
Mixing Finite Success and Finite Failure in an
Automated Prover

Alwen Tiu1, Gopalan Nadathur2, and Dale Miller3

1 INRIA Lorraine
2 University of Minnesota

3 INRIA Futurs/École polytechnique

Abstract. The operational semantics and typing of modern program-
ming and specification languages are often defined using relations and
proof systems. In simple settings, logic programming can be used to pro-
vide rather direct and natural interpreters for such operational semantics.
More complex features of specifications such as names and their bind-
ings, proof rules with negative premise, and the exhaustive enumeration
of state spaces, all pose significant challenges to conventional logic pro-
gramming systems. In this paper, we describe a simple architecture for
the implementation of deduction systems that allows a specification to
interleave both with finite success and finite failure. The implementation
techniques for this prover are largely common ones from logic program-
ming, i.e., logic variables, (higher-order pattern) unification, backtrack-
ing (using stream-based computation), and abstract syntax based on
simply typed λ-terms. We present a particular instance of this prover
architecture and its prototype implementation, based on a dual interpre-
tation of (finite) success and failure in proof search. We discuss impor-
tant differences between this prover and traditional logic programming
and present an implementation of bisimulation checking for π-calculus,
which cannot be so directly and declaratively done in traditional logic
programming languages.

1 Introduction

The operational semantics and typing of modern programming and specification
languages are often defined using relations and proof systems, e.g., in the sytle of
Plotkin’s structural operational semantics. In simple settings, higher-order logic
programming such as λProlog or Twelf can be used to provide rather direct and
natural interpreters for such operational semantics. However, the use of logic pro-
gramming in this setting is rarely beyond providing interpreters. In particular,
reasoning about the language specifications has to be done outside the logic pro-
gramming system. For instance, in checking bisimulation in process calculi, one
needs to analyze all the transition paths a process can potentially go through.
To add to the complication, modern language specifications often make use of
complex features such as variable bindings and the notion of names (as in pro-
cess calculi [12]), which interferes in a non-trivial way with case analyses. These

case analyses cannot be done directly inside logic programming system, not in a
purely logical way at least, even though they are simply enumerations of answer
substitutions. In this paper, we describe an extension to logic programming with
logically sound features which allow us to do some modest automated reasoning
about specifications of operational semantics. This extension is more conceptual
than technical, that is, the implementation of the extended logic programming
language uses only basic implementation techniques that are largely common
ones in logic programming, i.e., logic variables, higher-order pattern unification,
backtracking (using stream-based computation) and abstract syntax based on
typed λ-calculus.

The implementation described in this paper is based on the logic FOλ∆∇

[11]. FOλ∆∇ is an extension of the first-order variant of Church’s Simple Theory
of Types with fixed points and a new quantifier ∇. In FOλ∆∇ quantifiers can
range over higher-types, but quantification over propositions is not allowed, and
hence it is essentially first-order logic with simply typed terms. The simply typed
terms of the logic are used as an abstract syntax for encoding arbitrary syntax
of object-languages specification. This style of encoding, called λ-tree syntax, is
a variant of higher-order abstract syntax where the λ-abstraction is used only
to encode variable binding. The quantifier ∇ is first introduced in [11] to help
encode the notion of “generic judgment” that occurs commonly when reasoning
with λ-tree syntax. The extension with fixed points is done through a proof
theoretical notion of definitions [19, 1, 3, 21, 7].

In a logic with definitions, an atomic proposition may be defined by another
formula (which may contain the atomic proposition itself). Proof search for a
defined atomic formula is done by unfolding the definition of the formula. A
provable formula like ∀X.pX ⊃ qX, where p and q are some defined predicates,
expresses the fact that for every term t and for every proof (computation) of pt,
there is a proof (computation) of qt. If the computation tree associated with p
is finite, we can effectively enumerate all its computation paths and check the
provability of qt for each path. Note that if the computation tree for p is empty
(pt is not provable for any t) then ∀X.pX ⊃ qX is vacuously true. In other words,
failure in proof search for pX entails success in proof search for pX ⊃ qX. The
analogy with negation-as-failure in logic programming is obvious: if we take qX
to be ⊥ (false), then provability of pX ⊃ ⊥ corresponds to success in proof search
for not(pX) in logic programming. This relation between negation-as-failure in
logic programming and negation in logic with definitions has been observed in
[4, 3]. In the implementation of FOλ∆∇, the above observation leads to a neutral
view on proof search: If proof search for a goal A returns a non-empty set of
answer substitutions, then we have found a proof of A. On the other hand, if
proof search for A returns an empty answer set, then we have found a proof for
¬A. Answer substitutions can thus be interpreted in a dual way depending on
the context of proof search (see Section 3).

The rest of the paper is organized as follows. In Section 2, we give an overview
of the logic FOλ∆∇. Section 3 describes an implementation of a fragment of
FOλ∆∇, the Level-0/1 prover, which is based on a dual interpretation of fail-

ure/success in proof search. Section 4 discusses the treatment of variables in
the Level-1/0 prover, in particular it discusses the issues concerning the inter-
action between eigenvariables and logic variables. Section 7 gives an example of
an implementation of π-calculus and bisimulation checker in Level-0/1 prover.
This example illustrates the use of the ∇-quantifier in capturing the notion of
names in π-calculus. The example is based on a recent work on encoding π-
calculus in FOλ∆∇ [24]. Section 9 discusses the components of proof search
implementation and outlines a general implementation architecture for FOλ∆∇.
Section 10 discusses future work. An extended version of this paper is avalaible
on the web, containing more examples and more detailed comparison with logic
programming.

2 Overview of the logic FOλ∆∇

The logic FOλ∆∇ [11] (pronounced “fold-nabla”) is presented using a sequent
calculus that is an extension of Gentzen’s system LJ [2] for first-order intu-
itionistic logic. A sequent is an expression of the form B1, . . . , Bn − B0 where
B0, . . . , Bn are formulas and the elongated turnstile − is the sequent arrow. To
the left of the turnstile is a multiset: thus repeated occurrences of a formula
are allowed. If the formulas B0, . . . , Bn contain free variables, they are consid-
ered universally quantified outside the sequent, in the sense that if the above
sequent is provable than every instance of it is also provable. In proof theoretical
terms, such free variables are called eigenvariables. Eigenvariable can be used
to encode the dynamics of abstraction in the operational semantics of various
languages. However, for reasoning about certain uses of abstraction, notably the
notion of name restriction in π-calculus, eigenvariables do not capture faithfully
the intended meaning of such abstractions. To address this problem, in the logic
FOλ∆∇ sequents are extended with a new notion of “local scope” for proof-level
bound variables (see [11] for motivations and examples). In particular, sequents
in FOλ∆∇ are of the form

Σ ; σ1 . B1, . . . , σn . Bn − σ0 . B0

where Σ is a global signature, i.e., the set of eigenvariables whose scope is over
the whole sequent, and σi is a local signature, i.e., a list of variables scoped over
Bi. We shall consider sequents to be binding structures in the sense that the
signatures, both the global and local ones, are abstractions over their respective
scopes. The variables in Σ and σi will admit α-conversion by systematically
changing the names of variables in signatures as well as those in their scope,
following the usual convention of the λ-calculus. The meaning of eigenvariables
is as before, only that now instantiation of eigenvariables has to be capture-
avoiding, with respect to the local signatures. The variables in local signatures
act as locally scoped generic constants, that is, they do not vary in proofs since
they will not be instantiated. The expression σ . B is called a generic judgment
or simply a judgment. We use script letters A, B, etc. to denote judgments. We
write simply B instead of σ . B if the signature σ is empty.

Σ, σ ` t : γ Σ ; σ . B[t/x], Γ − C
Σ ; σ . ∀γx.B, Γ − C ∀L

Σ, h ; Γ − σ . B[(h σ)/x]

Σ ; Γ − σ . ∀x.B
∀R

Σ, h ; σ . B[(h σ)/x], Γ − C
Σ ; σ . ∃x.B, Γ − C ∃L

Σ, σ ` t : γ Σ ; Γ − σ . B[t/x]

Σ ; Γ − σ . ∃γx.B
∃R

Σ ; (σ, y) . B[y/x], Γ − C
Σ ; σ .∇x B, Γ − C ∇L

Σ ; Γ − (σ, y) . B[y/x]

Σ ; Γ − σ .∇x B
∇R

Fig. 1. The introduction rules for quantifiers in FOλ∆∇.

The logical constants of FOλ∆∇ are ∀ (universal quantifier), ∃ (existential
quantifier), ∇, ∧ (conjunction), ∨ (disjunction), ⊃ (implication), > (true) and ⊥
(false). The inference rules for the quantifiers of FOλ∆∇ are given in Figure 1.
The introduction rules for propositional connectives are straightforward gener-
alization of LJ, that is, local signatures are distributed on the subformulas of
the main formula (reading the rules bottom-up). The complete set of rules for
FOλ∆∇ is given in the Appendix. Note that since we do not allow quantification
over predicates, this logic is proof-theoretically similar to first-order logic.

During the search for proofs (reading rules bottom up), inference rules for
∀ and ∃ quantifier place new eigenvariables into the global signature while the
inference rules for ∇ place them into the local signature. In the ∀R and ∃L rules,
raising [9] is used when moving the bound variable x, which can range over the
variables in both the global signature and the local signature σ, with the variable
h that can only range over variables in the global signature: so as not to miss
substitution terms, the variable x is replaced by the term (h x1 . . . xn), which
we shall write simply as (h σ), where σ is the list x1, . . . , xn (h must not be
free in the lower sequent of these rules). In ∀L and ∃R, the term t can have
free variables from both Σ and σ. This is presented in the rule by the typing
judgment Σ, σ ` t : τ . The ∇L and ∇R rules have the proviso that y is not free
in ∇x B.

The standard inference rules of logic express introduction rules for logical
constants. The full logic FOλ∆∇ additionally allows introduction of atomic
judgments, that is, judgments which do not contain any occurrences of logi-
cal constants. To each atomic judgment, A, we associate a defining judgment,
B, the definition of A. The introduction rule for the judgment A is in effect
done by replacing A with B during proof search. This notion of definitions is
an extension of work by Schroeder-Heister [19], Eriksson [1], Girard [3], Stärk
[21] and McDowell and Miller [7]. These inference rules for definitions allow for
modest reasoning about the fixed points of definitions.

Definition 1. A definition clause is written ∀x̄[p t̄
4
= B], where p is a predicate

constant, every free variable of the formula B is also free in at least one term
in the list t̄ of terms, and all variables free in p t̄ are contained in the list x̄ of
variables. The atomic formula p t̄ is called the head of the clause, and the formula

B is called the body. The symbol
4
= is used simply to indicate a definitional

clause: it is not a logical connective. The predicate p occurs strictly positively in
B, that is, it does not occur to the left of any ⊃ (implication).

Let ∀τ1x1 . . .∀τn
xn.H

4
= B be a definition clause. Let y1, . . . , ym be a list of

variables of types α1, . . . , αm, respectively. The raised definition clause of H with
respect to the signature {y1 : α1, . . . , ym : αm} is defined as

∀h1 . . .∀hn.ȳ . Hθ
4
= ȳ . Bθ

where θ is the substitution [(h1 ȳ)/x1, . . . , (hn ȳ)/xn] and hi is of type α1 →
. . . → αm → τi. A definition is a set of definition clauses together with their
raised clauses.

The introduction rules for a defined judgment are as follow. When applying
the introduction rules, we shall omit the outer quantifiers in a definition clause
and assume implicitly that the free variables in the definition clause are distinct
from other variables in the sequent.

{Σθ ; Bθ, Γθ − Cθ | θ ∈ CSU(A,H) for some clause H 4
= B}

Σ ; A, Γ − C defL

Σ ; Γ − Bθ

Σ ; Γ − A def R, where H 4
= B is a definition clause and Hθ = A

In the above rules, we apply substitution to judgments. The result of applying
a substitution θ to a generic judgment x1, . . . , xn . B, written as (x1, . . . , xn .
B)θ, is y1, . . . , yn . B′, if (λx1 . . . λxn.B)θ is equal (modulo λ-conversion) to
λy1 . . . λyn.B′. If Γ is a multiset of generic judgments, then Γθ is the multiset
{Jθ | J ∈ Γ}. In the defL rule, we use the notion of complete set of unifiers
(CSU) [5]. We denote by CSU(A,H) the complete set of unifiers for the pair
(A,H), that is, for any unifier θ of A and H, there is a unifier ρ ∈ CSU(A,H)
such that θ = ρ ◦ θ′ for some substitution θ′. Since we allow higher-order terms
in definitions, in certain cases there are no finite CSU’s for the corresponding
unification problems. However, in all the applications of defL in this paper, the
terms involved in the unification are those of higher-order pattern [8, 16], that
is, terms in which variables are applied only to distinct bound variables. Since
higher-order pattern unification is decidable and has the most general unifier if
the unification is solvable, the set CSU(A,H) in this case is either empty or
contains a single substitution which is the most general unifier. The signature
Σθ in defL denotes a signature obtained from Σ by removing the variables in
the domain of θ and adding the variables in the range of θ. In the defL rule,
reading the rule bottom-up, eigenvariables can be instantiated in the premise,
while in the def R rule, eigenvariables are not instantiated. The set that is the
premise of the defL rule means that that rule instance has a premise for every
member of that set: if that set is empty, then the premise is proved.

One might find the following analogy with logic programming helpful: if a
definition is viewed as a logic program, then the def R rule captures backchaining

and the defL rule corresponds to case analysis on all possible ways an atomic
judgment could be proved. The latter is a distinguishing feature between the
implementation of FOλ∆∇ discussed in Section 3 and logic programming. For
instance, given a definition {pa

4
= >, pb

4
= >, qa

4
= >, qb

4
= >, qc

4
= >}

one can prove ∀x.px ⊃ qx: for all successful “computation” of p, there is a suc-
cessful computation for q. Notice that by encoding logic programs as definitions,
one can effectively encode negation-as-failure in logic programming using defL
[4], e.g., for the above program (definition), the goal not(pc) in logic program-
ming is encoded as the formula pc ⊃ ⊥.

Among the properties of FOλ∆∇, one that is particularly useful for proof
search is the invertibility of certain rules. In proof search, invertible rules can
always be applied without the need for backtracking. Those rules include defL,
∇L, ∇R, ∃L, ∀R, the right introduction rules for ∧ and ⊃, and the left intro-
duction rules for ∧ and ∨ (see [22] for a proof). The invertibility of these rules
motivates the choice of the fragment of FOλ∆∇ and the proof search strategy
in the prototype implementation discussed in Section 3.

3 Mixing success and failure in a prover

We now give an overview of an implementation of proof search for a fragment
of FOλ∆∇. This implementation, called Level 0/1 prover, is based on the dual
interpretation of finite success and finite failure in proof search. In particular,
the finite failure in proving a goal ∃x.G should give us a proof of ¬(∃x.G) and
vice versa. We experiment with a simple class of formulae which exhibits this
duality. Consider the fragment of FOλ∆∇ induced by the following classes of
formulae:

Level 0: G := > | ⊥ | A | G ∧G | G ∨G | ∃x.G | ∇x.G
Level 1: D := > | ⊥ | A | D ∧D | D ∨D | ∃x.D | ∇x.D | ∀x.D | G ⊃ D
atomic: A := p t1 . . . tn

We shall assume that each predicate symbol belongs either to level-0 or level-
1 and that level-0 formula can contain only level-0 predicates. Each definition
clause px̄

4
= B must be stratified, i.e., if p is a level-0 predicate then B should

belong to the class level-0, otherwise if p is a level-1 predicate then B can be
level-0 or level-1 formula. In the current implementation, stratification checking
and typechecking are not implemented, so that we can experiment with a wider
range of definitions than those for which the meta-theory is fully developed.

Notice that in the Level-1 formula, the use of implication is restricted to
the form G ⊃ D where G is a Level-0 formula. Therefore, nested implication
like (A ⊃ B) ⊃ C is not allowed. The Level-0/1 prover actually consists of
two separate subprovers, one for each class of formulas. Implementation of proof
search for level-0 formula is the standard logic-programming implementation.
It is actually a subset of λProlog (substituting ∀ for ∇). That is, existentially
quantified variables are replaced by logic variables, ∇-quantified variables are

replaced with scoped (local) constants (which have to be distinguished from
eigenvariables) and def R becomes backchaining. For level-1 formulas, the non-
standard case is when the goal is an implication, e.g., G ⊃ D. Proof search
strategy for this case derives from the following observation: the left-introduction
rules for level-0 formulas are all invertible rules, and hence can always be applied
first. Proof search for an implicational goal G ⊃ D therefore proceeds as follows:

Step 1 Run the level-0 prover with the goal G, treating eigenvariables as logic
variables.

Step 2 If Step 1 fails, then proof search for G ⊃ D succeeds. Otherwise, collect
all answer substitutions produced in Step 1, and for each answer susbtitution
θ, proceed with proving Dθ

In Step 1, in the current implementation, we impose a restriction: the formula G
must not contain any occurrences of logic variables. If this restriction is violated,
an exception is returned and proof search is aborted. We shall return to this
technical restriction in Section 4. For several examples that have been studied
so far (π-calculus, bisimulation, modal logics) this restriction on the occurrence
of logic variable does not seem to pose any problem for the set of goals of interest,
e.g., checking bisimulation and satisfiability of modal logic formulas.

Concrete syntax The concrete syntax for Level 0/1 prover follows the syntax of
λProlog. The concrete syntax for logical connectives are as follows:

> true ⊥ false
∧ & (ampersand) or , (comma) ∨ ; (semi-colon)
∀ pi ∃ sigma
∇ nabla ⊃ =>

The λ-abstraction is represented in the concrete syntax using a backslash, e.g.,
λxλf.fx is written as x\f\(f x). The order of precedence for the connectives
are as follows (in decreasing order): ∧, ∨, ⊃, {∀,∃,∇}. Non-logical constants
such as ‘not’ (negation-as-failure) and ‘!’ (Prolog cut) are not implemented. But
we allow a non-logical constant “print” which prints a string or term.

The symbol
4
= separating the head and the body of a definition clause is

written ‘:=’ in the concrete syntax. For example, the familiar ‘append’ predicate
for lists can be represented as the following definition.

append nil L L.

append (cons X L1) L2 (cons X L3) := append L1 L2 L3.

As in λProlog, we use ‘.’ (dot) to indicate the end of a statement. Identifiers
starting with a capital letter denote variables and those starting with lower-case
letter denote constants. Variables in a definition clause are implicitly quantified
outside the clause (the scope of such quantification is over the clause, so there
is no accidental mixing of variables across different clauses). A definition clause
with the body ‘true’ is abbreviated with the ‘true’ removed, e.g., the first clause
of append above is actually an abbreviation of append nil L L := true.

4 Eigenvariables, logic variables and ∇

The three quantifiers, ∀, ∃ and ∇, give rise to three kinds of variables dur-
ing proof search: eigenvariables, logic variables and “variables” generated by ∇.
Their characteristics are as follows: logic variables are genuine variables, in that
they can be instantiated during proof search. Eigenvariables are subject to in-
stantiation only in proving negative goals, while in positive goals they are treated
as scoped constants. Variables generated by ∇ are always treated as constants.
In the implementation, ∇-variables are actually represented as λ-abstraction.
Eigenvariables and logic variables share similar data structures, and explicit
raising is used to encode their dependency on ∇-variables. The interaction be-
tween eigenvariables and logic variables is more subtle. Consider the case where
both eigenvariables and logic variables are present in a negative goal, e.g.,

∀x.∃y.(px ∧ py ∧ x = y ⊃ ⊥),

where p is defined as {pa
4
= >, pb

4
= >, pc

4
= >}. In proof search for this formula,

we are asked to produce for each x, a y such that x and y are distinct. This
is no longer a unification problem in the usual sense, since we seek to cause
a failure in unification, instead of success. This type of problem is generally
referred to as complement problems or disunification [6], and its solution is not
unique in general, even for the first-order case, e.g., in the above disunification
problem, if x is instantiated to a then y can be instantiated with either b or c. In
the higher-order case [14] the problem is considerably more difficult, and hence
in the current implementation we disallow the occurrences of logic variables in
negative goals.

In Figure 2, we show a sample session in Level 0/1 prover which highlights
the differences between eigenvariables, logic variables, and ∇-variables. The uni-
fication problem in the first two goals can be seen as the unification problem
λx.x = λx.(Mx). Notice that there is no difference between ∀ and ∇ if the goal
is Horn (i.e., there is no implication in the goal). A non-Horn goal is given in
the third example. Here the unification fails (hence the goal succeeds) because
x is in the scope of M . It is similar to the unification problem λx.x = λx.M.
Here substitution must be capture-avoiding, therefore M cannot be instantiated
with x. However, if we switch the order of quantifer or using application-term
(as in (fx) in the fourth goal) the unification succeeds. In the last goal, we are
trying to prove implicational goal with logic variables, and the system returns
an exception.

Enumerating solutions. The ability to instantiate eigenvariables in the definition-
left rule can be used to enumerate all possible solutions to a given level-0 goal.
More interestingly, such solutions can actually be explicitly queried. The predi-
cate enum in Figure 3 enumerates all solutions to the query pX and stores the
resulting answers in a list, e.g.,

?- enum L.

Yes

L = (cons c (cons b (cons a nil)))

?- nabla x\ x = (M x).

Yes

M = x1\x1

Find another? [y/n] y

No.

?- pi x\ x = (M x).

Yes

M = x1\x1

Find another? [y/n] y

No.

?- pi M\ nabla x\ x = M => false.

Yes

Find another? [y/n] y

No.

?- pi f\ nabla x\ x = f x => print "unification succeeded".

unification succeeded

Yes

?- nabla x\ pi y\ x = y => print "unification succeeded".

unification succeeded

Yes

?- nabla x\ x = (M x) => false.

Error: non-pure term found in implicational goal.

Fig. 2. A session in Level 0/1 prover.

There are other solutions which are permutations of the the above list. In
general, if there are n answer substitutions to a given goal, enum will produce
n! answers. Therefore the complexity of the enum clause is rather high, and in
practice, such enumerations should be used with care.

5 Comparison with λProlog

Setting aside the ∇ quantifier, one might think that the proof search behavior for
∀ and ⊃ connectives in FOλ∆∇ can be approximated in λProlog with negation-
as-failure. The ⊃ connective, for instance, can be defined in λProlog as follows

imp A B :- not(A, not(B)).

If proof search for A terminates with failure, then the goal imp A B succeeds.
Otherwise, for each answer substitution for A, if B fails then the whole goal fail,
otherwise the not(B) fails and hence imp A B succeeds. For ground terms (with
no eigenvariables) A and B, this co-incides with the operational reading of A => B
in Level 0/1 prover. The story is not so simple, however, if there are occurrences
of eigenvariables in A or B.

One can sort of see intuitively why the inclusion of eigenvariables in A or B
would cause problem: the eigenvariables in λProlog play a single role as scoped
constant, while in Level 0/1 they have dual roles, as constants and as variables

p a.

p b.

p c.

member X (cons X L).

member X (cons Y L) := member X L.

acc L R := p Y, (member Y L => false), acc (cons Y L) R.

acc L L := pi y\ p y => member y L.

enum L := acc nil L.

Fig. 3. Enumerating solutions.

to be instantiated. However, there is one trick to deal with this, that is, suppose
we are to prove ∀x.Ax ⊃ Bx, instead of the straightforward encoding of ∀ as
‘pi’, we may use ‘sigma’ instead:

sigma x\ not (A x, not (B x)).

Here the execution of the goal forces the instantiation of the (supposed to
be) ‘eigenvariable’. The real problem appears when eigenvariables may assume
two roles at the same time. Consider the goal

∀x∀y.x = a ⊃ y = b

where a and b are constants. Assuming nothing about the domain of quantifi-
cation, this goal is not provable. Now, the possible encodings into λProlog is to
use either ‘sigma’ or ‘pi’ to encode the quantifier. Using the former, we get

sigma x\ sigma y\ not (x = a, not(y = b)).

This goal is provable, hence it is not the right encoding. If instead we use ‘pi’
to encode ∀, we get

pi x\ pi y\ not (x = a, not (y = b)).

This goal also succeeds, since ‘x’ here will become an eigenvariable and hence
it is not unifiable with ‘a’. Of course, one cannot rule out other more complicated
encodings, e.g., treating ∀ as ‘pi’ in one place and as ‘sigma’ in others, but it
is doubtful that there will be an encoding scheme which can be generalized to
arbitrary cases.

6 Example: abstract transition systems

An abstract transition system (ats for short) T is usually defined as the triple

(Λ, S, δ)

where Λ is a set of labels or actions, S is a set of states and δ is the transition
relation, i.e., S ⊆ S×Λ×S. The elements of δ are usually represented graphically
as something like p

a−→ q, where p and q are states and a is an action. Unlabelled

transition system can be seen as an ats with a single label. In this section we
consider only finite state transition systems, that is, in the above definition, the
set S is finite. An (finite) ats can be trivially encoded as follows: each label
and state in the ats are encoded as unique constants and the transition relation
δ is encoded as a predicate (called ‘next’ in this example) which takes three
arguments, a state, a label and another state. For example, the ats

({a, b}, {p, q, r}, {p a−→ q, p
b−→ r, q

b−→ p})

is encoded as the following definition:

next p a q.

next p b r.

next q b p.

Reachability analysis Among the properties of interest about an ats is the reach-
ability of certain states. For example, in modelling an online transaction system,
one would want to make sure that no two processes are in the same critical
section at the same time. For finite states systems, this can be translated to the
problem of unreachability of the states that correspond to this situation.

Let us consider the following unlabelled ats. We remove the label in specifying
the transition relation.

next p q.

next p z.

next q r.

next r q.

next a b.

The reachability condition can be specified as the following definition

reach L P P.

reach L P Q :=

(P = Q => false), sigma R\ next P R, (member R L => false),

reach (cons P L) R Q.

The predicate reach L P Q should be read as “the state Q is reachable from P,
given the already visited states in L”. Reachability of Q from P is then specified
as the formula reach nil P Q. We need the list L to keep track of visited states,
since there can be cycles in the transition relations.

One would probably think that the unreachability predicate can be simply
defined as the negation of reachability. However, notice that the reachability
predicate defined above is a Level-1 definition, and hence its negation would fall
outside the scope of the formulas the current prover can handle. Here we choose
to define directly a notion of unreachability: a state Q is not reachable from P
if P is different from Q and Q is not reachable from any successor of P. This is
formalized as follows:

notreach L P Q :=

(P = Q => false),

pi R\ next P R => if (member R L) (true) (notreach (cons P L) R Q).

Below are some simple queries about the reachability of some states.

?- reach nil p q.

Yes

?- notreach nil p a.

Yes

?- notreach nil a b.

No

int turn = 0;

boolean[] active = {false, false};

int i, j;

void process(int k)

{

i = k;

j = 1 - k;

1: while (true) {

2: active[i] = true;

turn = j;

while (

3: active[j] &&

4: turn == j)

;

// critical section

5: ...

// end of critical section

active[i] = false;

}

}

Fig. 4. Peterson’s algorithm

Peterson’s algorithm We shall now apply the reachability analysis to verify the
mutual exclusion property of a certain concurrent system. More precisely, our
system consists of two processes running in parallel, they share certain variables
and updates to these variables constitute the critical section for each process.
We shall look at a particular algorithm, the Peterson’s algorithm, which solves
this mutual exclusion problem, and verify that the algorithm is correct. The
Peterson’s algorithm is given in Figure 4. The system consists of ‘process(0)’
and ‘process(1)’ running in parallel. Let p0 be the process ‘process(0)’ and p1 be
the process ‘process(1)’. The variables ‘turn’ and ‘active’ are shared by these two
processes. The numbers on the left denote the states of the program counters of

next (pr 1 A B C D) (pr 2 A 1 C D).

next (pr 2 A B C D) (pr 3 A B C 1).

next (pr 3 A B 0 D) (pr 5 A B 0 D).

next (pr 3 A B 1 D) (pr 4 A B 1 D).

next (pr 4 A B C 0) (pr 5 A B C 0).

next (pr 4 A B C 1) (pr 3 A B C 1).

next (pr 5 A B C D) (pr 1 A 0 C D).

next (pr A 1 B C D) (pr A 2 B 1 D).

next (pr A 2 B C D) (pr A 3 B C 0).

next (pr A 3 0 C D) (pr A 5 0 C D).

next (pr A 3 1 C D) (pr A 4 1 C D).

next (pr A 4 B C 1) (pr A 5 B C 1).

next (pr A 4 B C 0) (pr A 3 B C 0).

next (pr A 5 B C D) (pr A 1 B C D).

Fig. 5. A specification of Peterson’s algorithm.

member X (cons X L).

member X (cons Y L) := member X L.

notreach L P Q :=

(P = Q => false),

pi R\ next P R =>

if (member R L) then (true) (notreach (cons P L) R Q).

mutex := pi x\ pi y\ pi z\ notreach nil (pr 1 1 0 0 0) (pr 5 5 x y z).

Fig. 6. Verifying the correctness of Peterson’s algorithm: a declarative approach.

member X (cons X L).

member X (cons Y L) := member X L.

acc P L R := next P X, (member X L => false), acc P (cons X L) R.

acc P L L := pi x\ next P x => member x L.

% get all reachable next states from P

getnext P L := acc P nil L.

union L nil L.

union L (cons A R) M :=

if (member A L) (union L R M)

(union L R M1, M = (cons A M1)).

takenew V nil nil.

takenew V (cons A R) L :=

if (member A V) (takenew V R L)

(takenew V R L1, L = (cons A L1)).

newfrontier V nil nil.

newfrontier V (cons P R) NF :=

getnext P L,

takenew V L L1,

newfrontier V R NF1,

union L1 NF1 NF.

notreach Visited Frontier Q :=

(member Q Frontier => false),

if (Frontier = nil) (true)

(

print ".",

union Visited Frontier Visited1,

newfrontier Visited1 Frontier Frontier1,

notreach Visited1 Frontier1 Q

).

mutex := pi x\ pi y\ pi z\

notreach nil (cons (pr 1 1 0 0 0) nil) (pr 5 5 x y z).

Fig. 7. Verifying the correctness of Peterson’s algorithm: breadth-first search

both processes at certain points of the code. Let pc0 and pc1 be the program
counters of p0 and p1, respectively. The (abstracted) state of the entire system
can be represented as the the tuple

(pc0, pc1, active[0], active[1], turn).

There are a total of 200 states. We shall use ‘0’ and ‘1’ to represent ‘false’
and ‘true’, respectively. A state transition is triggered by process execution.
For example, in the state (1, 1, 0, 0, 0) the possible next states are (2, 1, 1, 0, 0)
(process p0 is executing and sets the value of ‘active[0]’ to ‘1’ (‘true’)) and
(1, 2, 0, 1, 0) (process p1 is executing and sets the value of ‘active[1]’ to ‘1’).
These abstracted states and their transitions are given in Figure 5. The state
that violates the mutual exclusion property is the state where both p0 and p1
are in the critical section, i.e., the state (5, 5, x, y, z) where x, y and z are of any
value. To verify the correctness of Peterson’s algorithm, it is enough to check
that the state (5, 5, x, y, z) is not reachable from the initial state (1, 1, 0, 0, 0).

A straightforward specification of the correctness is given in Figure 6, where
we make use of the reachability clause defined previously. However, this definition
(read: program) will take too long to execute since it is exponential in the number
of states. A better definition (in terms of performance) is the one shown in
Figure 7 where we use a breadth-first-search approach in exploring the state
space. This “definition” runs in polynomial time. Here we use a method similar
to enum (see Section 4) for enumerating all possible next states from a given
state, that is, the predicate getnext in the figure.

7 Example: π-calculus and bisimulation

This section gives an implementation of the specifications of the π-calculus [12]
and strong bisimulation. More details on the adequacy of the encodings presented
in this section can be found in [24, 22]. We consider only finite π-calculus, that
is, the fragment of π-calculus without recursion or replication. The syntax of
processes is defined as follows

P ::= 0 | x̄y.P | x(y).P | τ.P | (x)P | [x = y]P | P|Q | P + Q.

We use the notation P, Q, R, S and T to denote processes. Names are denoted
by lower case letters, e.g., a, b, c, d, x, y, z. The occurrence of y in the process
x(y).P and (y)P is a binding occurrence, with P as its scope. The set of free
names in P is denoted by fn(P), the set of bound names is denoted by bn(P).
We write n(P) for the set fn(P) ∪ bn(P). We consider processes to be syntactical
equivalent up to renaming of bound names. The operator + denotes the choice
operator: a process P +Q can behave either like P or Q. The operator | denotes
parallel composition: the process P |Q consists of subprocesses P and Q running
in parallel. The process [x = y]P behaves like P if x is equal to y. The process
x(y).P can input a name through x, which is then bound to y. The process
x̄y.P can output the name y through the channel x. Communication takes place

z : p in : n → (n → p) → p out : n → n → p → p
plus : p → p → p par : p → p → p taup : p → p
nu : (n → p) → p tau : a up : n → n → a
dn : n → n → a one : p → a → p → o onep : p → (n → a) → (n → p) → o

[[0]] = z [[[x = y]P]] = match x y [[P]]
[[x̄y.P]] = out x y [[P]] [[x(y).P]] = in x λy.[[P]]
[[P + Q]] = plus [[P]] [[Q]] [[P|Q]] = par [[P]] [[Q]]
[[τ.P]] = taup [[P]] [[(x)P]] = nu λx.[[P]]

[[P
τ

−−→ Q]] = one [[P]] tau [[Q]] [[P
x̄y

−−→ Q]] = one [[P]] (up x y) [[Q]]

[[P
x(y)

−−→ Q]] = onep [[P]] (dn x) (λy[[Q]]) [[P
x̄(y)

−−→ Q]] = onep [[P]] (up x) (λy[[Q]])

Fig. 8. Translation from π-calculus syntax to λ-tree syntax.

between two processes running in parallel through the exchanges of messages
(names) on the same channel (another name). The restriction operator (), e.g.,
in (x)P , restricts the scope of the name x to P .

One-step transition in the π-calculus is denoted by P
α

−−→ Q, where P and Q
are processes and α is an action. The kinds of actions are the silent action τ ,
the free input action xy, the free output action x̄y, the bound input action x(y)
and the bound output action x̄(y). Since we are working with the late transition
semantics [12], we shall not be concerned with the free input action. The name
y in x(y) and x̄(y) is a binding occurrence. Just like we did with processes, we
use fn(α), bn(α) and n(α) to denote free names, bound names, and names in α.
An action without binding occurrences of names is a free action, otherwise it is
a bound action.

We encode the syntax of process expressions using λ-tree syntax as follows.
We shall require three primitive syntactic categories: n for names, p for processes,
and a for actions, and the constructors corresponding to the operators in π-
calculus. The translation from π-calculus processes and transition judgments to
λ-tree syntax is given in Figure 8. Figure 10 shows some example processes in λ-
tree syntax. The definition clauses corresponding to the operational semantics of
π-calculus are given in Figure 9. The original specification of the late semantics
of π-calculus can be found in [12]. We note that various side conditions on names
and their scopes in the inference rules in the original specification are not present
in the encoding in Figure 9. These side conditions are taken care of implicitly
by the use of higher-order abstract syntax in the encoding.

We consider some simple examples involving one-step transitions, using the
example processes in Figure 10. We can for instance check whether a process is
stuck, i.e., no transition is possible from the given process. Consider example 0
in Figure 10 which corresponds to the process (x)[x = a]τ.0. This process clearly
cannot make any transition since the name x has to be distinct with respect to
the free names in the process. This is specified as follows

?- example 0 P, (pi A\pi Q\ one P A Q => false),

% bound input

onep (in X M) (dn X) M.

% free output

one (out X Y P) (up X Y) P.

% tau

one (taup P) tau P.

% match prefix

one (match X X P) A Q := one P A Q.

onep (match X X P) A M := onep P A M.

% sum

one (plus P Q) A R := one P A R.

one (plus P Q) A R := one Q A R.

onep (plus P Q) A M := onep P A M.

onep (plus P Q) A M := onep Q A M.

% par

one (par P Q) A (par P1 Q) := one P A P1.

one (par P Q) A (par P Q1) := one Q A Q1.

onep (par P Q) A (x\par (M x) Q) := onep P A M.

onep (par P Q) A (x\par P (N x)) := onep Q A N.

% restriction

one (nu x\P x) A (nu x\Q x) := nabla x\ one (P x) A (Q x).

onep (nu x\P x) A (y\ nu x\Q x y) := nabla x\ onep (P x) A (y\ Q x y).

% open

onep (nu y\M y) (up X) N := nabla y\ one (M y) (up X y) (N y).

% close

one (par P Q) tau (nu y\ par (M y) (N y)) :=

sigma X\ onep P (dn X) M & onep Q (up X) N.

one (par P Q) tau (nu y\ par (M y) (N y)) :=

sigma X\ onep P (up X) M & onep Q (dn X) N.

% comm

one (par P Q) tau (par R T) := sigma X\ sigma Y\ sigma M\ onep P (dn X) M

& one Q (up X Y) T & (R = (M Y)).

one (par P Q) tau (par R T) := sigma X\ sigma Y\ sigma M\ onep Q (dn X) M

& one P (up X Y) R & (T = (M Y)).

Fig. 9. Definition of one-step transitions of finite late π-calculus

example 0 (nu x\ match x a (taup z)).

example 1 (par (in x y\z) (out x a z)).

example 2 (in x u\ (plus (taup (taup z)) (taup z))).

example 3 (in x u\ (plus (taup (taup z))

(plus (taup z) (taup (match u y (taup z)))))).

example 4 (taup z).

example 5 (nu x\ (par (in x y\z) (out x a z))).

example 6 (in x u\ nu y\ ((plus (taup (taup z))

(plus (taup z) (taup (match u y (taup z))))))).

Fig. 10. Some example processes

bisim P Q :=

(pi A\ pi P1\ one P A P1 => sigma Q1\ one Q A Q1 & bisim P1 Q1) &

(pi X\ pi M\ onep P (dn X) M => sigma N\ onep Q (dn X) N &

pi w\ bisim (M w) (N w)) &

(pi X\ pi M\ onep P (up X) M => sigma N\ onep Q (up X) N &

nabla w\ bisim (M w) (N w)) &

(pi A\ pi Q1\ one Q A Q1 => sigma P1\ one P A P1 & bisim Q1 P1) &

(pi X\ pi N\ onep Q (dn X) N => sigma M\ onep P (dn X) M &

pi w\ bisim (N w) (M w)) &

(pi X\ pi N\ onep Q (up X) N => sigma M\ onep P (up X) M &

nabla w\ bisim (N w) (M w)).

Fig. 11. Definition of open bisimulation

(pi A\pi Q\ onep P A Q => false).

Yes

Recall that we distinguish between bound-action transition and free-action tran-
sition, and hence there are two kinds of transitions to be verified.

We now consider a notion of equivalence between processes, called strong
bisimulation. It is formally defined as follows: a relation R is a bisimulation, if
it is a symmetric relation such that for every (P, Q) ∈ R,

1. if P
α

−−→ P′ and α is a free action, then there is Q′ such that Q
α

−−→ Q′ and
(P′, Q′) ∈ R,

2. if P
x(z)
−−→ P′ and z 6∈ n(P, Q) then there is Q′ such that Q

x(z)
−−→ Q′ and

(P′[y/z], Q′[y/z]) ∈ R for every name y,

3. if P
x̄(z)
−−→ P′ and z 6∈ n(P, Q) then there is Q′ such that Q

x̄(z)
−−→ Q′ and (P′, Q′) ∈

R.

Two processes P and Q are strongly bisimilar if there is a bisimulation R such
that (P, Q) ∈ R.

The above definition is usually referred to as late bisimulation, one of the
variants of bisimulation existing in the literature. Its encoding in Level 0/1 prover
is given in Figure 11. Notice that the difference between bound-input and bound-
output actions are captured by the use of ∀ and ∇ quantifiers. Actually this
definition does not encode fully the notion of late bisimulation, but it is a sound
encoding, meaning that if bisim P Q is provable then P and Q are late-bisimilar.
The encoding also turns out to correspond to the open bisimulation [18], a finer
bisimulation relation then late bisimulation (see [24] for details of the encoding
and adequacy results). Here is a counterexample that shows the incompleteness
with respect to late bisimulation.

P = x(u).(τ.τ.0 + τ.0), Q = x(u).(τ.τ.0 + τ.0 + τ.[u = y]τ.0).

This happens to be an example that separates open and late bisimulation [18].
This example fails because to prove their bisimilarity, one needs to do case

analysis on the input name u above, i.e., whether it is equal to y or not, and
our current prover cannot handle such case split (since we are in intuitionistic
setting). However, if we restrict the scope of y so that it appears inside the
scope of u, then [u = y] is trivially false. In this case, the processes would be
x(u).(τ.τ.0 + τ.0) and x(u).(y)(τ.τ.0 + τ.0 + τ.[u = y]τ.0), which correspond to
example 3 and 6 in Figure 10. They can be proved bisimilar.

?- example 2 P, example 6 Q, bisim P Q.

Yes

8 Example: modal logics for π-calculus

We now consider the modal logics for π-calculus introduced in [13]. In order
not to confuse meta-level (FOλ∆∇) formulas (or connectives) with the formulas
(connectives) of modal logics under consideration, we shall refer to the latter
as object formulas (respectively, object connectives). We shall work only with
object formulas which are in negation normal form, i.e., negation appears only
at the level of atomic object formulas. As a consequence, we introduce explicitly
each dual pair of the object connectives. Note that since the only atomic object
formulas are either true or false, by de Morgan duality ¬true ≡ false and ¬false ≡
true. Therefore we are in effect working with positive formulas only. The syntax
of the object formulas is given by

A ::= true | false | A ∧ A | A ∨ A | [x = z]A | 〈x = z〉A
| 〈α〉A | [α]A | 〈x̄(y)〉A | [x̄(y)]A | 〈x(y)〉LA | [x(y)]LA

Here, α denotes a free action, i.e., it is either τ or x̄y. The modalities [x(y)]L

and 〈x(y)〉L are the late bound-input modalities, and 〈x̄(y)〉 and [x̄(y)] are the
bound output modalities. There are other variants of input and output modali-
ties considered in [13] which we do not represent here. For the complete encoding
of the modal logics, we refer the interested readers to [23]. In each of the for-
mulas (and their dual ‘boxed’-formulas) 〈x̄(y)〉A and 〈x(y)〉LA, the occurrence of
y in parentheses is a binding occurrence whose scope is A. Object formulas are
considered equivalent up to renaming of bound variables. We shall be concerned
with checking whether a process P satisfies a given modal formula A. This satis-
fiability judgment is written as P |= A. The translation from modal formulas and
judgments to λ-tree syntax is given in Figure 12.

The satisfiability relation for the modal logic is encoded as the definition
clauses in Figure 13. For the original specification, we refer the interested readers
to [13]. The definition in Figure 13 is not complete, in the sense that there are
true assertion of the modal logic which are not provable using this definition
alone. For instance, the modal judgment

x(y).x(z).0 |= 〈x(y)〉L〈x(z)〉L(〈x = z〉true ∨ [x = z]false)

which basically says that two names are either equal or not equal, is valid, but
its encoding in FOλ∆∇ is not provable since the meta logic is intuitionistic. A

top : o′, bot : o′, and : o′ → o′ → o′, or : o′ → o′ → o′

boxMatch : n → n → o′ → o′, diaMatch : n → n → o′ → o′,
boxAct : a → o′ → o′, diaAct : a → o′ → o′,
boxInL : n → (n → o′) → o′, diaInL : n → (n → o′) → o′

boxOut : n → (n → o′) → o′, diaOut : n → (n → o′) → o′

sat : p → o′ → o.

[[true]] = top [[false]] = bot
[[A ∧ B]] = and [[A]] [[B]] [[A ∨ B]] = or [[A]] [[B]]
[[[x = y]A]] = boxMatch x y [[A]] [[〈x = y〉A]] = diaMatch x y [[A]]
[[〈α〉A]] = diaAct α [[A]] [[[α]A]] = boxAct α [[A]]
[[〈x(y)〉LA]] = diaInL x (λy[[A]]) [[[x(y)]LA]] = boxInL x (λy[[A]])
[[〈x̄(y)〉A]] = diaOut x (λy[[A]]) [[[x̄(y)]A]] = boxOut x (λy[[A]])
[[P |= A]] = sat [[P]] [[A]]

Fig. 12. Translation from modal formula to λ-tree syntax.

sat P top.

sat P (and A B) := sat P A, sat P B.

sat P (or A B) := sat P A ; sat P B.

sat P (boxMatch X Y A) := (X = Y) => sat P A.

sat P (diaMatch X Y A) := (X = Y), sat P A.

sat P (boxAct X A) := pi P1\ one P X P1 => sat P1 A.

sat P (diaAct X A) := sigma P1\ one P X P1, sat P1 A.

sat P (boxOut X A) := pi Q\ onep P (up X) Q => nabla y\ sat (Q y) (A y).

sat P (diaOut X A) := sigma Q\ onep P (up X) Q, nabla y\ sat (Q y) (A y).

sat P (boxInL X A) := pi Q\ onep P (dn X) Q => sigma y\ sat (Q y) (A y).

sat P (diaInL X A) := sigma Q\ onep P (dn X) Q, pi y\ sat (Q y) (A y).

Fig. 13. Specification of a modal logic for π-calculus.

complete encoding of the modal logic is given in [23] by explicitly keeping track
of the free names introduced by ∇.

The definition in Figure 13 serves also as a model checker for π-calculus. For
instance, consider the processes 2 and 6 given by in Figure 10. We have seen
that the two processes are bisimilar. A characterization theorem given in [13]
states that (late) bisimilar processes satisfy the same set of modal formulas. We
consider a particular case here. The modal formula

〈x(y)〉L(〈τ〉〈τ〉true ∨ 〈τ〉true)

naturally corresponds to the process 2. In the concrete syntax, this formula is
written as follows

assert (diaInL x (y\ or (diaAct tau (diaAct tau top))
(diaAct tau top))).

We show that both processes 2 and 6 satisfy this formula.

datatype ’a cell = delayedcell of unit -> ’a | forcedcell of ’a

type ’a elm = ’a cell

datatype ’a ustream = empty | ustream of ’a * (’a ustream elm ref)

fun getcell(t as ref(delayedcell t’)) =

let val v = t’() in (t := (forcedcell v); v) end

| getcell(ref (forcedcell v)) = v

fun mkcell t = ref(delayedcell t)

Fig. 14. The stream datatype in ML.

?- assert A, example 2 P, example 6 Q, sat P A, sat Q A.
Yes

9 Components of proof search implementation

Implementation of proof search for FOλ∆∇ is based on a few simple key com-
ponents: the λ-tree syntax, i.e., data structures for representing λ-terms and its
parser, higher-order pattern unification and stream-based computation. The first
two are implemented using the suspension calculus [15], an efficient data struc-
ture for representing λ-terms and computing unification on them. We explain
the last component briefly. We use streams to store answer substitutions, which
are computed lazily, i.e., only when they are queried. The data type for stream in
the ML language is shown in Figure 14. Here the type ustream is a polymorphic
stream. The element of a stream is represented as the data type cell, which can
be a delayed cell or a forced cell. A delayed cell stores an unevaluated expression,
and its evaluation is triggered by the call to the function getcell. A forced cell
is an element which is already a value. Elements of a stream are initially created
as delayed cells. Note that since an element of a stream can also be a (cell of)
stream, we can encode different computation paths using streams of streams.
This feature is used, in a particular case, to encode the notion of backtracking
in logic programming.

A stream of substitutions for a given goal stores all answer substitutions for
the goal. In logic programming, such answer substitutions can be queried one
by one by users. Often we are interested in properties that hold for all answer
substitutions. For instance, in bisimulation checking for transition systems, as
we have seen in the π-calculus example, one needs to enumerate all possible
successors of a process and check bisimilarity for each successor. In some other
examples, information on failed proof search attempts could be of interest as well,
e.g., generating counter-model in model checking. This motivates the choice of
implementation architecture for FOλ∆∇: various fragments of FOλ∆∇ are im-
plemented as (specialized) automated provers which interacts with one another.
For the current implementation, interaction between provers are restricted to
exchanging streams of answer substitutions. A particular arrangement of the
interaction between provers that we found quite useful is what we call a ∀∃-
interaction. In its simplest form, this consists of two provers, as examplified in

the Level-0/1 prover. Recall that in Level-0/1 prover, a proof search session con-
sists of Level-1 calling the Level-0 prover, extracting all answer substitutions,
and for each answer substitutions, repeating the calling cycle until the goals are
proved. At the implementation level, one can generalize the provers beyond two
levels using the same implementation architecture. For instance, one can imagine
implementing a “Level-2 prover” which extracts answers from a Level-1 prover
and perform some computations on them. Using the example of π-calculus, a
Level-2 prover would, for instance, allow for proving goals like “P and Q are not
bisimilar”. This would be implemented by simply calling Level-1 on this goal
and declare a success if Level-1 fails.

10 Future work

The current prover implements a fairly restricted fragment of the logic FOλ∆∇.
We consider extending it to richer fragments to include features like, among oth-
ers, induction and co-induction proof rules (see, e.g.,[22]) and arbitrary stratified
definition (i.e., to allow more than 1-level implication in goals). Of course, with
induction and co-induction proofs, there is in general no complete automated
proof search. We are considering implementing a circular proof search to auto-
matically generates the (co)inductive invariants. Works along this line has been
studied in, e.g., [20]. This extended feature would allow us, for example, to reason
about bisimulation of non-terminating processes. Another possible extension is
inspired by an on going work on giving a game semantics for proof search, based
on the duality of success and failure in proof search. Our particular proof search
strategy for Level-0/1 prover turns out to correspond to certain ∀∃- and ∃∀-
strategies in the game semantics in [10]. The game semantics studied there also
applies to richer fragments of logics. It would be interesting to see if these richer
fragments can be implemented as well using a similar architecture as in Level-0/1
prover.

We also plan to use more advance techniques to improve the current imple-
mentation such as using tabling to store and reuse subproofs. The use of tabled
deduction in higher-order logic programming has been studied in [17]. It seems
that the techniques studied there are applicable to our implementation, to the
Level-0 prover at least, since it is a subset of λProlog. Another possible exten-
sion would be a more flexible restriction on the occurrence of logic variables. The
current prover cannot yet handle the case where there is a case analysis involv-
ing both eigenvariables and logic variables. Study on a notion of higher-order
pattern disunification [14] would be needed to attack this problem at a general
level. However, we are still exploring examples and applications which would
justify this additional complication to proof search. We also plan to study more
examples on encoding process calculi and the related notions of bisimulations.

References

1. L.-H. Eriksson. A finitary version of the calculus of partial inductive definitions. In
L.-H. Eriksson, L. Hallnäs, and P. Schroeder-Heister, editors, Proc. of the Second

International Workshop on Extensions to Logic Programming, volume 596 of LNAI,
pages 89–134. Springer-Verlag, 1991.

2. G. Gentzen. Investigations into logical deductions. In M. E. Szabo, editor, The
Collected Papers of Gerhard Gentzen, pages 68–131. North-Holland Publishing Co.,
Amsterdam, 1969.

3. J.-Y. Girard. A fixpoint theorem in linear logic. Email to the linear@cs.stanford.edu
mailing list, February 1992.

4. L. Hallnäs and P. Schroeder-Heister. A proof-theoretic approach to logic program-
ming. II. Programs as definitions. Journal of Logic and Computation, 1(5):635–660,
October 1991.

5. G. Huet. A unification algorithm for typed λ-calculus. Theoretical Computer
Science, 1:27–57, 1975.

6. P. Lescanne and H. Comon. Equational problems and disunification. Journal of
Symbolic Computation, 3 and 4:371–426, 1989.

7. R. McDowell and D. Miller. Cut-elimination for a logic with definitions and induc-
tion. Theoretical Computer Science, 232:91–119, 2000.

8. D. Miller. A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. Journal of Logic and Computation, 1(4):497–536,
1991.

9. D. Miller. Unification under a mixed prefix. J. of Symbolic Computation, 14(4):321–
358, 1992.

10. D. Miller and A. Saurin. A game semantics for proof search: Preliminary results.
Accepted at Mathematical Foundations of Programming Semantics, 2005.

11. D. Miller and A. Tiu. A proof theory for generic judgments: An extended abstract.
In Proceedings of LICS 2003, pages 118–127. IEEE, June 2003.

12. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Part II.
Information and Computation, pages 41–77, 1992.

13. R. Milner, J. Parrow, and D. Walker. Modal logics for mobile processes. Theoretical
Computer Science, 114(1):149–171, 1993.

14. A. Momigliano and F. Pfenning. Higher-order pattern complement and the strict
λ-calculus. ACM Trans. Comput. Logic, 4(4):493–529, 2003.

15. G. Nadathur and D. S. Wilson. A notation for lambda terms: A generalization of
environments. Theoretical Computer Science, 198(1-2):49–98, 1998.

16. T. Nipkow. Functional unification of higher-order patterns. In M. Vardi, editor,
LICS93, pages 64–74. IEEE, June 1993.

17. B. Pientka. Tabled Higher-Order Logic Programming. PhD thesis, Carnegie Mellon
University, December 2003.

18. D. Sangiorgi. A theory of bisimulation for the π-calculus. Acta Informatica,
33(1):69–97, 1996.

19. P. Schroeder-Heister. Rules of definitional reflection. In M. Vardi, editor, Eighth
Annual Symposium on Logic in Computer Science, pages 222–232. IEEE Computer
Society Press, June 1993.

20. C. Sprenger and M. Dam. On the structure of inductive reasoning: Circular and
tree-shaped proofs in the µ-calculus. In A. Gordon, editor, Proceedings, Foun-
dations of Software Science and Computational Structures (FOSSACS), Warsaw,
Poland, volume 2620 of LNCS, pages 425–440. Springer-Verlag, 2003.

21. R. F. Stärk. Cut-property and negation as failure. International Journal of Foun-
dations of Computer Science, 5(2):129–164, 1994.

22. A. Tiu. A Logical Framework for Reasoning about Logical Specifications. PhD
thesis, Pennsylvania State University, May 2004.

23. A. Tiu. Model checking for π-calculus using proof search. Available online, March
2005.

24. A. Tiu and D. Miller. A proof search specification of the π-calculus. In 3rd
Workshop on the Foundations of Global Ubiquitous Computing, 2004.

Appendix

Σ ; σ . B, Γ − σ . B
init

Σ ; ∆ − B Σ ; B, Γ − C
Σ ; ∆, Γ − C cut

Σ ; σ . B, σ . C, Γ − D
Σ ; σ . B ∧ C, Γ − D ∧L

Σ ; Γ − σ . B Σ ; Γ − σ . C

Σ ; Γ − σ . B ∧ C
∧R

Σ ; σ . B, Γ − D Σ ; σ . C, Γ − D
Σ ; σ . B ∨ C, Γ − D ∨L

Σ ; Γ − σ . B

Σ ; Γ − σ . B ∨ C
∨R

Σ ; σ .⊥, Γ − B ⊥L
Σ ; Γ − σ . C

Σ ; Γ − σ . B ∨ C
∨R

Σ ; Γ − σ . B Σ ; σ . C, Γ − D
Σ ; σ . B ⊃ C, Γ − D ⊃ L

Σ ; σ . B, Γ − σ . C

Σ ; Γ − σ . B ⊃ C
⊃ R

Σ, σ ` t : γ Σ ; σ . B[t/x], Γ − C
Σ ; σ . ∀γx.B, Γ − C ∀L

Σ, h ; Γ − σ . B[(h σ)/x]

Σ ; Γ − σ . ∀x.B
∀R

Σ, h ; σ . B[(h σ)/x], Γ − C
Σ ; σ . ∃x.B, Γ − C ∃L

Σ, σ ` t : γ Σ ; Γ − σ . B[t/x]

Σ ; Γ − σ . ∃γx.B
∃R

Σ ; (σ, y) . B[y/x], Γ − C
Σ ; σ .∇x B, Γ − C ∇L

Σ ; Γ − (σ, y) . B[y/x]

Σ ; Γ − σ .∇x B
∇R

Σ ; B,B, Γ − C
Σ ; B, Γ − C cL

Σ ; Γ − C
Σ ; B, Γ − C wL

Σ ; Γ − σ .> >R

Fig. 15. The core rules of FOλ∆∇.

