A Distributed Calculus with Local Areas of Communication

Tom Chothia Ian Stark
tpcc@dcs.ed.ac.uk stark@dcs.ed.ac.uk

Laboratory for Foundations of Computer Science
Division of Informatics
University of Edinburgh

May 2000

Abstract

This paper introduces a process calculus designed to capture the phenomenon of names which are
known universally but always refer to local information. Our system extends the 7-calculus so that
a channel name can have within its scope several disjoint local areas. Such a channel name may
be used for communication within an area, it may be sent between areas, but it cannot itself be
used to transmit information from one area to another. Areas are arranged in a hierarchy of levels,
distinguishing for example between a single application, a machine, or a whole network. We give
an operational semantics for the calculus, and develop a type system that guarantees the proper
use of channels within their local areas. We illustrate with models of an internet service protocol
and a pair of distributed agents.

1 Introduction

Most computer programs make assumptions about the environment in which they operate: the facilities
available, and how to use them. A C programmer will freely use the function printf, and expect that
wherever their compiled code is executed an appropriate library will be loaded to print formatted text.
The Java model of lightweight applets travelling over the web relies on every browser supporting
a standard interface to a large collection of known libraries. Even more dynamically, the notion
of “mobile agents” [LO99] has programs hopping from place to place: and everywhere they land,
interrogating local directories and using local services through known access methods.

The common theme here is using globally-known names to access local resources. But how do
names become globally known, and what counts as local? Typically this is a very static and non-
computational affair: user manuals list library calls, or services are offered at “well-known” addresses.
In this paper we offer a calculus that begins an investigation of the interaction between the scope over
which a name is known and the local areas in which it operates.

Our system is based around the 7-calculus, which provides an established framework for reasoning
about names and communication. Specifically, we work with a variant that is polyadic (channels carry
tuples rather than single values [Mil91]) and asynchronous (output actions always succeed [Bou92]).
To this we add a couple of novel extensions, which we motivate here with a brief example.

One of the original observations behind the 7-calculus is that many issues associated with mobile
code can be studied by looking simply at mobile names. So it is here, and our example is the operation
of a service protocol that directs the internet. When a browser contacts a web server to fetch a page,
or a person operates finger to list the users on a machine, both connect to a numbered “port” on the

remote host: port 80 for the web page, port 79 for the finger listing. Of course, this only works if both
sides agree; and a port number becomes ‘“well-known” when enough systems do agree on it [TAN].

Under Unix, the file /etc/services holds a list mapping numbers to services!. There is also a
further level of indirection: most machines run only a general meta-server inetd, the Internet daemon,
which listens on all ports. When inetd receives a connection, it looks up the port in /etc/services,
and then consults a second file which identifies the program to provide that service. The inetd starts
the program and hands it a connection to the caller. A m-calculus model of the procedure might look
like this.

Client Carp = ve.(pike(finger, c) | c(z).print(z))
Server Pike = pike(s,r).5(r) | finger(y).y(PikeUsers) | |daytime(z).z{ PikeDate)
System (Carp | Pike)

Here a client machine Carp wishes to contact a server Pike with a finger request. The client has
two components: the first transmits the request, the second prepares to print the result. Server Pike
comprises three replicating processes: a general Internet daemon, a Finger daemon, and a time-of-day
daemon. Channel pike is the internet address of the server machine, while the free names finger and
daytime represent well-known port numbers. In operation, Carp sends its request to Pike naming the
finger service and a reply channel c. The Internet daemon on Pike handles this by retransmitting the
contact ¢ over the channel named finger. The Finger daemon collects this and passes information on
PikeUsers back to the waiting process at Carp.

This is a fair model, very much in the m-calculus style, but it has some shortcomings. Because
the names finger and daytime are visible everywhere, even when the Internet daemon on Pike has
collected the request there is no protection against a Finger daemon on some different server actually
handling it — perhaps even one back on the “client” Carp itself. If, however, we restrict the scope
of finger to host Pike, then Carp cannot formulate the request because it must know the name of
the service. We break this Catch-22 by extending the w-calculus with local areas and assigning each
channel a level of operation. Our system is now

net[host[Carp] | host| Pike]]

which represents the fact that Carp and Pike are separate hosts residing on a single network. Each
of the names in the system is identified as operating at net or host level:

canet, pikeanet, fingerahost, daytimeahost, printahost .

Thus communication on the finger, daytime or print channels can span only a single host, while
channels ¢ and pike operate over the whole network. This is distinct from the scope of names, given
by v-binding; that determines where a name is known, not how it is used. In particular, the finger
name in this example has a wide scope, but identical Finger daemons on different hosts will never
interfere.

Overview

In Section 2 we develop a formal description of this local area calculus. We give an operational
semantics, and prove that it correctly limits communication to the correct local areas. We expand on
the Internet service example, and present an illustration of agent-based programming in the calculus.

This operational semantics incorporates several dynamic checks to make sure that channels are
used correctly. In Section 3 we propose a type system that captures this information statically. For

!'This usually includes an abundant litter of port numbers which never became sufficiently “well-known”.

example, our finger channel has type (stringanet)a@host; this indicates that it is a host-level channel
carrying values that themselves name net-level channels for communicating strings. We prove that
“well-typed processes cannot go wrong”’, and deduce that we can omit most of the dynamic checks in
the operational semantics. Section 4 of the paper concludes.

Related work

There are a range of projects addressing locations in the m-calculus, with some similarities to our
local areas. On the whole their aims are complementary: for example, Sangiorgi investigates non-
interleaving semantics and causality using locations [San96], and Amadio models local failure in
distributed systems [Ama99]. Neither of these limit the range of communication.

Systems proposed for mobile agents often use locations to curtail communication very strictly:
agents may interact only with agents at the same location, and must move to talk to others. This
is the case for Cardelli and Gordon’s mobile ambients [CG98] and the system D7 of Hennessy and
Riely [HR98b, HR98a].

Approaches to distributed systems sometimes select particular disciplines for local and global
communication. Sewell proposes a type system to distinguish between these, where channels either
have universal reach or are restricted to a single local area [Sew98]. The Join calculus requires all
channels to be located: while anyone may transmit data, only a chosen process at a single site can
receive it [FG96]. Sangiorgi’s notion of uniform receptiveness is similar [San97].

The use of types to structure the “expected” use of m-calculus channels is well-established: the
survey paper by Sangiorgi [San99] gives a good overview.

2 A calculus of local areas

2.1 Syntax

The calculus is built around two classes of identifiers:

channels a,b,c,x,y, query, reply, ... € Chan

and levels £, m, app, host, net, ... € Level.

Channel names are drawn from a countably infinite supply, Chan. Syntactically, they behave exactly as
in the 7-calculus. Levels are rather more constrained: we assume prior choice of some finite and totally
ordered set Level. The examples in this paper all use app < host < net. In the formal description of
calculus, we take ¢ and m as metavariables for these levels.

Processes are given by the following syntax, based on the asynchronous polyadic m-calculus.

Process P, == 0 inactive process
PlQ parallel composition
a(b) output tuple

|
|
| P input
| la(b).P replicated input
| {[P] local area

| vaal.P fresh channel a at level ¢

Most of these are entirely standard. The last two constructions are particular to the local area calculus:
thus ¢[P] represents a process P running in a local area at level ¢, and the name binding vaal.P
specifies at which level channel a operates. Note that areas are not named individually.

Definition 1. An agent is any process of the form ¢[P]: that is, a single enclosed area.

Channel names may be bound or free in any process. The binding prefixes are as usual the input
prefixes a(b), la(b) and restriction vaal. We write fn(P) for the set of free names of process P.
We identify process terms up to a structural congruence ‘=’, defined as the smallest congruence

relation containing the following equations:

a(b).P = a(?).P{c/b} Plo=P
la(b).P = a().P{C/b} PlQ=Q|P
vaal.P = vbal.P{b/q} (P|Q)|R=P|(Q|R)
va@l.0 =0 vaal.vbam.P = vbam.vaal.P a#b
0]=0 (va@l.P)|Q = vaal.(P|Q) aé¢ Q)

llvaaem.P] = vaem.({[P)])

Here P{c/ 5} stands for capture-avoiding simultaneous substitution. This congruence allows for alpha-
conversion of bound names, algebraic properties of parallel composition ‘|’, and flexible scope for
channel names. This last point means that we can freely expand and contract the scope of any v-
binding, provided of course that it always includes every use of the name it binds.

3

2.2 Scope and areas

One point to note in the structural congruence defined above is the last equation ([raam.P] =
vaam.(¢[P]), commuting name binding and area boundaries. A consequence of this is that the scope
of a channel name, determined by v-binding, is quite independent from the layout of areas, given by
¢[—]. Scope determines where a name is known, and this will change as a process evolves: areas
determine how a name can be used, and these have a fixed structure.

For a process description to be meaningful, this fixed structure of nested areas must accord with the
predetermined ordering of levels. For example, a net may contain a host, but not vice versa; similarly
a host cannot contain another host. Writing <; for the one-step relation in the total order of levels,
we require that every nested area must be <;-below the one above.

Definition 2. The fop-level agents of a process P are all the subterms m[Q] not themselves contained
in any intermediate area ¢[—].

For example, in the process ab| m[Q)] | a(b).m[R] the top-level agents are m[Q)] and m[R)].

Definition 3. A process P is well-formed at level ¢ if for every top-level agent m[Q)], level m <4 £,
and @ is itself well-formed at level m, recursively. An agent ¢[P] is well-formed if P is well-formed
at level 4.

We can now make formal the distinction between the scope of a name and its area of operation.
Consider some occurrence of a bound channel name a in a well-formed process P, as the subject of
some action: a(—), a(—), or la(—). The scope of a is the enclosing v-binding vaal.(—). The local
area of this occurrence of « is the enclosing level ¢ area ¢[—].

A single name may have several disjoint local areas within its scope. It is also possible for a name
to occur outside any local area of the right level; in this case it can only be treated as data, not used
for communication. We shall see how the operational semantics, and later the proposed type system,
enforces this behaviour.

2.3 Operational semantics

We give the local area calculus a late-binding, small-step operational semantics. Much of this is
standard from the regular mw-calculus; the only refinement is to make sure that communication on
any channel is contained within the appropriate local area.

Just what area is appropriate depends on the operating level of every channel, and we capture that
information in a level context A: a finite partial map from channel names to levels. We write down
level contexts using the a@/ notation from name binding. For example:

A = {pikeanet, fingerahost, daytimeahost, printahost }
or, more simply:

A = pikeanet; finger, daytime, printahost .

This declares that pike is a channel used for remote communication over the met, while finger,
daytime, and print, even when globally known, are restricted to host-level interaction.

Given some level context A, we write A -, P to denote that process P is well-formed at level £
with fn(P) C dom(A). When the process is in fact an agent we can omit the annotation on the turnstile
and write this as A + ([P)]

Our operational semantics is given as an inductively defined relation on well-formed processes,
indexed by their level ¢ and context A. Transitions take the form

Ay P&Q

where A -y P and « is one of the following.

-

Transition « ::= a(b) output
| a(b) input
| 7 silent internal action

Transitions themselves have free and bound names, given by functions fn(«) and bn(«) respectively,
where

fr(a(b)) = {a} ub fn(a(b)) = fn(la(b)

0= fn(r) = bn(7) bn(a(b)) = bn(la(b))
Valid transitions are derived using the rules of Figure 1. We make several observations of these rules
and the side-conditions attached to them.

a}

Il
S

[

e Active use of the structural congruence ‘=’ is essential to make full use of the rules: a process
term may need to be rearranged or a-converted before it can make progress. For example, there
is no symmetric form for the PAR rule (and no need for one).

e In order to apply the COMM rule it may be necessary to use structural congruence to expand
the scope of communicated names to cover both sender and recipient.

e Late binding is enforced by the side-condition bN dom(A) = () on the input rules; this ensures
that input names are chosen fresh, ready for substitution Q{¢/p} in the COMM rule. Again, we
can always a-convert our processes to achieve this.

All of these comments are simple (and well-known) tidying of the standard mw-calculus. The following
are specific to local areas.

OUT Ak aldy “o ¢ < Ala)

a(b)

IN Aty ab).P 22 P (< Aa) bndom(A) =0
IN! Abe la®).P Y Pla(B).P €< Aa) 50 dom(A) =0
o4 /
Ab, P1Q -5 P |Q
‘_1<5> / a(l_;) /
comm A P—>PT Aty Qj@
Ay P1Q — P Q'{c/b}
A F, P -2 P
BIND aemie T a ¢ fn(a)
Ay vaom.P — vaam.P’
AREA AR, P ia> P’ if v is a(b) or a(b)
A by ([P] -5 0[P then m < A(a)

Figure 1: Operational semantics for the local area calculus

e The side-condition ¢ < A(a) on the OUT, IN and IN! rules prevent channels being read or written
at too high a level. For example, trying to transmit on an application-level name in a host-level
process. Any process that attempts this becomes stuck.

e The side-condition m < A(a) on the AREA rule prevents communications escaping from their
local area. Notice that necessarily ¢ <; m here, because of the requirement that the left-hand
side {[P] be well-formed at level m.

The following results show that this operational semantics does successfully capture the intuition behind
areas and levels: areas retain their structure over transitions, and actions on a channel are never observed
above their operating level.

Proposition 4. If we can derive the transition Aty P —— Q then

e the process Q is well-formed at level ¢ with fn(Q) C dom(A) U bn(a);

o if the transition o is a(b) or a(b) then £ < A(a).
Proof. Structural induction on the derivation of A -, P - Q. O
In particular if A -, P — P’ then A -, P' and P’ might itself make further transitions.
Corollary 5. If we can derive the sequence of transitions

Ao PP P -5 Q

then the same properties hold of () as in Proposition 4

Proof. Repeated application of the preceding Proposition. U

Carp = host[vcanet.(pike(finger, c) | c(z).print(z))]
Pike = host[Inet | Finger | Daytime]

Inet = Ipike(s,r).5(r)
Finger = \finger(y).y{PikeUsers)
Daytime = \daytime(z).z(PikeDate)

A = pikeanet; finger, daytime, printehost

A Fpet (Carp | Pike)

Figure 2: Example of processes using local areas: an Internet server daemon

2.4 Examples

In the introduction we met a small model of Internet service provision. Figure 2 formulates this system
as a term of the local area calculus, with the following structure:

A Fper (Carp | Pike) .

Recall that the host Carp wishes to contact a Fiinger daemon running on host Pike, through a general
Inet daemon. We can now apply our operational semantics to see this in action.

A Fpet (Carp | Pike) = (host[vcanet.(pike(finger,c) | c(x).print(z))]
|host[Inet | Finger | Daytime))

extend scope = vcanet. (host|pike(finger, c) | c(x).print(z)]

of vcanet [
|host[Inet | Finger | Daytime))
expand Inet = vcanet. (host[pike(finger, c) | c(zx).print(x)]
|host[\pike(s,r).5(r) | Finger | Daytime])
communication

on pikeanet — veanet. (host|c(z).print (x)]

|host[finger(c) | Inet | Finger | Daytime])
expand Finger = vcanet. (host[c(x).print (x)]
|host[finger{(c) | Inet | ! finger(y).y(PikeUsers) | Daytime])

communication

on fingerahost — vcanet. (host[c(x).print(z)]

|host[Inet | ¢(PikeUsers) | Finger | Daytime])

communication

T P .
on canet — vcanet. (host[print (PikeUsers)]

|host[Inet | Finger | Daytime))

After a sequence of internal communications at the net and host level, the first host Clarp is ready to
print the information PikeUsers, and host Pike is restored to its original configuration.
Even this small example exhibits interesting scalability.

Main = app[vcohost.(load{c) | c(y)lik(z)m(y/z})]

Probe = app|vcahost.(load(c) | c(w).link (w))]
Load = app|!load(z).Z{LocalLoad)]

A = loadahost, linkanet, printahost

A Fpet host[Main | Load] | host[Probe | Load)]

Figure 3: Example of processes using local areas: load management agents

e Pike can support multiple simultaneous finger or daytime requests, because freshly-created
channels like ¢ provide private communication links.

e The system can support Finger and Daytime servers on several hosts, with exactly the same
agent code and protocol, because the finger and daytime names are known globally but act
locally.

Figure 3 presents another example, this time a very simple model of agent-style programming. Two
hosts both carry a load-monitoring agent Load, which will report the current system load to any other
agent on the same host. A Main program on one host wants to compare the load on the two machines,
and does this using a Probe agent with which it shares a private channel link.

The processes execute with the following result:

A et host[Main | Load] | host[Probe | Load) 7 host[print(k) | Load] | host[Load)]

where k is the numerical ratio of the load on the two hosts. Output print(k) is the residue of the
Masin agent, and the Probe is discharged entirely.
One purpose of a system arranged like this is the simplifications it allows in the Load agent:

e The two Load agents are actually identical: no parameters, no distinguishing identifiers.
e Both are addressed using the same globally-known channel name load.

e They only require host-level communication capabilities, and can operate independently of
firewalls or authentication.

These are the kind of advantages put forward for agent-based programming: the example shows how
the local area calculus can represent them. Of course, they really take off when agents become mobile,
but we can begin to evaluate their properties even in static systems like these.

3 Types for areas

The results at the end of Section 2.3 showed that local communications do remain local: an action on a
channel is never observed above its level of operation. However, this relies on several side-conditions
in the operational semantics of Figure 1, of the form ¢ < A(a), which are essentially runtime level
checks. In this section we show that a suitable type system can provide enough static information to
make these checks unnecessary.

P T'HQ Db:GH P T(a)=gam

L0 -

L'k PlQ Ikoab).p andl<m
I T,a:0t, P [,b:5F, P T(a)=3dam
— " t<m SASE AN
Ity 0P 'ty va:o.P I by la(b).P and £ <m

- =,

I'tpa(dy T'(a) =dam,T'(b) =6 and £ <m

Figure 4: Types for processes in the local area calculus

The rule AREA of Figure 1 deals with propagating actions once they have happened, and its side-
condition remains essential. The level tests accompanying OUT, IN and IN! are different: they check
to see if an action should be attempted at all. For example, the process a(g).P should not proceed if
it is above a’s level of operation. Arguably, such processes should never be written: the reason it is
not entirely trivial to eliminate them is that they can arise during execution as a result of substitution.

For example, consider the following system:
achost,baapp - host[appla(b)] | a(x).z()] —— host[b()]| /—

Here an application sends name b to a host-level process; this is fine as data, but the host then tries
to transmit on it, and the process halts as b is only intended for communication within an application.

The type system we propose handles this by specifying not just the operating level of a channel,
but also the levels of the channel names passed over it, and so on recursively.

3.1 Type system

Types are given by the following rather simple grammar.
Type ¢ = dJal

A type declaration of the form a : G@/ states that a is an f-level channel carrying tuples of values
whose types are given by the vector &. The base types are those with empty tuples: a channel of type
()af is for synchronisation within an f-area. In concrete examples we shall assume additional base
datatypes like int or string as convenient; these can be incorporated without difficulty into the formal
presentation.

The only syntactic change required to introduce types into processes is at v-binding:

Process P,(Q := ---|va:0.P fresh channel a of type o.

=,

The other binding operation, input prefix a(b).P, does not need any explicit type annotation, as the
types of the b are fixed by the type of the channel a.

We also replace level contexts A with type contexts I, finite partial maps from channel names
to types. With these alterations, Figure 4 presents the rules for deriving type assertions of the form
I" Fy P, which states that process P is well-typed at level ¢ in context I'.

To connect the typed calculus to the untyped one we use a notion of erasure. If o = 5al is a type,
then its erasure |o| is just the level ¢. If P is a typed process, then its erasure | P| is the same process
with all types replaced by their erased versions: in particular name binding va:@f.Q is replaced by
va@l.Q). This throws away the detail of type information, but keeps the basic level declaration. Finally,
erasing a type context I' gives a level context |I'|.

Proposition 6. If P is a well-typed process at level ¢ in type context I, then its erasure |P| is well-
formed at level € in the level context |T|.

'P = |I'|ke|P|

Proof. Structural induction on the type derivation I' -, P. U

3.2 Examples

We can give types to both of our examples from Section 2.4, which sensibly reflect their operation.
First, for the internet daemon of Figure 2.

c: stringanet pike : (service, response)anet
finger : service
daytime : service service = response@host

print : stringahost response = stringanet

The type service for finger and daytime expands to (stringanet)ahost. This means that the channels
can be used only for host-level communication, but the values carried will themselves be net-
level names. The host-level communication is between Inet and Finger or Daytime; the net-level
communication is the response sent out to the original enquirer, in this case machine Carp.

Channel pike has a net-level type that acts as a gateway to this, reading the name of a service and
a channel where that service should send its reply.

The second example, of agents comparing the load on two hosts, has the following typing.

¢ : intahost load : (int@host)ahost
link : intenet print : intehost

The most interesting type here is that for load: it captures the fact that not only must requests to load
come from agents on the same host, but replies are also host-limited. This characterises a purely local
procedure call used within a larger distributed environment.

3.3 Correctness

The operational semantics for well-typed processes replaces A with I in all the rules of Figure 1 and
omits the side-condition ¢ < A(a) from OUT, IN, and IN! What we show in this section is that it is
safe to make these omissions. The first step is to show that this operational semantics preserves types.

Proposition 7. If P is a well-typed process at level { in context I' and we can derive the transition
'ty P2 Q, then Q is well typed:

e ifa=a(b) or 7 then T F; Q
o if o =a(b) then T,b: &+ Q where I'(a) = Ga.

Proof. Structural induction on the derivation of the transition I' -, P - Q.]

As expected, there is an extremely tight connection between the behaviour of typed process terms and
their untyped erasures.

Proposition 8. Suppose that T -y P is some well-typed process.

10

() IfT ¢ P % P’ then |T| -, |P| = |P'|.

(i) If |T| ¢ |P| - Q for some untyped Q, then there is a typed process P’ such that Q = |P'|
and T Hy P = P

Proof. Structural induction on the derivation of the transitions.]

Combining Propositions 7 and 8(i) with Corollary 5, we obtain a demonstration that “well-typed terms
cannot go wrong”.

Theorem 9. For any well-typed process P, if we can derive the sequence of transitions

' P>-5...5%5Q

- -,

where o is a(b) or a(b) and T'(a) = &Fam then level £ < m.

This establishes that a well-typed process will never attempt to use a channel above its level of
operation, without the need for explicit checks in the operational semantics.

4 Conclusion and further work

The local area calculus provides a reasonable setting to explore the use of names that are known
globally but act locally. We have given an operational semantics and proved that it correctly captures
this intuition. Illustrative examples include an internet service protocol and a pair of distributed agents.
We propose a type system for channels in the calculus, and prove that it removes the need for some
run-time locality checks.

A further area of application that we are exploring is layered network protocols: where each
level communicates with the next on a local name, and only the outermost layer engages in actual
long-distance communication. For example, TCP/IP is often used with an ordering of levels as
application < transport < network < link.

We have an encoding of local areas into the pure 7-calculus, using an explicit apparatus of controller
processes to enforce level constraints: every communication is marshalled through routers, one for each
local area. We have also built components of an implementation in MLj [BKR98], which has provided
useful insight on various design choices for the calculus.

With channels operating at distinct levels — network, host, application — the possibility arises of
tuning observations of a process to inspect a single level of interest. We are working on a corresponding
notion of bisimulation that filters out actions at some levels and focuses attention on others. Local areas
give an opportunity for this to capture spatial information too.

The fact that communication in the calculus may be restricted to certain areas provides a form
of security, though rather a weak one, and it may be possible to make a connection here to relevant
versions of the m-calculus.

The ordering of levels immediately suggests notions of subtyping on channels; however, our
investigations suggest that this is not so useful in the situations we are concerned with. Communication
types in the calculus are essentially invariant: if the level of a name is too low, it may be unusable;
too high and it may make unwanted non-local connections.

One direction that is certainly worth pursuing is the step from static agents to properly mobile
ones, and we are looking at various ways to incorporate these into the calculus while retaining the
separate handling of scope and area. The m-calculus encoding mentioned above provides some hints:
in classic w-calculus style, it can be subverted to emulate mobile areas by dynamically rewiring the
attendant router processes.

11

References

[Ama99]

[BKR9S]

[Bou92]

[CGI8]

[FG96]

[HR98a]

[HRO98b]

[IAN]

[LO99]

[Mil91]

[San96]

[San97]

[San99]

[Sew98]

Roberto Amadio. On modelling mobility. Theoretical Computer Science, to appear, 1999.
Available electonically from Elsevier Preprint.

P. Nick Benton, Andrew Kennedy, and George Russell. Compiling Standard ML to Java
bytecodes. In ICFP '98: Proceedings of the Third ACM SIGPLAN International Conference
on Functional Programming. ACM Press, 1998.

Gérard Boudol. Asynchrony and the 7-calculus. Rapport de recherche 1702, INRIA, Sophia
Antipolis, 1992.

Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Foundations of Software Science
and Computation Structure: Proceedings of FoSSaCS$ ’98, number 1378 in Lecture Notes
in Computer Science, pages 140-155. Springer-Verlag, 1998.

Cédric Fournet and Georges Gonthier. The reflexive CHAM and the join-calculus. In
Conference Record of POPL ’96: 23rd ACM Symposium on Principles of Programming
Languages, pages 372-385. ACM Press, 1996.

Matthew Hennessy and James Riely. Resource access control in systems of mobile agents.
In Proceedings of HLCL ’98: High-Level Concurrent Languages, number 16.3 in Electronic
Notes in Theoretical Computer Science, pages 3—17. Elsevier, 1998.

Matthew Hennessy and James Riely. A typed language for distributed mobile processes.
In Conference Record of POPL ’98: 25th ACM Symposium on Principles of Programming
Languages. ACM Press, 1998.

IANA, the Internet Assigned Numbers Authority. Protocol numbers and assignment services:
Port numbers. http://www.iana.org/numbers.html#P.

Danny B. Lange and Mitsuru Oshima. Seven good reasons for mobile agents. Communi-
cations of the ACM, 42(3):88-89, March 1999.

Robin Milner. The polyadic 7-calculus — a tutorial. Technical Report ECS-LFCS-91-180,
Laboratory for Foundations of Computer Science, University of Edinburgh, 1991.

Davide Sangiorgi. Locality and non-interleaving semantics in calculi for mobile processe.
Theoretical Computer Science, 155:39-83, 1996.

Davide Sangiorgi. The name discipline of receptiveness. In Automata, Languages and
Programming: Proceedings of the 24th International Colloguium ICALP 97, number 1256
in Lecture Notes in Computer Science. Springer-Verlag, 1997. to appear in Theoretical
Computer Science.

Davide Sangiorgi. Reasoning about concurrent systems using types. In Foundations of
Software Science and Computation Structure: Proceedings of FoSSaCS '99, number 1578
in Lecture Notes in Computer Science, pages 31-40. Springer-Verlag, March 1999.

Peter Sewell. Global/local subtyping and capability inference for a distributed 7-calculus. In
Automata, Languages and Programming: Proceedings of the 25th International Colloquium
ICALP 98, number 1442 in Lecture Notes in Computer Science. Springer-Verlag, 1998.

12

