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Abstract. This paper considers the effect of untyped attackers inside a distributed
system where security is enforced by the type system. In previous work we intro-
duced theKey-Based Decentralised Label Modelfor distributed access control. It
combines a weak form of information flow control with cryptographic type casts
to allow data to be sent over insecure channels. We present our model of untyped
attackers in a simplified version of this calculus, which we call mini-KDLM. We
use three sets of type rules. The first set is for honest principals. The second set is
for attackers; these rules require that only communication channels can be used to
communicate and express our correctness conditions. The third set of type rules
are used to type processes that have become corrupted by the attackers. We show
that the untyped attackers can leak their own data and disrupt the communication
of any principals that place direct trust in an attacker, but no matter what the at-
tackers try, they cannot obtain data that does not include an attacker in its access
control policy.

1 Introduction

Type systems can provide a lightweight method to ensure security properties of
a given piece of code. Once checked, the program can be run, with few restric-
tions, in the knowledge that the guarantees of the type system will still hold.
These guarantees can also be extended to distributed processes communicating
across an untrusted network, as long as each trusted process is well-typed. This
paper addresses the question of what happens when a number of these “trusted”
processes ignore the security types with the aim of acquiring sensitive data and
disrupting other principals.

In previous work [CDV03], we introduce theKey-Based Decentralised La-
bel Modelfor distributed access control. It combines a weak form of informa-
tion flow control with typed cryptographic operations. The motivation is to have
a type system that ensures access control while giving the application the re-
sponsibility to secure network communications, and to do this safely. Hence,
removing the need to force the user into a “one size fits all” security solution,
which would have to be implemented in the trusted computing base. We are



planning an implementation of this system as an extension of Java, which will
be called Jeddak. Ultimately, we would like a correctness result for untyped at-
tackers in our planned KDLM extension of Java. However, this would require
us to include in our model a number of implementational details, which would
obstruct the explanation of our method of dealing with untyped attackers. This
would also be difficult to present in the space of one paper, so we leave this as
further work. Instead we show how safety in the face of untyped attackers can be
proved for a cut-down version of our system, which we refer to as mini-KDLM.
This calculus is simple enough to illustrate the ideas of our system, while still
capturing the salient features of KDLM.

We show that the untyped attackers can leak their own data and disrupt
the communication of any other principals that place direct trust in an attacker.
However, no matter what the attackers try, they cannot obtain data that does not
include an attacker in its access control policy. We achieve this result by using
a type system with three sets of type rules. The first set allows principals to be
well-typed in the KDLM style. Attackers have their own type rules that allow
them to ignore the access control types. That attackers have type rules at all is
down to the need to maintain the separation between base types and channel
types (pretending that an integer has a channel type won’t make it into a com-
munication channel). The final set of type rules allow for names that have been
misplaced in honest principals; we refer to processes that have been interfered
with in this way as corrupt. These rules allow for one name to take the place of
another name, with a different type, as long as both names originally included
at least one attacker in their access control policy.

Our rules for attackers and corrupt processes require data not to be mis-
placed, unless it includes an attacker in its access control policy. So, we show the
correctness of our system by showing that well-typed systems always reduce to
well-typed systems. To assist us, we first prove a lemma: in a well-typed system,
we may substitute one type for another and the system will remain well-typed,
as long as both types originally included an attacker in their access control pol-
icy. We prove this lemma by showing that we can use the type rules for corrupt
processes to type any sub-processes affected by the type change.

The contributions of this work are:

– A model of untyped attackers and a correctness proof for systems under
attack in mini-KDLM. This is also a foundation stone for a much more
complicated model of untyped attackers in our planned implementation of
KDLM.

– Showing how distributed, untyped attackers can be dealt with using a differ-
ent set of type rules for honest principals, attackers and principals corrupted
by the attackers.



v ∈ Value ::= w, x, y, z Variable | a, b, c, n Channel name

| k+, k− Key names| {v}k Encrypted value

P ∈ Principals::= P, P1, P2...

LT ∈ Labelled Types::= LT, T L

R ∈ Process::= stop Stopped process

| receive v?x; R Message receive

| !R replication

| send v1!v2 Message send

| new(a : LT ); R New channel

| newkey (k+ : Enc(~P )L1 ,

k− : Dec(~P )L2); R New Keys

| (R1 | R2) Parallel composition

| encrypt {v1}v2 as x; R Encryption

| decrypt v1 as {x}v2 ; R Decryption

N ∈ Network ::= empty Empty network

| P [R] Principal

| new(a : LT ); N Channel binding

| (N1 | N2) Wire

Fig. 1.Syntax of mini-KDLM

In Section 2, we review the KDLM type system for distributed access con-
trol and introduce the simplified version, mini-KDLM. Next, in Section 3 we
introduce the model of untyped attackers. In Section 4, we show how type rules
can be used to characterize principals that have been corrupted by an attacker.
Section 5 proves the correctness of our system by way of a subject reduction
result. Section 6 discusses related work and finally, Section 7 concludes and
briefly discusses further work.

2 mini-KDLM

The Decentralized Label Model (DLM) [ML97] is a model of information flow
control that was introduced by Myers and Liskov. This model avoids one unde-
sirable aspect of classical information flow control - the need for some centrally
defined lattice of information levels - by implicitly defining a lattice based on
access control.



P1[ send a!b ] | P[ receive a?x; R ] → P[ R[b/x] ]

P [encrypt {v}k+ as x; R ] → P [ R[{v}k/x] ]

P [decrypt {v}k as {x}k− ; R ] → P [ R[v/x] ]

N1 → N ′
1

N1 | N2 → N ′
1 | N2

N → N ′

new (a : LT ); N → new (a : LT ); N ′

R ≡ R1 R1 → R′
1 R′

1 ≡ R′

R → R′

Fig. 2.The Semantics

More recently we combined ideas from DLM and cryptographic APIs [Dug03]
to make the Key-based Decentralized Label Model (KDLM). This system pro-
vides distributed access control and forms the basis for mini-KDLM. The argu-
ment for our approach is the usual end-to-end argument in system design: it is
ultimately unrealistic to expect there to be a single “one size fits all” solution to
network security in the runtime. The application must be able to build its own
network security stack for any approach to scale, so the type system prevents
the application from violating the information flow while establishing network
security.

The syntax of mini-KDLM is given in Figure 1. Most of this is similar to
the spi-calculus [AG99]. The new termP [R] is the processR running under
the control of the principalP . It should be noted that this does not represent a
location. It is possible to have two threads running for different principals on the
same computer, just as it is possible for processes running for the same principal
to run in two different places. We reduce and type each process running for a
principal on its own, using the structural equivalence rule:

P [ R1 | R2 ] ≡ P [ R1 ] | P [ R2 ]

The calculus is monadic, meaning that channels only pass a single name
at a time. We could extend the calculus to pass multiple channels at a time by
repeating the type checks for each name passed, or by packaging up a number



!R ≡ R | !R stop | R ≡ R
R1 | R2 ≡ R2 | R1 R1 | ( R2 | R3 ) ≡ ( R1 | R2 ) | R3

new(a : LT ); R ≡ R a /∈ fn(R) P [ R1 | R2 ] ≡ P [ R1 ] | P [ R2 ]

( new(a : LT ); R1 ) | R2 ≡ new(a : LT ); ( R1 | R2 ) a /∈ fn(R2)
new(a1 : LT1); new(a2 : LT2); R ≡ new(a2 : LT2); new(a1 : LT1); R

Plus the equivalent rules for Networks andnewkey.

Fig. 3.Equivalence Rules

T ∈ Types::= Chan(LT ) Channel Type

| 〈〉 Null Type

| Enc(~P ) | Dec(~P ) Key Type

L ∈ Label ::= ~P | Public Access Control Policy

LT ∈ Labelled type::= TL Protected Data

Fig. 4.Syntax of Sensitivity Types

of names into a single object and placing a policy on the object that is at least as
restrictive as each of the names it contains.

The semantics of this calculus is given in Figure 2. This too, is similar to the
spi-calculus, in particular, encrypting a namea with a keyk results in the term
{a}k. This term cannot be identified asa, and cannot be used to communicate.
The decrypt operation pattern matches the key name, and will decrypt the data
if the correct key is provided, otherwise it will halt. Thenew construct generates
a new and unique name. The structural equivalence rules allow the scope of a
new name to be expanded as long as it does not capture any other names, using
the rule:

(new(a : LT );R) | R′ ≡ new(a : LT ); (R | R′) if a /∈ fn(Q)

wherefn(R′) are the names inR′ that do not appear under a binder. The com-
munication rule cannot be applied across a new name construct hence new and
“old” names represented by the same symbol cannot communicate. The other
structural equivalence rules are given in Figure 3.

The access controls are enforced using the type system given in Figure 4
(syntax), Figure 5 (type rules) and Figure 6 (well-formed types). We do not
enumerate the base types here, but they could include types such asint for
integers, andstring for strings. The channel typeChan(LT ) is the type of the
communication channel that carries a value of typeLT . A protected type adds



Γ ` N1 Γ ` N2

Γ ` (N1 | N2)

Γ ∪ {(a : LT )} ` N

Γ ` new(a : LT )N

Γ ` P [R1] Γ ` P [R2]

Γ ` P [(R1 | R2)]

Γ ∪ {(a : TL)} ` P [R] P ∈ L ` T L

Γ ` P [new(a : TL); R]

Γ ` v : Chan(TL)L0 P ∈ L0 Γ ∪ {(x : TL)} ` P [R]

Γ ` P [receive v?x; R]

Γ ` v0 : Chan(TL)L0 Γ ` v : TL P ∈ L0

Γ ` P [send v0!v]

` Enc(~P )L1 ` Dec(~P )L2 P ∈ L1 ∩ L2

Γ ∪ {k+ : Enc(~P )L1 , k− : Dec(~P )L2} ` P [R]

Γ ` P [newkey (k+ : Enc(~P )L1 , k− : Dec(~P )L2); R]

Γ ` v0 : T L Γ ` v : Enc(L)Lk Γ ∪ {x : T Public} ` P [R] P ∈ Lk

Γ ` P [encrypt {v0}v as x; R]

Γ ` v0 : T Public Γ ` v : Dec(Lp)Lk Γ ∪ {x : T Lp} ` P [R] P ∈ Lk

Γ ` P [decrypt v0 as {x}v; R]

Fig. 5.Types for Networks

a policy label to a channel or base type:TL, for instance,int{Alice,Bob} is an
integer that can only be used by the principals Alice and Bob. The aim of this
type system is to ensure that names only ever reach principals that are mentioned
in their policy, i.e., given a network with the termP [R] all names used by the
processR must name the principalP in their policy. In this section we direct
the reader’s attention to the basic calculus; we discuss encryption in the next
section.

We restrict the types given to names in Figure 6 and we restrict how a pro-
cess can use those names in Figure 5. Our type judgement on networks takes
the formΓ ` P [R] whereΓ is a set of type bindings. The judgement on names
Γ ` a : LT means thata has typeLT in Γ andLT is a well-formed type.

There are two fundamental restrictions imposed by the type system, the first
is on channel types and the second is on thesend action. Channels are required
to have a policy that is more restrictive than the policy of the data they carry.
This is enforced by the following rule from Figure 6.



v0 : T L ∈ Γ v : Enc(L)Lk ∈ Γ ` T L ` Enc(L)Lk

Γ ` {v0}v : T Public

Γ ` k− : Dec(~P )L′ k+ : Enc(~P )L ∈ Γ ` Enc(~P )L

Γ ` k+ : Enc(~P )L

Γ ` k+ : Enc(~P )L′ k− : Dec(~P )L ∈ Γ ` Dec(~P )L

Γ ` k− : Dec(~P )L

v : T L ∈ Γ ` T L

Γ ` v : T L

` T L L0 ⊆ L

` Chan(T L)L0

L ⊆ ~P

` Dec(~P )L

L ⊆ ~P

` Enc(~P )L

Fig. 6.Well-Formed Types and Names

` TL L0 ⊆ L

` Chan(TL)L0

HereL0 is the set of principals that can access a channel of this type andL
is the set of principals that should be able to access the data sent across this
channel. As a principal must possess a channel in order to be able to receive
on it, the restrictionL0 ⊆ L means that any restricted data can be sent over a
correctly typed channel in the knowledge that any principal that can receive the
data should be allowed to do so. The condition on the data type,` TL ensures
that this type is well-formed.

The type check on the send action, from Figure 5, ensures that only data of
the correct type is sent over a channel, i.e., the type ofv matches the type that
should be carried byv0.

Γ ` v0 : Chan(TL)L0 Γ ` v : TL P ∈ L0

Γ ` P [send v0!v]

As with the other type rules, this rule also checks that the types are well-
formed and that all of the names can be used by the current principal. In the
case of the send rule we know that, asv0 has a well-formed type,L0 ⊆ L and
hence the conditionP ∈ L0 implies thatP is in the access control types for
bothv andv0.

2.1 Encryption and Types

The type system described so far is very restrictive. More over, it may not always
be possible to have a secure channel between any two principals. To make the



Fig. 7.Sending Data Through an Untrusted Area

type system more flexible we use encryption as a form of type downcasting to
allow us to send sensitive data over an insecure channel, in a way that is both
secure and type safe.

We associate access control lists with cryptographic keys. When a piece of
data is sent over an insecure channel it is encrypted with a key that represents
the list of principals that can access that data. Once encrypted, we remove the
access control restriction from the data, indicated by the policyPublic, meaning
that the data is not unrestricted. We consider all principals to be inPublic,
so the testP ∈ Public is always true. When encrypted data is received, the
access restrictions for the decryption key are used as the access control type.
Keys have the typeEnc(~P )L or Dec(~P )L to represent an encryption key or
a decryption key that enforces the policy~P on data. These key types are in
turn protected by a policy, in this caseL. This is illustrated in Figure 7. In this
picture, Alice wishes to send Bob some data, which is restricted to just the two
of them. Lacking a secure channel she encrypts the data with a key that enforces
the same policy as the one on the data, a type check ensures that these policies
match. The encrypted data does not have any type restrictions and so can be sent
to Bob over a public channel. Upon receiving it, Bob decrypts it and replaces
the access restrictions. Hence, as long as the key is restricted to just Alice and



Bob, the data has passed from one principal to another in a safe way and has
arrived with the same type as it started with.

The type rule for encryption is given in 5. This rule ensures that the right
key is used to encrypt controlled data.

Γ ` v0 : TL Γ ` v : Enc(L)Lk Γ ∪ {x : TPublic} ` P [R] P ∈ Lk

Γ ` P [encrypt {v0}v as x;R]

We note that the policy on the data being encrypted (L) must match the pol-
icy that is enforced by the key. Once the name is encrypted the access control
restrictions are removed, so it can then be sent over an insecure channel in a
type safe way, this is indicated by thePublic label on the encrypted data. The
condition that requires the current principal to be included in the policy of the
key (P ∈ Lk) and the well-formedness condition on the key type imply that
well-typed principals will only try to encrypt data that they are allowed to use
i.e., thatP ∈ L.

The matching decryption rule takes a name, without any access restrictions,
and tries to decrypt it. If the incorrect key is used the process halts. If the correct
key is provided we decode the data and give it the access control policy that is
enforced by the key. As the decryption and encryption part of a key must enforce
the same policy, we know that the decrypted name has the same type as it had
before it was encrypted.

Keys are restricted to a subset of the principals in the policy they enforce, as
seen in Figure 6. The well-formedness condition on the key types also ensures
that encryption and decryption types for the same key enforce the same policy
and then any encrypted terms in the initial network must also be well-typed, i.e.,
it must be possible to generate them from well-typed encryptions.

As an example, consider a system with two principals, aPDA and aBase
computer. If the PDA uses data packets of typedata, then a packet that was
restricted to just the PDA and the owners base computer would have the type
data{PDA,Base}, whereas public data would have the typedata{Public}.

Imagine that the PDA has a cable that connects it to the base computer and
a wireless connection. The socket for the cable connection on the PDA will se-
curely connect the PDA and base computer and so it would have a type indicat-
ing that it is safe for restricted data,Cable Socket : Chan(data{PDA,Base}){PDA}.
ThePDA label on the socket indicates that the socket connection cannot be sent
to another location. The wireless connection, on the other hand could easily be
intercepted. While it would be possible to use a secure transport layer to protect
the data sent over this connection, this might be too great a burden for a the lim-
ited CPU and battery power of the PDA, or we might just want to keep the PDA



Γ `A N1 Γ `A N2

Γ `A (N1 | N2)

Γ ∪ {(a : LT )} `A N

Γ `A new(a : LT )N

Γ `A P [R1] Γ `A P [R2]

Γ `A P [(R1 | R2)]

Γ ∪ {(a : TL)} `A P [R] P ∈ L `A T L

Γ `A P [new(a : TL); R]

Γ ` v : Chan(TL)L0 P ∈ A L0 ∩A 6= {} Γ ∪ {x : T L} `A P [R]

Γ `A P [receive v?x; R]

Γ ` v0 : Chan(T L1
1 )L0 Γ ` v : T L2

2 bT1c = bT2c
P ∈ A L0 ∩A 6= {} 6= L2 ∩A

Γ `A P [send v0!v]

Γ ` v0 : T L Γ ` v : Enc(Lp)Lv Γ ∪ {x : T Public} `A P [R]
Lp ∩A 6= {} L ∩A 6= {} P ∈ A

Γ `A P [encrypt {v0}v as x; R]

Γ ` v0 : T Public Γ ` v : Dec(Lp)Lk Γ ∪ {x : T L
p } `A P [R]

Lk ∩A 6= {} P ∈ A

Γ `A P [decrypt v0 as {x}v; R]

Fig. 8.Types for Attackers

software as simple as possible. So, we give the socket a type indicating that it is
not safe for private data,Wireless Socket : Chan(data{Public}){PDA}.

When the PDA software is compiled we automatically detect if the program
tries to send any controlled data over the wireless connection without encrypting
it first. So, once checked the lightweight PDA program can run without any
restrictions and without a cumbersome security transport layer.

3 Untyped Attackers

The aim of this paper is the correct integration of untyped, trusted attackers into
our model. If an attacker is mentioned in the access control policy of a name it
can acquire that name and send it on anywhere it sees fit. So, an untyped attacker
can always leak some restricted data, but we can show that this abuse of trust is
not transitive. If Alice restricts her data to just herself and to Bob, and excludes
Eve, who does not respect the access control types, then the data should be safe
from Eve, even if Bob trusts her with other data and channels.



We include attackers into our type system by adding two new sets of type
rules and a new form of type judgement. We writeΓ `A N to mean that the net-
work N is well-typed given the fact thatA is a set of principals that can perform
attacks by ignoring access control types. Processes can now be typed with the
original “honest” type rules, or by a set of type rules for attackers, or by another
set of type rules for processes that have been corrupted by misinformation from
an attacker.

The type rules that the attackers must conform to are given in Figure 8. It
may seem odd to have type rules for untyped attackers however, these rules
place no restrictions on access control types. So, more accurately these are un-
access-control-typed attackers. The type rules do force attackers to respect the
basic nature of the names. For instance, as communication channels must be
supported by some kind of infrastructure, the attacker cannot turn an integer
into a communication channel just by changing its type. We characterise the
types the attacker can interchange by defining an erasure relation.

bChan(LT )Lc = Chan(bLTc)Public b〈〉Lc = 〈〉Public

bEnc(~P )Lc = Enc(~P )Public bDec(~P )Lc = Dec(~P )Public

As long as the attackers only substitute names with the same erasure type,
they can do what they like. In particular, we point out that the type of a name
being sent over a channel does not have to match the type that should be carried
by that channel, and that the policy enforced by the encryption key used to
encode a name does not have to match the policy on the name. This means
that an encrypted name could be encrypted with what could be regarded as the
wrong key. This is catered for by the following additional type rule for corrupted
encrypted terms.

v0 : TL ∈ Γ v : Enc(Lp)Lk ∈ Γ `A TL `A Enc(Lp)Lk

Lp ∩A 6= {} 6= L ∩A

Γ `A {v0}v : TPublic

The attackers create “correct” types. This is because we do not consider
attackers obtaining values created by other attackers as a security leak and if
these names are passed to a genuine process then the real type of the name will
not matter. The type rules also check that at least one attacker is named in each
rule used. This is a correctness criterion that, in effect, states that the attackers
have not been able to acquire any names that did not explicitly give access to an
attacker. We show later that this correctness criterion is preserved by reduction.



Γ ` v : Chan(TL)L0 Γ ∪ {(x : TL)} `A P [R] A ∩ L0 6= {}
Γ `A P [receive v?x; R]

Γ ` v0 : Chan(TL1
1 )L0 Γ `A v : T L2

2 bT1c = bT2c
L2 ∩A 6= {} 6= L1 ∩A if L0 ∩A = {} then P ∈ L0

Γ `A P [send v0!v]

Γ ` v0 : T L Γ ` v : Enc(Lp)Lk Γ ∪ {x : T Public} `A P [R]
A ∩ L 6= {} 6= Lp ∩A if A ∩ Lk = {} then P ∈ Lk

Γ `A P [encrypt {v0}v as x; R]

Γ ` v0 : T Public Γ ` v : Dec(Lp)Lk Γ ∪ {x : T Lp} `A P [R] A ∩ Lk 6= {}
Γ `A P [decrypt v0 as {x}v; R]

Fig. 9.Types for the Corrupt

4 Corrupted Principals

While the attackers cannot acquire sensitive data, they can cause their data to be
misplaced. Hence, if you trust an untyped attacker you run the risk of becoming
corrupted. We formalise this with the rules in Figure 9.

We note that rather than having three separate sets of type rules, it would
have been possible to have a single, complicated type rule for each piece of
syntax. These rules would coalesce the conditions from each of the three type
rules. For the sake of the reader’s comfort, and our sanity, we decided to keep
the rules simple.

The send rule may be corrupt in three ways: an attacker might have messed
around with the communication channel that is being used to send the data, or
the data that is being sent, or both. As the channel must have a well-formed
type it is possible for an attacker to have access to the data being sent over the
channel but not have access to the channel itself. This means that, if the send
action is corrupt in any way, it must include an attacker in the payload type. We
use an “if” statement to see if the communication channel may also be corrupt;
if it cannot be, it must be in the right place, i.e., have the current principal in its
policy. If an attacker has corrupted the data so the type of the channel’s payload
does not match the type of the name being sent then both must contain the name
of an attacker.

In a similar way, if the attacker is named in any part of an encryption action
it, must be named in the policy enforced by the key and in the policy of the
name being encoded. If an attacker is not named in the access control policy
for the key then the attacker cannot interfere with the key and so the current



principal must be mentioned. Of course, as the process has been corrupted, the
policy enforced by the key does not have to match the policy on the data being
encrypted.

5 Correctness

Our type system does not allow the attackers to possess data they are not sup-
posed to have. For this reason, a well-typed system is one in which a leak has
not yet occurred, as shown by the following lemma.

Lemma 1. A well-typed network is correct, only names that explicitly allow
access to an attacker appear outside their designated area:

If Γ `A P [R] andR = C[send v1!v2] or R = C[receive v1?x;R′] or R =
C[encrypt {v1}v2 as x;R′] or R = C[decrypt v1 as {x}v2 ;R

′] andΓ ′ ` v1 :
TL1

1 , v2 : T2
L2 , whereΓ ′ is Γ extended with the types defined byC[ ] then

P ∈ L1 or A ∩ L1 6= {} andP ∈ L2 or A ∩ L2 6= {}.

Proof. By induction on the syntax ofR. We inspect the type rules for each
piece of syntax, observe that the conditions are fulfilled and apply the induction
hypothesis to type the remaining process.

The result of our correctness result takes the form of a subject reduction
proof; we show that well-typed systems reduce to well-typed systems. The type
system allows any given piece of syntax to be typed as an honest process, or an
attacker, or a corrupted process. This leads to multiple cases to check when as-
suming a process is well-typed. A more interesting issue is that one type might
have been used to type a name in a given process and then a name of a differ-
ent type could be substituted into its place. This will happen when an attacker
sends a wrongly typed name over a channel to an honest process. In which case
the honest process will become corrupt and we will have to type the resulting
process with the type rule for corrupt processes.

We use the following lemma to show that the substitution of one type for
another is allowed by the type rules for corrupt processes, as long there is an
attacker in the policy of both names.

Lemma 2. If Γ ∪{x : TL1
1 } `A P [R] then for all` TL2

2 such thatbT1c = bT2c
andA ∩ L1 6= {} andA ∩ L2 6= {} we have thatΓ ∪ {x : TL2

2 } `A P [R]

Proof. By induction on the syntax ofR. We give the receive case as an example.

– R ≡ receive x?y; R′

By the assumption thatP [R] is well-typed, with the original type forx,
we know that there existsT3 andL3 such thatT1 = Chan(TL3

3 ) and that



Γ ∪ {x : TL1
1 , y : TL3

3 } `A P [R′]. As bT1c = bT2c we know thatT2 =
Chan(TL4

4 ) for someT4 such thatbT3c = bT4c. By the well-formedness
condition for channel types we know thatL1 ⊆ L3 andL2 ⊆ L4 hence
A ∩ L3 6= {} andA ∩ L4 6= {}. So, we can apply the induction hypothesis
to show thatΓ ∪ {x : TL2

2 , y : TL4
4 } `A P [R′]. Noting thatA ∩ L2 6= {}

allows us to typeP [R] by the receive type rule for corrupt processes.

This lemma has proven the heart of our correctness result, however it re-
mains to show that types only ever get mixed up when they include an attacker
in their access control policy. We do this in our main theorem.

Theorem 1 (Subject Reduction).If Γ `A N andN → N ′ thenΓ `A N ′.

Proof. By induction on the reductionN → N ′, for each reduction rule we
consider each possible typing rule that could have been applied to typeN . We
then show that we can typeN ′, using Lemma 2 whenever the process becomes
corrupted.

And finally, we restate this as correctness:

Corollary 1. Given a well-typed honest networkΓ ` N , for any set of attackers
A and any networkNA such thatΓ `A NA the networkN | NA cannot reduce
to a state in which an attacker has a name that does not include an attacker in
its access control policy.

Proof. By Lemma 1 and Theorem 1.

6 Related Work

Mini-KDLM is designed to be simple enough to illustrate our correctness proof
while still producing results that are relevant to full KDLM [CDV03]. So, natu-
raly mini-KDLM is a cut down version of full KDLM. Both have policy types
on data and the key types that enforce a policy on the data they encrypt but
full KDLM uses an abstraction of key names to represent policies, this allows
for an accountable model of declassification. In mini-KDLM we restrict both
encryption and decryption keys, however full KDLM splits the access control
types into policies for security and authentication, meaning that encryption and
signing keys can be made public. In other work we show how key names can be
distributed and sketch how KDLM could be implemented as a type system for
Java, which we refer to as Jeddak [CDV04].

Our work is partly inspired by the Distributed Label Model [ML97] this
model was implemented as the language JFlow [Mye99]. The Jif/Split compiler



[ZZNM02,ZCZM03] allows a program to be annotated with trust information,
the code is then split into a number of programs that can be run on different
hosts. The partitioning preserves the original semantics of the program and en-
sures that hosts that are not trusted to access certain data cannot receive that data.
Hennessy and Riely [HR99,RH99], have developed a type system that controls
attackers in the Dpi-calculus. They allow attackers to ignore the type rules, as
we do here, but they use dynamic type checks to ensure that honest principals
do not become corrupted.

Much of the work on wide-area languages has focused on security, for exam-
ple, providing abstractions of secure channels [AFG00,AFG99], controlling key
distribution [CV99,CGG00], reasoning about security protocols [AG99,Aba97],
etc. Abadi [Aba97] considers a type system for ensuring that secrecy is pre-
served in security protocols. Other work on security in programming languages
has focused on ensuring and preventing unwanted security flows in programs
[DD77,VS97,PC00]. Sabelfeld and Myers [SM02] provide an excellent overview
of this work.

7 Conclusion and Further Work

We have provided a model of untyped attackers inside the Key-Based Decen-
tralised Label Model and proved that these attackers can cause only limited
damage. The model works by having three sets of type rules: the first for honest
processes, the second for attackers and the third for processes that have been
corrupted by an attacker. The type rules also contain checks that ensure no data,
which is not designated as accessible to an attacker, leaks outside its area. We
prove the correctness of our system by showing subject reduction.

It may be interesting to introduce a sub-typing relation for labelled types.
For instance, allowing data to be sent over channels that should carry a more
restrictive data type, and effectively up grading the data’s security restrictions.
Also, modelling corrupted types as sub-types of the original types may allow
us to reduce the total number of type rules. However, this does not catch the
different possible behaviours of honest participants and attackers and it may
make the extension of the systems more cumbersome.

We hope that this work will be a base from which to prove that an imple-
mentation of Key-Based Decentralised access control in Java is also safe from
untyped attackers. We also hope that this method can be applied to other type
systems for distributed security.
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