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Abstract. We develop a model of Parametric Probabilistic Transition Systems, where probabilities associ-
ated with transitions may be parameters. We show how to find instances of the parameters that satisfy a
given property and instances that either maximize or minimize the probability of reaching a certain state. As
an application, we model a probabilistic non-repudiation protocol with a Parametric Probabilistic Transition
System. The theory we develop allows us to find instances that maximize the probability that the protocol
ends in a fair state (no participant has an advantage over the others).
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1. Introduction

Complex systems may exhibit behaviours depending on decisions that can be taken at each state of the sys-
tem, based on a probabilistic choice. Therefore, there are properties that should be studied in a probabilistic
setting and require suitable description methodologies and verification techniques. This is the case when one
wants to study quantitative security, performance and reliability properties of systems of distributed and
communicating agents.

Many formalisms have been proposed for analyzing probabilistic systems. The analysis process consists
in building a probabilistic model of the system, typically a Discrete—time Markov Chain, a Markov Decision
Process or a Continuous Time Markov Chain (see [Bel57, How60, Ros83]), on which analytical, simulation-
based and numerical calculations can be performed to obtain the desired quantitative measures. Temporal
logics have been adapted to deal with quantitative verification, namely with the problem of determining
the probability with which a system satisfies a specification [Alf98, Alf99, BBS95, BK98a, BK98b, Bea(2,
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BdA95, CSZ92, DEP98, Han94, JLI91, Mal95, SS98, WSS97]. These formalisms are addressed at verifying
concrete specifications.

Real specifications, however, are often parametric. Actually, the design of a system may depend on certain
parameters of the environment, and concrete instantiations make sense only in the context of a given concrete
environment. Moreover, one may want to tune the parameters of a system on the values that allow reaching
a desired reliability level, in hardware design, or a security threshold, in protocol design.

In this paper we develop the model of Parametric Probabilistic Transition Systems (PPTSs). Intuitively,
PPTSs are Discrete—time Markov Chains in which probabilities associated with transitions may be parame-
ters assuming real values.

It is, in general, undecidable whether there exists a valuation of the parameters appearing in a PPTS that
satisfies a given formula. However, we prove that valuations satisfying a given formula can be computed for a
subfamily of PPTSs with at most two parameters. Hence, we study the restrictions under which it is possible
to compute instantiations of the parameters satisfying a given formula (which may contain also reachability
conditions), and we give a syntactical characterization of the PPTSs satisfying those restrictions.

Finally, we propose a technique to compute valuations that maximize or minimize the probability of
reaching a certain state of the PPTS.

The class of PPTSs satisfying the restrictions we impose is expressive enough to describe and analyze
many real-life systems. One may think, for example, of systems with one or two hardware components which
can undermine the reliability of the whole system. If the designer is able to adjust the reliability levels of the
components, considered as parameters, our framework allows to analyze and maximize the reliability of the
whole system. A similar analysis can be done for the study of reliability and/or security level of probabilistic
protocols. In fact, a large class of probabilistic protocols perform just one probabilistic choice, which can be
considered as the only parameter of the system. Applications of this type range from academic protocols,
e.g. Chaum’s dining cryptographers protocol (see [Cha88]) and the probabilistic Non-repudiation protocol
introduced in [MR99)], to industrial protocols, e.g. the IPv4 Zeroconf protocol as studied in [BSHV03], the
Crowds [RR98] and Onion Routing [RSG98] anonymity protocols, etc..

Summing up, the framework we present allows for the parametric analysis of a rich class of systems, e.g.,
checking whether a formula holds for different values of the parameters, and computing the values of the
parameters such that some property is satisfied or the probability of reaching a success (failure) state to be
maximized (minimized).

1.1. Related Works

In [AHV93] Alur et al. address the problem of parametric reasoning on the timing properties of real-time
systems. Parametric Timed Automata are proposed as a generalization of the Timed Automata in [AD94].
In particular transition guards on clock formulas are allowed to contain parameters. In this setting, the
number of clocks is crucial for the decidability of the emptiness problem: for a subclass of Parametric
Timed Automata, where just one clock is parametrically constrained, the emptiness problem is shown to be
decidable.

In [TNHH98], a parametric model checking algorithm is proposed for a subclass of Timed Automata
called Parametric Time-Interval Automata (PTTA). In a PTTA, one can specify upper- and lower-bounds of
the execution time (time—interval) of each transition by using parameter variables. The proposed algorithm
takes two inputs, a model described as a PTTA and a property specified as a PTTA accepting all the invalid
runs. The algorithm constructs the parallel composition of the PTIAs expressing the model and the property,
and checks the emptiness of the language accepted by the product automaton. The output is the weakest
condition on the parameters such that the given model never executes the invalid runs.

The interest about parametric real-time properties has also been extended to model checkers for real-time
systems. In [HRSV02] Hune et al. introduce an extension of the UPPAAL model checker (see [UPPAAL))
for analyzing Parametric Timed Automata. The authors identify a subclass of Parametric Timed Automata
(called L/U automata), for which the emptiness problem is decidable.

With HyTech [HHW97], a tool for model checking Hybrid Automata, Henzinger et al. also consider a
parametric analysis. Parametric Hybrid Automata allow the modelling of continuous behaviour by means of
linear equations, and, hence, they are more complex than Parametric Timed Automata. As a consequence,
the tool cannot cope with too large examples.

While the study of parametric real-time systems has been strongly pursued, parametric analysis of prob-
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abilistic systems has not been considered until recent years. In 2004, two studies on parametric probabilistic
analysis were brought on independently (see [Daw04, LMTO04]).

In [Daw04], Daws presents a language—theoretic approach to symbolic model checking of PCTL formulas
over Discrete—time Markov Chains. The probability with which a path formula is satisfied is represented by
a regular expression. A recursive evaluation of the regular expression yields an exact rational value when
transition probabilities are rational, and rational functions when some probabilities are left unspecified as
parameters of the system. This allows for parametric model checking by evaluating the regular expression for
different parameter values in the rational domain. In the present paper, which is an extension of [LMT04],
we give an in—depth analysis of parametric probabilistic systems, where parameters are real values. We study
decidable subclasses of PPTSs and we propose a technique for minimizing/maximizing the probability of
reaching certain states under a given condition on the parameters.

1.2. Summary

The remainder of this paper is organized as follows. In Section 2 we recall some basic notions about Discrete—
time Markov Chains. In Section 3 we introduce the model of Parametric Probabilistic Transition Systems
by extending Markov Chains with parameters. In Section 4 we tackle the problems of the decidability of the
existence of instances of parameters that satisfy a given property and we propose a technique to find optimal
instances. In Section 5, as an application, we show the model of a probabilistic non-repudiation protocol
where some probabilistic choices are modeled with parameters. In Section 6 we draw our conclusions and
anticipate some future work.

2. Basic Notions

In this section we recall some basic notions about Discrete—time Markov chains (DTMCs) [Bel57, How60].

2.1. Discrete—time Markov Chains

In this section we recall the definition of Discrete—time Markov chains (DTMCs) [Bel57, How60).
Definition 2.1. A Discrete-time Markov chain (DTMC) is a tuple (Q, qo, 0, 7) where:

Q is a finite set of states;

qo € @ is the initial state;

6 C Q xQ is aset of transitions;

w6 — [0,1] is a function assigning a probability to each transition. For all states ¢ € @ it is required
that 3 1qr4q (€) € {0, 1}.

With Start(q) we denote the set of transitions with ¢ as source state, namely Start(q) = {(¢i,q;) € | ¢: = ¢}.

Example 2.1. Consider the DTMC M depicted in Figure 1. The set of transitions of M is:

6 = {(q0,01), (90, 42), (90, 93), (q1,42), (q1,G4), (g2, q1), (92, ¢5), (¢3,45)}. The probability of a transition ap-
2. 2 —
pears over the transition. We have, e.g., 7((qo,¢2)) = 15 and 7((g2,¢5)) = 3.

A run of aDTMC M = (Q, qo, 9, 7) is a (possibly infinite) sequence of steps of the formw = gg — ¢1 — . ..
where (¢;, gi+1) isin § and 7((gi, ¢i+1)) > 0. The length of w, denoted |w|, is the number of transitions between
states performed by the run and is equal to n if w is the finite run g9 — ¢1 — ... — ¢n, and oo otherwise.
With Pathﬁn(M) (resp. Pathful(M)) we denote the set of finite (resp. infinite) runs of M.

Let k < |w|; with w(k) we denote the state ¢, and with w*) we denote the run gy — ¢ — ... — .

If k = |w|, then we say that w is a prefiz of W' if and only if length(w’) > k and w = (w')*). With last(w)
we denote the state w(k).

Assuming the basic notions of probability theory (see e.g. [Hal50]), we may assign a probability to the
runs of a DTMC M by following the traditional Borel o-algebra approach of basic cylinders sets (see [KSK66,
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Fig. 1. A Discrete-time Markov Chain.

Wil91]). We denote the probability of a finite run w =gy — ¢1 — ... — @, with p(w), defined as follows:
(@) = 1 ifn=20
AT @) 7 ((gn1,0a) 0> 0.
Finally, we can extend this probability to sets of infinite runs. The probability function p defined on sets
of runs in Pathful(M ) is the unique function such that
pv({w' | W' € Pathp (M) A w is a prefix of W'} = pa(w)

for any w € Pathﬁn(M).

In the following we focus on infinite paths. Notice that, in this case, states with no outgoing transitions
can be considered by adding a self-loop transition with probability 1.

Definition 2.2. Given a DTMC M and a state ¢, with Pys(q) we denote the probability of reaching the
state ¢ from the initial state of M, more precisely:

Par(q) = ul{w € Pathyy(M) | 3k : w(k) = g}).

With Adm(q) C @ we denote the set of states that can be crossed for eventually reaching the state ¢
from the initial state go. More precisely,

Adm(q)={d | —...—¢ —...—q€ Pathﬁn(M)}-

Moreover, with AdmTr(q’,q) C § we denote the set of transitions starting from ¢’ and reaching a state
in Adm(q), more precisely

AdmTr(q',q) ={(d,q¢") € 6| ¢" € Adm(q)}.

Example 2.2. Let us consider the DTMC M of the example in Figure 1. We have that Adm(qs) =
{40, q1, g2, ga}. Moreover, we have that AdmTr(q1,q4) = {(q1,92), (q1,¢4)} and AdmTr(q2,q4) = {(g2, 1) }-

The following proposition has been proved in [HJ94].

Proposition 2.1. Let M = (Q,qo,0,7) be a DTMC and ¢ € Q; the probability Pys(q) is equal to the
solution of x4, of the following system of linear equations:

Tg=1
{ Tq = Z(q’,q”)eAmeT(q'ﬂ) m((d',q")) - g V4 Fq.

3. Parametric Probabilistic Transition Systems

In this section we introduce the model of Parametric Probabilistic Transition Systems (PPTSs). Beforehand,
we define terms over parameters. Terms can be used as labels for the transitions of a system. Afterwards, we
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define formulas over terms. Formulas will be used to describe properties that a term must satisfy. Thus, they
can be used as constraints on terms and parameters. Finally, we consider the relationships between PPTSs
and DTMCs.

With «,,... we denote parameters assuming values in the set IR of real numbers. Given a set of
parameters A, an instance u : A — IR for A is a function assigning a real value to each parameter in A.
We define the set P(A) of polynomial terms over parameters in A as follows:

Tu=c |l a| T | T

where 7,71, 72 € P(A), ¢ € R and o € A. Operators + and - represent the classical addition and mul-
tiplication operations, hence they satisfy commutativity, associativity, and distributivity of addition over
multiplication. Obviously, 71 - (72 + 73) =73 - 71 + 71 - To.

We will write o to denote the term that is the multiplication of o k—times. Obviously, a® = 1.

An instance u extends to P(A) as follows: u(c) = ¢, u(t1 +72) = u(r1) +u(r2) and u(r1-72) = u(m1) - u(m2).

Definition 3.1 (Normal Form). Let A = {a1,...,a,} with o; # «;, for any i # j. A term 7 € P(A) is
in normal form if it is syntactically equivalent to 71 + ... 4+ 7,,, where:

o for any 4, it holds that 7; = ¢; - (al)ki S (an)k;, where ¢ € R and k%, ..., k! are natural numbers;
e for any i # j, there exists h such that k{ # ka
Each term can be easily put in its normal form, hence, from now on, we suppose that all terms are in

normal form.
A polynomial term 7 is a linear term if there exist ¢1,...,¢cp41 € Rsuch 7 =c1-a1+...+¢p-an+cnya.

We define the set ®(A) of formulae as follows:

pu=T~T | 2d1 | d1Va | 1A

where ¢7 (blv ¢2 € ¢(A)7 T, '€ p(A)v and ~ € {<7 <=2, >}
A formula ¢ in ®(A) is linear iff all terms 7 € P(A) appearing in ¢ are linear.
Let ¢ € ®(A) and u be an instance; we say that u satisfies ¢, written u = ¢, iff:

uET~7 it w(r) ~u(r)

u = ¢y i w e

ukE¢1 Voo iff  either u = ¢y or u = ¢
ulbE¢1 ANdo iff  both u = ¢1 and u = ¢a.

A known property of formulae in ® is the following (see [Tar51] and [Ren92)).

Theorem 3.1. For each ¢ € ®(A), it is decidable in exponential time w.r.t. the number of parameters in ¢
and in polynomial space whether there exists an instance u such that u = ¢.

We introduce now the model of Parametric Probabilistic Transition Systems.
Definition 3.2. A Parametric Probabilistic Transition System (PPTS) S is a tuple (A, @, qo,d, \) where:

A is a finite set of parameters;
Q is a set of states;

qo € @ is the initial state;

6 CQ xQ is aset of transitions;

A:d — P(A) is a function assigning to each transition (g¢,q’) a polynomial term 7 representing the
probability of taking that transition.

With Start(q) C ¢ we denote the set of transitions with g as source state, namely the set {(¢;,q;) € § | ¢; = ¢}.
The PPTS S is linear if A\(e) is linear, for any e € 4.

Example 3.1. Let us consider the PPTS S of Figure 2. We have parameters A = {«a1, as}, and, as examples,
Start(q2) = {(q2, q1) (92, 93), (q2, ¢5) } and A((g2,q5)) = a1 + az.
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Fig. 2. A Parametric Probabilistic Transition System.

The notions of run of a PPTS S and of sets of finite and infinite runs Pathﬁn(S) and Pathful(S),

respectively, are defined as for DTMCs.
The following definitions relate instances of parameters to PPTSs.

Definition 3.3 (Instances of PPTSs). Given a PPTS S = (A, @, go,9, A) and an instance u, with S(u)
we denote the PPTS resulting by instantiating all the variables in A according to u. Namely, S(u) =
(0,Q,4q0,9,\), where X (e) = u(A(e)) for any e € 4.

Definition 3.4 (Well Defined Instances). An instance u is well defined for a PPTS S = (A, Q, qo, 6, A)
if and only if for each transition e € § we have that u(\(e)) € [0, 1], and, for each state ¢ € @, it holds that

ZeeStart(q) u(A(e)) = 1.

Example 3.2. The instance uy such that ui(a1) = ug(a2) = i, and the instance ug such that us(a;) =0,

uz(a2) = 3 are well defined for the PPTS S of Figure 2. Note that S(u1) is the DTMC depicted in Figure 1.
The instance us such that us(a1) = us(as) =1 is not well defined.

Definition 3.5 (Realizability). A PPTS S is realizable if and only if there exists a well defined instance
for S. Given a formula ¢ € ®(A), S is ¢p—realizable if and only if there exists a well defined instance u for S,
such that v = ¢ (in this case, we say that u ¢—realizes S).

Remark 3.1. Given a well defined instance u for a PPTS S, we have that S(u) is a DTMC.

Note that, as we did for DTMCs by restricting to infinite runs, we assumed that for any well defined
instance w, ZeESta,’l“t(q) u(A(e)) = 1. As we have seen, this is not a real limitation, since for every state ¢

with no transition to other states, we can add a self-loop transition (gs, gs) with u(A((¢s,gs))) = 1 (see states
g4 and g5 in Figure 2).

We assign probabilities to the runs of a PPTS S for a well defined instance u, as shown in Section 2.1, by
considering the DTMC S(u). Thus, given a PPTS S, a state ¢ of S and a well defined instance u, Pg(y)(q)
returns the probability of reaching the state ¢ for the DTMC S(u).

The following corollary derives from Proposition 2.1.

Corollary 3.1. GivenaPPTS S = (A, Q, 0,9, \) astate ¢ € @ and a well defined instance u, the probability
Ps(u)(q) of reaching the state ¢ is equal to the solution of x4, of the following system of linear equations:

Tq=1
{ Tq' = D arye Adm T q) YA d")) -z V' #q.
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4. ¢—Realizability of Parametric Probabilistic Transition Systems

In this section we consider the problem of computing the probability of reaching a certain state. We tackle this
problem in a parametric setting, and we consider existence, search and optimization of well defined instances.

4.1. The Problem of Existence of an Instance

Given a PPTS, firstly we want to know whether the PPTS is realizable or not. In particular we are interested
in the existence of well defined instances for the PPTS. This problem is solved by translation into the
satisfiability problem for a formula. The next proposition follows.

Proposition 4.1 (Realizability). It is decidable in exponential time w.r.t. the number of parameters and
in polynomial space whether a PPTS S is realizable.

Proof. Given a PPTS S = (A, Q, 0,0, A), we build the formula:
or=(A\Xe)elo,NACA D MNe =1 (1)

ecd qeqQ eESta’f‘t(q’)
representing the requirements for the realizability of S.
An instance u satisfying the formula ¢r (u = ¢r) is well defined for S. By Theorem 3.1, the existence
of an instance u that satisfies ¢ is decidable in exponential time. Hence, it is also decidable in exponential
time w.r.t. the size of S whether S is realizable. [

We now extend Proposition 4.1 to deal with ¢-realizability.
Corollary 4.1. It is decidable in exponential time whether a PPTS is ¢-realizable.
Proof. Given a PPTS S = (A, Q, 0,0, \), and a formula ¢ in ®(A), we build the formula:

¢=0Nobr (2)

where ¢p is the formula of Equation (1).

An instance u satisfying the formula ¢ is well defined for S and satisfies ¢. Hence, u ¢-realizes S. Again,
by Theorem 3.1, the existence of an instance u that satisfies ¢ is decidable in exponential time, and hence
it is also decidable in exponential time w.r.t. the size of S whether S is ¢-realizable. [

Corollary 4.1 can be then extended to deal with the reachability of states of PPTSs.

Corollary 4.2 (Existence). For any PPTS S, state ¢ and formula ¢ € ®(A), it is decidable in exponential
time w.r.t. the size of S whether there exists an instance u that ¢-realizes S such that g is reachable in S(u).

Proof. Given a PPTS S = (A, Q, qo, 6, \), a state ¢ € Q and a formula ¢, we build the formula ¢ as follows:
¢=0 N drNos (3)

where ¢ is again the formula in Equation (1) and ¢g is the formula:

¢s = (zg=1) A ( /\ Ty = Z M(d',q")) - zqr). (4)
e Adm(q) (¢ ,a")eAdmTr(q q)

Here, formula ¢g is such that for any ¢’ € @, x4 is the polynomial term with variables in A modelling
the probability of reaching ¢ from ¢’.

An instance u satisfying the formula ¢ is such that u |= ¢ A ¢ (hence, for Corollary 4.1, u ¢-realizes S).
Moreover, we have that if u = ¢, then x4, is the polynomial term modelling the probability of reaching state
q. By Theorem 3.1, the existence of an instance u that satisfies ¢ is decidable in exponential time, hence it
is also decidable in exponential time w.r.t. the size of S whether there exists an instance u that ¢-realizes S
such that ¢ is reachable in S(u). O

Definition 4.1. With Set(S,q,¢) = {u|u = ¢}, where ¢ is the formula in Equation (3), we denote the set
of well defined instances u such that u ¢-realizes the PPTS S and the state ¢ is reachable in S(u).
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Example 4.1. Let us consider the PPTS S in Figure 2. We want to know whether there exists an instance in
the set Set(S, gs, (T4, > a1 A1 > 0)). Such a set is not empty if and only if the following formula is satisfiable:

Tgo > 01 N a1 >0
algl/\al—kag:%

N Xy =

N Tgy = Ty

N Tg, = (011 + Olg)x% + 1%las + 1Ta

N Tg = Q1Zq,

N Tgy = 7Tq, + 3001 Tg, + (% - %al)x%

Now, the formula above is a formula in ®({ay, a2}), and hence, by Theorem 3.1, its satisfiability is decidable.

4.2. Finding a Solution

Given a PPTS S, a state ¢ and a formula ¢, we now consider the problem of finding an instance in Set(.S, ¢, ¢)
such that the probability of reaching the state ¢ is equal to a certain value ¢ € [0, 1]. Actually, Theorem 4.2
answers the problem of existence of an instance but does not give one. To find an instance u in Set(S, ¢, ¢)
such that Pg(,)(q) = ¢, is a harder problem with respect to the problem of existence of an instance. More
precisely, to find an instance in Set(S, q, @) is in general undecidable.

The following theorem, which derives from Galois’ theory, states that it is in general impossible to find
the roots of a polynomial of degree higher than 4 (see [Ste89]).

Theorem 4.1. It is impossible to give a general algebraic formula to solve polynomials of degree 5 and
higher.

The next proposition follows directly from Theorem 4.1.

Proposition 4.2. Given a PPTS S, a state ¢ and a formula ¢, the problem of finding an instance u such
that u € Set(S, q, ¢) is in general unsolvable.

Proof. The problem of finding an instance u € Set(S, g, ¢) is equivalent to the problem of finding the roots
of a general polynomial. [J

Hence, to have decidability, we must consider some restrictions. In particular, we give a restriction on
the degrees of the polynomials generated by a PPTS.

Definition 4.2 (Degree of a Polynomial Term). Let 7 be a polynomial term and § be a parameter.
The degree of 7 w.r.t. 8, denoted with dg(7, ), is the maximum natural number n such that o™ appears in
T.

Let @ = {q1,-..,qn} be the states of S such that ¢, is equal to q.
By Corollary 3.1, Pg(,(q) is the solution of z4, in the following system of linear equations:

g d Ta= 1
e = Z:(q’,q”)eAdTrLT?"(qﬁq) AM(d'q") -z Vg #q.

The system I can be written as Az = B, where z is the vector of the variables zq,,...,zq,, B is the
vector of naturals representing the known terms, and A is the matrix such that the A[z, j] = A((gi, ¢;)) if
(¢i,q5) € AdmTr(g;,q) and A[i, j] = 0 otherwise.

Let A’ be the matrix obtained from A by substituting the first column with B.

Let 71 be the polynomial computed as the determinant of the matrix A’ and 7 be the polynomial
computed as the determinant of the matrix A.

By using Cramer’s rule, we prove the following proposition.

Proposition 4.3. Given a PPTS S = (A, Q, qo, 9, A) and a state ¢ € @, two polynomials 74,7 € P(A) can
be found in polynomial time w.r.t. the size of S, such that, for any well defined instance u, it holds that

Ps(u)(q) = 225,
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Proof. By Corollary 3.1 and following Equation (4), we have that the possible values that Pg(,)(g) can
assume for any well defined instance u are those of the variable x4, of the system of equations

Tg=1NA /\ Ty = Z A(d's ")) - zqr.
geAdm)  (¢.¢")eAdmTr(¢ q)
This can be solved as a system of linear equalities, and hence z,4, = :—; for some 71,72 € P(A). O

Example 4.2. Let us consider the PPTS S of example of Figure 2. We have that Pg(,)(gs) = ZE:;; where
71 =Ton(aq + a2 + %) + (12 - 30[1)(% — %al) and 75 = 12 — 3a.

We now define the degree of a PPTS S w.r.t. a state and a parameter.

Definition 4.3 (Degree of a PPTS). For a PPTS S, the degree of S for parameter o and state q (written
dg(S, a, q)) is equal to the value max(dg(m1, @), dg(12, ), where 71 and 72 are the polynomials of Proposi-
tion 4.3.

Example 4.3. Let us consider the PPTS S of example of Figure 2. We have that dg(S,a1,¢5) = 2 and
dg(S7 a2, (]5) =1.

4.2.1. One Parameter

Theorem 4.2. Let S = ({a}, @, qo,d,\) be a PPTS and ¢ be a state in @ such that dg(S, «,q) < 4. Let ¢
be a general formula and ¢ € [0, 1]; a well defined instance u, such that u € Set(S,q,¢) and Pg,)(q) = ¢,
can be found in polynomial time w.r.t. the size of S.

Proof. By Proposition 4.3 we have that Pg,)(q) = Zgg; Since we are looking for an instance u such that
Ps)(q) = ¢, we must solve the equation ¢ = :—;, but this is equivalent to 7 — ¢ 79 = 0 when 79 # 0.

The steps of the proof are the following:

1. 71 — c- 71 =0 is a polynomial of degree 4 and hence one can compute the finite set C of its roots;
2. we can check, for any root r in C, whether r satisfies 72 # 0, ¢ and the definition of DTMCs.

The set C' of roots of the polynomial 71 — c¢- 15 of degree at most 4 on the only parameter « is computable
(see [Ste89]). Obviously |C| < dg(S, a, q) < 4. Let U be the set of instances u such that u(«) € C. Obviously
|U| < 4. Let U’ be the set of instances u € U such that u |= 72 # 0 A ¢; we have that u |= 72 # 0 A ¢ can be
checked in polynomial time on the length of ¢ and 72, by using the definition of |=. Since |U| < 4, U’ can be

computed in polynomial time.
Now, we must look for a u € U’ such that S(u) is a DTMC. To do that it suffices to check whether there

exists u € U’ such that
u|:/\)\(e)€[0,1]/\ /\ Z Ae) = 1.
e€d 7'€Q ecStart(q)
Obviously, this can be checked in polynomial time on the size of S, by using the definition of . [

Example 4.4. Consider the PPTS S of Figure 2 where ap = 0. We look for an instance u € Set(S, g4, @1 >
%) such that Pg(,)(q4) = %. We have that dg(S, a1, q) = 2. Actually, Pg(,(q4) = ulr) where 1y = a?+2a1-3

T ou(r)?

and 7 = 3o — 12.

Hence we must find a value for a; such that :—; = %, which is equivalent to solving the equation 6a3 +
91 — 6 = 0. The solutions are vy = —2 and a1 = % We must check whether these solutions are admissible.
First of all we require that oy > % Hence a; = —2 is not an admissible solution (note that a valuation with
a1 = —2 is also not well defined). Now, it is easy to check that for oy = 5 we have that A(e) € [0,1], for all
transitions e, and ZeEStaT’t(q’) A(e) = 1, for each state ¢'.

In the following lemma we give a syntactical characterization of PPTSs in terms of dg(S, «, ¢), allowing
to check whether the hypotheses of Theorem 4.2 are satisfied. The idea is that, given a state ¢ of a PPTS
S with one only parameter, if the sum on the states ¢’ of S of the maximal degree of polynomials labelling
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a transition in AdmTr(q’, q) is less than or equal to ¢, then dg(S, «, q) < ¢. Obviously, if ¢ < 4 Theorem 4.2
can be applied.

As an example, let us consider the PPTS S of Figure 2 with o = 0 (S has only one parameter, namely
ay). If we are interested in state g4, the maximal degree of polynomials labelling a transition in AdmTr(qo, q4)
is 1, in AdmTr(q1,q4) is 1, and in AdmTr(q2,q4) is 0. Actually, in Example 4.4 we have already seen that
dg(S, o1, q) = 2.

(From now on, we use maz(a, ¢, q) to denote maz{dg(A(e), )le € AdmTr(q',q)}.

Lemma 4.1. Let S = (A, Q, 0,9, \) be a PPTS, ¢ be a state and a € A such that Zq’EQ maz(a,q’,q) < c,
for some natural number ¢, then it holds that dg(S, «, ¢) < c.

Proof. The steps of the proof are the following: by Proposition 4.3, 7 and 7 are computed as the determi-
nants of A’ and A, respectively. We compute the determinant of A by rows, hence, by induction on the number
of rows in the algorithm for computing the determinant, we prove that dg(7, «) < ¢ and dg(m,a) < ¢, and
hence dg(S, a,q) < c.

Now, the maximal degree that appears in each row 4 is maz(«, ¢;,q). By induction on the number of
rows in the algorithm for computing the determinant we have that: dg(m,a) < ZqieQ maz(w, g,q) =

Ygeqmaz(a, g’ q) < c.
Hence, dg(72, ) < ¢, and similarly we can prove that dg(1,«) < c¢. Therefore dg(S,a,q) <ec. [

Thus, by Lemma 4.1 and Theorem 4.2, we have the following theorem that gives a syntactical character-
ization of the PTTSs for which it is possible to find a solution.

Theorem 4.3. Let S = ({a},Q, qo, 6, A) be a PPTS and ¢ be a state such that }° o maz(a, ¢, q) <

4.
any general formula ¢ and c € [0,1], a well defined instance u, such that u € Set(S,q,¢) and Pg(,)(q)
can be found in polynomial time w.r.t. the size of S.

For
=c

4.2.2. Two Parameters

We extend the result of Theorem 4.2 to the case of two parameters. To do this, we must restrict to linear
formulae and linear PPTS.

Theorem 4.4. Let S = ({a1, a2}, Q, qo, 6, A) be alinear PPTS and ¢ be a state in Q such that dg(S, a1,q) €
[1,3] and dg(S,a2,q) = 1. Let ¢ be a linear formula and ¢ € [0,1]; a well defined instance u, such that
u € Set(S, q,¢) and Pg(,)(q) = ¢, can be found in polynomial time w.r.t. the size of S.

.
u(7m2
Ps,)(q) = ¢, we must solve the equation ¢ = :—;, but this is equivalent to 7 — ¢ - 79 = 0 when 75 # 0.

The steps of the proof are the following:

Proof. By Proposition 4.3 we have that Pg(,)(q) Since we are looking for an instance u such that

1. we compute two polynomials a; and as on the only parameter o of degree at most 3 such that as = —;—f;
2. we substitute ao with —Z—f in 79 # 0 and in ¢. We have now formulae on the only parameter a;; and with
degree less or equal to 4;

3. since it is decidable to find the roots of a polynomial on only one parameter and of degree less or equal
to 4, one can find a finite union of intervals expressing the values that «; can assume. Hence, fixed aq,

we find ag thanks to the expression as = —Z—f.

By hypothesis, 71 — ¢- 72 has degree equal to 1 for parameter ay € A. Hence, 71 — ¢- 75 = 0 can be written
as the polynomial ajay + as = 0 where a; and ay are two polynomials on the only parameter oy of degree
at most 3.

As for Theorem 4.2, an instance u must satisfy 7 # 0, the formula ¢, and the requirements for S to be
realizable (see ¢ in Equation (1)). Hence, the following ¢’ must be satisfied:

(#0ASA AN eDINACA D AMe)=1).
e€d '€Q ecStart(q)

Let ¢ be the formula resulting by substituting in the formula ¢’ the parameter as with —Z—f. We have
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that in ¢ only the parameter a;; appears with degree at most 4. Actually, ¢’ is a linear formula since S and
¢ are linear, and hence, the product between a polynomial of degree 3 with a polynomial of degree 1 returns
a polynomial of degree 4.

Given a generic polynomial 7 of degree at most 4 on the only parameter «y, the set C' of roots of 7
is computable in polynomial time ([Ste89]). Obviously, |C| < dg(S,a1,q) < 4, hence, 7 ~ 0 can be easily
translated into a formula of the form oy € I) U... U I,,, for some intervals of reals I;. Therefore, since
a1 € I ANay € Iy is equivalent to a; € I1 N I, then ¢” can be translated into a formula of the form
a1 € I{ U... U I}, for some intervals of reals I.

Thus, given the instance u such that u(ai) in I; U... U I} and u(az) is the value —%2 where a; is

substituted with u(a1), we have that u € Set(S,q, ¢) and Ps(,)(q) =c. O
Example 4.5. The PPTS S of Figure 2 is linear. We look for an instance u € Set(S, g5, a1 + ag > %) such
that Pg(y)(gs) = 3. We have that dg(S, o1,¢5) = 3 and dg(S, a2, qs5) = 1 Actually, Ps(,)(qs) = wn) where

u(r2)’

T1 = —%al + 1§7(041)2 + 20[10[2 — i(al)Qag — i(a1)3 and T2 = (1 (3 — %)
Hence, we must find a value for a; such that :—; = %, which is equivalent to solving the equation

_% — %041 + % (041)2 - % (a1)3
20[1 — i (a1)2

Now, we must substitute s in the formula ¢’ that is equal to

(2041—%(041)2;&0)/\@14—0522%/\(/\A(e)e[O,l])/\ N D Ae=1

e€s 7€Q ceStart(q)

Qg =

We have that in ¢’ the parameter a; has a degree of at most 4. As an example, a3 + ag > % becomes

4 16 8 4 272 4

Hence, by solving this formula, we can find the intervals to which «; must belong.

o (2a1 _ i (a1)2> + 2 i ettt (2041 ! (a1)2)> .

As a consequence, by Lemma 4.1, we have the following theorem giving a syntactical characterization of
PPTSs with two parameters satisfying the hypotheses of Theorem 4.4.
Theorem 4.5. Let S = ({a1,a2},Q, qo,9, \) be a linear PPTS and ¢ € @ such that ) ., maz(a1,q',q) €
[1,3] and Zq’EQ max(az,q,q) = 1. For any ¢ and ¢ € [0,1], a well defined instance w, such that u €
Set(S,q,¢) and Pg(,)(q) = ¢, can be found in polynomial time w.r.t. the size of S.

4.2.3. Rational Domain for Parameters

If one is interested in parameters assuming only rational values (as it may often be the case), our results are
extended to systems with any degree. Namely, if one considers only rational instances, the following result
can be derived by using Ruffini’s method.

Corollary 4.3. Let S = ({a}, @, qo,9, A) be a PPTS, ¢ be a state in @, ¢ be a general formula and ¢ € [0, 1].
A well defined instance u, such that u € Set(S,q, ), u(a) is a rational number and Pg(,)(¢) = ¢, can be
found in polynomial time w.r.t. the size of S.

Proof. Along the lines of the proof of Theorem 4.2 and by Ruffini’s method that allows to find rational roots
of a polynomial. Hence, the set C' of rational roots of the polynomial 7 — ¢ - 75 is computable. [

4.3. Finding the Maximum/Minimum Instance
In this section, we consider the case in which one wants either to maximize or to minimize the probability

of reaching a certain state. This problem may have interesting applications in practice, as we shall show in
the next section.
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4.8.1. One Parameter

Theorem 4.6 (Maximizing/Miniminizing). Let S = ({a}, @, go,d,\) be a PPTS and ¢ be a state in Q
such that dg(S, a, q) < 3. For any formula ¢, an instance u € Set(S, q, ¢), such that for each v’ € Set(S, q, @)
it holds that Pg,)(q) > Ps(ur)(q) (resp. Psu)(q) < Psq)(q)), is computable in polynomial time w.r.t. the
size of S.

Proof. The main steps of the proof are:

1. by following the proof of Theorem 4.2, we have to maximize (minimize) the function :—;;

2. to find the maximum (minimum) we compute the values of « that make null the derivative function of
o,
By following the proof of Theorem 4.2 we have that 24, = 7t. Now, by mimicking the proof of Theorem 4.2,
it is sufficient to maximize (minimize) the function ZL in the space ¢’ that is equal to

T2

onlage0INAAN) e INACA D Ae)=1).

ecd qeqQ eESta’f‘t(q’)

As done for Theorem 4.4, ¢ can be translated into a formula of the form « € I U... U I,,,, where I; is
an interval of real values.
The maximum of :—; is when the derivative function -+ 2L = (.

da 12
T

We have that 7; = afa® + aba® + ala + ab), for i = 1,2. Hence, %E is equal to
(aa3 — ala3)a* + (2aa? — 2ala?)a® + (3aia? — 3aya3 + ata? — ata3)a? + (2a3a3 — 2alad)a + aiad — aja?
(72)?

Therefore, the maximum value can be found by studying the function

1.2 1.2\ 4 1.2 1,2y 3 1.2 12, 1.2 1.2y 2 12 12 1.2 1.2
(aza; — aza3)a” + (2aza] — 2aja3)a” + (3azay — 3agas; + aza] — aja3)a” + (2a3a5 — 2a5a3)a + ajas — agay

(which is a function of degree 4) in the space oo € I; U...U I,,, where I; is an interval.
Since computing the terms 7,7 takes a polynomial time w.r.t. the size of S, the problem of finding a
maximal (minimal) solution is polynomial time w.r.t. the size of S. O

As done for Theorem 4.2, we can give a syntactical characterization of the PPTSs satisfying the conditions
of Theorem 4.6. Actually, from Lemma 4.1 and Theorem 4.6 we have the following theorem.

Theorem 4.7. Let S = ({a},Q,q0,0,A) be a PPTS and ¢ be a state such that >_ .o maz(a,q¢',q) < 3.
For any formula ¢, an instance u € Set(S, g, ¢), such that for each u’ € Set(S, q,¢) it holds that Pg,(q) >
Psuy(q) (resp. Ps(yy(q) < Ps(u)(q)), is computable in polynomial time w.r.t. the size of S.

4.83.2. Two Parameters

As for the problem of finding a solution, in this section we extend the result of Theorem 4.6 to two parameters.
Again, to do that we must restrict to linear formulae and linear PPTS.

Theorem 4.8 (Maximizing/Miniminizing). Let S = ({a1, a2}, @, qo, §, \) be a linear PPTS and ¢ be a
state in @ such that dg(S, a1, q) = dg(S, a2,q) = 1. For any linear formula ¢, an instance u € Set(S, q, ¢),
such that for each u' € Set(S,q,¢) it holds that Pg,)(q) > Ps)(q) (resp. Pswy(q) < Pswy(q)), is
computable in polynomial time w.r.t. the size of S.

Proof. The main steps of the proof are:

1. by following the proof of Theorem 4.2 we have to maximize (minimize) the function :—;;

2. to find the maximum (minimum) we compute the values of a; and as that make null the derivative
function of :—;
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By following the proof of Theorem 4.2, we have that x4, = :—; Now, by mimicking the proof of Theo-

rem 4.2, it is sufficient to maximize (minimize) the function 7L in the space ¢ that is equal to

onlage0INAAN) e INACA D Ae)=1).

ecd qeqQ eESta’f‘t(q’)

We have that 7; = a’ialag + agoq + aéag + af’l, for ¢ = 1, 2. Hence,

_d 7 _ (a1a] — aja})(e2)® + (aja] + ajal — aja) + ada)as + (azaf — ajay)

doq T2 (T2)2

We note that (aia? — a?ad)(a2)? + (aia] + ala3 — ala} + ddal)as + (ala? — a3al) is a polynomial of
degree 2 on the only parameter as. Similarly we can find d%iz :—; Thus, the maximum can be studied as done
in Theorem 4.6. [

Now, as done for Theorem 4.6, from Lemma 4.1 and Theorem 4.8 we have the following theorem giving
a syntactical characterization of PPTSs satisfying the hypoteses of Theorem 4.8.

Theorem 4.9. Let S = ({a1, a2}, @, qo, 6, A) be alinear PPTS with ¢ € @ such that Zq’EQ max(ay,q,q) =
Zq’EQ max(as,q’,q) = 1. For any linear formula ¢, an instance u € Set(S, g, ¢), such that for each v’ €
Set (S, q, ¢) it holds that Pg,)(q) > Ps(u)(q) (resp. Ps)(q) < Ps(ur)(q)), is computable in polynomial time
w.r.t. the size of S.

5. An Application: Probabilistic Non-Repudiation

In this section, as an application, we model and analyze a non-repudiation protocol that employs a prob-
abilistic algorithm to achieve a fairness property. This protocol has been studied, from different points of
view, also in [Ald02, LMT03, LMTO05].

5.1. A Probabilistic Non-Repudiation Protocol

We consider a protocol that guarantees a non-repudiation service with a certain probability without resorting
to a trusted third party [MR99]. In particular, such a probabilistic protocol is fair up to a given tolerance
¢ decided by the originator. Assume that an authentication phase precedes the protocol. We denote by
Signg(M) the encryption of message M under the private key of the entity E and with { M} x the encryption
of M under the key K. Finally, we use t to denote a time stamp. The protocol can be described as follows
(with the notation R — O : Msg we denote a message Msg sent by R and received by O):

R—O: Signg

O— R: Signo
R—O: Signg

request, R, O, )
{M}KvaRat) (: Ml)
acky)

=N =
—~ NN

a1-p O —R: Signo(M,,O,R,t) (= M;)
R— O: Signg(ack;)

goto step 4
b.p O — R: Signo(K,O,R,t) (= M,)
5. R— O: Signg(ack,)

The recipient R starts the protocol by sending a signed, timestamped request to the originator O. This
sends to R the requested message M ciphered under the key K, and waits for the ack from R (ack; represents
the acknowledgment related to message M;). At step 4 the originator makes a probabilistic choice according
to p. At step 4a (taken with probability 1 — p) O sends to R a random message M, (i.e. a dummy key),
receives the ack and returns to step 4, while at step 4b (taken with probability p) O sends to R the key
K necessary to decrypt the message {M } . Upon reception of the last ack (acky), related to the message
containing the key K, the originator terminates the protocol correctly. We suppose that each message ack;
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Fig. 3. Parametric Representation of the Protocol.

has the following semantics: ” R acknowledges having received message M; from O”. This could be easily
obtained, for instance, by assuming that each ack; message contains an hash of message M;.

Intuitively, the non-repudiation of origin is guaranteed by the messages M; and M, (signed with the
private key of O), while the non repudiation of receipt is given by the last message Signg(ack,). If the
protocol terminates after the delivery of the last ack, both parties obtain their expected information, and
the protocol is fair. If the protocol terminates before sending the message containing the key K, then neither
the originator nor the recipient obtains any valuable information, thus preserving fairness. A strategy for a
dishonest recipient consists in guessing the last message containing the key K, verifying whether a received
message contains the needed key, and then blocking the transmission of the last ack. Therefore, for the
success of the protocol, it is necessary that the ack messages are sent back immediately. The originator
decides a deadline for the reception of each ack, after which, if the ack is not received, the protocol is
stopped. Obviously, the cryptosystem must be adequately chosen, in such a way that the time needed to
verify a key, by deciphering the message, is longer than the transmission time of an ack message. Anyway,
as we will see in the next section, a malicious recipient can try to randomly guess the message containing
the key K, and in this case the probability for the recipient of guessing the last message depends on the
parameter p chosen by the originator.

5.2. Parametric Analysis of the Protocol

In this section we describe the protocol by using the model of PPTSs. In particular we use two parameters,
p and ¢. On the one hand, we assume that the originator follows a Bernoulli distribution with parameter
p to decide either to send the real key or to send a dummy key (see step 4 of the protocol). On the other
hand, we assume that the recipient follows a Bernoulli distribution with parameter ¢ to decide either to
send the ack message or to try to compute M by employing the last received message. In Figure 3 we show
a parametric Probabilistic Transition System modelling the communication between the originator and the
recipient according to the parameters p and q.

With the transition (qo,q1) we model the recipient starting a communication with the originator by
sending a request, the originator sending the first ciphered message and the recipient acknowledging such
a message. In state ¢; the originator sends, with probability 1 — p, a dummy key reaching state g» and,
with probability p, sends the last message containing K and reaches state ¢3. In state go the recipient
sends an ack to the originator with probability 1 — ¢ going back to state g;, while with probability ¢ the
recipient uses the dummy key in order to decipher the first message, fails and the protocol is stopped. In this
case, state gp is reached. Intuitively, state gr models a situation in which the protocol ends in a fair way
(both participants receive their expected information or neither the originator nor the recipient obtains any
valuable information). In state g3 the recipient sends the last ack with probability 1 — ¢ and fairly terminates
the protocol, and tries to decipher the first message with the last received key (in this case the correct key
K) with probability ¢. In this case, without sending the last ack, the recipient breaks the fairness of the
protocol (state gy represents the situation in which the protocol ends in an unfair way).

Let us assume as S the PPTS of Figure 3 (where we omitted self-loops for states qu and gr).

If we are interested in the probability of reaching state qr we can follow the system of linear equations

of Corollary 3.1, and get x4, = T_fqiizlf(;’.

Now, as an example, to find a well defined instance u such that Pg,(qr) = 0.9 it is sufficient to apply
Theorem 4.2. We have that Pg(,)(qr) = 0.9 is equivalent to 1—10p + 1—10q — %pq = 0. Therefore, we have that
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f(p,a)

0.8
0.6
0.4

0.2

Fig. 4. f(p, q): probability of reaching gr on the parameters p and q.

[~

p= 15,7 and ¢ € {0} U (57, 1]. We have a well defined instance for u(p) = 1 and u(q) = 1.

[

Now, we want to find a well defined instance u such that Vu' € Set(S, qr,true) Psq,)(qr) > Ps)(qr)

and Pg(y)(qr) € [0,1] (namely, an instance that maximizes the probability of having a fair communication).

Now, we must find the maximum of the function f(p, q) = ’;:rqqiiz;’qq. We compute the derivative of f w.r.t.

p and q. We have that d%f(p, q) = ﬁ and diqf(p, q) = ﬁ. Hence, the function f is decreasing

w.r.t. p for ¢ (the point (0,0) is a point of contrary flexure), and therefore, the maximum in the space [0, 1]
is, indeed, 1 by choosing ¢ = 0 or p = 0. Notice that the case u(q) = 0 models an attacker behaving correctly
(he never tries to break the protocol), while the case u(p) = 1 models an originator that never sends the last
message (hence the protocol cannot be broken).

We may suppose g to be a fixed constant and not a parameter. In this case, we want to find an instance for
p (chosen by the originator) that maximizes the probability of reaching state ¢z. In this manner the originator
can choose the best value for p that minimizes the probability that the protocol ends in an unfair way. Let S’
be the PPTS of Figure 3 with ¢ = % (namely, the attacker throws a coin to decide whether to decipher the key
or not). We want to find a well defined instance u such that Vu' € Set(S’, qr,true) Ps/(,)(qr) > Pg (v (qr)
(namely, an instance that maximizes the probability of having a fair communication).

For state qr and with ¢ = %, we get x4, = ﬁ. Now, we can find the value of p that maximizes the
function ﬁ, by studying its derivative d%ﬁ = ﬁ. Since such a function is decreasing in (—oo, 00)

and p € [0,1], the maximum is for u(p) = 0 and, in this case, Pg/(,)(qr) = 1. Again, if p = 0 the originator
will never send the last message containing the correct key, fairness will not be broken, but the protocol will
never terminate correctly. Differently, if the originator wants a probability of fair communication equal to
0.999, then it is sufficient to apply Theorem 4.2 which gives ﬁ =0.999, and therefore p = 3-90L

0:99
A full study of the function f(p,q) is in Figure 4.
Viceversa, we may be interested in studying the value of ¢ (chosen by the attacker) that maximizes the
probability of breaking protocol fairness, namely the probability of reaching state ¢y . In this case, we have

’ 2
zq, = f'(p,q) = 724, and % = WDW, which is decreasing w.r.t. ¢ and, therefore, the maximum in

the space [0,1] is for ¢ = 1. Thus, the maximum chance for the attacker of breaking protocol fairness is
when choosing u(q) = 1, with Pg(,)(qu) = p. This guarantees that protocol fairness (once the originator has
chosen the parameter p) cannot be broken with probability greater than p, thus allowing the originator to
chose the security threshold 1 — p for the correct termination of the protocol. Moreover, the probability of a
successful attack decreases by choosing a smaller p. In this case, however, the number of dummy messages
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f(p.a)

0.8
0.6

0.4

0.2

Fig. 5. f'(p,q): probability of reaching state qu on the parameters p and gq.

sent by O, and hence the length of the protocol execution, will increase. Hence, the originator must choose
a value for p that guarantees a good security level with the desired performance.

Note that while f(p,q) gives the probability of reaching the fair state gp, function f'(p,q) gives the
complementary probability of reaching the unfair state gy. Namely, we have that f'(p,q) =1 — f(p,q).

A full study of the function f’(p,q) is in Figure 5.

6. Conclusions and Future Work

In this paper we have developed a model of Parametric Probabilistic Transition Systems. In this model
probabilities associated with transitions may be parameters. We have shown how we can find instances of
parameters that satisfy a given property and instances that either maximize or minimize the probability
of reaching a given state. As an application we have shown the model of a probabilistic non repudiation
protocol.

Our results are obtained under the assumption that the number of parameters is at most two. We have
shown that such a class of systems is expressive enough to describe and analyze many real-life systems.
However, if one faces systems with more than two parameters, the method we propose can still be useful
insofar as the system considered may be studied by fixing the value of all parameters but two. Moreover, it
is often possible to decompose the system into independent components with at most two parameters (e.g.,
see the analysis of the IPv4 zeroconf protocol in [BSHV03]).

As a future work, we plan to extend our study to Probabilistic Labeled Transition Systems, where
transitions from state to state are labeled by actions. These are the actions selected by an environment
and to which the system reacts. For each label there is a transition probability distribution which gives the
probability distribution of the possible final states for a given initial state. In a discrete setting this is the
model considered by [LS91]. Models with continuous state space or continuous time (or both) have been
considered (see, for instance, [DGJP03]). It would be interesting to define and study parameterized versions
also of these formalisms.

An other direction may consist in the defintion of equivalences for PPTSs. To compare probabilistic
systems, one may consider the notion of metric, which is a function that associates a real number (distance)
to a pair of elements. In [DJGP02, DJGP04, DCPPO05] metrics are introduced in order to quantify the
similarity of the behavior of probabilistic transitions systems. One may study, for example, how this kind of
metrics can be adapted to deal with parametric probabilistic systems.
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