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We describe a method (implemented in a program, GAZE) for assembling arbitrary evidence for individual gene
components (features) into predictions of complete gene structures. Our system is generic in that both the
features themselves, and the model of gene structure against which potential assemblies are validated and scored,
are external to the system and supplied by the user. GAZE uses a dynamic programming algorithm to obtain
the highest scoring gene structure according to the model and posterior probabilities that each input feature is
part of a gene. A novel pruning strategy ensures that the algorithm has a run-time effectively linear in sequence
length. To demonstrate the flexibility of our system in the incorporation of additional evidence into the gene
prediction process, we show how it can be used to both represent nonstandard gene structures (in the form of
trans-spliced genes in Caenorhabditis elegans), and make use of similarity information (in the form of Expressed
Sequence Tag alignments), while requiring no change to the underlying software. GAZE is available at http://www.
sanger.ac.uk/Software/analysis/GAZE.

Computational methods for the identification of protein-
coding genes in genomic DNA have progressed rapidly in re-
cent years. It remains the case however that automated iden-
tification of gene structures is not a solved problem (Guigó et
al. 2000; Reece et al. 2000a), and therefore still attracts con-
siderable research interest. Most existing gene prediction
methods (for reviews, see Burge and Karlin 1998; Stormo
2000) attempt to identify gene structures by scanning the
sequence for (1) localized signals displayed by individual gene
components (e.g., splice sites and translation start sites), and
(2) more extensive content evidence for the regions between
the components (e.g., codon-bias in the region between ac-
ceptor and donor splice sites flanking a candidate exon).
Where specific methods differ is in how the signal and con-
tent evidence is integrated into predictions of complete gene
structures. In some of the more recent programs, signal and
content data are integrated under the probabilistic framework
of a Hidden Markov Model (HMM), examples being Genie
(Kulp et al. 1996), GENSCAN (Burge and Karlin 1997), HMMGene
(Krogh 1997), and Fgenesh (Salamov and Solovyev 2000). A
more classical approach is to use the signal and content data
to generate a list of scored candidate exons, which are then
assembled into complete gene structures; GeneID (Guigó et
al. 1992), GRAIL (Xu et al. 1994), and Fgenes (Solovyev et al.
1995) are programs that adopt this strategy. In both ap-
proaches, dynamic programming is used to find the gene
structure that is optimal with respect to some discrimination
measure, and this is often performed over an assumed model
of how gene components relate to each other and fit together
into complete gene structures.

As we find out more about genes and the elements that
they consist of, we might want to extend these gene predic-
tion methods to reflect our greater understanding, with the
aim of making them more accurate. For example, promoter
identification methods are at present considered too unreli-

able to be used in many gene prediction programs. Accurate
promoter identification however, as well as having many
other utilities, can help address the difficult problem of iden-
tifying the 5� ends of genes. There would therefore be much to
gain by incorporating a new, more accurate promoter predic-
tion technique into the gene prediction process. Furthermore,
programs that make use of similarity information (e.g., align-
ments of ESTs or homologous proteins to the sequence being
searched for genes) have been shown to produce the most
accurate results for genes that have supporting evidence of
this nature (Guigó et al. 2000). By extending ab initio meth-
ods to make use of it, we might hope to improve prediction
accuracy where similarity evidence exists, without compro-
mising the ability to discover novel genes where it does not.

The incorporation of new information into many of the
existing programs may not be easy due to inherent rigidities
in their implementation. At best, knowledge of the underly-
ing implementation of the software is required, and even
given this, it is often necessary to produce a custom-built
version of the program tomake use of the new information; at
least four of the programs mentioned above have variants
developed specifically to make use of similarity information
(Krogh 2000; Reese et al. 2000b; Salamov and Solovyev 2000;
Yeh et al. 2001).

Here, we present a methodology (and an associated pro-
gram, GAZE) for the assembly of features (corresponding to
signal sensors) and segments (corresponding to content sen-
sors) into complete gene structures in a way that is tied nei-
ther to any specific signal or content sensors nor any assumed
model of gene structure; both of these elements are external
to the program and supplied by the user. Our goal is to pro-
vide a framework for the seamless incorporation of new and/
or improved signal/content information into the gene predic-
tion process.

A key novelty of the GAZE system is that it does not work
directly with genomic DNA sequence. It instead predicts gene
structures from an input file containing the results of arbitrary
signal and content sensors with associated scores, typically
log probability values. This file is assumed to be in the general
feature format (GFF), a format designed primarily for the ex-
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change of gene prediction information (http://www.sanger.
ac.uk/Software/GFF). A second “configuration” file (in XML
format) directs the assembly of the signal and content data
into complete gene structures, by specifying first a mapping
from GFF lines to features and segments, and second the
model of gene structure over which their assembly will take
place. A generic, effective linear-time dynamic programming
algorithm is used to obtain both the highest scoring gene
structure consistent with the model and posterior probabili-
ties that each feature is part of a gene.

The idea of performing gene prediction over an external
model of gene structure has been presented before (Guigó
1998), and is used in the GeneID system.We take this concept
further by providing a rich language for the specification and
scoring of legal gene structures. GAZE works with signal data
in raw form before it has been preprocessed to produce a set of
candidate exons with preassigned frames and scores. To dem-
onstrate flexibility that results from this approach, we show
how GAZE models can be developed, by extending a basic
model first to represent a novel type of gene structure (spe-
cifically trans-spliced genes in Caenorhabditis elegans), and sec-
ond to make use of similarity information (specifically Ex-
pressed Sequence Tag (EST) alignments).

RESULTS

Definition of Models of Gene Structure
The approach we take is that a gene structure can be defined
by an ordered list of specific features. For example, for a se-
quence 1400 bases long, [BEGIN@1, start@201, donor@305,
acceptor@900, stop@1040, start@1101, stop@1220,
END@1400] defines a structure with two genes, the protein-
coding portions, of which consist of two exons and a single
exon, respectively; [BEGIN@1, stop_rev@1051, start_
rev@1230, END@1400] defines a single-exon coding portion
of a gene on the reverse strand; and [BEGIN@1, END@1400]
defines a structure with no genes. We assign a score to each
possible gene structure and define the most likely gene struc-
ture to be that with the highest score.

The purpose of the user-supplied gene structure model is
twofold: first to define which lists of features represent legal
gene structures, and second to specify how the score for each
gene structure is obtained.

Defining Legal Gene Structures
The model is initially constructed by giving a set of rules for
each type of “target” feature, defining which types of “source”
feature can precede them in the sequence. In the first gene
structure above, a ‘stop’ target feature can be immediately
preceded upstream by ‘start’ or ‘acceptor’ source features, and
the model would therefore need to contain rules for start →
stop and acceptor → stop (as well as others) to allow this gene
structure to be built. The rules themselves can be qualified
with constraints:

1. Distance constraints, specifying that there should be no
more than a maximum and no fewer than a minimum
number of bases between the source and target.

2. Phase constraints, specifying that the source and target
should occur 0, 1, or 2 bases (modulo 3) apart.

3. Interruption constraints, specifying that a source and
target are illegal if the region between them is interrupted
by the occurrence of some specified feature at the specified

distance (modulo 3) from either the source or target. These
are used to invalidate potential coding exons that are in-
terrupted by an in-frame stop codon.

4. DNA constraints, specifying that a source and target are
illegal if the DNA located at the source and/or target has a
certain sequence. These are used to invalidate gene struc-
tures that would give rise to in-frame stop codons across
exon-exon junctions in the spliced mRNA.

Scoring Legal Gene Structures
The overall score of a gene structure is the sum of scores for
the individual features (as given in the GFF file) and for the
regions between each adjacent pair of features in the struc-
ture. The region scores can be tailored precisely for each
source and target pair, by specifying in the source → target
rule:

1. A length-penalty function reflecting the fact that it
will be more likely for pairs of features of these types to
occur at some distances apart than others. These functions
are defined elsewhere in the configuration file by listing a
set of (distance, penalty) pairs, with linear interpolation
being used to derive penalties for points not given.

2. A segment qualifier for each of the various types of
segment that act as supporting evidence for the region be-
tween the source and target. Since the region between an
acceptor and donor (for example) is expected to be protein
coding, both a likely_coding segment (indicative of a re-
gion of high coding potential by some statistical measure),
and a protein_match segment (corresponding to a hit from
a database search) lying in this region can be used to in-
crease the score of the corresponding exon. Segment quali-
fiers can contain constraints to restrict which segments of
a particular type should contribute to the region score,
namely: (1) a phase constraint, specifying that the starts
of segments of this type should occur at 0, 1, or 2 bases
(modulo 3) away from the target. This gives the option to
allow only segments of this type that are in-frame with
respect to the target; (2) a match constraint, specifying
that the start and/or end of the segment must lie at the
same position as the source and/or target, giving the op-
tion to use only segments that fit the region precisely. This
allows GAZE to make use of the output of programs that
identify potential exact introns, exons, or other functional
regions that are part of genes.

The scores that we use are derived as log-probability ratios
from probabilistic models, so adding them to produce a com-
plete gene score corresponds to an assumption of indepen-
dence. These assumptions form the basis of the probability
analysis described below. However, GAZE will accept feature
scores obtained in any fashion, in which case the probability
distributions can be viewed as Boltzmann distributions de-
rived by treating the scores as “energies”.

Predicting Gene Structures
GAZE is not a complete integrated gene prediction program,
and as such requires a set of features, segments, and length
penalty functions. For all analyses presented here, the 980506
version of Genefinder (P. Green, unpubl.), a gene prediction
program optimized for performance in C. elegans genomic se-
quences, was the effective source for these data (see Methods).
GAZE was originally envisaged as a curation tool for C. elegans
annotation. As a result, our work has focused on gene predic-
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tion in the worm, although one of the key advantages of the
methodology that we present is that it is not organism-
specific. As a basis for an evaluation of performance, we used
a set of 325 gene structures from the WormBase database
(Stein et al. 2001, http://www.wormbase.org), all confirmed
by full-length mRNA sequences. These were used to construct
an artificial sequence of 2.1Mb (full details in Methods),
which we refer to as Wormseq.

For purposes of comparison, we additionally present the
performance of Fgenesh; as well as being one of the more
well known published gene prediction programs, it also has a
version specifically tuned for performance on C. elegans se-
quences.

Using the constructs defined in the previous section, it is
straightforward to define a model for multiple genes on both

strands, as shown in Figure 1, with which GAZE produces the
results referred to as GAZE_std in Table 1.

Modeling Trans-Splicing in C. elegans
The more accurate identification of internal exons by
GAZE_std compared to initial and terminal exons supports
the commonly made observation that the starts and ends of
genes are more difficult to accurately identify than the inter-
nal exon-intron structure. This problem is confounded in C.
elegans by the fact that a significant fraction of genes undergo
trans-splicing, where a 21–23 basepair sequence transcribed
from elsewhere in the genome is spliced onto an acceptor
situated upstream of the translation start site in the pre-
mRNA (Krause and Hirsh 1987; for review see Blumenthal and
Steward 1997). Gene prediction programs that do not take

trans-splicing into account are likely to be
confused into mistaking the initial exon
of a trans-spliced gene for an internal exon
of a longer gene, linking the trans-splice
acceptor to some upstream donor belong-
ing to a different gene. Examination of the
gene predictions made by GAZE_std
shows this to be the case.

The flexibility of GAZE allows us to
incorporate trans-splicing by making only
minimal modifications to the standard
model of gene structure (Fig. 2). Note that
no change to the feature input is needed,
because GAZE itself makes the candidate
trans-splice-site features from acceptor
splice-site predictions. Table 1 shows that
the GAZE_tsplice model does improve
the prediction of initial and terminal ex-
ons, and that there is a significant im-
provement in the correct identification of
complete genes. GAZE_tsplice is more
specific than Fgenesh for initial and ter-
minal exons, although slightly less sensi-
tive, whereas for single-exon genes the re-
verse is true. The strength of Fgenesh
seems to be in the identification of
internal exons, for which it is both
slightly more sensitive and specific than
GAZE_tsplice. Fgenesh has submodels
for transcription start and polyadenyla-
tion cleavage sites to help better identify
the initial and terminal exons of genes. By
defining a worm-specific model of gene
structure (accounting for trans-splicing),
we can improve the accuracy of identifi-
cation of initial and terminal exons (as
measured by the average of sensitivity and
specificity) to above that of Fgenesh
without modeling transcription starts or
poly-A cleavage sites.

Integrating Similarity Information
We have produced a simple variant of
GAZE_tsplice that uses protein database
matches in addition to segments of high
coding potential as evidence of protein-
coding regions, and this produced a mar-
ginal increase in performance (results not
shown). Here we describe the slightly

Figure 1 A pictorial representation of a GAZE-XML model for multiple genes on both strands.
The features are represented by filled boxes, and ’source → target’ rules by different types of
arrows, each corresponding to a phase constraint as explained in the text. The labeled circles
give the name of the length penalty function used for each pair of features, which are them-
selves defined elsewhere in the configuration file (not shown); the labeled humps indicate the
segments that contribute to the score for each pair of features, where “coding” humps are the
likely_coding segments referred to in the text. The rules for reverse-strand target features are
not shown in their entirety, for clarity, but are formed by a simple reverse complementation of
the forward-strand rules. Also omitted are the BEGIN and END features (which mark the two
ends of the sequence being searched for genes, and act respectively as source and target to
every other feature), as well as the distance, interruption, and DNA constraints explained in the
text. The XML configuration file contains a directive to create three separate features for each
predicted splice site seen in the GFF file. The effect of this, together with phase constraints
between pairs of features giving rise to exons, is to carry forward whether each intron interrupts
a codon at position 0, 1, or 2 to the rest of the gene structure, allowing us to ensure that the
length of the coding part of each predicted gene is divisible by three.
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more complicated use of EST matches. The version of Worm-
Base we used to construct our dataset contained matches to C.
elegans ESTs that had been aligned to the genome using ES-
T_GENOME (Mott 1997). This program aligns spliced cDNA to
genomic DNA, producing a set of scored EST exons and their
genomic position. We used this data as a source for EST-
_match segments (see Methods). To take advantage of the
accuracy in EST_GENOME in identifying exon-intron bound-
aries, we postprocessed the matches to make EST_intron seg-
ments from the regions between exons. Since these segments
are expected to match introns precisely, we made use of the
match-constraint in the segment qualifier to ensure that they
only contribute to the score when this is the case.

As well as being useful for identifying exon-intron
boundaries, ESTs can also give information on gene extents.
WormBase contains many pairs of ESTs that correspond to 5�

and 3� reads of the same cDNA. We therefore expect the re-
gion between the alignments to the genome of each of the
partners of such a pair to contain only a single gene. To
achieve this, we made EST_span segments for the regions be-
tween the alignments of 5’/3’ EST partners. By assigning high
negative scores to these segments for intergenic regions, we
strongly penalize the prediction of more than one gene in the
region defined by an EST_span.

The use of EST information requires a slightly more so-
phisticated model of gene structure, due to the fact that
matches will be expected to run into the noncoding untrans-
lated regions (UTRs) of genes. Figure 3 shows the additions to
the model necessary to incorporate UTRs, and make use of the
EST-based segments explained above. The results for this
model, referred to GAZE_EST in Table 1, display an improve-
ment over all other models to date as well as Fgenesh, most
noticeably in whole-gene accuracy. The net gain of 37 addi-
tional correct gene-structures identified with the GAZE_EST
over GAZE_tsplice consisted of 39 that GAZE_EST
identified and GAZE_tsplice did not, and two that

GAZE_tsplice identified that GAZE_EST did not. Apart from
these, there were also cases where GAZE_tsplice identified
more exons of a gene correctly than did GAZE_EST. In these
few cases where EST data made the prediction worse, the main
contributing factors were misalignment and incorrect assign-
ments of orientation. This demonstrates well both the ben-
efits to be gained from using ESTs in gene prediction and the
problems caused by their sometimes questionable reliability.

Genome-Scale Analysis
The precise identification of complete gene structures can de-
pend on the genomic context of the genes, that is, their rela-
tionships to each other with respect to distance and orienta-
tion. It might be argued that extracting genes from their ge-
nomic context, as was done in the construction of WormSeq,
provides an artificial problem for gene prediction programs.
To address this, we ran GAZE across the half of the C. elegans
genome sequenced and curated at the Sanger Institute, from
which the original test-set was taken, amounting to approxi-
mately 48 Mb of genomic DNA. Table 2 shows the accuracy of
the gene predictions of the same 325 genes, but this time in
their true genomic context. The results are comparable to
those obtained for WormSeq.

Posterior Feature Probabilities
We have included a facility in GAZE to calculate the posterior
probability (pf) of features, as described in Methods. These
correspond directly to the “forward_backward” exon prob-
abilities of GENSCAN in a mathematical sense; more infor-
mally, they can be regarded as indicators of how well the
features fit into sensible gene structures.

Figure 4a shows the proportion of features predicted by
GAZE as part of gene structures that are correct, for different
values of pf. In particular, of the 4329 features predicted by
the GAZE_EST model as belonging to gene structures in

Table 1. Performance Comparison for Wormseq (325 genes, 2254 exons)

Precise Identification of Exons and Complete Gene Structures

Program

Exon-level accuracy Gene-level accuracy

Sn Sp Av. ME WE Sn Sp Av. MG WG

GAZE_std 0.84 0.77 0.80 12 303 0.35 0.35 0.35 4 25
GAZE_tsplice 0.86 0.80 0.83 12 273 0.47 0.42 0.44 4 34
GAZE_EST 0.90 0.84 0.87 8 222 0.59 0.53 0.56 3 31
Fgenesh 0.88 0.80 0.84 5 319 0.51 0.42 0.47 2 57

Breakdown of Exon-Level Accuracy by Exon Type

Program

Initial Internal Terminal Single

Sn Sp Av. Sn Sp Av. Sn Sp Av. Sn Sp Av.

GAZE_std 0.57 0.56 0.57 0.90 0.80 0.85 0.78 0.78 0.78 0.94 0.71 0.83
GAZE_tsplice 0.72 0.67 0.70 0.89 0.83 0.86 0.81 0.74 0.78 0.94 0.59 0.77
GAZE_EST 0.79 0.74 0.77 0.92 0.86 0.89 0.85 0.80 0.83 0.94 0.73 0.84
Fgenesh 0.75 0.61 0.68 0.92 0.87 0.90 0.84 0.68 0.71 0.63 0.77 0.70

Sensitivity (Sn) is the proportion of confirmed genes or exons that are predicted correctly. Specificity (Sp) is the proportion of predicted genes
or exons that are correct. Average (Av.) is (Sn + Sp)/2. The values reported are for the exact identification of exons and complete gene
structures. Missing exons (ME) are the number of correct exons with no overlap to any predicted exons, and wrong exons (WE) are the number
of predicted exons with no overlap to any correct exons. Corresponding values are presented at the gene level (MG, WG).
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WormSeq, 2045 had a pf >0.99 of which 98% were correct,
and 301 had a pf �0.5, of which 33% were correct. GAZE can
also report probabilities for all input features, in addition to
the subset that belongs to predicted gene structures (Fig. 4b).
This could provide an aid to manual curation of gene struc-
tures, because as well as acting as confidence values that fea-
tures are correct (and therefore drawing attention to features
that are not part of curated genes that perhaps should be),
they also reduce the space of gene elements that need to be
considered; features with zero pf values do not fit into valid
gene structures and can be ignored.

Like most existing gene prediction programs, GAZE does
not explicitly address the problem of identifying genes giving
rise to alternatively spliced transcripts, and this is still very
much an open problem. However, the pf values do provide a
useful basis for the curation of such genes. Figure 5 shows a
gene with two alternatively spliced isoforms, neither of which

is identified precisely by either GAZE or
Fgenesh. Upon examining the pf values
we find first that of the features predicted
by GAZE that are not part of either correct
gene structure, none of them have strik-
ingly high pf values (0.87, 0.01, and 0.68
for the initial start, donor splice, and ac-
ceptor splice predicted by GAZE), and of
those predicted features that are part of
both correct gene structures, all have pf
values above 0.99. The pf values are in this
case accurate in the sense that GAZE has
reported a higher degree of confidence
about the parts of its prediction that turn
out to be correct. Where the two isoforms
differ, in their choice of acceptor splice
site at the 5� end of the second exon,
GAZE is less confident; the pf value for the
acceptor that is part of the GAZE predic-
tion is only 0.62. Upon inspection, the
“missing probability” can be found in the
alternative acceptor, which has a pf value
of 0.38. This shows that there is potential
to use the pf values to identify the mul-
tiple isoforms of alternatively spliced
genes, though there is still much to be
done to develop this into an automated
system.

DISCUSSION
We have designed a highly flexible frame-
work for the integration of gene predic-
tion information on a genome-wide scale.
GAZE is intended as a practical tool for the
development of gene prediction methods,
and as such it is important to say some-
thing about its efficiency. The fact that
the system allows arbitrary user-defined
length penalty functions makes it difficult
to design a linear-time dynamic program-
ming algorithm that obtains both the
highest-scoring gene structure and the
posterior feature probabilities. However,
our algorithm runs in effective linear time
due to a novel pruning strategy that we
use (see Methods). This means that the
analysis of the whole C. elegans genome

with GAZE_tsplice can be performed in around 5 h on a
single DS10 Alpha desktop workstation. The memory con-
sumed by GAZE depends on the model being used, and the
number of input features and segments; GAZE_tsplice uses
approximately 10 MB per megabase of sequence. We have
developed a wrapper for GAZE that allows it to run on arbi-
trary length sequences, independent of the resource limita-
tions of any particular machine (see Methods). We employed
this method in the genome-scale analysis presented earlier.

Two issues that existing gene prediction programs do not
in general address are alternative splicing and nested genes.
GAZE does not explicitly deal with alternative splicing, al-
though we discuss above how the posterior feature probabili-
ties can be used to begin to address this problem. Nested genes
are not uncommon in C. elegans; around 2% of all curated
gene structures in WormBase are situated in the introns of
other genes (almost always on the opposite strand). The mod-

Figure 2 (a) Changes necessary to the standard model in Fig. 1 to allow for Caenorhabditis
elegans trans-splicing, and (b) the fragment of the XML configuration file affected by the
changes.
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els we have presented cannot predict nested genes, but it is
possible to design models that do. In the current formalism
however, the definition of suchmodels is cumbersome, due to
a large increase in the number of feature types required; sepa-
rate, complete nested-gene models are needed for each of the
six different types of intron in our standard model that can
contain them (see Fig. 1). The ability to define submodels that
act as sources for a given target would facilitate the definition

of complex gene structure models. We intend to implement
this idea in a future version of GAZE.

A key strength of our system is that it is easy to include
content information from multiple, arbitrary sources, as we
have done in the GAZE_EST model with EST_match and
likely_coding segments both contributing to the score for po-
tential coding exons. For this to work, the evidence from the
various sources must be weighted appropriately. In the analy-

ses presented here, we have addressed this
problem in a rather ad hoc manner, by
applying a scaling function to the scores
of EST matches (for example) to make
them of approximately the same order as
the likely_coding segments (see Methods).
However, it is unlikely that this weighting
function is optimal. Far more desirable
would be a way to automatically derive
optimal weights for the segments used in
a given model. Stormo and Haussler
(1994) have published an algorithm for
optimally parsing a sequence into regions
of different functional classes using mul-
tiple types of weighted evidence. Included
in their presentation is a method to derive
the weight for each type of evidence that
maximizes (by gradient descent) the prob-
ability of the parse corresponding to the
correct gene structure. We have imple-
mented a version of their algorithm,
modified for our own scoring function
and generalized to work over a GAZE
model of gene structure (details not
shown). We found that the set of weights
that maximizes the probability of the cor-
rect gene structure does not necessarily
give the most accurate gene predictions;
although the total probability of all incor-
rect gene structures is minimized, the
probabilities of individual incorrect gene
structures may (and often does) increase.
It may be that the probability of the cor-
rect gene structure is not the best objective
function to be optimizing, and we are cur-
rently investigating whether other objec-
tive functions can give more accurate re-
sults.

METHODS

Dataset
We used WormBase WS52 (September
2001) to obtain a set of confirmed genes,
in particular the curated gene structures
associated with the “NDB_CDS” objects in
the half of the C. elegans genome main-
tained at the Sanger Institute (which we
refer to as Sanger_WormBase). These ob-
jects are the gene structures implied by the
alignment of non-genome-project mRNAs
to the genome. From this set, we removed
those that were not supported by at least
one mRNA annotated as having “com-
plete CDS” in its EMBL entry. We further
removed genes that overlapped with other
genes. This left us with a set of 325 mRNA-

Figure 3 A GAZE model to allow for trans-spliced genes and untranslated regions. It is a
simple extension of the standard model in Fig. 1, which is shown in pale-shade for reference.
The transcript_start and transcript_stop features were not predicted a priori for the practical use
of this model, but were derived from the starts and ends of EST alignments (see Methods). The
“match”, “intron”, and “span” segments shown are the EST_match, EST_intron, and EST_span
segments referred to in the text.
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confirmed gene structures (157 forward and 168 reverse
strand) not known to have alternative splice variants, or to
overlap with genes on the opposite strand. The average num-
ber of exons per gene in this dataset was 6.9 (compared to 6.3
for all curated gene structures in WormBase).

To construct the artificial test sequence Wormseq, we
extracted the genomic DNA underlying each gene structure,
along with half of the intergenic DNA to the nearest other
curated gene in each upstream and downstream direction.
These sequences were then concatenated to make an artificial
sequence of 2,079,582 bases. The proportion of the test se-
quence that consisted of coding DNA was 0.24 (compared to
an estimate based on the curated genes in WormBase of 0.25
for the whole genome). Wormseq is available at http://
www.sanger.ac.uk/Software/analysis/GAZE/wormseq.

For the analysis of the prediction of these genes in their
genomic context, we used the nine contigs in Sanger_Worm-
Base on which the confirmed genes were situated, amounting
to 48,722,743 nucleotides of genomic DNA.

Features, Segments, and Length-Penalty Functions
Splice sites and translation start and stop sites were predicted
using weight matrices calculated as log-likelihood ratios of
nucleotide i at position j in a frequency table for true sites
compared to randomized DNA. The AceDB package (http://
www.acedb.org) contains a module adapted from the original
Genefinder code to construct such weight matrices and pre-
dict features with them using given frequency tables.

We used the frequency tables supplied with Gen-
efinder, with the kind permission of the author (P. Green,
pers. comm.). The table for translation starts represents
position �9 to +11 (where 0 is the position of the A in the
conserved ATG, which is enforced). Both the donor and ac-
ceptor splice-site tables represent 6 and 25 nucleotides of the
corresponding exon and intron respectively, and the GT-AG
rule is enforced. The translation stop table represents 13 bases
of the upstream exon and 92 bases of the downstream
untranslated region, and the (TAG�TAA�TGA) rule is en-
forced. AceDB was used to scan Wormseq with the matrices
built from these tables using the default Genefinder cutoff
values.

For the likely_coding segments, a log likelihood ratio was
calculated for each codon in the manner described above,
using Genefinder tables. A set of maximal scoring segments
in each of the six reading frames was obtained, discarding
those that scored less than 1.0.

For EST-related features and segments, the precalculated
EST_GENOME alignments in Sanger_WormBase were used. For
the genome-scale analysis, these alignments could be used
directly. For Wormseq, the positions of the EST matches lying
in the regions extracted from the genome to make the se-
quence were remapped, discarding matches outside these re-

gions, and truncating matches with partial overlap where nec-
essary. “Transcripts” (corresponding to the list of EST match
‘exons’ for a single EST) having an average match identity to
the genome of less than 95% were discarded. This left 261 of
the 325 gene loci extracted from the genome in the construc-
tion of Wormseq with at least one EST match. The EST_match
segments were made directly from these remain-ing EST_GE-
NOME matches, and given the score (identity � 95) � length
/ 100. The EST_intron segments were made from
the regions between the EST exons of each transcript and
given a score equal to the average identity of the flanking
exons divided by 20. The EST_span segments were made for
each transcript, and also for each transcript pair correspond-
ing to 5�/3� reads of the same cDNA. These were given a score
of �10000. The starts and ends of the transcripts were also
used to make the transcript_start and transcript_stop features,
which were given a score of 0.

Separate length penalty functions were used for each of
introns, intergenic regions, single exon genes, the initial, in-
ternal, and terminal exons of multiexon genes, and the dis-
tance between trans-splice sites and the downstream transla-
tion start site. These were taken from the Genefinder distri-
bution.

Initial use of the Genefinder features, segments, and
length penalty functions led to a slight overprediction of
genes. We therefore removed genes structures scoring less
than 7.0 (as is done in Genefinder) to obtain the results
presented.

The length penalty tables and configuration files used in
the analyses presented here are available with the GAZE
source-code (written in C) at http://www.sanger.ac.uk/
Software/analysis/GAZE.

Scoring and Algorithmic Issues
Given a list of �1. . .�n features defining a legal structure ac-
cording to a GAZE model, their types t(�i), their positions on
the sequence l(�i), and their given scores g(�i), then the score
of �, E(�), is calculated as

E��� = g ��1� + �
i = 1

n− 1

Segt��i�→ t��i + 1��l��i�,l��i + 1��

− Len t��i�→ t��i + 1��l��i�,l��i + 1�� + g ��i + 1�,

where Lensrc → tgt(x, y) is the length penalty functions specified
in the rule for src→ tgt, or zero if no function is given in the
rule; and Segsrc→ tgt(x, y) is a sum of separate scores for each
segment type that has a segment qualifier in the src→ tgt rule.
The score for segment type is calculated by applying one of
two functions to the scores of the relevant subset S of the
complete list of segments of that type (i.e., those that meet
the phase and match constraints specified in the segment
qualifier):

�i� max
s∈ S

g�s�prop�s,l��i�,l��i + 1��

�ii� �
r = l��i�

l��i + 1�

max
s∈ S

�g�s�prop�s,r,r��

where prop(s,x,y) is the proportion of segment s that lies in the
sequence region [x,y].

Which of these two functions is used is specified as a
directive in the segment qualifier. The default is the second,
but some segments, by their construction (e.g., the maximal
coding segments described above), require the first.

We use dynamic programming to obtain the highest-
scoring gene structure. Now taking �1. . .�n to be the com-
plete list of candidate features ordered by sequence position,

Table 2. Exon-Level and Gene-Level Sensitivity for the
Genes in WormSeq in Their Genomic Context

Program

Exon-level accuracy Gene-level accuracy

Predicted Sn ME Predicted Sn MG

GAZE_std 61487 0.85 8 8645 0.39 3
GAZE_tsplice 60860 0.86 8 9393 0.48 3
GAZE_EST 60559 0.90 12 9075 0.57 4
Fgenesh 62668 0.88 2 10707 0.50 1

Sensitivity (Sn), ME, and MG are the same measures used in Table
1. The number of predicted genes and exons are quoted in lieu of
specificity measures, which are not defined for a genome-scale
analysis.
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where BEGIN and END are features �0 and �n+1, respectively,
the maximal-scoring legal gene structure is obtained by the
following recursion:

V �0� = 0,

V �i� = max
j<i �V � j� + Segt��j�→ ��i��l��j�,l��i��

− Lent��j�→ t��i��l��j�,l��i�� + g��i�.

The score of the best structure is
V(n+1), and the best structure itself is
obtained by a traceback procedure,
simplified by storing at each stage the
index j that was obtained as the maxi-
mum.

Following Stormo and Haussler
(1994), we define a probability distri-
bution over the space of all gene struc-
tures �:

P��� =
eE���

�
all structures ��

eE����
.

The denominator is found using
the following recursion, defined in
log-space to keep the computation
within the limits of machine preci-
sion:

F �0� = 0,

F �i� = log �
j<i

eF��j,i�,

F�� j,i� = F� j� + Segt��j�→ t��i��l��j�,l��i��

− Lent��j�→ t��i��l��j�,l��i��

+ g��i�,

�
all structures ��

eE���� = eF�n + 1�.

The V and F recursions given
above correspond to the Viterbi and
Forward recursions used to obtain
similar values for HMMs (Rabiner
1989). By calculating a Backward vec-
tor B in a similar way, we obtain fea-
ture probabilities pf referred to in the
text by conditioning, as described by
Durbin et al. (1998):

pf ��i� = eF�i�+ B�i�− F�n+ 1�.

In defining a probability distribu-
tion over gene structures in this way,
the given feature scores (and hence
the overall gene structure scores) are
interpreted as log probabilities (or log-
likelihood ratios). In the event that
the given feature scores are not log-
probability based, the above corre-
sponds to a statistical mechanics in-
terpretation (specifically a Boltzmann
distribution), where the feature scores
are treated as energies.

Time and Space Complexity
The above calculations are quadratic

in the number of features and therefore in the length of the
sequence (assuming that the number of features grows lin-
early with sequence length, which is normally the case). The
run time of our implementation, however, increases linearly
in sequence length. This is achieved by pruning the search
space. It often occurs that all of the rules for a target feature
contain the same interruption constraint. This means that
when scanning back through the sources for a given target

Figure 4 Posterior feature probabilities and their accuracies. Shown for (a) features part of gene-
structures predicted by GAZE and (b) all features given as input to GAZE are the number of features
with a posterior probability, pf in each interval (bars), the number of those features that were correct
(shaded portions of the bars), and the proportion of those features that were correct (line). These
data were calculated for the GAZE_EST model. Plots for other models are similar (data not shown).
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tgtk, encountering a feature srci that violates the interruption
constraint will invalidate the region between tgtk and all fea-
tures srcj for j < i, so no other sources need be considered.

For the models that we have presented, this strategy is
only useful for targets that mark the end of coding regions,
where occurrences of stop codons that are in-frame with the
target terminate the search for potential sources. We have
therefore implemented a more general pruning strategy that
uses the idea of dominance. For a given target feature tgtk and
two valid source features of the same type srcj and srci, where
j < i, srcj is dominated by srci if the contribution made to the
forward score by srcj is insignificant (given limits of machine
precision) compared to the contribution made by srci. If for
tgtk, all sources srcj of a given type t are dominated by a source

srci (for j < i), then for a future target of the
same type tgtq (q > k) we need not search
further back than srci for sources of type t.
To judge whether srci dominates srcj, we
calculate the difference between the F�
values above after replacing the previously
subtracted length penalty component, be-
cause the effective length-penalty differ-
ence between srci and srcj will be different
when calculated with respect to tgtq. This
strategy relies on the assumption that the
length penalty for srci→ tgtq will be lower
than that for srcj → tgtq, that is, that length-
penalty increases with distance, at least for
distances greater than some minimal l(t-
gtq) � l(tgtk). This assumption is valid for
practical uses of GAZE; its violation would
imply a pair of features that, in the limit,
become more likely the further they are
apart.

Although the space requirements are
linear in the length of the sequence, the
memory of a standard desktop machine is
not likely to be sufficient to handle fea-
ture-sets from sequences of genome order
in size. For such analyses, we have devel-
oped a wrapper for GAZE to allow it to be
run on arbitrary size sequences, based on a
split-and-merge strategy. GAZE has a fea-
ture to allow it to consider a subsequence
window of a given arbitrary sized se-
quence. The wrapper uses this feature
when dealing with large sequences by
running GAZE on windows wi..wn to pro-
duce output files o1..on, where the win-
dow size is chosen to be small enough to
be handled by the available resources, and
n is chosen to be large enough to cover the
whole sequence with a specified overlap
between wi and wi+1. The overlap allows
us to deal with cases where a gene
straddles the boundary between two win-
dows. The output gene prediction is
formed by printing the predicted features
from o1 to on in turn, except in the over-
lapping regions. For the first predicted fea-
ture in oi that lies in a region that is also
covered by the start of wi+1, oi+1 is
searched for the occurrence of that fea-
ture. If it is found, the rest of the features
in oi are ignored and printing continues
from that point in oi+1. If it is not found,
the same is done for the next feature in oi,
until an appropriate “crossover” point is
identified. For posterior probabilities,
which are reported for all potential fea-

tures, the crossover point is selected to be the midpoint of the
overlap region.

This split-and-merge method offers a natural paralleliza-
tion strategy, because each window wi can be analyzed by
GAZE independently of the other windows. Only the final
stage of forming the consensus gene structure for all windows
relies on their order on the sequence, and therefore cannot be
done until all windows have been processed by GAZE.
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