,v) and (¢’,v’), by performingr*a,
can reaci(q”, U”) and(q”’, ,U///) with (q//7 ’UH) ;;é (q///, U”/).
This is correct by definition of branching bisimulation.
Therefore, by induction and by using lemma 7.3, it

We define inductively equivalence follows that the algorithm is correct.



