Guessing Attacks in the pi-calculus with a Computational
Justification. Draft Comments Welcome.

Tom Chothia
tomc@lix.polytechnique.fr
Laboratoire d’Informatique (LIX)
Ecole Polytechnique (CNRS)
91128 Palaiseau Cedex - France

April 5, 2005

Abstract

This paper presents an extension of the pi-calculus that
can reason about brute force and guessing attacks. We re-
late new name declarations in the pi-calculus with random
sampling in the computational model of security. The
scope of a new name can then be expanded at a compa-
rable cost as it would take to guess the randomly sampled
value in the computational setting. We provide a syntax
and reduction semantics for this system and a function
that calculates the cost of a given attack, taking into ac-
count the ease with which the attacker can confirm their
guesses.

We argue the correctness of this calculus by relat-
ing it to the computational model of security. We show
that if the cost of an attack in the calculus is less than ex-
ponential in a security parameter, then there exists a poly-
nomial time Turing machine that can defeat the process
with non-negligibility probability. On the other hand, if
there is no sub-exponential cost attack, then the process is
just as safe as its spi-calculus counterpart, and so the use
of guessable names does not help the attacker.

1 Introduction

Formal models [DY83, Low96, BAN96, AG97, THG99,
Cer01, FAO3] can check the security of protocols in a
powerful yet simple way. However, these models of-
ten miss faults based on computational factors which in
turn can be reasoned about by much more complex, com-
putational models of security [GM84, BM84, GGMS86,
GMRS8, BKROO].

This paper is primarily concerned with guessing
attacks on protocols. Randomly guessing values can be

an effective way to break a protocol. However, guessing
attacks are handled poorly by most formal security analy-
sis techniques, including the spi-calculus [AG97] with its
model based on free and bound names. Our aim in this
paper is to provide a pi-calculus [Mil91] based model of
guessing attacks with most of the simplicity of the formal
model and some of the power of the computational model.

In Section 2, we review the formal and compu-
tational foundations on which this paper builds. The
spi-calculus based security analysis method [AG97] use
a mini-language with a construct to create new names.
These new names can never be guessed, so an attacker
must trick a process into giving away its secrets. The com-
putational security model, on the other hand, is based on
the random sampling of key values followed by a com-
plexity analysis of the run time of any possible attacker.

In assembling our calculus we equate the new
name declaration of the pi-calculus and random sampling
in the computational model. In our calculus we write
new a : Dy, to mean that a is a new name, randomly sam-
pled from a domain of size n.

To avoid the difficult complexity analysis required
by the computational model we only allow the attacker to
take advantage of the limited domain size through a guess
operation: guess x : D,,. This operation allows an attacker
to correctly guess a value from a domain, but at a cost.
An attacking process can use this guess operation to try
to break a protocol. The attackers trace maps out a path
to be followed later by another brute force attack. A real
attacker would have to use trial and error to guess values,
look for confirmations of their guesses and be prepared
to go back and guess again. We can calculate the cost of
this more complicated guessing attack from a single trace
of a successful attack in the calculus using a simple func-
tion on traces. This function can find the cost of multi-

ple guesses, taking into account exactly when the attacker
can get their guesses confirmed. For a given protocol, the
higher the value of the minimum cost attack the safer the
protocol will be.

One use of this calculus is to find weak points in
protocols. For instance, a good banking protocol might
force the attacker to guess the victims PIN number and
account number at the same time, at a cost of 10% x 1012
where as a less secure protocol might allow the attack to
verify the pin number from the bank card before it has
to guess the account number, thus making the cost of an
attack 10+ 10'2. In most models both these protocol
would be considered safe and indistinguishable. The cal-
culus we present here could tell the two processes apart
by the minimum cost of a successful attack on each.

1.1 Contributions

We show the correctness of the calculus and the cost func-
tion by relating our model back to the spi-calculus and
to the computational model. First we add a security pa-
rameter for domain sizes. We define a Turing machine
attacker that can interact with a process. In our calcu-
lus we translate new names as random bit strings chosen
from a domain of size equal to the new name’s domain
size, whereas for the spi-calculus all names are mapped
bit strings with the same length as the security functions,
hence they cannot be guessed in sub-exponential time. We
also give a safety criterion for these Turing machine at-
tackers. For our first theorem, we show that if there is a
sub-exponential cost attack in our calculus then the pro-
cess is unsafe in the computational model, i.e. there ex-
ists a polynomial time Turing machine that can defeat the
safety criterion.

We observe that zero cost attacks in our calculus
correspond to attacks in the spi-calculus but given that
we have changed the spi-calculus model of security we
want to be sure that we have not allowed new attacks that
fall outside of our model. Work such as [AR0O, BPWO03,
Lau04, MWO04, War03] has proved that there is a com-
putationally correct mapping from the Dolev-Yao formal
model [DY83] to the computational model.

Our second theorem proves that if there exists a
correct mapping for the spi-calculus, then there is also a
correct mapping for our calculus. This result shows that
in shortening some of the new names in the guessing cal-
culus, we do not allow for any new attacks that cannot be
found in the calculus itself.

It should be noted that a proof of correctness does
not mean that there is absolutely no possibility of an at-
tack on a protocol, as the computational model is itself a

model, just a somewhat broader one than the pi-calculus.
It does not, for instance, consider attacks based on time or
power usage. For one example of a computational correct
encryption algorithms falling to such attacks see [Koc96].

Protocols can be made safer by taking measures to
counter guessing attacks. For instance, the French debit
card system will lock a card after receiving three incor-
rect PIN numbers. These precautions are often effective,
however they can also be inconvenient, (three wrong tries
at a PIN number is not inconceivable for someone with
a new bank card). The introduction of these safety mea-
sures will also complicate any protocol and could in turn
lead to new security flaws. It would be better to design
the protocol well in the first place to make guess attacks
harder without these counter measures.

1.2 Related Work

Zunino and Degano [ZD04] enhance the standard Dolev-
Yao attacker so that it can guess a key. Using computa-
tional security methods they show that there is a negligi-
ble probability of these kind of guesses succeeding and
so standard Dolev-Yao attacker is just as powerful as the
enhanced one.

Mitchell, Scedrov et al. [MRSTO1, RMSTO04,
MMSO03] extended th pi-calculus with polynomial time
functions. The calculus is then refined by placing a poly-
nomial bound on the number of times a replicating process
can replicate and by limiting the capacity of each channel
to some polynomial value. The result of this is a pro-
cess calculus that can express complex numerical attacks
but is guaranteed to run in polynomial time. Therefore,
if a protocol can be broken in this calculus, we know the
protocol can also be broken by a polynomial Turing ma-
chine. A key difference between the PPC and the work we
present here, is that the PPC limits the non-determinism
of a processes to ensure that it runs in polynomial time,
whereas we allow any non-deterministic pi-calculus pro-
cess but we do not allow these processes to guess values,
except by explicit use of a guess operation.

There is a great deal of work on the subject of at-
tacks based on guessing poorly chosen passwords, for in-
stance Gong et al. [GLNS93]. This work focuses on the
idea that passwords are often chosen poorly and so can
sometimes be guessed by dictionary attacks. Much of this
work considers decryption functions to simply map bit
strings to bit strings and so, in order to verify the guess of
a key from an encrypted message you must have access to
that encrypted message and know the message’s contents.
Lowe [Low02] works in the Dolev-Yao model and analy-
sis protocol in the FDR model checker. He shows how

some protocols might be vulnerable to attack and how
these protocols can be made safer. Delaune and Jacque-
mard [DJO4] show that, for active attackers, this type of
guessing attack can be found in polynomial time. Corin,
Doumen and Etalle present similar work in the Applied
pi-calculus [CDEO3] and provide a tool to find these at-
tacks [CMAFEOQ3].

Multi-set rewriting [Cer01] is another formal anal-
ysis system for checking protocols. It has been extended
with a simple notion of additive cost on actions. This
system could be a useful base from which to investigate
guessing attacks.

There is a growing body of work that looks at
bridging the gap between the computational computer se-
curity model and formal analysis. We discuss this work
after introducing the computational security model in the
next section.

In Section 2, we review some background work,
including the pi and spi-calculi and the computational se-
curity model. Section 3 introduces the pi-calculus with
guessing, and the cost function for attacks is giving in
Subsection 3.4. We address the correctness of our system
in Section 4 and finally we conclude and discuss further
work in Section 5.

2 Background: Formal and Com-
putational Analysis

This paper is aimed at combining some aspects of com-
putational analysis methods with formal process analy-
sis in the pi-calculus. So, this section first reviews pro-
tocol analysis in the pi and spi-calculi and then outlines
how computational methods can be used to prove much
stronger results. We also, briefly, discuss some related
work that falls into the gap between these two fields.

2.1 The pi and spi-calculus

The pi-calculus is a miniature concurrent language. This
language is simple enough to allow formal analysis while
expressive enough to describe most interesting concurrent
processes. The exact syntax given to the pi-calculus varies
from paper to paper; here we use the following:

Process P,Q = 0
| send a(b)
| rec a(x); P
| new a; P
|

| (P[]Q)

| [a=0];P

The first piece of syntax O, represents the stopped
process. The send operation broadcasts the name b over
channel a. The next operation receives a name over the
channel a and substitutes it for x in the continuing process
P. The new operation creates a new communication chan-
nel that is guaranteed to be new and unique. The bang
operator ! can perform recursion by spinning off an arbi-
trary number of copies of a process. Placing a compulsory
input guard on this command avoids unintentionally spin-
ning off an infinite number of processes. The bar | rep-
resents two processes running in parallel and finally the
match operation, [a = b|; P executes P if and only if a is
equal to b.

The key reduction rule of the calculus allows two
processes to communicate:

send a(b) | rec a(x);P — P[b/x]

To avoid enumerating every possible arrangement
of processes in the semantics rules, the pi-calculi often
use a structural equivalence relation to identify some pro-
cesses as the same, for instance we say that P | 0 = Q | P.
A single semantic rule then extends a reduction of one
process to all other equivalent processes.

P=p 01=0

P — 0
P—0

One of the most important aspects of the pi-
calculus is that new names are both new and unguessable,
for instance the process new a;rec a(x);P can never re-
ceive a communication on the channel a, no matter what
the surrounding processes might try. This also means that
there is no way to write down an attack that tries every
possible value until it “finds” the right one.

In order to model a larger number of interesting
protocols the spi-calculus extends the pi-calculus with
primitives for encryption. A new term is added, of the
form {M}y, to mean the message M encrypted with the
key N. These terms can be decrypted using an operation
of the form: case L of {x}n in P. If a process provides the
correct key, the semantics rule for decryption substitutes
the encrypted value for the variable:

case {M}n of {x}n in P — P[M/x]
Encryption of the message M with the key N is
performed by simply writing the term {M }y.
2.1.1 Security Analysis in the spi-calculus

The small size and expressivity of the spi-calculus makes
the detailed analysis of processes possible. This including

the analysis of security properties, as shown by Abadi and
Gordon [AGY7]. We briefly summarize some of this work
here.

An attacker is modelled as a confext, written C[]
which is any possible surrounding term, into which the
process being attacked may be plugged. This means that
the attacker can access any of the process’s free names
(those not bound by a new or input operator) and use these
to communicate with the process in anyway it chooses.
The attacker may also perform any computations it wishes
using the spi-calculus.

The barbs of a process are the unguarded outputs.
We write P | a to means that P has the barb a.

da(b)! Ele
send a a B —
PlQla
Pla a#b Pla P=Q
newb;P | a Qla

We also write |} for | closed under reduction. A
test then consists of a testing process R and an action a
and we can use this test to define an equivalence:

Definition 2.1 (Testing Equivalence) P ~ Q if for any
test (R,a) we that have (P | R) | aifand only if (Q | R) |} a

To prove a value inside a process is secure we
prove that the process is testing equivalent to itself for any
possible, different values. For example, consider the fol-
lowing system:

System(M) = new pwd;(Client | Server(M))
Client = new reply;send ser{pwd,reply)
| rec reply x; P(x)
Server(M) = lrec ser (x,y);[x = pwd];send y (M)

This system is comprised of a client and a server.
The server listens for a connection on a public channel,
this connection is made up of a password and a reply
channel. The server then checks the password and, if it
is correct, replies with the message M. The password is
private between the client and the server, therefore no at-
tacker may know, or guess, it and hence the message M is
safe.

We could prove this formally by showing that the
for any M and M’, if P(M) ~ P(M’) then the system
System(M) ~ System(M") which would in turn imply that
for all hostile attackers A, the process A[Systems(M)]
A[System(M')] and so P cannot leak the message M to the
attacker A.

~

2.2 The Computational Security Model

Implementations of formal processes are susceptible to at-
tack that are “outside their model”. For example, a new
name that is implemented as a bit can be correctly guessed
with a one in two chance. Whereas, the spi-calculus
model of the process might say that this value is a bound
name and hence is guaranteed to be unguessable (alter-
natively the name could be free, then the attacker would
always know it).

The computational model of security avoids some
of these problems by modelling attackers as polynomial
Turing machines and values as bit strings [GM84, BM84,
GGM86, GMRS8]. This means that the attacker can carry
out any computational feasible operation. Secret values in
this model are randomly chosen from a probability distri-
bution. Given a probability distribution D,, of size n, we
write:

-
x<«— D,

to mean that x is a value that has been randomly sampled
from that distribution.

A security criterion is used to judge the safety of a
given process. The choice of which criterion to use will
depend on the exact nature of the required security prop-
erty. However, a typical criterion defines the attackers ad-
vantage to equal the probability that, for some sampled
value, the attacker can correctly identify that value, minus
the probability that the attacker incorrectly identifies the
value.

Attackers are probabilistic, polynomial time Tur-
ing machines (PRTMs), this is a Turing machine that runs
in polynomial time in some security parameter and has the
ability to make a random choice. It is enough for these at-
tackers to return O or 1 depending on what they believe to
be the result of their attack.

The chance of the attacker defeating the criterion
must become very small, very quickly as the size of the
security parameter grows. More formally, we say that the
attackers advantage be negligible.

Definition 2.2 (negligible) A function f is negligible if
for all c there exists N such that for all x > N we have
that f(x) < x™°.

As an example of a simple criterion, one could say
that an encryption scheme E is safe if
Adv(n) = Prlx & Dy, k < Key, : A(n, Ex(x),x) = 1]
—Prlx,y < D,k <= Key, : A(n, Ex(y),x) = 1]

is negligible. In this criterion. The attacker is given the
length of the security parameter, a random element and an

encrypted value. The attacker must answer 1 if it believes
that the value it has been giving is the same as the en-
crypted value and O if it believes the values are different.

A stronger, and more realistic criterion might give
the attacker the ability to use the encryption algorithm,
this is done in the form of an oracle and we write A7) to
mean the attacker has access to an oracle to perform the
function f with its chosen input. So, for instance, a cri-
terion to ensure that the attacker does not know when the
same value has been encrypted a number of times could
be written as

Adv(n) = Prlk < Key, : AB«(-)(n) = 1]
— Prik & Keyn,x & D : ABM (n) = 1]

where the false oracle Ey (x) ignores the value the attacker
gave it to encrypt and always returns the encryption of x
with the key k.

Whereas, a criterion that require key identities to
be concealed could be written as:

Adv(n) = Prlk,k' £ Keys, ;AEk(—)ﬁEk/(—)(n)

1]
— Prlk <& Keys,,x <~ D: ABC)E() () = 1

]

The computational method captures, and hence de-
fends against, a wide range of possible attacks, including
guessing attacks. However, proofs in this model are none
trivial, and a successful proof of correctness can be the ba-
sis for a published paper [BKR94]. The aim of our work
is to provide some of the benefits of computational anal-
ysis of guessing attacks without involving the user in any
difficult proofs.

2.3 Bridging the gap

There have already been a number of papers that bridge
the gap between formal and computational analysis. How-
ever, most of these are based on finding conditions under
which you can derive a computational proof from a formal
analysis.

Hiittel shows that the spi-calculus is Turing pow-
erful [Hiit02]. A key paper, which set the groundwork for
others, is by Abadi and Rogaway [AR00]. They define a
translation from formal Dolev-Yao [DY83] model terms
into computational terms: key terms in Dolev-Yao be-
come newly generated keys. Nonces become new, hard to
guess strings. Dolev-Yao equivalence then implies com-
putational indistinguishability.

This relation between the Dolev-Yao model and
the computational model has been greatly expanded by
Backes, Pfitzmann and Waidner who, amongst other
things, deal with active attackers and nested encryption

[BPWO03] and symmetric encryption [BPO4b]. By using
this link between formal and computational secuirty, they
also find correctness proofs of the Needham-Schroeder-
Lowe and Otway-Rees Protocols [BP04a, Bac04]. Mic-
ciancio and Warinschi [MWO04] observe that Abadi and
Rogaway’s mapping is not complete, but can be made
complete by using a stronger security criterion. Janvier,
Lakhnech and Mazare [JMLO5] show that Dolev-Yao is
computationally sound in the presence of active attackers.
Hezrog [Her04] shows correctness for a stronger defini-
tion of non-malleability for Dolev-Yao. This provides se-
curity against adaptive attackers. He also shows that the
correctness of Dolev-Yao is preserved when it is extended
to include some kinds of new operators, included those
needed for Diffie-Hellman.

3 The pi-calculus with Guessing

This section introduces the pi-calculus extended with
guessing, the pi-g calculus. We do this in a number of
stages, in the hope of illustrating the motivation behind
the design decisions and elucidating some of the finer de-
tails. The first stage introduces the guess action, next we
consider the cost of multiple guesses, and thirdly we show
that the cost of an attack can be reduced if the attacker
can get easy confirmation of their guess. Finally, note that
only certain kinds of actions give reliable confirmations
and we develop our cost function accordingly. The full
calculus is given at the end of this section and a compu-
tational justification for the informal reasoning is given in
Section 4.

3.1 A Guessing Rule

Given a protocol with a fixed password, there is a subtle
difference between finding a general guessing attack on
the protocol and an attack that guesses the password for
one particular run of the protocol. To illustrate this point
consider Lowe’s attack on the Needham-Schroeder Proto-
col [Low96]. A rough, back of the envelope calculation
finds that this attack happens over 14 steps with around
75-256 possible, interesting messages for the attacker at
each step. This makes the chance of finding this attack, at
random, to be less than 1 in 219, If the nonce used in this
protocol was 64 bits long, how can we tell our automated
protocol checker not to attack the protocol by guessing the
nonce directly?

The pi-calculus handles this quite neatly, by using
a new name for the secret value, for instance, a system in
which processes P and Q share a password pwd against
an attacker A could be written as:

new pwd;(P| Q)| A

This marks out the password as important to the
correctness of the process and ensures that the attack can
never come up with the name without being told. How-
ever, this can sometimes entrust too much security in the
new name; a password consisting of a single bit, for in-
stance, can be easily guessed.

As mentioned above, the computational model
randomly samples these names. In this setting we would
write:

pwd <= Dy, : P(pwd) | Q(pwd) | A

This stops the attacker from just knowing the pass-
word at the start of the attack because the same attack
must work for different, randomly sampled values of pwd.
This model does allow for a brute force attack, however
it forces anyone using this method to perform a statistical
analysis on the run time complexity of A.

To bring these two methods closer we work in the
pi-calculus and allow a new name to be sampled from a
domain of a given size, writing

new pwd :Dy;(P| Q) |A

to mean pwd is a new value, shared between P and Q,
sampled from a domain of size n. To avoid the need to do
nasty analysis we force the attacker to declare when it is
attempting to guess a value and pay a cost proportional to
the size of the domain. The key rule being

new pwd : Dp; P | guess x: Dp; A
— pwd:n new pwd : Dy (P | A[gpwa/X])

which means that the attacker guesses the name pwd at a
cost of n.

The distinct name g,,q is a correct guess of the
name pwd. We do not substitute pwd for x directly as
we will later need to find out when a guess is confirmed.
This label on the reduction, as with all the other labels
records information necessary calcule the cost of the at-
tack, no label ever affects the reduction of a process. A
new name declared of the form new a : D,, binds both a
and g,, furthermore we only allow names of the form g,
to be declared with the guess operator.

So, whereas before, in the pi-calculus, an attack
could only acquire knowledge of a new name by being
told, the attacker can now also use the guess action and
pay the cost of a brute force attack on a value of the given
domain size.

3.2 Multiple Guesses

Now we have allowed the attacker to make a single guess
we must calculate the cost of multiple guesses. Below we
give a simple system in which a process shares a 128 bit
password with another process Q. An attacker A will try
to guess this password one bit at a time.

Process = new chn,rew,by : D,...b123 : Da;
(send a(chn,rew) | rec chn(x1);[x1 = b1];...
...rec chn(x128); [x128 = by]; send rew(reward))

Q)

Attacker = rec a(chn,rew);
(!(guess b : Dy;send chn(b))
| rec rew(x))

The password process waits for a connection, and
replies to this with a new, secure channel. P then listens
on this new channel for the bits of the password. One by
one, the received bits are tested against the bits of the true
password and if they all match the reward is broadcast.

The attacker A cannot know the bits of the pass-
word because they are new names bound to P and Q.
However, it can guess each bit with a cost of 2 (or a 1
in 2 chance of being correct). After the attacker has made
a guess at all 128 bits of the password it will have a 1 in
2128 chance of having correctly guessed the password and
hence the cost of these guesses should be 2!?8 So, in this
case, we multiply the cost of each successive guess.

It should be noted that the process A does not per-
form an attack of cost 2! on the process P, rather 2!%8 is
the cost of performing a successful attack along the lines
of the attack attempted by A.

3.3 Conformation of a Guess

Multiplying the costs of all guesses in a trace will some-
times overestimate the cost of an attack. The multiplica-
tion of the costs reflects the idea that all possible combi-
nations of guesses must be tried. However, if the attacker
can get one of their guesses confirmed as correct, when
only part of the way through the attack, then the confirmed
guess will not have to be retried and will therefore not
contribute to the cost of future guesses.

For example, consider the fairly moronic extension
to our prior password system given below. The processes
function in the same way as before, except this time an
acknowledgment is broadcast after receiving each bit.

Process =
new chn,rew,by : D...b138 : Dy;

(send a(chn,rew) | rec chn(x));[x; = b1]; (send ack | ...
...rec Chn(xlzg); [X123 = b]zg];
(send ack | send rew(reward))...)

| Q)

Because the system tests each bit before listening
for the next bit these acknowledgments confirm the guess
of the previous bit as correct. This means that any brute
force attack based on guessing and then listening for an
acknowledgement would only have to try a guess at each
bit once making the total cost for the new attacker 128+ 1.

These confirmations effectively prune the search
tree of all the possible combinations of guesses. Figure
1 shows the tree of all possible guesses for the original
password protected processes and the pruned tree for the
password processes with acknowledgments signals.

To allow dependences to be tracked we extend the
syntax of the calculus with a dependence marker. This
marker takes the form: (g,)P and behaves in exactly the
same way as the processes P. The point of the marker is
to record that the process P is only running because the
guess g, has been shown to equal a. The key semantic
rule for this is:

[8a = a];P —(q) (84)P

The label (@) signals that this action build a dependence
on the guess being correct.

A guess is confirmed when a signal that depends
on the guess being correct passes from the process to the
attacker. So, we make the attacker and victim explicit by
separating them using a double bar || . The following
reductions illustrate both these mechanisms:

new a : Dy; rec b(x);[x = a];send b{c)
|| guess y: Dy; (send b{y) | rec b(x))

Now, we come to the match [g, = a]. This match will go
ahead as, for the sake of computing the cost, we consider
the guesses to be correct. However, we must leave a
dependence marker to say that the resulting process is
only running because a guess has been shown to be
correct. In the final step another communication happens
and as the send is dependent on the guess of a and the
communication takes place between the main process
and the attacker, the guess of the name a is possibly
confirmed by the communication of ¢ over the channel b,
indicated here by the a : b(c) label on the reduction. It is
left to the cost function to work out if the confirmation is
reliable This results in the rule for conformations:

(8a)send b(c) || rec b(X)A = G5 P || Alb/x]

As the dependence marker can be passed from one part of
the system to another (see the first rule in Figure 3) this
also catches indirect communication comfirmation.

The dependence markers are added to the calculus
purely to aide the analysis of a process. They would not be
present in any implemented system. When an attacker re-
ceives a message from an action of the form (g,)send a(b)
they only see the send a(b) part. So, if along with a con-
firming signal there are other, similar signals that do not
confirm a guess, the attacker cannot be sure which one
they have received and so the signal does not definitely
show the guess to be correct. As an example, we ask
the reader to again consider the password process given
above. There, a correct guess is confirmed by a signal on
the channel ack. However, if we added a continually re-
peating output on the channel ack, i.e. a process of the
form send loop | rec loop;send ack, then the receipt of
an ack signal by the attacker would be meaningless and
would not help him prune down the search tree of pos-
sible guesses. So, when the cost function is presented
with a possible confirmation it uses the state of the pro-
cess, recorded from when the dependence was first built,
to test if the confirming action would be possible without
t)tbe guess being correct.

—an newa:Dy; (rec b(x);[x = a];send b{c)
|| send b{g.) | rec b(x))
— new a: Dy; ([ga = al;send b{c) || rec b(x
—() newa:Dy;((gq)send b(c) || rec b(x).A 3.4 Cost of a Trace
—abie newa:Dn (Of|A)

The name a, from a domain of size n, is only
known by the process on the left hand side of the double
bar. In the first reduction the attacker guesses this name,
hence the reduction is labelled with a : n to indicate that
the name a has been guessed at cost n. The second step is
a communication between the attacker and the process.

When an attacker finds a guessing attack for a protocol,
the attacking process does not have to model the ways in
which it may try different guesses and keep track of the
guesses already made. This would lead to a more compli-
cated system, which would require the kinds of analysis
seen in the computational model. Instead, we restrict the
only type of computation that can be used to find secret
names to the guess action. We can then calculate the cost

=N
AN

Lol PP

Search Space without Confirmations

x,=0 Nl
™ o
= XZ:% \xz=1
° °
x=0 / \le a»
o e
/N

T on+l~
[] 0. .00 []

Search Space with Confirmations

Figure 1: The Possible Guess of all Values, with and without Confirmations

of these guess actions separately. It should be noted that
we do not calculate the chance of the attacking process be-
ing correct. Rather, our cost function calculates the cost
in terms of computing power or number of tries, a brute
force attacker would need to successfully follow the same
path as the attacking pi-g calculus process. The cost of
guesses are calculated and added to the total as they are
confirmed and the cost of the unconfirmed guesses is cal-
culated at the end of the trace. We calculate the cost of
a trace, defined by the grammar T ::= P —¢ T|P, using
an auxiliary function that has a list of current guesses and
another list that stores the states in which the dependences
where first build.

cost of trace(T) = cost(T,[],[])

The cost function has five cases. The first is that of
a guess being made by the attacker.

cost(P — g T, gu,comf) = cost(T, (a,n);gu,comf)

The guess and its cost are added to the list of cur-
rent guesses, gu. In the second case a dependence on a
guess being correct is built up inside the protocol and we
add the first processes state to the comf list.

cost(P — 4y T, gu,comf) =
cost(T, gu, (a: P);comf)
cost(T, gu,comf)

if (a:Q) ¢ comf
if (ga:0) € comf

The confirmation rule is the most complicated. To
simplify matters we introduce a short hand for the produce
of the costs (the second elements) of the list of current
guesses: Il snd [(aj,ny),...(a;,n;)] = np X ny X ... X n;.

The action tag (&, b(¢)) tells us that the elements of the set
gu are potentially being confirmed by a communication
on the names ¢ over the channel . We then check in the
confirmation list to see if the system could have made the
same communication if the each guess had been wrong,
if it could not have then the confirmation is real.

cost(P —@r@) 1> gu,comf) =
M1 snd (gu[(ai,m; — 1)/ (ai,m;)])
+cost(T,gu\{(a1,my)...,a;,m;)},comf)

where a, ...,a; are all the names in @ such that
(ai,Q) € comf and (a;,m;) € gu and
new d;0{d/ g4} # Clsend b(¢)]

If the attacker knows the contents of the message
¢, the attacker can use this to look for confirmations, so
¢ = ¢. However, if any of ¢ are secret names within the
protocol then the attacker will not be able to distinguish
it from any other secret name from the same domain. So
that element of ¢ can be any bound name that is unknown
to the attacker and is drawn from the same domain.

The cost produce by the confirmation is the pro-
duce of the costs of each guess, with one subtracted from
all the confirmed guesses (as one path for each confirmed
guess will continue) plus the cost of the rest of the trace,
with the confirmed guesses removed from the list of cur-
rent guesses. It would be possible for the confirmation
action to come from a second dependency not from the
state Q, however Q could reduce to the process that made
this second dependence and so could perform the same
actions.

It is unnecessary for this rule to confirm a guess of
the messages contents. If the broadcast of this message

was dependent on a guess of ¢ then the guess of ¢ will be
automatically confirmed. If the broadcast was not depen-
dent on the guess then the attacker can read the value of ¢
from this action and so does not have to guess it at all.

It would be quite possible for an attacker to make a
guess and wait for an action they believe confirms a guess
but in fact receive a reply from a different reduction that
does not confirm the guess at all. For now, we say that
it is unsafe for the security of the processes to depend on
the scheduler avoiding these confirming states, but we will
also give a computational argument for this in Section 4
that proves, that for any reasonable scheduler, this defi-
nition of a confirming state is enough to correctly find a
process insecure.

For instance consider the process

[ga = a]rec b;send c | send b | rec b;send ¢

This process will preform an output on ¢ whether
of not the guess is correct. If we gave the attacker full
control over the oracle it would be able stop the communi-
cation between that does not confirm the guess. In which
case, we would find a confirmation but we would not find
a useful attack.

We also do not demand that the scheduler gives
equal chance of performing each action, as an unrealistic
assumption. This means that we do not accept confirma-
tion from processes such as the following:

[ga = a]; rec b; (newc; (send c |

rec c;send d | rec c;send d | rec c;send e)
| send b
| rec b; (newc; (send c |

rec c;send d | ;rec c;send e | rec c;send e)

Under a scheduler that gave equal chance of exe-
cution to each action, it could be augured that seeing a
send on the channel d would tend to confirm the guess of
a. While this may be interesting further work it is unclear
if an attacker could rely on this kind of information so we
leave it outside of our model, for now.

When we come to the end of a trace we multiply
the remaining guesses to get the final cost.

cost(P,gu,comf) =11 snd gu

If a reduction does not fit into any of the above
categories it has no effect on the cost, as shown by the last
case.

cost(P— T) = cost(T, gu,comf)

We summarise the cost function in Figure 2.

cost(P — gy T, gu,comf) = cost(T, (a,n);gu,comf)

cost(P —) T, gu,comf) =
cost(T, gu, (a: P);comf)
cost(T, gu,comf)

if (az Q) ¢ comf
if (ga : Q) € comf

cost(P —o, T,gu,comf) =
I snd (gu[(ai,m; — 1)/ (ai,m;)])
+ cost(T,gu\{(al,ml)---aajamj)}acomf)

where if o = (@,b(¢)) then ay,...,a; are all the
names in @ such that (a;,Q) € comf and
(ai,m;) € gu and new d;0{d /g4 } # C[send b(¢)]
and if & = (a,0) thena; = a

cost(P,gu,comf) =11 snd gu

cost(P— T) = cost(T, gu,comf)

Figure 2: The Cost of a Trace

3.5 Encryption

Encryption is an essential part of many interesting proto-
cols. We can add encryption to our calculus in the manner
of the spi-calculus, by adding the name {a}; to mean the
name a encrypted with the key k, and adding the opera-
tor decrypt a as {x}x; P to decrypt, encrypted messages.
Decryption adds another way in which a guess can be con-
firmed and dependences built up. Firstly, when a protocol
uses decryption with a real key and a guess it sets up a
dependence:

decrypt {b}a as {x}¢,;P —(a) (8a)P[b/x]
decrypt {b}g, as {x}a;P —(q) (8a)P[b/x]

Secondly, an attacker’s guess at a key can be con-
firmed directly by attempting to decrypt a message en-
crypted with the real key. This leads to a secondary de-
cryption rule just for the attacker:

decrypt {b}, as{x}g,;A — (4a,0) Alb/x]

The O indicates that this action always confirmation the
guess.

The duel confirming decryption rule, where the
message is encrypted with the guessed key and the at-
tacker is using the real key, would not make sense, as
it would mean that the attacker was trying to confirm a
value they already know. As mentioned in the introduc-
tion, some formal definitions would not consider this a

[a=a]P— P

decrypt {b}, as {x}4,; P — P[b/x]

decrypt {b}a as {x}ga;P H(ﬂ) (ga)P[b/x]

(82)send a(b) | (ga)rec a(%);P — (8¢, 84)Plb/x]

(8a)send b(c) || rec b(X)A — G5 P || Alb/x]

[ga = alP —y, (8a)P

new a: Dy; (P || guess x;A) —g4.n new a: Dy; (P || Alga/X])

decrypt {b}, as{x}g,;A — (g0,0) Alb/x]

decrypl‘ {b}ga as {'x}u’P _>(a) (gll)P[b/x]

For unguarded C[] if P —¢ P’ then C[P] —¢ C[P']

Figure 3: The Semantics of the pi-g calculus

correct confirmation of g, if the attacker did not already
know the encrypted value b. However, the truth of this
assumption will depend on the exact implementation of
encryption. So we err on the side of caution, and allow
the attacker to confirm their guess by decryption alone.

As with the confirmation of a guess by an output,
this may not be a definitive confirmation. It is possible that
the process which generated the trace received the mes-
sage {m}; and used it to confirm g, whereas, in another
run of the same protocol the attack may receive a message
encrypted with a different key. As above, we point out
that the protocol should not rely on the scheduler for se-
curity. In Section 4 we give a full correctness argument.
We show that the existence of even just one states that al-
lows the attacker to confirm their guess is enough to give
the non-negligible chance of failure needed to show that
the protocol is computationally insecure.

The addition of encryption completes the syntax of
our calculus:

Network

P|lA

Processes P, O, A
& Attackers

0
send a(b

rec a(X)
1P
(Pl0)
[a=Db];P
newa:D,;P
guess x : Dy,; P
decrypt a as {x}; P

)
P

s

10

In general only attackers will use the guess opera-
tion and only processes will use secret names. The full
semantics of the calculus is given in Figure 3. As the
labels on a trace signal which bound names have been
guess we can not later change these names. Therefore
we not not allow alpha-conversion of names that have al-
ready been guess. If alpha-conversion is necessary then
it must take place before the execution of the guess ac-
tion. With this exception our structural equivalence rules
are standard, and are giving in Figure 4.

4 The Correctness of the pi-g Calcu-
lus

This section gives a computational base to the calculus.
We allow domain sizes to be parameterized on a security
parameter and then show that if there is a successfully,
finite attack in the pi-g calculus with less than exponential
cost in the security parameter, then the process is unsafe in
the computational setting. In particular, it can be defeated
by a brute force guessing attack. This result justifies the
design of the cost function given in Subsection 3.4, and in
particular the reduction in the cost of an attack due to the
confirmation of guesses.

The counterpart to this theorem, that the lack of
a sub-exponential cost attack implies safety in the com-
putational model, is harder to prove because the Turing
machine attacker may be able to carry out attacks out-
side the model of the calculus. We could prove this
safety theorem by way of the computational correctness

newa: D,;newb : D,P

Plo = olp PlO)IR=PIQIR)
PO = P rec a(b);P = rec a(¢);P[¢/D] cnfn(P)={}
P = P|IP newa:Dy;P = new b : Dy;P[b/al {b,gqatUfn(P)={}
newa:D,;;0 = 0 newa:Dy;P | Q = newa:Dy;(P| Q) {a,g.}Nfn(0)={}

new b :D,;new a: D,;P

Figure 4: The Structural Equivalence Rules

of the spi-calculus, which would be a useful result in it-
self. However, here we are only interested in showing that
the guessing extensions to the spi-calculus are correct. So,
in much the same way as computational security proofs
often prove the safety of a system by relating it to another
system that is believed to be safe, we show that the safety
of the spi-calculus is enough to prove the safety of the pi-g
calculus, and hence our extensions will introduce no new
errors.

4.1 Relating the spi-calculus and the Com-
putational Model

In this section, we formalise the relation between the spi-
calculus and the computational model that we will use as
a base for our correctness result.

We wish to pit a Turing Machine attacker against
a protocol written in a process calculus. We do this by
modelling the attacker as a Turing machine with an or-
acle that can run the process being attacked any number
of times, for this we write A” or AP(@ for the process P
parameterise on the names a.

The oracle can compute reductions of the calculus
process P using the semantic rules for the calculus. The
Turing machine A interacts with the oracle by means of
two tapes, one for output, onto which the oracle will write
outputs visible to the attacker and another tape for input,
from which the oracle can read messages from the attacker
and insert them in to the appropriate part of the process.
Names are implemented as random bit strings that are
at least as long as the security parameter, hence making
them hard to guess in sub-exponential time. The process
P would have no other access to the security parameter,
unlike the attacker. To start a new run of the process the
attacker writes a special symbol onto the tape along with
a bit string. Appending this bit string then distinguishes
the bit string names of this new concurrent run. Mitchell
et al. describe a simple implementation of the pi-calculus
[MRSTO1] where they aim to show the polynomial time
reductions of a sub-set of the pi-calculus, whereas we do

11

not care about the run time of the protocol, only the at-
tacker. A fair scheduler is used to handle concurrent pro-
cess, so if a process in a finite system can perform a reduc-
tion then, in the computational setting, there is a non-zero
probability that it does perform that action.

We require that the encryption function used in
the computational model is repetition concealing, which-
key concealing and message-length concealing. This ex-
tremely strong kind of encryption is termed type-0 secu-
rity by Abardi and Rogaway [ARO0O] and is defined as
making the following criterion negligible for all PRTMs.

Adv_Enc(n) = Prlk, k' & Keys, : AB()Eu (=) (n) = 1]
— Prlk & Keys, : AEO-E0) (n) = 1]

Encrypting a key with itself can be problematic,
even when done indirectly [GM84]. So, we deviate slight-
ing from the original spi-calculus and automatically con-
sider process which do this unsafe.

In later work it might be interesting to consider an
extension of our current system that would allow the at-
tacker to easily guess a key from a message containing
and encrypted by that key, or even a series of messages
that indirectly encrypt one key with itself.

(
n

Definition 4.1 A®svi js the Turing machine A which has
access to an oracle that behaves in a similar manner to the
spi-calculus process P, as outlined above, in particular
all bound names in P are mapped to bit strings at least as
long as the security parameter n and A knows all the free
names of P.

It should be noted that the behaviour of the encod-
ing of Py,; will not exactly match the behaviour of the spi-
calculus process, because the attacking Turing machine
A can find a bound name in exponential time. Instead,
we match safety in the spi-calculus with safety against a
polynomial time attacker in the computational setting.

To formalise exactly what we mean by a success-
ful attack we consider the set of spi-calculus processes
that are parameterised on a given constant P(c). In the

spi-calculus, a process is considered safe when the pro-
cess P(c) is testing equivalenct to the process P(a) for
any name a. To relate this definition of safe to the com-
putational model we reformalise this to say that a process
P(c) is safe if and only if there does not exist a process
A(c) such that P(c) || A(c) performs an output on ¢ and
P(a) || A(c) does not perform an output on c.

In the computational setting the attacker is given
access to an oracle with a secret bit string, and the
attacker is also given another, possibly different bit string.
The attacker will answer “1” if it believes the value it was
given is the same as the secret and “0” otherwise. The
difference between these probabilities, of the attacker
getting it right and getting it wrong, is the attackers
advantage:

Adv(n) = Pr[s & D, : APOsi(n, fn(P),s)
— Pris,t LD, . APS)spi (n, fn(P),t)

}
}

The attacker also has access to the free, public
names of the process. We slightly abuse our notation here
by using letters to represent names in the calculi processes
and the bit strings that represent those names in the com-
putational setting.

We say that the process P is safe in the computa-
tional setting if the advantage function Adv(n) is negligi-
ble for all probabilistic, polynomial time Turing machines
(PRTMs) A, otherwise we say it is unsafe. As mentioned
above, we are interested in finding attacks on protocols
that work in any reasonable situation, therefore we require
the attacker A to work with non-negligible probability for
any scheduler than assigns a non-zero, constant probabil-
ity to any possible action.

Processes in the pi-g calculus can be treated in the
same way. Except, when mapping these processes to the
their computational equivalents, pi-g calculus names are
mapped to random bit-strings with the same length as the
size of their domains.

1
1

Definition 4.2 APris is the Turing machine A which has
access to an oracle that behaves in a similar manner to the
pi-g calculus process P,, with the same mapping as that
for spi-calculus processes except bound names are now
mapped to bit strings of the same length as their domain
size.

4.2 Unsafe in the pi-g Calculus Implies Un-
safe in the Computational Model
Now that we have a model in which a protocol can be at-

tacked, we need to be sure that a successful attack in the
model implies the possibility of a successful attack in an

implementation of the protocol. We show this by prov-
ing that, if there exists an attack on a protocol in the pi-g
calculus then the computational equivalent system can be
broken by a polynomial time Turing machine.

Theorem 1 Given a process with a secret value P(s),
if there exists a sub-exponential cost, finite attack on
the process in the pi-g calculus then there also ex-
ists a probabilistic, polynomial Turing machines that
makes the advantage function pi-g Adv(n) non-negligibly.

pi-g Adv(n) = Prls < D, : AP)pig(ns) — 1]
— Pris,t LD, : APB)pis (n,t) =1]

PROOF: (Sketch)

Assume the existence of a sub-exponential cost at-
tack in the pi-g calculus; we sketch the construction of a
polynomial time Turing machine that will find the secret
value with small but non-negligible probability.

The attack in the pi-g calculus must consist of a
finite number of actions, however some of these actions
are guesses, therefore we cannot map these finite actions
directly to a finite Turing machines. Instead we show how
each guess action can be removed in polynomial time with
a non-negligible chance of success.

The attacking Turing machine will intercept the
same outputs and send the same inputs to the oracle as at-
tacking pi-g calculus process sent to the original process,
i.e. if the pi-g calculus attacker did an output of the name
a over the channel b followed by an input on the channel
¢ the Turing machine attacker will send the bit string that
represents a over the channel b and then receive another
bit string from c.

The trace generated in the pi-g calculus represents
just one possible reduction of the process. For instance, it
is possible that the attacker will output a over the channel
b and then the process non-deterministically choices some
other path and does not perform an output on c. However
the output ¢ was found in a finite number of steps, and we
are assuming a fair scheduler, so there is non-negligible
probability that the protocol will behave in the same way
as it did in the pi-g calculus trace.

This leaves us with the guess commands. When
a pi-g calculus process guesses a value from domain of
size n, the attacking Turing Machine will make n copies
of itself onto n different tapes. Each of these copies then
reruns the protocol to get to the same point in the attack.
These reruns can be done in polynomial time, in the secu-
rity parameter, and with a non-negligible chance of suc-
cesses.

Each subsequent guess multiples the number of
running machines, so if we guess values of size n then

12

m and then o, with will have n x m X 0 machines running
in parallel. When one of the Turing machines sees an ac-
tion that verifies a guess in the pi-g calculus attack, that
machine assumes that its guess is correct and halts all the
machines that corresponded to other guesses.

As before, due to the non-determinism of the pro-
tocol, just because an action verifies a guess in one par-
ticular trace of a protocol, does not mean that the guess is
verified in all possible traces. But, also as before, assum-
ing a fair scheduler, there is a non-negligible probability
that the guess has been correctly confirmed.

So, we have a parallel Turing machine that mimics
the attack found in the pi-g calculus and takes polynomial
time multiplied by the cost of the attack in the pi-g calcu-
lus. Hence, if the cost for the attack is sub-exponential, we
have the Turing machines required by the computational
criterion and the computation process is unsafe.

O

4.3 Safe in the pi-g Calculus Implies Safe in
the Computational Model

A process, without any guesses, such as a protocol def-
inition, can be mapped from the pi-g calculus to the spi-
calculus by removing the domains from the new name op-
erator. We can relate zero cost attacks in the pi-g calculus
to attacks in the spi-calculus directly.

Proposition 4.1 [fa process in the pi-g calculus does not
vield to successful zero cost attack, then the equivalent
process in the spi-calculus is safe.

PROOF:

If there is a successful attack on a process in the
spi-calculus, then the similar attack will also work in the
pi-g calculus. As the spi-calculus attack does not use any
guesses so the cost of the attack in the pi-g calculus will
be zero. Therefore the absence of a zero cost attack in the
pi-g calculus implies that there cannot be an attack in the
spi-calculus. O

This proposition provides a basic result, however
there is a much more subtle questions that we must ask
about our new calculus.

By extending and changing the spi-calculus model,
to make the pi-g calculus, there is a possibility that we
have allowed a new class of attacks that are outside the
model of the pi-g calculus but are accounted for by the spi-
calculus. This is especially possible with the switch from
representing values as bit strings at least as long as the

security parameter, as we do in the spi-calculus encoding,
to representing values as possibly constant length strings,
as we may in the pi-g calculus.

Theorem 2 The pi-g calculus is a safe extension of the
spi-calculus: If, for a spi-calculus process, the advantage
Sunction Adv(n) is negligible, for all PRTMs only when
there exist a successful spi-calculus attacker then, if a pi-
g process P does not admit a sub-exponential cost attack
then the advantage function pi-g Adv(n) is negligible for
all PRTMs.

PROOF: (Sketch)

Let P, be a pi-g process for which there are no sub-
exponential attack. Assume, for contradiction, that there
exists an PRTM A such that pi-g Adv(n) is non-negligible
and that no such attacker exists for Adv(n) i.e. the at-
tacker can defeat the Turing encoding of the pi-g calculus
process, with its shorter length names, but cannot defeat
the Turing encoding of the spi-calculus process. The ex-
istence of such a machine would mean that in extending
the spi-calculus we had added a security hole that A could
exploit.

As the cost of the attack is sub-exponential we
know that the attacking process only guesses a finite num-
ber of sub-exponential names. So, we can write the pro-
cess P, as new ajy : Dy,,..,a; : Dy;;Q where a; to a; are
the names guessed by the attacker. We use structural
equivalence to unwind any replications that generated the
guessed names. Now, back in the pi-g calculus, we con-
sider the attacker that first guesses these names and then
tries to find an attack on Q.

As the PRTM A breaks P,, we can construct an-
other machine, A, that breaks Q, by giving the true values
of a; to a; to A. However the part of Q involved in the
attack can be considered as a spi-calculus process, and
as we are assuming that the computational encoding of
the spi-calculus is correct, there must exists a spi-calculus
attacker that defeats Q, say R. Then the pi-g calculus
process guess ay : Dy, ,..,a; : Dy;; R defeats P, with sub-
exponential cost, giving us our contradiction.

O

5 Conclusions

We have presented an extension of the pi-calculus that can
model simple guessing attacks. The new name operator
in the pi-calculus is equated with random sampling in the
computational model with the result that a new name can
be guessed. We only allow a correct guess to originate

13

from a guess operator, this simplifies the cost analysis of
attacks. In order to show correctness we related our work
to the computational model. We assumed a translation of
the spi-calculus into Turing machines.

Our first theorem proved that if the cost of an at-
tack in our calculus is less than exponential then the pro-
cess is unsafe because we can construct a PRTM attacker
that defeats the process with non-negligible probability.
Key to this theorem was that finding a confirmation of
a guess in a single run of the pi-g calculus implies that a
there is a non-negligible chance that the attacker also finds
that confirmation in any future run.

Our other main result showed that if there are no
sub-exponential attacks on a process then it is safe from
guessing attacks. We prove that, when mapped to a com-
putational setting, a pi-g calculus process that has no sub-
exponential cost attack, is safe if and only if the equivalent
process is safe in the spi-calculus.

Further work will include proving the computa-
tional correctness of the spi-calculus. This would follow
the same lines as previous work on the computational cor-
rectness of the Dolev-Yao model.

An interesting extension to the calculus would be
to let the pi-g calculus attacker make use of the security
parameter. This might allow more interesting types of at-
tackers and would require a modification of the cost func-
tion to take account of this new type of work done in time
proportional to the security parameter.

We have also developed a labelled transition sys-
tem semantics for the calculus. The reduction semantics
was presented in this paper because we believe it is easier
to understand. The LTS semantics could allow us to use
bi-simulation to find more expressive equivalences for the
calculus. Given the cost of the actions, the LTS semantics
could also allow a metric on processes that would assign
a value to any pair of processes reflecting how different
the processes seem to a guessing attacker, perhaps along
the lines of [DCPPO05]. Our current semantics does not
deal with some of the subtler points of confirmation. For
instance, it would be possible for an attacker to receive a
false confirmation if they incorrectly guessed one value
but unknowingly guessed the true value of some other
name. A more complicated confirmation rule might deal
with such circumstances.

We are keen to apply the pi-g calculus to a real,
large-scale, multi-user protocol in order to look for weak
points. A bankcard system could be one possible exam-
ple, as could a key distribution protocol. We are partic-
ularly interested in using this calculus to distinguish be-
tween secure systems where the leaking, or guessing, of
a small number of values leads to the entire system be-

14

ing compromised and secure systems in which all secret
values must be guessed in order to compromise the whole
system. An automated checking system would make the
analysis of large protocols in the pi-g calculus much more
practical. An implementation of the calculus in Prolog
might be a useful start, whereas the extension of an exist-
ing model checker would make a more usable tool.

References

[AG97] Martin Abadi and Andrew D. Gordon. A
calculus for cryptographic protocols: The
spi calculus. In Fourth ACM Conference
on Computer and Communications Secu-
rity, pages 36—47. ACM Press, 1997.

[AROO] Martin Abadi and Phillip Rogaway. Rec-
onciling two views of cryptography (the
computational soundness of formal encryp-
tion). In IFIP International Conference
on Theoretical Computer Science (IFIP
TCS2000), Sendai, Japan, 2000. Springer-

Verlag, Berlin Germany.

[Bac04] Michael Backes. A cryptographically
sound Dolev-Yao style security proof of the
Otway-Rees protocol. In Proceedings of
the 9th European Symposium on Research

in Computer Security (ESORICS), 2004.

[BAN96] Michael Burrows, Martin Abadi, and Roger
Needham. A logic of authentication,
from proceedings of the Royal Society,
volume 426, number 1871, 1989. In
William Stallings, Practical Cryptography
for Data Internetworks, IEEE Computer

Society Press. 1996.

[BKR94] Mihir Bellare, Joe Kilian, and Phillip Rog-
away. The security of cipher block chain-
ing. Lecture Notes in Computer Science,

839:341-358, 1994.

[BKROO] Mihir Bellare, Joe Kilian, and Phillip
Rogaway. The security of the ci-
pher block chaining message authentication
code. Journal of Computer and System Sci-

ences, 61(3):362-399, 2000.

Manuel Blum and Silvio Micali. How
to generate cryptographically strong se-
quences of pseudo-random bits. SIAM Jour-
nal on Computing, 13:850-864, 1984.

[BM84]

[BPO4a]

[BPO4b]

[BPWO03]

[CDEO3]

[Cer01]

[CMAFEO03]

[DCPPO5]

[DJ04]

[DYS83]

[FAO3]

Michael Backes and Birgit Pfitzmann.
A cryptographically sound security proof
of the needham-schroeder-lowe public-key
protocol. Journal on Selected Areas in
Communications, 22(10), 2004.

Michael Backes and Birgit Pfitzmann.
Symmetric encryption in a simulatable
dolev-yao style cryptographic library. In
Computer Security Foundations Workshop,
2004.

M. Backes, B. Pfitzmann, and M. Waidner.
A composable cryptographic library with
nested operations. In /0th ACM Conference
on Computer and Communications Security
(CCS), 2003.

R. Corin, J. M. Doumen, and S. Etalle.
Analysing password protocol security
against off-line dictionary attacks. In
Workshop on Security Issues with Petri
Nets and other Computational Models
(WISP), 2003.

Iliano Cervesato. A specification lan-
guage for crypto-protocols based on multi-
set rewriting, dependent types and subsort-
ing. In Workshop on Specification, Analysis
and Validation for Emerging Technologies,
pages 1-22,2001.

R. Corin, S. Malladi, J. Alves-Foss, and
S. Etalle. Guess what? Here is a new tool
that finds some new guessing attacks. In
Workshop on Issues in the Theory of Secu-
rity (WITS), 2003.

Yuxin Deng, Tom Chothia, Catuscia
Palamidessi, and Jun Pang. Metrics for
action-labelled quantitative transition sys-
tems. In Workshop on Quantitative Aspects
of Programming Languages (QAPL), 2005.

S. Delauune and F. Jacquemard. A theory of
guessing attacks and its complexity. Tech-
nical report, ENS de Cachan, 2004.

D. Dolev and A.C. Yao. On the security of
public key protocols. IEEE Transactions on
Information Theory, 29(2):198-208, 1983.

Cédric Fournet and Martin Abadi. Hid-
ing names: Private authentication in the ap-
plied pi calculus. In Proceedings of the In-

15

[GGMS&6]

[GLNS93]

[GM84]

[GMRSS]

[Her04]

[Hiit02]

[JMLO5]

[Koc96]

[Lau04]

[Low96]

ternational Symposium on Software Secu-
rity (I1SSS°02), volume 2906 of LNCS, pages
317-338, 2003.

O. Goldreich, S. Goldwasser, and S. Micali.
How to construct random functions. Jour-
nal of the ACM, 33(4):210-217, 1986.

L. Gong, M. A. Lomas, R. M. Needham,
and J. H. Saltzer. Protecting poorly chosen
secrets from guessing attacks. IEEE Jour-
nal on Selected Areas in Communications,
11(5):648-656, 1993.

S. Goldwasser and S. Micali. Probabilistic
encryption. Journal of Computer and Sys-
tem Sciences, 28(2):270-299, 1984.

Shafi Goldwasser, Silvio Micali, and
Charles Rackoff. The knowledge com-
plexity of interactive proof-systems. SIAM
Jounral on Computing, 17:281-308, 1988.

Jonathan Herzog. Computational Sound-
ness for Standard Assumptions of Formal
Cryptography. PhD thesis, Massachusetts
Institute of Technology, May 2004.

H. Hiittel. Deciding framed bisimilarity.
In Antonn and Mayr, editors, 4th Interna-
tional Workshop on Verification of Infinite-
State Systems, Infinity’02 ENTCS, volume
68(6), 2002.

Romain Janvier, Laurent Mazare, and Yas-
sine Lakhnechs. Completing the picture:
Soundness of formal encryption in the pres-
ence of active adversaries. In Proceedings
of the European Symposium on Program-
ming, 2005.

Paul C. Kocher. Timing attacks on imple-
mentations of Diffie-Hellman, RSA, DSS,
and other systems. Lecture Notes in Com-
puter Science, 1109:104-113, 1996.

Peeter Laud. Symmetric encryption in au-
tomatic analyses for confidentiality against
active adversaries. In Proceedings of 2004
IEEE Symposium on Security and Privacy,
pages 71-85, 2004.

Gavin Lowe. Breaking and fixing the
Needham-Schroeder public-key protocol
using FDR. 1In Tools and Algorithms for

[Low02]

[Mil91]

[MMSO03]

[MRSTO1]

[MWO04]

[RMST04]

[THG99]

[War03]

the Construction and Analysis of Systems
(TACAS), volume 1055, pages 147-166.
Springer-Verlag, Berlin Germany, 1996.

Gavin Lowe. Analysing protocols subject
to guessing attacks. In Proceedings of the
Workshop on Issues in the Theory of Secu-
rity (WITS), 2002.

Robin Milner. The polyadic pi-calculus -
a tutorial. Technical Report ECS-LFCS-
91-180, Laboratory for the Foundations of
Computer Science, 1991.

P. Mateus, J.C. Mitchell, and A. Sce-
droc. Composition of cryptographic proto-
cols in a probabilistic polynomial-time pro-
cess calculus. In CONCUR 2003 - Concur-
rency Theory, 14-th International Confer-
ence, Marseille, France, September, 2003.

J. Mitchell, A. Ramanathan, A. Sce-
drov, and V. Teague. A probabilistic
polynomial-time calculus for analysis of
cryptographic protocols (preliminary re-
port). In S. Brookes and M. Mislove, edi-
tors, 17-th Annual Conference on the Math-
ematical Foundations of Programming Se-
mantics, volume 45, Aarhus, Denmark,
2001.

D. Micciancio and B. Warinschi. Sound-
ness of formal encryption in the presence
of active adversaries. In Proceedings of the
Theory of Cryptography Conference, pages
133-155. Springer, 2004.

A. Ramanathan, J. Mitchell, A. Scedrov,
and V. Teague. Probabilistic bisimulation
and equivalence for security analysis of net-
work protocols. In Foundations of Software

Science and Computation Structures, 7-th
International Conference, FOSSACS, 2004.

J. Thayer, J. Herzog, and J. Guttman. Strand
spaces: Proving security protocols correct.
Journal of Computer Security, 7(2/3):191-
230, 1999.

B. Warinschi. A computational analysis
of the Needham-Schroder(-Lowe) protocol.
In Proceedings of the 16th Computer Se-
cuirty Foundations Workshop, pages 248—
262, 2003.

16

[ZD04] Roberto Zunino and Pierpaolo Degano. A

note on the perfect encryption assumption
in a process calculus. In Foundations of
Software Science and Computation Struc-
tures: 7th International Conference, FOS-
SACS 2004, volume 2987/2004 of Lecture
Notes in Computer Science, pages 514-528.
Springer-Verlag, 2004.

