
Capability-Passing Processes

Tom Chothia

Laboratoire d’Informatique (LIX),́Ecole Polytechnique (CNRS), 91128 Palaiseau Cedex,
France. tomc@lix.polytechnique.fr

Dominic Duggan

Department of Computer Science, Stevens Institute of Technology, Hoboken, NJ 07030,
USA, dduggan@cs.stevens-tech.edu

Abstract

Capability-passing processes model global applications in a way that decouples the global
agreement aspects of protocols from the details of how the communications are actually
made. It relies on a restricted API or programming language and on the exchange of digital
certificates representingcapabilitiesto ensure that participants are faithful to a protocol
and that outsiders cannot interfere. At the specification level, protocols are reasoned about
independently of the underlying communication, using a process calculus with an abstrac-
tion of logs to isolate the remote state required for such protocols. At the implementation
level, protocol steps no longer perform global communication; instead capabilities are used
to transmit evidence of remote state, which in turn are used to authorize local log changes
(corresponding to protocol steps). In this way, an API for global agreement protocols is
defined independently of the underlying communication system.

1 Introduction

Global distributed applications must deal with the fact that the Internet, and other
networks, are increasingly becoming a discrete address space, delineated by fire-
walls, network address translation, independent failures etc. Such applications must
also deal with issues of fault tolerance and network security. Fig.1(a) describes the
current state of the art in distributed computing. The typical protocol stack (net-
work layer for routing, transport layer for reliable communication, and application
layer) is complicated by the increasing sophistication of the network environment
[10]. Thus network and transport protocols are increasingly creaking under the de-
mands of additional tasks such as firewalls, network address translation, and load
balancing [6].

Preprint submitted to Elsevier Preprint

etc

(b) (c)

Trans Trans

Network

Application

Transport

Application

Transport

Network

Network

Transport Transport

Network

Application Application

TransactionsTransactions

Network

Transport Transport

Network

ApplicationApplication

etc

Fire−
walls

NATs,

NATs
etc

NATs

(a)

Fig. 1. Structuring protocol layers in global computing

We propose a system in which processes pass proofs of their capabilities be-
tween each other, rather than communicating directly. There are two key advan-
tages to this approach. The first is that the user can control how these capabilities
are passed between sites, and so navigate any particular network obstacles that the
protocol system may not be aware of, such as NAT, VPNs, faulty connections, etc.
The second is that by separating the agreement parts of a protocol from the com-
munications aspects we can model both separately.

Our approach is motivated by the fact that any kind of global application will
require the design and implementation of protocols for some forms of distributed
agreement. Although distributed consensus is in general unsolvable in asynchronous
distributed systems [13,16], certain environments may be amenable to assumptions
of partial synchrony, and it may be possible for some applications to define a notion
of agreement that trades off accuracy for performance. This mediates against build-
ing any kind of distributed agreement into the semantics of any language for global
applications. Instead we focus on a language for such applications that provides
support for designing and implementing protocols for distributed agreement. An
implementation of any global agreement protocol will require the ability to deliver
messages to different sites. The approach of inserting a transaction layer above the
transport layer, as depicted in Fig.1(b), again raises the problem of complicating a
protocol layer with issues that belong to other layers or other parts of the software
system.

We advocate the approach depicted in Fig.1(c), where we move the transaction
layer into the application layer. As before, the transaction layer is tasked with en-
suring global state consistency conditions (e.g., money not being withdrawn from
one account without being deposited into another). The key change is that the
transaction layer is decoupled from the navigation of global environments. By sep-
arating this layer from the communication functionality, we reduce the size of the
trusted computing base required for maintaining global consistency and integrity.

Our approach amounts to a restricted API for changing the logs that represent

2

the “durable” state of the parties in a distributed system. The restricted API ensures
that we only allow changes that preserve the integrity of the overall system state.
Complementary to this, the parties must be able to communicate evidence of their
state to each other, in such a way that outside parties cannot interfere and cause the
system to enter an inconsistent state. While this could be looked at as moving the
problem from one place to another, we are in fact, moving the problem of network
communication out of the transaction system and into the hands of the programmer.
This moves the communication system away from a “one size fits all” solution and
allows the user, who will probably known their own network the best, to decide
how communication will take place. However, we retain the all the correctness
guarantees that would be provided by a transaction system that performed its own
communication.

To formulate our method of removing the need for global consensus we return
to the lqp-calculus, which we have previously proposed as a language for fault-
tolerant global computing [9]. We review this work in Sect.3. This calculus extends
the pi-calculus withlogs, the action that appends new log entries makes remote
checks of other logs at remote sites. In Sect.5, we show a way of automatically
extracting a capability passing version of this calculus, the lqcp-calculus, which
only makes local checks. In Sect.7, we show how we may prove the “correctness”
of the capability passing system. Sect.4 and6 illustrate our system by modelling
the two-phase commit protocol.

2 Related Work

In previous work [8] we proposed an extension of Java with capability passing
processes. We discussed a strongly typed calculus as a base for this work but we
did not give a type system, semantics or a correctness result.

Berger and Honda [3] have developed a calculus to model two-phase commit.
The calculus we present here is a framework that can be used to model a range
of agreement protocols, of which two-phase commit is one example, as we have
shown in previous work [9]. Numerous process algebras have been proposed as
the foundations of programming languages for network applications. Most of this
work is based on mobile computation and mobile code to deal with latency and
firewall problems [14,5,7,17,23]. Much of this work has focused on access control
of mobile computation in networks, as well as tracking the trustworthiness of hosts.
Our focus has been on global agreement aspects of distributed computing.

In the distributed systems community there is a lot of work on certificate-based
transactions. These systems tend to use certificates to prove identity or authorship,
whereas we are proposing the use of certificates to allow the agreement parts of a
protocol to be modelled separately from the communication aspects.

Previous work has also investigated techniques for the secure transmission of
causal relationships in a distributed system [22,24], and for securing multicast com-

3

P∈ Processes ::= stop | (P1 | P2)

| send v1!v2 | receive a?x; P

| new a; P | repeat P

| let 〈x〉 = 〈v〉 in P

v∈ Value ::= a,b,c, . . . | u,v,w,x,y,z. . .

| 〈v1, . . . ,vk〉

(a) Syntax of the pi-calculus

P∈ Processes ::= logawait c{{Q(x)}}; P Query log

| logappend 〈v〉 with rule-name; P Add log entry

N,C,M ∈ Network ::= c{P} Conclave

| c{{L}} Log

| new n; C Scoped name

| (C1 |C2) Composition

L ∈ Log Entry ::= true | Q(v) | (L1∧L2)

Q∈ Predicate ::= . . .

(b) Extensions for the lqp-calculus

Fig. 2. The lqp-calculus

munications [19,15]. The latter work is largely orthogonal to the work considered
here. The former work has largely focused on using authentication techniques to
prevent the forgery of vector clocks that carry causality information in distributed
communications. This is targeted at a lower level than the work presented here. De-
Line and Fahndrick have developed the Vault programming language [11] in which
describe and statically enforce the correctness of protocols by type checking. The
considerations we present here, of a global network programming language that
uses proofs of capability to run secure state protocols over a potentially insecure
communication system, appears to be novel.

3 The lqp-calculus: Specifying Protocols

The lqp-calculus is based on the asynchronous pi-calculus [20,18], a popular cal-
culus for reasoning about distributed programming languages. The syntax of the
pi-calculus is shown in Fig.2(a). Channel namesn are globally unique. In addi-
tion to constructs for sending and receiving messages, there are also operations for

4

c{stop} | N ≡ N stop | P≡ P

N1 | N2 ≡ N2 | N1 P1 | P2 ≡ P2 | P1

(N1 | N2) | N3 ≡ N1 | (N2 | N3) (P1 | P2) | P3 ≡ P1 | (P2 | P3)

new n1; new n2; N ≡ new n2; new n1; N new n1; new n2; P≡ new n2; new n1; P

new n; N ≡ N, n /∈ fn(N) new n; P≡ P, n /∈ fn(P)

c{new n; P} ≡ new n; c{P}, n 6= c c{P1 | P2} ≡ c{P1} | c{P2}

true∧L ≡ L L1∧L2 ≡ L2∧L1 (L1∧L2)∧L3 ≡ L1∧ (L2∧L3)

(new n; N1) | N2 ≡ new n; (N1 | N2), n /∈ fn(N2)

(new n; P1) | P2 ≡ new n; (P1 | P2), n /∈ fn(P2)

repeat P≡ P | repeat P

Fig. 3. Equivalence Rules for the lqp-calculus

generating new channel names, for replicating processes (this can be used to define
recursive processes) and for forming the parallel composition of processes.

One of the innovations of the lqp-calculus is to organize processes into process
groups; we refer to these process groups asconclaves.A conclave has the form
c{P} wherec is the name of a conclave andP is a process. The syntax forces each
process in a network to belong to exactly one conclave. There is also a structural
equivalence rule for distributing conclaves over parallel composition,c{P1 | P2} ≡
c{P1} | c{P2}. The other structural equivalence rules are a standard extension of
the pi-calculus rules to include conclaves, as shown in Fig.3.

The processes inside each conclave are active entities, and they can communi-
cate with each other in the standard pi-calculus way. The agreement aspects of a
system are modelled by extending the pi-calculus with a notion of logs. These logs
are used to explicate the communication requirements of protocols, such as atomic
commitment protocols, without committing to how protocol messages should be
delivered in global computing environments. Each conclavec has a single log, of
the formc{{L}}, whereL is a collection of log entries. Alog entryhas the form
Q(v), denoting a log entry asserting the propertyQ concerning the valuev.

The lqp-calculus semantics are given in Fig.4. The two constructs that allow
interaction with logs arelogawait and logappend. The logawait construct blocks
until a log entry for the conclave name and predicate symbol is in the stable storage
represented by the logs. The rule forlogawait checks if the required log entry has
surfaced:

c{logawait c0{{Q(x)}}; P} | c0{{L∧Q(v)}} −→

c{{v/x}P} | c0{{L∧Q(v)}}
(LOGAWAIT)

5

(c1{send n!nk} | c2{receive n?xk; P}) −→ c2{{nk/xk}P} (COM)

E[·] ::= [·] | E[· | N] | new n; E[·]
N ≡ E[N′] N′ −→ M′ M ≡ E[N]

N −→ M
(CONG)

(a) The Base Semantics

c{logawait c0{{Q(x)}}; P} | c0{{L∧Q(v)}} −→
c{{v/x}P} | c0{{L∧Q(v)}}

(LOGAWAIT)

(c{{L}} | N),c |= (v) rule-name−−−−−→ Q(v0)

c{logappend 〈v〉 with rule-name; P} | c{{L}} | N −→
c{P} | c{{L∧Q(v0)}} | N

(LOGAPPEND)

(b) Non-Capability Passing Semantics

Fig. 4. The lqp-calculus

The logappend construct is used by a conclave to add new log entries to its
own log. It in turn uses one of a collection of named log rewrite rules. These rules
define the behaviour of the protocol being modelled, so we will use different sets of
rewrite rules for different protocols. A log rewrite rule can check for the presence
of log entries in any conclave. However, it can only check for the absence of entries
in its own log. An example of such a log rewrite rule might check that a conclave is
not already aborted before it commits. Further example log rewrite rules are given
in the next section. The following rule is used when a conclavec, which has the
log L, uses thelogappend action with the log rewrite rule calledrule−name. The
log rewrite rule takes the parametersv and states that the predicateQ(v0) should be
added to the log.

6

(c{{L}} | N),c |= (v) rule-name−−−−−→ Q(v0)

c{logappend 〈v〉 with rule-name; P} | c{{L}} | N −→

c{P} | c{{L∧Q(v0)}} | N

(LOGAPPEND)

Each log rewrite rule requires some preconditions and adds a log entry to the
local log. These rules are specified using judgments of the form:

N,c |= (v) rule-name−−−−−→ Q(v0)

whererule-nameis the name of the rule. The contextN must contain the log of
the conclavec, and may in addition contain the logs of remote conclaves. The
value vectorv are parameters for the log rewrite rule (the name of the administrator
conclave, for instance). Finally,Q(v0) is the log entry to be add by the rule.

For some sets of log rewrite rule thelogappend and logawait may be the only
actions that are needed in order to model a protocol. But in the most general case
the use of thesend andreceive actions together with the log actions allows a net-
work to behave in a much more varied way. Previous work on this calculus, [9] also
provides primitives to create new conclaves and logs. Although they add to the ex-
pressiveness of the calculus, they do not contribute to the description of capability
passing processes so, we omit them here.

4 Example: Two-Phase Commit

In this section we give a concrete example of the lqp-calculus by adding log entries
and log rewrite rules for the well known and widely deployed two-phase commit
protocol [4]. There are five kinds of log entries for two phase commit:

Q∈ Predicate ::= Submit | Prepared | Admin | Committed | Aborted

A Submit(c) entry in a conclave log indicates that the conclave is ready to enter
a run of the two phase commit protocol and uniquely identifiesc are the adminis-
trator conclave. The log entryAdmin({c1, ...,ck}) in the log of the administrator
conclave records that the conclaves{c1, ...,ck} are the participants in an execution
of the two-phase commit protocol. The choice of which conclave will act as the ad-
ministrator depends on the system being modelled and will perhaps be chosen by a
series of pi-calculus communication between conclaves. When one of the partici-
pants has successfully completed its task it enters thePrepared() state, after which
is cannot abort. If all the participants becomePrepared(), the administrator may
enter theCommitted() state. This signals to all the other participants that they may
also becomeCommitted(). Alternatively, the administrator may becomeAborted()
at any time before it decides to commit, in which case all the other participants

7

c{{ε}},c |= (c0)
AtSubmit−−−−−→ Submit(c0) (AT SUBMIT)

c{{ε}} | ∏ck{{Submit(c)}},c |= (c1, . . . ,ck)
AtAdmin−−−−→ Admin(c1, . . . ,ck)

(AT ADMIN)

c{{Submit(c0)}} | c0{{Admin(. . . ,c, . . .)}},c |= (c0)
AtPrep−−−−→ Prepared(c0)

(AT PREP)

L 6≡ (L′∧Committed()), (L′∧Prepared())

c{{L}},c |= () AtStAbort−−−−−→ Aborted
(AT STABORT)

c{{Admin(c1, . . . ,ck)}} | ∏ck{{Lk∧Prepared(c)}},c |=

(c1, . . . ,ck)
AtAdmCmt−−−−−−→ Committed()

(AT ADMCMT)

c{{L∧Prepared(c0)}} | c0{{L0∧Committed()}},c |= (c0)
AtPartCmt−−−−−−→ Committed()

(AT PARTCMT)

c{{L∧Prepared(c0)}} | c0{{L0∧Aborted()}},c |= (c0)
AtPartAbt−−−−−→ Aborted()

(AT PARTABORT)

Fig. 5. Log append rules for 2PC in the lqp-calculus

Transi ≡ ci{logappend 〈cadm〉 with AtSubmit;
logappend 〈cadm〉 with AtPrep;

(logappend 〈cadm〉 with AtPartCmt; stop
| logappend 〈cadm〉 with AtPartAbt; stop) }

Admin Trans≡ cadm{logappend 〈c1,c2〉 with AtAdmin;
(logappend 〈c1,c2〉 with AtAdmCmt; stop
| logappend 〈c1,c2〉 with AtStAbort; stop) }

System≡ Admin Trans| Trans1 | Trans2 | cadm{{ε}} | c1{{ε}} | c2{{ε}}

Fig. 6. Simple two-phase commit

must also abort. The log append rules for two phase commit are given in Fig.5.
To illustrate the mechanisms introduced above, we show an example using these

log append rules. Fig.6 shows a network where three conclaves,cadm, c1 andc2,
must either all commit or all abort. A conclave has committed when, and only
when, a commit entry has been written to its log. This reflects the fact that sites may
fail during runs of protocols, and the state of a fault tolerant system on restarting is
given by the contents of the logs.

8

Oncec1 andc2 enter the prepared-to-commit state, the system has the form:

System
∗−→ c1{ logappend 〈cadm〉 with AtPartCmt; stop

| logappend 〈cadm〉 with AtPartAbt; stop}
| c1{{Submit(cadm) ∧ Prepared(cadm)}}

| c2{ logappend 〈cadm〉 with AtPartCmt; stop
| logappend 〈cadm〉 with AtPartAbt; stop}

| c2{{Submit(cadm) ∧ Prepared(cadm)}}
| cadm{ logappend 〈c1,c2〉 with AtAdmCmt; stop

| logappend 〈c1,c2〉 with AtStAbort; stop

| cadm{{Admin((c1,c2))}}

This completes the first phase of the protocol. At this point the conclavesc1

andc2 cannot abort or commit until they are notified to do so by the administrator.
In the second phase of the protocol, the administrator writes a log entry signaling
that it has decided to commit. The participantsc1 andc2 can then commit, so the
system evolves to:

System
∗−→ c1{ logappend 〈cadm〉 with AtPartAbt; stop}

| c1{{Submit(cadm) ∧ Prepared(cadm) ∧ Committed()}}
| c2{ logappend 〈cadm〉 with AtPartAbt; stop}
| c2{{Submit(cadm) ∧ Prepared(cadm) ∧ Committed()}}
| cadm{ logappend 〈c1,c2〉 with AtStAbort; stop

| cadm{{Admin(c1,c2) ∧ Committed()}}

It would also have been possible for the administrator conclave to abort, rather
than commit. This would then block the rule thatc1 and c2 are using to try to
commit, and so force them to abort.

5 The Capability Passing System: Implementing Protocols

As discussed in the introduction, in the setting of global computing it is unrealis-
tic to maintaining an environment where all conclaves have direct access to each
others state. Our answer to this, capability-passing processes, replaces the implicit
querying of the state of the logs at remote sites, with “proof” objects that are ex-
changed as evidence for the capabilities of such a state. Such an object, which is
digitally signed by the conclave that generated it, is effectively a proof of a log
entry of a particular form. In this section we show how the non-capability passing
lqp-calculus can be developed into a capability passing version, the lqcp-calculus.

Any remote checks required to make a log change are replaced by the require-
ment for a certificate. This means that the protocol actions are now entirely lo-
cal and all global communication (including the communication of certificates) is
modelled by pi-calculus style actions performed by the processes. We extend our

9

domain of values to include these certificates:

v∈ Value ::= a,b,c, . . . | x,y,z,w, . . .

| 〈v1, . . . ,vk〉 | Sc[Q(v)]

The new kind of valueSc[Q(v)] signifies a “proof” that the conclavec had the
entryQ(v) in its log when this certificate was signed. As entries cannot be removed
from a log, any conclave that possesses this certificate can conclude thatc currently
has the entryQ(v) in its log. We do not address the exact method by which the the
proof is signed and verified, we consider this an orthogonal issue that is widely
addressed elsewhere, .

The full semantics of the lqcp-claculus is given in Fig.7. We alter thelogawait,
logappend actions and the log append rewrite rules to only query local storage. Any
remote queries are replaced by a requirement for a certificate.

From the users point of viewlogawait performs the single action of querying
a log. However, from the point of view of an implementation there are two very
distinct versions oflogawait. Its first use is to check the current conclaves local
log. The second is to check the log of a remote conclave. Our implementation
highlights this distinction by having local and global forms oflogawait.

A local logawait checks its own log and returns a certificate as a result.

c{logawait Q(x) as y;P} | c{{L∧Q(v)}}

−→ c{{v,Sc[Q(v)]/x,y}P | c{{L∧Q(v)}}
(LOGAWAIT-C)

In addition to unblocking when the specified log entry is found, the variabley is
replaced with a certificate that shows that the specified log entry is present.

There is an implicit assumption that conclaves are always honest when report-
ing the state of their log. Indeed, this is an assumption made by most transaction
systems. The aim of the protocol is usually to guarantee certain results in the pres-
ence of an outside attacker or the failure of some given sites. However, if some
participants were being dishonest the use of a capability passing system would
help to make them accountable by requiring them to sign the state information they
distribute.

We extend the syntax of the calculus with alogauth action. This performs a
global version of this thelogawait action by using a certificate to query the state of
a remote log.

c{logauth c1{{Q(x)}} with Sc1[Q(v)];P} −→ c{{v/x}P} (LOGAUTH-C)

It should be noted thatlogauth involves a dynamic verification of the signed proof
i.e. the check that the conclave whose log we wish to check is indeed the conclave
that signed the certificate and that the certificate does indeed contain the required
log entry. If this check fails the construct will block indefinitely. This is similar to
encryption and decryption in the spi-calculus [1].

10

(c1{send n!nk} | c2{receive n?xk; P}) −→ c2{{nk/xk}P} (COM)

E[·] ::= [·] | E[· | N] | new n; E[·]
N ≡ E[N′] N′ −→ M′ M ≡ E[N]

N −→ M
(CONG)

(a) The Base Semantics

c{logawait Q(x) as y;P} | c{{L∧Q(v)}} −→
c{{v,Sc[Q(v)]/x,y}P | c{{L∧Q(v)}}

(LOGAWAIT-C)

c{logauth c1{{Q(x)}} with Sc1[Q(v)];P −→ c{{v/x}P} (LOGAUTH-C)

c{{L}},v′,c |= (v) rule-name−−−−−→ Q(v0)

c{logappend 〈v〉 with rule-nameand 〈v′〉;P} | c{{L}} −→
c{P} | c{{L∧Q(v0)}}

(LOGAPPEND-C)

(b) Capability Passing Semantics

Fig. 7. The lqcp-calculus

The oldlogappend action passed the surrounding environment to the log rewrite
rule and so gave it direct access to all logs. This is exactly the kind of global
operation that we wish to avoid. The capability passing (LOGAPPEND-C) rule
only accesses the local log. All the global state information is passed to the log
rewrite rules in the form of certificates that prove the required remote capabilities
(v′ is the following rule).

c{{L}},v′,c |= (v) rule-name−−−−−→ Q(v0)

c{logappend 〈v〉 with rule-nameand 〈v′〉;P} | c{{L}} −→

c{P} | c{{L∧Q(v0)}}
(LOGAPPEND-C)

11

The lpq-calculus uses different log rewrite rules for different transactions. To
make the transition to the capability passing system complete we give a general
method, which can be used to remove the global checks from any log rewrite rule.

This removal of the remote checks is absolutely key to our approach. It removes
the requirement for difficult to implement, global querying of state and gives the
application layer processes complete control over the methods they use to route
communication. Hence removing the need for a bloated trusted computing base to
handle secret data.

Recall from Sect.3, that the preconditions of log rewrite rules can make three
kinds of check. They may check for the presence of an entry in the local log,
they may check for the absence of a entry in the local log or they may check for the
presence of an entry in a remote log. A rewrite rule is adapted to pass capabilities by
replacing each remote check by a requirement for a certificate proving that whatever
was being checked is true. We use the two phase commit rewrite rules from the last
section to illustrate this method.

The (AT PREP) rule is used by a process that is already part of a two phase
commit transaction and wishes to enter the “prepared to commit” state. The old
version of this rule in Fig.5 checks the local log to ensure that the conclave is part
of a transaction run and then makes a remote check to make sure that the conclave
that is playing the part of the administrator has added the Administrator entry into
its own log, including the current transaction as part of the run. This remote check
is replaced by the requirement for a certificate, to give the following rule:

c{{Submit(c0)}},Sc0[Admin(. . . ,c, . . .)] |= (c0)
AtPrep−−−−→ Prepared(c0)

(AT PREP-C)

The (AT ADMIN) rule is used by the administrator conclave to start its run of
the two phase commit protocol. The old log rewrite rule takes a vector of conclave
names and checks that each of those conclaves has recorded theSubmit(c) entry
in their log, wherec is the name of the administrator. So, to make the capability
passing rule, the check that all the participants are submitted is replaced by the
requirement for certificates from each of the participants saying they are submitted:

c{{ε}},∏Sck[Submit(c)] |= (c1, . . . ,ck)
AtAdmin−−−−→ Admin(c1, . . . ,ck)

(AT ADMIN -C)

An important point to note is that the old rewrite rule implied that all the re-
mote conclaves were checked at the same time whereas, this new rule only requires
possession of all of the certificates in order for the administrator to proceed. This
greatly adds to the flexibility of the system. For instance, if some of the transaction
participants are mobile devices that may enter and leave the administrator’s range,

12

c{{ε}} |= (c0)
AtSubmit−−−−−→ Submit(c0) (AT SUBMIT-C)

c{{ε}},∏Sck[Submit(c)] |= (c1, . . . ,ck)
AtAdmin−−−−→ Admin(c1, . . . ,ck)

(AT ADMIN -C)

c{{Submit(c0)}},Sc0[Admin(. . . ,c, . . .)] |= (c0)
AtPrep−−−−→ Prepared(c0)

(AT PREP-C)

L 6≡ (L′∧Committed()), (L′∧Prepared())

c{{L}} |= () AtStAbort−−−−−→ Aborted
(AT STABORT-C)

c{{Admin(c1, . . . ,ck)}},∏Sck[Lk∧Prepared(c)]

|= (c1, . . . ,ck)
AtAdmCmt−−−−−−→ Committed()

(AT ADMCMT-C)

c{{L∧Prepared(c0)}},Sc0[L0∧Committed()] |= (c0)
AtPartCmt−−−−−−→ Committed()

(AT PARTCMT-C)

c{{L∧Prepared(c0)}},Sc0[L0∧Aborted()] |= (c0)
AtPartAbt−−−−−→ Aborted()

(AT PARTABORT-C)

Fig. 8. Log append rules for 2PC in the lqcp-calculus

the capability passing system will allow the administrator to pick up the certificates
whenever the participants are in range and commit as soon as it has them all, rather
that waiting, possibly forever, until all the participants are in range at the same time.

The complete capability passing rewrite rules for two phase commit are pre-
sented in Fig.8. The automatic style of rule generation means we can produce capa-
bility passing log rewrite rules for any log rewrite rules in the lqp-calculus. In other
work, [9] we present log rewrite rules for closure, causality and anti-commitment.
Using the methods outline in this section we automatically get capability passing
log rewrite rules for these systems too.

6 Example: Two-Phase Commit in a Capability Passing Style

To illustrate capability passing processes we return to the two phase commit exam-
ple from Sect.4. The capability passing version of the two phase commit network
is giving in Fig.9. The core actions of both systems are the same but the capability
passing system queries its logs after eachlogappend action and sends proof of its
state to the other parties. These proof objects are then used as evidence in further
logappend actions.

Here, for the sake of clarity we are assuming that the two participants have

13

Transi ≡ ci{logappend 〈cadm〉 with AtSubmitand 〈〉;
logawait Submit(x) as y;
send outchani !y |
receive inchani?z;
logappend 〈cadm〉 with AtPrepand 〈z〉;
logawait Prepared(cadm) as w;
send outchani !w |

receive inchani?z; (logappend 〈〉 with AtPartCmtand 〈z〉; stop
| logappend 〈〉 with AtPartAbtand 〈z〉; stop) }

Admin≡ cadm{receive outchan1?x; receive outchan2?y;
logappend 〈c1,c2〉 with AtAdminand 〈x,y〉;
logawait Admin(x1,x2) as z;
send inchan1!z | send inchan2!z |
receive outchan1?u; receive outchan2?v;
(logappend 〈〉 with AtAdmCmtand 〈u,v〉;

logawait Committedas w; send inchan1!w | send inchan2!w
| logappend 〈〉 with AtStAbortand 〈〉;

logawait Abortedas w; send inchan1!w | send inchan2!w

System≡ new inchani ; new outchan1; new inchan2; new outchan2;
Admin | Trans1 | Trans2 | cadm{{ε}} | c1{{ε}} | c2{{ε}}

Fig. 9. Simple two-phase commit using proofs

direct communication channels to the administrator. In a more interesting system
the certificates would have to be passed through a series of network obstacles, such
as NAT boxes and firewalls.

After thec1 conclave records theSubmitentry in its log, it uses the local form
of logawait to generate a certificate and then sends it to the administrator:

c1{ logawait Submit(x) as y;
send outchan1!y |
receive inchan1?z;
. . .} | c1{{Submit(cadm)}}

−→
c1{ send outchan1!Sc1[Submit(cadm)]

| receive inchan1?z;
. . .} | c1{{Submit(cadm)}}

The other participant,c2, will do the same. This provides thecadm conclave
with the evidence it needs to declare itself the administrator of this run of two
phase commit, which it does by adding theAdmin(c1,c2) entry to its own log:

14

cadm{ logappend 〈c1,c2〉 with AtAdminand 〈Sc1[Submit(cadm)],Sc2[Submit(cadm)]〉;
logawait Admin(x1,x2) as z;
send inchan1!z | send inchan2!z |
receive outchan1?u; receive outchan2?v; . . .} | cadm{{ε}}

−→
cadm{ logawait Admin(x1,x2) as z;

send inchan1!z | send inchan2!z |
receive outchan1?u; receive outchan2?v; . . .} | cadm{{Admin(c1,c2)}}

This reduction is performed using the (LOGAPPEND-C) semantic rule from
Sect.5, which in turn makes use of the (AT ADMIN -C) log rewrite rule from Fig.8.
The log rewrite rule examines the two certificates and checks that they do indeed
testify that the remote conclaves have submitted tocadmand that they have the cor-
rect signatures. These checks are made dynamically and if they fail the process
will block. Here, the certificates are correct, so the checks are successful and the
conclave continues to reduce. In this simple example, the pattern of adding a log
entry, querying it to get a certificate and then distributing the certificate contin-
ues through out the rest of the reduction. In a more realistic system, only certain
certificates would be sent to certain conclaves, and each conclave might require
different communication protocols to be used. All of which would be modelled by
pi-calculus communications between the conclaves.

OnceTrans1 andTrans2 receive the certificate that proves thecadmconclave is
in theAdminstate, they both use it to enter the prepared state. In terms of a run of
the two phase commit protocol the receipt of the administrators certificate informs
the participants that the transaction has been successfully started. TheTrans1 and
Trans2 conclaves enter the prepared state when they have both completed there
assigned tasks and are ready to commit. These two conclaves then generate their
own certificates and send them to the administrator, which has now reduced to the
following:

cadm{ logappend 〈〉 with AtAdmCmtand 〈Sc1[Prepared(cadm)],Sc2[Prepared(cadm)]〉;
logawait Committedas w; send inchan1!w | send inchan2!w
| logappend 〈〉 with AtStAbortand 〈〉;
logawait Abortedas w; send inchan1!w | send inchan2!w }

As with the example process from Sect.4 the administrator has the choice of
whether to commit or abort. As this conclave hasPreparedcertificates from the
other two parts of the transaction it can commit. In doing so it blocks the logap-
pend action that is attempting to abort. A certificate testifying to this commitment is
then produced and sent toc1 andc2, which use it to commit and reach the networks
final state:

15

System
∗−→ new inchani ; new outchan1; new inchan2; new outchan2;

c1{ logappend 〈〉 with AtPartAbtand 〈Scadm[Committed()]〉; }
c1{{Submit(cadm)∧Prepared(cadm)∧Committed()}}

c2{ logappend 〈〉 with AtPartAbtand 〈Scadm[Committed()]〉; }
c1{{Submit(cadm)∧Prepared(cadm)∧Committed()}}

cadm{ logappend 〈〉 with AtStAbortand 〈〉;
logawait Abortedas w; send inchan1!w | send inchan2!w }
| cadm{{Admin(c1,c2)∧Committed()}}

The attempts to abort byc1 andc2 block because the certificate that has been
passed to these actions does not prove the required state forcadmand so theAtStAbort
log rewrite rule cannot be applied.

7 Correctness of Capability Passing Systems

Capability passing processes provide an implementation method for systems that
wish to query the state of remote parties. It is natural to ask, in what sense is
this implementation “correct”? We certainly do not expect a direct relationship be-
tween actions of a capability passing process (in the lqcp-calculus) and those of a
non-capability passing process (in the lqp-calculus), as capability passing processes
will perform a variety of actions that are aimed at passing certificates between con-
claves.

Instead, we show that properties, which are base solely on logs and are pre-
served in the original system, are also preserved in the capability passing system.
An example of this kind of judgment is presented in previous work [9] where we
define a consistency property on networks that states a range of requirements, such
as a log can not be committed and aborted at the same time.

We start this section by definingsupportednetworks to be networks with log
entries for every certificate. We then show that log alteration in capability pass-
ing, supported networks can be mimicked by similar reductions in non-capability
passing networks. This fact is used to show our main result .

Definition 7.1 A network issupportedin the lqcp-calculus, if there exists a log
entry for every certificate i.e.,sup(N) if and only if for all c,Q,v such thatSc[Q(v)]
is a value inN there exists a contextC such thatN = C[c{{. . . ,Q(v), . . .}}].

As would be expected, this well-formedness property is preserved by reduction:

Lemma 7.2 In the lqcp-calculus, with any set of log rewrite rules, supported net-
works reduce to supported networks: if sup(N) and N−→ N′ then sup(N′).

Proof The proof is by induction on the reduction fromN to N′. The only step
case is the congruence rule; correctness follows directly from the induction hy-

16

pothesis. As log entries cannot be removed, the reduction rules that do not generate
certificates also follow trivially. This leaves the (RED LOGAWAIT-C) rule and as
this requires the presence of an actual log in order to generate a certificate for it,
the proof holds.

2

The capability passing semantics can only alter logs in the same way as the
non-capability passing semantics. In order to state this formally we definelogs(N)
to be the erasure mapping of any network to just its logs.

Definition 7.3 Any networkN we definelogs(N) by:

logs(N1 | N2) = logs(N1) | logs(N2) logs(new n;N) = new n; logs(N)
logs(c{P}) = c{stop} logs(c{{L}}) = c{{L}}

We note that for any lqp-calculus or lqcp-calculus network, the logs of that
network are a valid network term for both calculi. Next we show that any log
change that can be made by the capability passing, lqcp-calculus network can also
be made by the non-capability passing, lqp-calculus.

Lemma 7.4 Assume we have a set of lqp-calculus rewrite rules and their lqcp-
calculus versions, and a supported capability passing lqcp-calculus network N
such that N−→ N′ using the lqcp-calculus rewrite rules.

It follows that there exists a non-capability passing lqp-calculus network M,
which does not contain any logs andnew a1, ...,an;NL ≡ logs(N) such that
new a1, ...,an;(NL | M) −→ M′ using only the non-capability passing semantics
and logs(N′) ≡ logs(M′).

Proof If the reduction fromN to N′ does not alter any logs our lemma is trivially
true, with M = c{stop}. That leaves reductions made using the congruence and
(RED LOGAPPEND-C) rules. For this type of reduction to be made we must have:

N ≡ new a1, ...,an;(c{logappend 〈v〉 with rule-nameand 〈certs〉; P} | N1)

for somea1, ...,an,v,P,N1 and wherec is the conclave whose log have been ex-
tended andrule-nameis the log rewrite rule used to make the alteration in the
networkN.

The networkN is a supported network, so we know that actual log entries exist
for each certificate.M is inside the binder for any bound names that may occur
in the log and therefore has access to them. Therefore anylogappend action that
could be made using a capability passing log rewrite rule could also be made by the
original log rewrite rule, using the non-capability passing semantics. Hence we set

M = c{logappend 〈v〉 with rule-name; P}
2

This is analogous to saying that, when using the capability passing lqcp-calculus,

17

an attacker cannot force us to make a change in our logs that is not also possible
in the non-capability passing process with its perfect communication. Hence, if
it is possible for an attacker to affect a system it has nothing to do with using a
capability passing style.

The kind of judgments we are interested in are those based solely on logs. We
formally define this class of properties as follows:

Definition 7.5 A judgment on networks̀ in either the lqp-calculus or the lqcp-
calculus is based solely on logs if:

(1) ` logs(N) if and only if ` N
and (2) ` N andN ≡ M implies` M

We can now prove our main result that a judgment based on logs that is pre-
served by reduction in the non-capability passing calculus is also preserved by re-
duction on supported networks in the capability passing calculus:

Theorem 7.6 Any judgment̀ that is based solely on logs and is preserved by re-
duction in the non-capability passing lqp-calculus, with a given set of log rewrite
rules, is also preserved by reduction in the lqcp-calculus, using the capability pass-
ing versions of the log rewrite rules.

Proof Assume we have a lqcp-calculus processN such that̀ N andN → N′.
By Lemma7.4, there exists a non-capability passing networkM, which does not
contain any logs andlogs(N) ≡ new a1, ...,an;NL, such that
new a1, ...,an;(M | NL) −→ M′ and logs(N′) = logs(M′). We may then make the
following deductions:

` N by assumption
` logs(N) by the definition of̀
` logs(new a1, ...,an;NL) aslogs(new a1, ...,an;NL) ≡ logs(N)
` logs(new a1, ...,an;(M | NL)) asM does not contain any logs.
` new a1, ...,an;(M | NL) by the definition of̀
` M′ by preservation of̀ in the non-capability semantics
` logs(M′) by the definition of̀
` logs(N′) aslogs(N′) = logs(M′)
` N′ by the definition of̀

2

8 Conclusions

Our approach to implementing global agreement for distributed protocols is based
on a notion of digitally signed “proofs of capability” transmitted between network

18

sites.
This approach has the benefit that a large part of the implementation of the

atomic commitment protocol is moved outside of the trusted computing base. In
particular none of the primitive operations of the protocol require any remote com-
munication. Communication is left to the application (or some session layer below
the application), and no trust is placed on any party outside the protocol implemen-
tation.

This paper does not consider the privacy aspects of conclaves giving out signed
proofs of their current state. Encrypting the certificates would protect this informa-
tion. To avoid pushing this into the protocol layer a typed versions of these proofs
could be transmitted safely over insecure networks using cryptographic types [12].
Other further work would be to implement a capability passing transaction system
as an extension of an already existing package, Maftia [21] and the Java based Jini
[2] system are possibilities. It may also be interesting to develop a formal language
with which to specify the preconditions of the non-capability passing log rewrite
rules and a formal mapping of these rules into their capability passing counterparts.

References

[1] Martin Abadi and Andrew Gordon. A calculus for cryptographic protocols: The spi
calculus.Information and Computation, 148(1):1–70, January 1999.

[2] K. Arnold, B. O’Sullivan, R. Scheifler, J. Waldo, and A. Wollrath.The Jini
Specification. Addison-Wesley, 1999.

[3] Martin Berger and Kohei Honda. The two-phase commitment protocol in an extended
pi-calculus. In Proceedings of EXPRESS ’00: Expressiveness in Concurrency,
Electronic Notes in Theoretical Computer Science, pages 105–130. Elsevier, 2000.

[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman.Concurrency Control and Recovery
in Database Systems. Addison-Wesley, 1987.

[5] Luca Cardelli and Andrew Gordon. Mobile ambients. In Maurice Nivat, editor,
Foundations of Software Science and Computational Structures, volume 1378 of
Lecture Notes in Computer Science, pages 140–155. Springer-Verlag, 1998.

[6] B. Carpenter and S. Brim. Middleboxes: Taxonomy and issues. Technical Report
RFC 3234, Internet Engineering Task Force (IETF), February 2002.

[7] Guiseppe Castagna and Jan Vitek. A calculus of secure mobile computations. In
Internet Programming Languages, Lecture Notes in Computer Science. Springer-
Verlag, 1999.

[8] Tom Chothia and Dominic Duggan. An architecture for secure fault-tolerant global
applications. InWorkshop on Principles of Dependable Systems, 2003.

19

[9] Tom Chothia and Dominic Duggan. Abstractions for fault-tolerant global computing.
Theor. Comput. Sci., 322(3):567–613, 2004.

[10] D. D. Clark and M. J. Blumenthal. Rethinking the design of the Internet: The end
to end arguments vs the brave new world. InProc. 28th Telecommunications Policy
Research Conference, September 2000.

[11] Robert DeLine and Manuel Fahndrich. Enforcing high-level protocols in low-
level software. InSIGPLAN Conference on Programming Language Design and
Implementation, pages 59–69, 2001.

[12] Dominic Duggan. Cryptographic types. InComputer Security Foundations Workshop,
Nova Scotia, Canada, 2002. IEEE Press.

[13] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus
with one faulty process.Journal of the ACM, 32(2):374–382, 1985.

[14] Cédric Fournet and Georges Gonthier. The reflexive chemical abstract machine
and the join-calculus. InProceedings of the 23rd ACM Symposium on Principles
of Programming Languages, pages 372–385, St. Petersburg Beach, Florida, January
1996. ACM.

[15] L. Gong and N. Shacham. Multicast security and its extension to a mobile
environment.ACM-Baltzer Journal of Wireless Networks, 1(3):281–295, 1995.

[16] V. Hadzilacos. On the relationship between the atomic commitment and consensus
problems. In B. Simons and A. Z. Spector, editors,Fault-Tolerant Distributed
Computing, volume 448 ofLecture Notes in Computer Science, pages 201–208.
Springer-Verlag, 1990.

[17] Matthew Hennessy and James Riely. Type-safe execution of mobile agents
in anonymous networks. InSecure Internet Programming: Security Issues for
Distributed and Mobile Objects, Lecture Notes in Computer Science. Springer-Verlag,
1999.

[18] Kohei Honda and Mario Tokoro. An object calculus for asynchronous
communication. InEuropean Conference on Object-Oriented Programming, Lecture
Notes in Computer Science, pages 133–147. Springer-Verlag, 1991.

[19] Dahlia Malkhi and Michael Reiter. A high-throughput secure reliable multicast
protocol.Journal of Computer Security, 1997.

[20] Robin Milner. The polyadicπ-calculus: A tutorial. In Friedrich L. Bauer, Wilfried
Brauer, and Helmut Schwichtenberg, editors,Logic and Algebra of Specification,
volume 94 ofComputer and Systems Sciences, pages 203–246. Springer-Verlag, 1993.

[21] D. Powell, A. Adelsbach, C. Cachin, S. Creese, M. Dacier, Y. Deswarte,
T. McCutcheon, N. Neves, B. Pfitzman, B. Randell, R. Stroud, P. Verissimo, and
M. Waidner. MAFTIA (Malicious- and Accidental-Fault Tolerance or Internet
Applications). InSup. of the Proceedings of the 2001 International Conference on
Dependable Systems and Networks (DSN2001), pages D–32–D–35, 2001.

20

[22] Michael Reiter and Li Gong. Preventing denial and forgery of causal relationships in
distributed systems. InIEEE Symposium on Research in Security and Privacy, 1993.

[23] Peter Sewell. Global/local subtyping and capability inference for a distributedπ-
calculus. InProceedings of ICALP ’98: the 25th International Colloquium on
Automata, Languages and Programming (Aalborg). LNCS 1443, pages 695–706.
Springer-Verlag, July 1998.

[24] S. W. Smith and J. D. Tygar. Security and privacy for partial order time. In
International Conference on Parallel and Distributed Computing Systems, 1994.

21

	Introduction
	Related Work
	The lqp-calculus: Specifying Protocols
	Example: Two-Phase Commit
	The Capability Passing System: Implementing Protocols
	Example: Two-Phase Commit in a Capability Passing Style
	Correctness of Capability Passing Systems
	Conclusions
	References

