
Model Checking for π-Calculus Using Proof
Search

Alwen Tiu

INRIA Lorraine
615 rue du Jardin Botanique

54602 Villers-lès-Nancy, France
Alwen.Tiu@loria.fr

Abstract. Model checking for transition systems specified in π-calculus
has been a difficult problem due to the infinite-branching nature of in-
put prefix, name-restriction and scope extrusion. We propose here an
approach to model checking for π-calculus by encoding it into a logic
which supports reasoning about bindings and fixed points. This logic,
called FOλ∆∇, is a conservative extension of Church’s Simple Theory of
Types with a “generic” quantifier. By encoding judgments about transi-
tions in pi-calculus into this logic, various conditions on the scoping of
names and restrictions on name instantiations are captured naturally by
the quantification theory of the logic. Moreover, standard implementa-
tion techniques for (higher-order) logic programming are applicable for
implementing proof search for this logic, as illustrated in a prototype
implementation discussed in this paper. The use of logic variables and
eigenvariables in the implementation allows for exploring the state space
of processes in a symbolic way. Compositionality of properties of the
transitions is a simple consequence of the meta theory of the logic (i.e.,
cut elimination). We illustrate the benefits of specifying systems in this
logic by studying several specifications of modal logics for pi-calculus.
These specifications are also executable directly in the prototype imple-
mentation of FOλ∆∇.

1 Introduction

The π-calculus [16] provides a simple yet powerful framework for specifying com-
munication systems with evolving communication structures. Its expressiveness
derives mainly from the possibility of passing communication channels (names),
restricting the scope of channels and scope extrusion. These are precisely the
features that make model checking for π-calculus difficult. Model checking has
traditionally been done with transitions which have finite state models. The
name passing feature alone (input prefix) in π-calculus would yield infinite-
branching transition systems, if implemented naively. Scope and scope extru-
sion add another significant layer of complexity, since in model checking the
transition systems one has to take into account the exact scope and identity of
various channel names. This is a problem which has been studied extensively,

of course, due to the importance of π-calculus. A non-exhaustive list of existing
works includes the work on history dependent automata [6] model of mobile pro-
cesses, specific programming logics and decision procedures for model checking
mobile processes [3, 4], the spatial logic model checker [2] using Gabbay-Pitts
permutation techniques [7], and implementation using logic programming [27].

The approach to model checking π-caculus (or mobile processes in general)
taken in this paper is based on the proof theory of sequent calculus, by casting
the problem of reasoning about scoping and name-instantiation into the more
general setting of proof theory for quantifiers in formal logic. More specifically,
we encode judgments about transitions in π-calculus and several modal logics
for π-calculus [17] into a meta logic, and proof search is used to model the
operational semantics of these judgments. This meta logic, called FOλ∆∇ [15],
is an extension of Church’s Simple Theory of Types (but without quantification
over propositions, so the logic is essentially first-order) with a proof theoretical
notion of definitions [22] and a new “generic” quantifier, ∇. The quantifier ∇,
roughly summarized, facilitates reasoning about binders (more details will be
given later). We summarize our approach as follows.

λ-tree syntax. We use the λ-tree syntax [14] to encode syntax with bindings.
It is a variant of higher-order abstract syntax, where syntax of arbitrary system
is encoded as λ-terms and the λ-abstraction is used to encode bindings within
expressions. One of the advantages of adopting λ-tree syntax, or higher-order
abstract syntax in general, is that all the side conditions involving bindings such
as scoping of variables, α-conversion, etc., are handled uniformly at the level
of the abstract syntax, using the known notions in λ-calculus. Another one is
that efficient implementation techniques for manipulating this abstract syntax
are well-understood, e.g., algorithms for doing pattern-matching and unification
of simply typed λ-terms.

Definitional reflection. Proof search in traditional logics, e.g., variants of
Gentzen’s LJ or LK, is limited to model the may-behaviour of computation
system. Must-behaviour, eg., notions like bisimulations, or in the interest of this
paper, satisfiability of modal formulae, cannot be expressed directly in these
logics. To encode such notions, it is necessary to move to a richer logic. Recent
developments in the proof theory of definitions [10, 11] have shown that must-
behaviour can indeed be captured in logics extended with this proof-theoretical
notion of definitions. In a logic with definitions, an atomic proposition may be
“defined” by another formula (which may contain the atomic proposition itself).
Thus, a definition can be seen as expressing a fixed point equation. Proof search
for a defined atomic formula is done by unfolding the definition of the formula. In
the logic with definitions used in this paper, a provable formula like ∀x.px ⊃ qx,
where p and q are some defined predicates, expresses the fact that for every term
t and for every proof (computation) of pt, there is a proof (computation) of qt. If
p and q are predicates encoding one-step transitions, then this formula expresses
one-step simulation. If q is an encoding of some assertion in modal logics, then
the formula expresses the fact that the modal assertion is true for all reachable
“next states” associated with the transition relation encoded by p.

Eigenvariables and ∇. In proof search for a universal quantified formula, e.g.,
∀x.Bx, the quantified variable x is replaced by a new constant c, and proof search
is continued on Bc. Such constants are called eigenvariables, and in traditional
intuitionistic or classical logic, they play the role of scoped constants as they are
created dynamically as proof search progresses and are not instantiated during
the proof search. In the meta theory of the logic, eigenvariables play the role of
place holder for values, since from a proof for Bc where c is an eigenvariable, one
can obtain a proof of Bt for any term t by substituting t into c. In the proof theory
of definitions, these dual roles of eigenvariables are internalized in the proof rules
of the logic. In particular, in unfolding a definition in a negative context (left-
hand side of a sequent), eigenvariables are treated as variables, and in the positive
context they are treated as scoped constants. Computation (or transition) states
can be encoded using eigenvariables. This in conjunction with definitions allows
for exploring the state space of a transition system symbolically.

Since eigenvariables are not used here entirely as scoped constants, to ac-
count for scoped names we make use of the ∇-quantifier, first introduced in the
logic FOλ∆∇ [15], to help encode the notion of “generic judgment” that occurs
commonly when reasoning with λ-tree syntax. The ∇ quantifier is used to in-
troduce new elements into a type within a given scope. In particular, a reading
of the truth condition for ∇xγ .Bx is something like: if given a new element,
say c, of type γ, then check the truth of Bc. The difference between ∇ and ∀
appears in their interaction with definition rules: the constants introduced by ∇
are not subject to instantiation. Note that intended meaning of the ∇-quantifier
is rather different from the “new” quantifier of Gabbay and Pitts [7], although
they both address the same issue from a pragmatic point of view. In particular,
in Gabbay-Pitts setting, an infinite number of names is assumed to be given,
and equality between two names are decidable. In our approach here, no such
assumption is made concerning the type of names, not even the assumption
that they are non-empty. Instead, new names are generated dynamically when
needed, such as when inferring a transition involving extrusion of scopes.

An implementation of proof search. Proof search for FOλ∆∇ can be imple-
mented quite straightforwardly, using only the standard tools and techniques
used in higher-order logic programming and theorem provers. An automated
proof search engine for a fragment of FOλ∆∇ has been implemented [24]. It was
essentially done by plugging together different existing implementation: higher-
order pattern unification [12, 18], stream-based approach to back-tracking, and
parser for λ-terms. On top of this prototype implementation several specifica-
tions of process calculi and bisimulation have been implemented.1 In most cases,
the specifications are implemented almost without any modifications (except
for the type-setting of course). The specification of modal logics has also been
implemented in this prototype.

Outline of the papers. The rest of the paper is organized as follows. In Sec-
tion 2, an overview of the meta logic FOλ∆∇ is given. This is followed by the

1 The prototype implementation along with the example specifications can be down-
loaded from the author’s website: http://www.loria.fr/˜tiu.

specification of the operational semantics of late π-calculus in Section 3. The
materials in these two sections have appeared in [15, 26]; they are included here
since the main results of this paper are built on them. Section 4 presents the
specification of modal logics along with the adequacy results. Section 5 gives an
overview of a prototype implementation of FOλ∆∇ in which the specification
of modal logics is implemented. These two sections constitute the main contri-
bution of this paper. Section 6 discusses related and future work. An extended
version of this paper containing detailed proofs is available on the web.

2 Overview of the meta logic

The logic FOλ∆∇ (pronounced “fold-nabla”) is presented using a sequent cal-
culus that is an extension of Gentzen’s system LJ for first-order intuitionistic
logic. A sequent is an expression of the form B1, . . . , Bn − B0 where B0, . . . , Bn

are formulas and the elongated turnstile − is the sequent arrow. To the left of
the turnstile is a multiset: thus repeated occurrences of a formula are allowed. If
the formulas B0, . . . , Bn contain free variables, they are considered universally
quantified outside the sequent, in the sense that if the above sequent is provable
than every instance of it is also provable. In proof theoretical terms, such free
variables are called eigenvariables.

A first attempt at using sequent calculus to capture judgments about the
π-calculus could be to use eigenvariables to encode names in π-calculus, but this
is certainly problematic. For example, if we have a proof for the sequent − Pxy,
where x and y are different eigenvariables, then logic dictates that the sequent
− Pzz is also provable (given that the reading of eigenvariables is universal). If
the judgment P is about, say, bisimulation, then it is not likely that a statement
about bisimulation involving two different names x and y remains true if they
are identified to the same name z.

To address this problem, the logic FOλ∆∇ extends sequents with a new
notion of “local scope” for proof-level bound variables (originally motivated in
[15] to encode “generic judgments”). In particular, sequents in FOλ∆∇ are of
the form

Σ ; σ1 . B1, . . . , σn . Bn − σ0 . B0

where Σ is a global signature, i.e., the set of eigenvariables whose scope is over
the whole sequent, and σi is a local signature, i.e., a list of variables scoped over
Bi. We shall consider sequents to be binding structures in the sense that the
signatures, both the global and local ones, are abstractions over their respective
scopes. The variables in Σ and σi will admit α-conversion by systematically
changing the names of variables in signatures as well as those in their scope,
following the usual convention of the λ-calculus. The meaning of eigenvariables
is as before, only that now instantiation of eigenvariables has to be capture-
avoiding, with respect to the local signatures. The variables in local signatures
act as locally scoped generic constants, that is, they do not vary in proofs since
they will not be instantiated. The expression σ . B is called a generic judgment
or simply a judgment. We use script letters A, B, etc. to denote judgments. We

write simply B instead of σ . B if the signature σ is empty. We shall often write
the list σ as a string of variables, e.g., a judgment (x1, x2, x3).B will be written
as x1x2x3.B. If the list x1, x2, x3 is known from context we shall also abbreviate
the judgment as x̄ . B.

The logical constants of FOλ∆∇ are ∀ (universal quantifier), ∃ (existential
quantifier), ∇, ∧ (conjunction), ∨ (disjunction), ⊃ (implication), > (true) and ⊥
(false). The inference rules for the quantifiers are given in Figure 1. The complete
set of inference rules can be found in [15]. Since we do not allow quantification
over predicates, this logic is proof-theoretically similar to first-order logic (hence,
the letters FO in FOλ∆∇).

Σ, σ ` t : γ Σ ; σ . B[t/x], Γ − C
Σ ; σ . ∀γx.B, Γ − C ∀L

Σ, h ; Γ − σ . B[(h σ)/x]

Σ ; Γ − σ . ∀x.B
∀R

Σ, h ; σ . B[(h σ)/x], Γ − C
Σ ; σ . ∃x.B, Γ − C ∃L

Σ, σ ` t : γ Σ ; Γ − σ . B[t/x]

Σ ; Γ − σ . ∃γx.B
∃R

Σ ; (σ, y) . B[y/x], Γ − C
Σ ; σ .∇x B, Γ − C ∇L

Σ ; Γ − (σ, y) . B[y/x]

Σ ; Γ − σ .∇x B
∇R

Fig. 1. The quantifier rules of FOλ∆∇.

During the search for proofs (reading rules bottom up), inference rules for
∀ and ∃ quantifier place new eigenvariables into the global signature while the
inference rules for ∇ place them into the local signature. In the ∀R and ∃L
rules, raising [13] is used when moving the bound variable x, which can range
over the variables in both the global signature and the local signature σ, with the
variable h that can only range over variables in the global signature: so as not
to miss substitution terms, the variable x is replaced by the term (h x1 . . . xn),
which we shall write simply as (h σ), where σ is the list x1, . . . , xn (h must not
be free in the lower sequent of these rules). In ∀L and ∃R, the term t can have
free variables from both Σ and σ. This is presented in the rule by the typing
judgment Σ, σ ` t : τ . The ∇L and ∇R rules have the proviso that y is not free
in ∇x B.

The standard inference rules of logic express introduction rules for logical
constants. The full logic FOλ∆∇ additionally allows introduction of atomic
judgments, that is, judgments which do not contain any occurrences of logi-
cal constants. To each atomic judgment, A, we associate a defining judgment,
B, the definition of A. The introduction rule for the judgment A is in effect
done by replacing A with B during proof search. This notion of definitions is
an extension of work by Schroeder-Heister [22], Eriksson [5], Girard [8], Stärk
[23] and McDowell and Miller [10]. These inference rules for definitions allow for
modest reasoning about the fixed points of definitions.

Definition 1. A definition clause is written ∀x̄[p t̄
4
= B], where p is a predicate

constant, every free variable of the formula B is also free in at least one term
in the list t̄ of terms, and all variables free in p t̄ are contained in the list x̄ of
variables. The atomic formula p t̄ is called the head of the clause, and the formula
B is called the body. The symbol

4
= is used simply to indicate a definitional

clause: it is not a logical connective. The predicate p occurs strictly positively in
B, that is, it does not occur to the left of any ⊃ (implication).

Let ∀τ1x1 . . .∀τn
xn.H

4
= B be a definition clause. Let y1, . . . , ym be a list of

variables of types α1, . . . , αm, respectively. The raised definition clause of H with
respect to the signature {y1 : α1, . . . , ym : αm} is defined as

∀h1 . . .∀hn.ȳ . Hθ
4
= ȳ . Bθ

where θ is the substitution [(h1 ȳ)/x1, . . . , (hn ȳ)/xn] and hi, for every i ∈ {1, . . . ,
n}, is of type α1 → . . . → αm → τi. A definition is a set of definition clauses
together with their raised clauses.

The introduction rules for a defined judgment are as follow. When applying
the introduction rules, we shall omit the outer quantifiers in a definition clause
and assume implicitly that the free variables in the definition clause are distinct
from other variables in the sequent.

{Σθ ; Bθ, Γθ − Cθ | θ ∈ CSU(A,H) for some clause H 4
= B}

Σ ; A, Γ − C defL

Σ ; Γ − Bθ

Σ ; Γ − A def R, where H 4
= B is a definition clause and Hθ = A

In the above rules, we apply substitution to judgments. The result of applying
a substitution θ to a generic judgment x1, . . . , xn . B, written as (x1, . . . , xn .
B)θ, is y1, . . . , yn . B′, if (λx1 . . . λxn.B)θ is equal (modulo λ-conversion) to
λy1 . . . λyn.B′. If Γ is a multiset of generic judgments, then Γθ is the multiset
{Jθ | J ∈ Γ}. In the defL rule, we use the notion of complete set of unifiers (CSU)
[9]. We denote by CSU(A,H) the complete set of unifiers for the pair (A,H),
that is, for any substitution θ such that Aθ = Hθ, there is a substitution ρ ∈
CSU(A,H) such that θ = ρ ◦ θ′ for some substitution θ′. In all the applications
of defL in this paper, the set CSU(A,H) is either empty (the two judgments are
not unifiable) or contains a single substitution denoting the most general unifier.
The signature Σθ in defL denotes a signature obtained from Σ by removing the
variables in the domain of θ and adding the variables in the range of θ. In the
defL rule, reading the rule bottom-up, eigenvariables can be instantiated in the
premise, while in the def R rule, eigenvariables are not instantiated. The set that
is the premise of the defL rule means that that rule instance has a premise for
every member of that set: if that set is empty, then the premise is proved.

3 Logical specification of one-step transition

We consider the late transition system for the π-calculus in [16], but we shall
follow the operational semantics of π-calculus presented in [21]. The syntax of
processes is defined as follows

P ::= 0 | x̄y.P | x(y).P | τ.P | (x)P | [x = y]P | P|P | P + P | !P.

We use the notation P, Q, R, S and T to denote processes. Names are denoted by
lower case letters, e.g., a, b, c, d, x, y, z. The occurrence of y in the process x(y).P
and (y)P is a binding occurrence, with P as its scope. The set of free names in P
is denoted by fn(P), the set of bound names is denoted by bn(P). We write n(P)
for the set fn(P) ∪ bn(P). We consider processes to be syntactical equivalent up
to renaming of bound names.

One-step transition in the π-calculus is denoted by P
α

−−→ Q, where P and Q
are processes and α is an action. The kinds of actions are the silent action τ ,
the free input action xy, the free output action x̄y, the bound input action x(y)
and the bound output action x̄(y). The name y in x(y) and x̄(y) is a binding
occurrence. Just like we did with processes, we use fn(α), bn(α) and n(α) to
denote free names, bound names, and names in α. An action without binding
occurrences of names is a free action, otherwise it is a bound action.

We encode the syntax of process expressions using higher-order syntax as
follows. We shall require three primitive syntactic categories: n for names, p for
processes, and a for actions, and the constructors corresponding to the operators
in π-calculus. We do not assume any inhabitants of type n, therefore in our
encoding a free name is translated to a variable of type n, which can later be
either universally quantified or ∇-quantified, depending on whether we want to
treat a certain name as instantiable or not. In this paper, however, we consider
only ∇-quantified names. Universally quantified names are used in the encoding
of open bisimulation in [26]. Since the rest of this paper is about the π-calculus,
the ∇ quantifier will from now on only be used at type n. To encode actions,
we use τ : a (for the silent action), and the two constants ↓ and ↑, both of type
n → n → a for building input and output actions. The free output action x̄y, is
encoded as ↑ xy while the bound output action x̄(y) is encoded as λy (↑ xy) (or
the η-equivalent term ↑ x). The free input action xy, is encoded as ↓ xy while
the bound input action x(y) is encoded as λy (↓ xy) (or simply ↓ x). The process
constructors are encoded using the following constants:

0 : p τ : p → p out : n → n → p → p in : n → (n → p) → p
+ : p → p → p | : p → p → p ! : p → p

match : n → n → p → p ν : (n → p) → p

We use two predicates to encode the one-step transition semantics for the
π-calculus. The predicate ·

·
−−→ · of type p → a → p → o encodes transitions

involving free values and the predicate ·
·

−−⇀ · of type p → (n → a) → (n →
p) → o encodes transitions involving bound values. The precise translation of
π-calculus syntax into simply typed λ-terms is given in the following definition.

Definition 2. The following function [[.]] translates from process expressions to
βη-long normal terms of type p.

[[0]] = 0 [[P + Q]] = [[P]] + [[Q]] [[P|Q]] = [[P]] | [[Q]]
[[τ.P]] = τ [[P]] [[[x = y]P]] = match x y [[P]] [[x̄y.P]] = out x y [[P]]
[[x(y).P]] = in x λy.[[P]] [[(x)P]] = νλx.[[P]] [[!P]] =![[P]]

The one-step transition judgments are translated to atomic formulas as follows
(we overload the symbol [[.]]).

[[P
x̄y
−−→ Q]] = [[P]]

↑xy
−−→ [[Q]] [[P

x(y)
−−→ Q]] = [[P]]

↓x
−−⇀ λy.[[Q]]

[[P
τ

−−→ Q]] = [[P]]
τ

−−→ [[Q]] [[P
x̄(y)
−−→ Q]] = [[P]]

↑x
−−⇀ λy.[[Q]]

[[P
xy
−−→ Q]] = [[P]]

↓xy
−−→ [[Q]]

We abbreviate νλx.P as simply νx.P . Notice that when τ is written as a
prefix, it has type p → p, and when it is written as an action, it has type a.

The operational semantics of the late transition system for π-calculus is given
as a definition, called Dπ, in Figure 2. In the figure, we omit the symmetric
cases for par, sum, close and com. In this specification, free variables are schema
variables that are assumed to be universally scoped over the definition clause in
which they appear. These schema variables have primitive types such as a, n,
and p as well as functional types such as n → a and n → p.

Notice that as a consequence of the use of HOAS in the encoding, the compli-
cated side conditions in the original specifications of π-calculus [16] are no longer
present. For example, the side condition that X 6= y in the open rule is implicit,
since X is outside the scope of y and therefore cannot be instantiated with y.
The adequacy of our encoding is stated in the following lemma and proposition
(their proofs can be found in [25]).

Lemma 3. The function [[.]] is a bijection between α-equivalence classes of ex-
pressions.

Proposition 4. Let P and Q be processes and α an action. Let n̄ be a list of
free names containing the free names in P, Q, and α. The transition P

α
−−→ Q is

derivable in π-calculus if and only if . ; . − ∇n̄.[[P
α

−−→ Q]] in FOλ∆∇ with the
definition Dπ.

Note that since in the translation from π-calculus to FOλ∆∇ free names are
translated to ∇-quantified variables, to get the completeness of the encoding,
it is necessary to show that the transition in π-calculus is invariant under free-
name renaming. This has been shown in [16]. In fact, most of the properties of
interest in π-calculus, such as bisimulation and satisfiability of modal formulae,
are closed under free-name renaming [17].

tau: τ P
τ

−−→ P
4
= >

in: in X M
↓X

−−⇀ M
4
= >

out: out x y P
↑xy

−−→ P
4
= >

match: match x x P
A

−−→ Q
4
= P

A
−−→ Q

match x x P
A

−−⇀ Q
4
= P

A
−−⇀ Q

sum: P + Q
A

−−→ R
4
= P

A
−−→ R

P + Q
A

−−⇀ R
4
= P

A
−−⇀ R

par: P |Q
A

−−→ P ′ |Q 4
= P

A
−−→ P ′

P |Q
A

−−⇀ λn(M n |Q)
4
= P

A
−−⇀ M

res: νn.Pn
A

−−→ νn.Qn
4
= ∇n(Pn

A
−−→ Qn)

νn.Pn
A

−−⇀ λm νn.P ′nm
4
= ∇n(Pn

A
−−⇀ P ′n)

open: νy.My
↑X

−−⇀ M ′ 4= ∇y(My
↑Xy

−−→ M ′y)

close: P |Q
τ

−−→ νy.My |Ny
4
= ∃X.P

↓X

−−⇀ M ∧Q
↑X

−−⇀ N

com: P |Q
τ

−−→ MY |Q′ 4= ∃X.P
↓X

−−⇀ M ∧Q
↑XY

−−→ Q′

rep-act: !P
A

−−→ P ′|!P 4
= P

A
−−→ P ′

!P
X

−−⇀ λy(My|!P)
4
= P

X
−−⇀ M

rep-com: !P
τ

−−→ (P ′ |M Y)|!P 4
= ∃X.P

↑XY

−−→ P ′ ∧ P
↓X

−−⇀ M

rep-close: !P
τ

−−→ νz.(Mz |Nz)|!P 4
= ∃X.P

↑X

−−⇀ M ∧ P
↓X

−−⇀ N

Fig. 2. Definition clauses for the late transition system.

4 Specification of modal logics

We now consider the modal logics for π-calculus introduced in [17]. In order
not to confuse meta-level (FOλ∆∇) formulas (or connectives) with the formulas
(connectives) of modal logics under consideration, we shall refer to the latter
as object formulas (respectively, object connectives). We shall work only with
object formulas which are in negation normal form, i.e., negation appears only
at the level of atomic object formulas. As a consequence, we introduce explicitly
each dual pair of the object connectives. Note that since the only atomic object
formulas are either true or false, by de Morgan duality ¬true ≡ false and ¬false ≡
true. Therefore we are in effect working with positive formulas only. The syntax
of the object formulas is given by

A ::= true | false | A ∧ A | A ∨ A | [x = z]A | 〈x = z〉A
| 〈α〉A | [α]A | 〈x̄(y)〉A | [x̄(y)]A | 〈x(y)〉A | [x(y)]A
| 〈x(y)〉LA | [x(y)]LA | 〈x(y)〉EA | [x(y)]EA

In each of the formulas (and their dual ‘boxed’-formulas) 〈x̄(y)〉A, 〈x(y)〉A, 〈x(y)〉LA
and 〈x(y)〉EA, the occurrence of y in parentheses is a binding occurrence whose

(a) Propositional connectives and basic modality:

(true :) P |= true
4
= >.

(and :) P |= A&B
4
= P |= A ∧ P |= B.

(or :) P |= A∨̂B
4
= P |= A ∨ P |= B.

(match :) P |= 〈X=̇X〉A 4
= P |= A.

(match :) P |= [X=̇Y]A
4
= (X = Y) ⊃ P |= A.

(free :) P |= 〈X〉A 4
= ∃P ′(P

X
−−→ P ′ ∧ P ′ |= A).

(free :) P |= [X]A
4
= ∀P ′(P

X
−−→ P ′ ⊃ P ′ |= A).

(out :) P |= 〈↑X〉A 4
= ∃P ′(P

↑X

−−⇀ P ′ ∧∇y.P ′y |= Ay).

(out :) P |= [↑X]A
4
= ∀P ′(P

↑X

−−⇀ P ′ ⊃ ∇y.P ′y |= Ay).

(in :) P |= 〈↓X〉A 4
= ∃P ′(P

↓X

−−⇀ P ′ ∧ ∃y.P ′y |= Ay).

(in :) P |= [↓X]A
4
= ∀P ′(P

↓X

−−⇀ P ′ ⊃ ∀y.P ′y |= Ay).

(b) Late modality:
P |= 〈↓X〉lA 4

= ∃P ′(P
↓X

−−⇀ P ′ ∧ ∀y.P ′y |= Ay).

P |= [↓X]lA
4
= ∀P ′(P

↓X

−−⇀ P ′ ⊃ ∃y.P ′y |= Ay).

(c) Early modality:
P |= 〈↓X〉eA 4

= ∀y∃P ′(P
↓X

−−⇀ P ′ ∧ P ′y |= Ay).

P |= [↓X]eA
4
= ∃y∀P ′(P

↓X

−−⇀ P ′ ⊃ P ′y |= Ay).

Fig. 3. Modal logics for π-calculus in λ-tree syntax

scope is A. We use A, B, C, D, possibly with subscripts or primes, to range over ob-
ject formulas. Note that we consider only finite conjunction since the transition
system we are considering is finitely branching, and therefore (as noted in [17])
infinite conjunction is not needed. Note also that we do not consider free input
modality 〈xy〉 since we restrict ourselves to late transition system (but adding
early transition rules and free input modality does not pose any difficulty). We
consider object formulas equivalent up to renaming of bound variables.

We introduce the types o′ to denote object-level propositions, and the fol-
lowing constants for encoding the object connectives.

true : o′, false : o′, & : o′ → o′ → o′, ∨̂ : o′ → o′ → o′

〈·=̇·〉· : n → n → o′ → o′, [·=̇·]· : n → n → o′ → o′,
〈·〉· : a → o′ → o′, [·]· : a → o′ → o′,

〈↓ ·〉· : n → (n → o′) → o′, [↓·]· : n →→ (n → o′) → o′

〈↓ ·〉l· : n → (n → o′) → o′, [↓·]l· : n → (n → o′) → o′

〈↓ ·〉e· : n → (n → o′) → o′, [↓·]e· : n → (n → o′) → o′

The precise translation from object-level modal formulas to λ-tree syntax is given
in the following.

Definition 5. The following function [[.]] translates from object formulas to βη-
long normal terms of type o′.

[[true]] = true [[false]] = false
[[A ∧ B]] = [[A]]&[[B]] [[A ∨ B]] = [[A]]∨̂[[B]]
[[[x = y]A]] = [x=̇y][[A]] [[〈x = y〉A]] = 〈x=̇y〉[[A]]
[[〈α〉A]] = 〈α〉[[A]] [[[α]A]] = [α][[A]]
[[〈x(y)〉A]] = 〈↓x〉(λy[[A]]) [[[x(y)]A]] = [↓x](λy[[A]])
[[〈x(y)〉LA]] = 〈↓x〉l(λy[[A]]) [[[x(y)]LA]] = [↓x]l(λy[[A]])
[[〈x(y)〉EA]] = 〈↓x〉e(λy[[A]]) [[[x(y)]EA]] = [↓x]e(λy[[A]])

The satisfaction relation |= between processes and formulas are encoded using
the same symbol, which is given the type p → o′ → o. The inference rules for
this satisfaction relation are given as definition clauses in Figure 3. Some of the
definition clauses make use of the syntactic equality predicate, which is defined
as the definition: X = X

4
= >. Note that the symbol = here is a predicate

symbol written in infix notation. The inequality x 6= y is an abbreviation for
x = y ⊃ ⊥. We shall use the abbreviation x 6= ȳ, where ȳ = y1, . . . , yn, to mean
x 6= y1 ∧ . . . ∧ x 6= yn or > if n = 0.

We refer to the definition shown in Figure 3 as DA. This definition cor-
responds to the modal logic A defined in [17]. However, this definition is not
complete, in the sense that there are true assertion of modal logics which are
not provable using this definition alone. For instance, the modal judgment

x(y).x(z).0 |= 〈x(y)〉〈x(z)〉(x = z ∨ x 6= z)

is valid, but its encoding in FOλ∆∇ is not provable without additional assump-
tion. It turns out that the only assumption we need to get completeness is the
axiom of excluded middle on names:

∀x∀y.x = y ∨ x 6= y.

Note that since we allow dynamic creation of scoped names (via ∇), we must
also state this axiom for arbitrary extension of local signatures. We therefore
define the following set of excluded middles on arbitrary finite extension of local
signatures

E = {∇n1 · · ·∇nk∀x∀y(x = y ∨ x 6= y) | k ≥ 0}
We shall write X ⊆f E to indicate that X is a finite subset of E .

We shall now state the adequacy of the encoding of modal logics. The proof
of the adequacy result can be found in an extended version of this paper.

Proposition 6. Let P be a process, let A be an object formula. Then P |= A if
and only if for some list n̄ containing the free names of (P, A) and some X ⊆f E,
the sequent X − ∇n̄.([[P]] |= [[A]]) is provable in FOλ∆∇ with definition DA.

Note that we quantify free names in the process-formula pair in the above
proposition since, as we have mentioned previously, we do not assume any con-
stants of type n. Of course, such constants can be introduced without affecting

P |=L 〈↑X〉A 4
= ∃P ′(P

↑X

−−⇀ P ′ ∧∇y.P ′y |=y::L Ay).

P |=L [↑X]A
4
= ∀P ′(P

↑X

−−⇀ P ′ ⊃ ∇y.P ′y |=y::L Ay).

P |=L 〈↓X〉A 4
= ∃P ′(P

↓X

−−⇀ P ′ ∧∇z∃y.y ∈ (z :: L) ∧ P ′y |=z::L Ay).

P |=L [↓X]A
4
= ∀P ′(P

↓X

−−⇀ P ′ ⊃ ∇z∀y.y ∈ (z :: L) ⊃ P ′y |=z::L Ay).

P |=L 〈↓X〉lA 4
= ∃P ′(P

↓X

−−⇀ P ′ ∧∇z∀y.y ∈ (z :: L) ⊃ P ′y |=z::L Ay).

P |=L [↓X]lA
4
= ∀P ′(P

↓X

−−⇀ P ′ ⊃ ∇z∃y.y ∈ (z :: L) ∧ P ′y |=z::L Ay).

Fig. 4. A more concrete specification with explicit names representation.

the provability of the satisfaction judgments, but for simplicity in the meta-
theory we consider the more uniform approach using ∇-quantified variables to
encode names in process and object formulas. Note that adequacy result stated
in Proposition 6 subsumes the adequacy for the specifications of the sublogics
of A.

5 Implementation of proof search

We now give an overview of a prototype implementation of a fragment of FOλ∆∇,
in which the specification of modal logics given in the previous section is im-
plemented. This implementation, called Level 0/1 prover [24], is based on the
duality of finite success and finite failure in proof search, or equally, the duality
of proof and refutation. In particular, the finite failure in proving a goal ∃x.G
should give us a proof of ¬(∃x.G) and vice versa. We experiment with a simple
class of formulae which exhibits this duality. This class of formulae is given by
the following grammar:

Level 0: G := > | ⊥ | A | G ∧G | G ∨G | ∃x.G | ∇x.G
Level 1: D := > | ⊥ | A | D ∧D | D ∨D | G ⊃ D | ∃x.D | ∇x.D | ∀x.D
atomic: A := p t1 . . . tn

Notice that the level-0 formula is basically Horn-goal extended with ∇ to allow
dynamic creation of names. Level-0 formula is used to encode transition systems
(via definitions). Level-1 formula allows for reflecting on the provability of level-0
formulae, and hence exploring all the paths of the transition systems encoded at
level-0.

The proof search implementation for level-0 formula is the standard logic-
programming implementation. It is actually a subset of λProlog (with ∀ replacing
∇). That is, existentially quantified variables are replaced by logic variables, ∇-
quantified variables are replaced with (scoped) constants. The non-standard part
in Level 0/1 prover is the proof search for level-1 goals. Proof search for a level-1
goal G1 ⊃ G2 proceeds as follows:

1. Run the prover with the goal G1, treating eigenvariables as logic variables.

2. If Step 1 fails, then proof search for G1 ⊃ G2 succeeds. Otherwise, collect all
answer substitutions produced in Step 1, and for each answer susbtitution
θ, proceed with proving G2θ

There is some restriction on the occurrence of logic variables in Step 2, which
however does not affect the encoding of modal logics considered in this paper.
We refer the interested readers to [24] for more details.

We now consider the problem of automating model-checking for a given pro-
cess P against a given assertion A of sublogics ofA. There are two main difficulties
in automating the model checking: when to use the excluded middle on names,
and guessing how many names to be provided in advance. There seems to be
two extremes in dealing with these problems: one in which excluded middles are
omitted and the set of names are fixed to the free names of the processes and
assertions involved, the other is to keep track of the set of free names explicitly
and to instantiate any universally quantified name with all the names in this
set. For the former, the implementation is straightforward: we simply use the
specification given in Figure 3. The problem is of course that it is incomplete,
although it may cover quite a number of interesting cases. We experiment here
on the second approach using explicit handling of names which is complete but
less efficient. The essential modifications to the specification in Figure 3 are
those concerning input modalities. We list some modified clauses in Figure 4,
the complete “implementation” can be found in an extended version of this pa-
per. We shall refer to this definition as DA′ The satisfiability relation |= now
takes an extra argument which is a list of names. The empty list is denoted with
nil and the list constructor with ::. Here we use an additional defined predicate
for list membership. It is defined in the standard way (writing the membership

predicate in infix notation): X ∈ (X :: L)
4
= > and X ∈ (Y :: L)

4
= X ∈ L.

Proposition 7. Let P be a process, let A be an object formula and let n̄ be a
list containing the free names of (P, A). Then P |= A if and only the formula
∇n̄.[[P]] |=n̄ [[A]] is provable in FOλ∆∇ with definition DA′. Moreover, proof
search in the Level 0/1 prover for the formula terminates.

6 Related work and future work

Perhaps the closest to our approach is Mads Dam’s work on model checking
mobile processes [3, 4]. However, our approach differs from his work in that the
proof system we introduce is modular; different transition systems can be incor-
porated via definitions, while in his system, specifications of transition systems
(π-calculus) is tightly integrated into the proof rules of the logic. Another differ-
ence is that we use the labelled transitions to encode the operational semantics
which yields a simpler formalization (not having to deal with structural con-
gruence) while Dam uses commitment relation. Another notable difference is
that the use of relativised correctness assertions in his work which make ex-
plicit various conditions on names. In our approach, the conditions on names
are partly taken care of implicitly by the meta logic (e.g., scoping, α-conversion,

“newness”). However, Dam’s logic is certainly more expressive in the sense that
it can handle modal µ-calculus as well, via some global discharge conditions in
proofs. We plan to investigate how to extend FOλ∆∇ with such global discharge
conditions.

History dependent automata (see, e.g., [6]) is a rather general model theo-
retic approach to model checking mobile processes. Its basis in automata models
makes it closer to existing efficient implementation of model checkers. Our ap-
proach is certainly different from a conceptual view, so the sensible comparison
would be in terms of performance comparison. However, at the current stage
of our implementation, meaningful comparison cannot yet be made. A point to
note, however, is that in the approach using history dependent automata, the
whole state space of a process is constructed before checking the satisfiability
of an assertion. In our approach, states of processes are constructed only when
needed, that is, it is guided by the syntax of the process and the assertion it is
being checked against.

Model checkers for π-calculus have also been implemented in XSB tabled logic
programming [27]. The logic programming language used is a first-order one, and
consequently, they have to encode bindings, α-conversion, etc. using first-order
syntax. Such encodings make it hard to reason about the correctness of their
specification. Compared to this work, our approach here is more declarative and
meta theoretic analysis on the specification of the model checkers is available.
Model checking for a richer logic than the modal logics we consider has been
done in [2]. In this work, the issue concerning fresh names generation is dealt
with using the permutation techniques of Gabbay-Pitts [7]. As in Dam’s work,
names here are dealt with explicitly via some algorithms for computing fresh
names, while in our approach, the notion of freshness of names is implicit in
their scoping. More in-depth comparison is left for the future work.

We plan to improve our current implementation to use the tabling methods
in logic programming. Its use in implementing model checkers has been demon-
strated in XSB [27] and also in [20]. Implementation of tabled deduction for
higher-order logic programming has also been studied in [19], which can poten-
tially be used in the implementation of FOλ∆∇. We also plan to study other
process calculi and their related notions of equivalences and modal logics, in
particular the spi-calculus [1] and its related notions of bisimulation.

Acknowledgment. The author would like to thank the anonynimous referees
for useful comments and suggestions. This work is based partly on a joint work
of the author and Dale Miller.

References

1. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi
calculus. Information and Computation, 148(1):1–70, 99.

2. L. Caries. Behavioral and spatial observations in a logic for the pi-calculus. In
I. Walukiewicz, editor, Proc. of FoSSaCs 2004, 2004.

3. M. Dam. Model checking mobile processes. Inf. Comput., 129(1):35–51, 1996.

4. M. Dam. Proof systems for pi-calculus logics. Logic for concurrency and synchro-
nisation, pages 145–212, 2003.

5. L.-H. Eriksson. A finitary version of the calculus of partial inductive definitions.
Vol. 596 of LNAI, pages 89–134. Springer-Verlag, 1991.

6. G.-L. Ferrari, S. Gnesi, U. Montanari, and M. Pistore. A model-checking veri-
fication environment for mobile processes. ACM Trans. Softw. Eng. Methodol.,
12(4):440–473, 2003.

7. M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable
binding. Formal Aspects of Computing, 13:341–363, 2001.

8. J.-Y. Girard. A fixpoint theorem in linear logic. Email to the linear@cs.stanford.edu
mailing list, February 1992.

9. G. Huet. A unification algorithm for typed λ-calculus. Theoretical Computer
Science, 1:27–57, 1975.

10. R. McDowell and D. Miller. Cut-elimination for a logic with definitions and induc-
tion. Theoretical Computer Science, 232:91–119, 2000.

11. R. McDowell, D. Miller, and C. Palamidessi. Encoding transition systems in se-
quent calculus. Theoretical Computer Science, 294(3):411–437, 2003.

12. D. Miller. A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. Vol. 475 of LNAI, pp. 253–281. Springer, 1991.

13. D. Miller. Unification under a mixed prefix. J. of Symboluc Computation,
14(4):321–358, 1992.

14. D. Miller and C. Palamidessi. Foundational aspects of syntax. ACM Comp. Surveys
Symp. on Theoretical Computer Science: A Perspective, vol. 31. ACM, 1999.

15. D. Miller and A. Tiu. A proof theory for generic judgments: An extended abstract.
In Proc. of LICS 2003, pages 118–127. IEEE, June 2003.

16. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Part II.
Information and Computation, pages 41–77, 1992.

17. R. Milner, J. Parrow, and D. Walker. Modal logics for mobile processes. Theoretical
Computer Science, 114(1):149–171, 1993.

18. T. Nipkow. Functional unification of higher-order patterns. In M. Vardi, editor,
Proc. of LICS’93, pages 64–74. IEEE, June 1993.

19. B. Pientka. Tabled Higher-Order Logic Programming. PhD thesis, Carnegie Mellon
University, December 2003.

20. Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka,
T. Swift, and D. S. Warren. Efficient model checking using tabled resolution.
In Proc. of CAV97, vol. 1254 of LNCS, pages 143–154, 1997.

21. D. Sangiorgi and D. Walker. π-Calculus: A Theory of Mobile Processes. Cambridge
University Press, 2001.

22. P. Schroeder-Heister. Rules of definitional reflection. In M. Vardi, editor, Proc. of
LICS’93, pages 222–232. IEEE, June 1993.

23. R. F. Stärk. Cut-property and negation as failure. International Journal of Foun-
dations of Computer Science, 5(2):129–164, 1994.

24. A. Tiu. Level 0/1 Prover: A tutorial, September 2004. Available online.
25. A. Tiu. A Logical Framework for Reasoning about Logical Specifications. PhD

thesis, Pennsylvania State University, May 2004.
26. A. Tiu and D. Miller. A proof search specification of the π-calculus. In 3rd

Workshop on the Foundations of Global Ubiquitous Computing, Sept. 2004.
27. P. Yang, C. Ramakrishnan, and S. Smolka. A logical encoding of the π-calculus:

model checking mobile processes using tabled resolution. International Journal on
Software Tools for Technology Transfer (STTT), 6(1):38–66, July 2004.

