
A Logical Framework for Reasoning with
Names

Alwen Tiu

Penn State and École Polytechnique

Joint work with Dale Miller

November 17, 2003

Motivations

• Operational semantics of computation systems can often be encoded
as logical theories. Computation can then be modeled as deduction
inside logic. Reasoning about the computation can benefit from
structural properties of deductions, e.g., cut-elimination, uniform proofs,
generalizations.

• Operational semantics of most modern calculi often involves the uses
of names, e.g., as reference to locations, place-holders for values (in
imperative languages), nonces in security protocol, etc. Underlying these
uses of names are the various forms of abstractions. One main challenge
is to encode and reason about these variuos forms of abstractions in
logic.

1

Encoding abstractions

• The static structures of abstractions are encoded as λ-terms, following
the tradition of higher-order abstract syntax.

• The dynamic aspects of abstractions in computation is often modelled
using universally quantified judgments and eigenvariables. This
interpretation can be problematic.

• The universal quantifier ∀τx.B can be proved:

– extensionally, i.e., by proving B[t/x] for all terms t of type τ .
Obviously, if τ is defined inductively, this approach can use induction.

– intensionally, i.e., by proving B[c/x] for a new generic constant c (an
eigenvariable). Such eigenvariables generally remain unchanged during
proof search.

2

The collapse of eigenvariables

A cut-free proof of ∀x∀y.P x y first introduces two new eigenvariables c and
d and then attempts to prove P c d.

Eigenvariables have been used to encode names in π-calculus [Miller93],
nonces in security protocols [Cervesato, et. al. 99], reference locations in
imperative programming [Chirimar95], etc.

Since
∀x∀y.P x y ⊃ ∀z.P z z

is provable, it follows that the provability of ∀x∀y.P x y implies the
provability of ∀z.P z z. That is, there is also a proof where the eigenvariables
c and d are identified.

Thus, eigenvariables are unlikely to capture the proper logic behind things
like nonces, references, names, etc.

3

A new quantifier

• ∀ does not handle the intensional meaning well, hence we will introduce
a new quantifier, ∇x.B x which focuses on an intensional reading.

• To accomodate this new quantifier, we add a new context to sequents.

Σ : B1, . . . , Bn −→ B0

⇓
Σ : σ1.B1, . . . , σn.Bn −→ σ0.B0

Σ is a set of eigenvariables, scoped over the sequent and σi is a list of
generic variables, locally scoped over the formula Bi.

• The expression σi . Bi is called a generic judgment. Equality between
judgments is defined up to renaming of local variables.

4

Intuitionistic logic with ∇

Σ : σ.A, Γ −→ σ.A init
Σ : ∆ −→ B Σ : B, Γ −→ C

Σ : ∆, Γ −→ C cut

Σ : σ.⊥, Γ −→ B ⊥L Σ : Γ −→ σ.> >R

Σ : B,B, Γ −→ C
Σ : B, Γ −→ C cL Σ : Γ −→ C

Σ : B, Γ −→ C wL

Σ : σ.Bi, Γ −→ D
Σ : σ.B1 ∧ B2, Γ −→ D ∧L

Σ : Γ −→ σ.B1 Σ : Γ −→ σ.B2

Σ : Γ −→ σ.B1 ∧ B2
∧R

Σ : σ.B1, Γ −→ D Σ : σ.B2, Γ −→ D
Σ : σ.B1 ∨ B2, Γ −→ D ∨L Σ : Γ −→ σ.Bi

Σ : Γ −→ σ.B1 ∨ B2
∨R

Σ : Γ −→ σ.B Σ : σ.C, Γ −→ D
Σ : σ.B ⊃ C, Γ −→ D ⊃ L Σ : σ.B, Γ −→ σ.C

Σ : Γ −→ σ.B ⊃ C ⊃ R

5

Intuitionistic logic with ∇

Σ : σ.A, Γ −→ σ.A init
Σ : ∆ −→ B Σ : B, Γ −→ C

Σ : ∆, Γ −→ C cut

Σ : σ.⊥, Γ −→ B ⊥L Σ : Γ −→ σ.> >R

Σ : B,B, Γ −→ C
Σ : B, Γ −→ C cL Σ : Γ −→ C

Σ : B, Γ −→ C wL

Σ : σ.Bi, Γ −→ D
Σ : σ.B1 ∧ B2, Γ −→ D ∧L

Σ : Γ −→ σ.B1 Σ : Γ −→ σ.B2

Σ : Γ −→ σ.B1 ∧ B2
∧R

Σ : σ.B1, Γ −→ D Σ : σ.B2, Γ −→ D
Σ : σ.B1 ∨ B2, Γ −→ D ∨L Σ : Γ −→ σ.Bi

Σ : Γ −→ σ.B1 ∨ B2
∨R

Σ : Γ −→ σ.B Σ : σ.C, Γ −→ D
Σ : σ.B ⊃ C, Γ −→ D ⊃ L Σ : σ.B, Γ −→ σ.C

Σ : Γ −→ σ.B ⊃ C ⊃ R

6

Intuitionistic logic with ∇

Σ : (σ, y : τ).B[y/x], Γ −→ C
Σ : σ.∇τx.B, Γ −→ C ∇L Σ : Γ −→ (σ, y : τ).C[y/x]

Σ : Γ −→ σ.∇τx.C ∇R

Σ, σ ` t : γ Σ : σ.B[t/x], Γ −→ C
Σ : σ.∀γx.B, Γ −→ C ∀L Σ, h : Γ −→ σ.B[(h σ)/x]

Σ : Γ −→ σ.∀x.B ∀R

Σ, h : σ.B[(h σ)/x], Γ −→ C
Σ : σ.∃x.B, Γ −→ C ∃L Σ, σ ` t : γ Σ : Γ −→ σ.B[t/x]

Σ : Γ −→ σ.∃γx.B ∃R

The typing of terms follows Church’s Simple Theory of Types. Formulas
are given type o, and quantified variables can be of higher types, as long as
the type does not contain the type o.

7

Dependency between eigenvariables and local variables is encoded using
the technique of ∀-lifting [Paulson] or raising [Miller92] of the types of the
eigenvariables. Example:

{xα, hτ→γ→β} : Γ −→ (aτ , bγ).B (h a b) b
{xα} : Γ −→ (aτ , bγ).∀βy.B y b ∀L
{xα} : Γ −→ (aτ).∇γz.∀βy.B y z

∇R

8

Properties of ∇

Some theorems:

∇x¬Bx ≡ ¬∇xBx ∇x(Bx ∧ Cx) ≡ ∇xBx ∧ ∇xCx

∇x(Bx ∨ Cx) ≡ ∇xBx ∨ ∇xCx ∇x(Bx ⊃ Cx) ≡ ∇xBx ⊃ ∇xCx

∇x∀yBxy ≡ ∀h∇xBx(hx) ∇x∃yBxy ≡ ∃h∇xBx(hx)

∇x∀yBxy ⊃ ∀y∇xBxy ∇x.> ≡ >, ∇x.⊥ ≡ ⊥

Consequence: ∇ can always be given atomic scope within formulas.

Non-theorems:

∇x∇yBxy ⊃ ∇zBzz ∇xBx ⊃ ∃xBx

∇zBzz ⊃ ∇x∇yBxy ∀xBx ⊃ ∇xBx

∀y∇xBxy ⊃ ∇x∀yBxy ∃xBx ⊃ ∇xBx

∇xBx ⊃ ∀xBx ∇xB ≡ B

∇x∇y.B x y ≡ ∇y∇x.B x y

9

A proof theoretic notion of definitions

We extend the logic further by allowing a non-logical constants (predicate)
to be introduced. To each predicate, we associate some definition clauses.
We write

∀x̄.p t̄
4= B

to denote a definition clause for predicate p. Free variables in B are in the
set of free variables in t̄, which are all in x̄. The notion of definition has
been previously studied by Schroeder-Heister, Girard, Miller and McDowell.
By imposing certain restriction on definitions, we can prove cut-elimination.

10

Introduction rules for definitions

In intuitionistic logic without ∇, the right introduction rule for a predicate
A is

Γ −→ Bθ
Γ −→ A defR

provided that there is a definition clause ∀x̄.[H 4= B] such that A =βη Hθ

The left introduction rule is

{Bθ, Γθ −→ Cθ | ∀x̄.[H 4= B] is a definition clause and Aθ =βη Hθ}
A, Γ −→ C defL

Notice that: eigenvariables can be instantiated, and the set of premises
can be empty, finite or infinite, depending on the set of solutions for the
associated equational problems.

11

Applying definitions to judgments

To apply definition rules to a judgment given a set of definition clauses, we

need to raise the definition clauses. Given a definition clause ∀x̄.H
4= B,

and a list of variables ȳ, its raised form w.r.t. ȳ is

∀h̄.ȳ . H[(h̄ ȳ)/x̄] 4= ȳ . B[(h̄ ȳ)/x̄].

The right introduction rule for a judgment ȳ . A

Σ : Γ −→ (ȳ . B)θ
Σ : Γ −→ ȳ . A defR

where ∀h̄.ȳ . H
4= ȳ . B is a raised definition clause and

λȳ.A =βη (λȳ.H)θ.

12

The left rule is given by

{Σθ : (ȳ . B)θ, Γθ −→ Cθ}B,θ

Σ : ȳ . A,Γ −→ C defL

where ∀h̄.ȳ . H
4= ȳ . B is a raised definition clause and

(λȳ.A)θ =βη (λȳ.H)θ.

The signature Σθ is obtained from Σ by removing variables in the domain
of θ, and adding free variables in the range of θ.

Notice that the local variables ȳ are not instantiated.

13

Meta theories

Theorem 1. Cut-elimination. Given a fixed stratified definition, a sequent
has a proof if and only if it has a cut-free proof.

Theorem 2. Global-signature weakening. If the sequent Σ : Γ −→ C is
provable then the sequent Σ, x : Γ −→ C, where x 6∈ Σ, is provable.

Theorem 3. Scope weakening. If the sequent

Σ, x : σ1 . B1, . . . , σn . Bn −→ σ . C

is provable then the sequent

Σ : xσ1 . B1, . . . , xσn . Bn −→ xσ . C

is provable.

14

Corollary 4. Local-signature weakening. If the sequent

Σ : σ1 . B1, . . . , σn . Bn −→ σ . C

is provable then the sequent

Σ : xσ1 . B1, . . . , xσn . Bn −→ xσ . C

is provable.

15

Example: encoding π calculus

• We consider encoding finite late π-calculus [Milner92].

P := 0 | τ.P | x(y).P | x̄y.P | (P | P) | (P + P) | (x)P | [x = y]P

• Processes can make transitions (actions), which are guided by the syntax.
Actions are of the following kind: input action x(y), free output action
x̄y and bound output action x̄(y) and the internal action τ . The variable
y in bound output denotes a “fresh” names. The internal action is
represented by a constant τ .

• Encoding in HOAS

16

π-calculus syntax HOAS

Names nm
Actions act
Processes proc
x̄y ↑ xy ↑: nm → nm → act
τ τ τ : act
x(y) ↓ x ↓: nm → nm → act
x̄(y) ↑ x
0 0 0 : proc
τ.P τ P τ : proc → proc
x̄y.P out x y P out : nm → nm → proc → proc
x(y).P in x λy.P y in : nm → (nm → proc) → proc
P + Q P + Q + : proc → proc
P|Q P |Q | : proc → proc
[x = y]P [x = y] P [. = .]. : proc → proc → proc → proc
(x)P νλx.P x ν : (nm → proc) → proc

Table 1: Signatures for π-calculus 17

π-calculus: one step transitions

τ.P
τ−−→ P

TAU−ACT

x̄y.P
x̄y
−−→ P

OUTPUT−ACT

x(z).P
x(w)
−−→ P′

INPUT−ACT, w 6∈ fn((z)P) P
α−−→ P′

[x = x]P
α−−→ P′

MATCH

P
α−−→ P′

P + Q
α−−→ P′

SUM
P

α−−→ P′

P | Q α−−→ P′ | Q
PAR, bn(α) ∩ fn(Q) = ∅

P
x̄y
−−→ P′ Q

x(z)
−−→ Q′

P | Q τ−−→ P′ | Q′[y/z]
COM

P
x̄(w)
−−→ P′ Q

x(w)
−−→ Q′

P | Q τ−−→ (w)(P′ | Q′)
CLOSE

P
α−−→ P′

(y)P
α−−→ (y)P′

RES, y 6∈ n(P′)
P

x̄y
−−→ P′

(y)P
x̄(w)
−−→ P′[w/y]

OPEN, y 6= x, w 6∈ fn((y)P′)

18

τ.P
τ−−→ P

τ
P

A−−→ Q

[x = x]P
A−−→ Q

match
P

A−−⇀ Q

[x = x]P
A−−⇀ Q

match

P
A−−→ R

P + Q
A−−→ R

sum
Q

A−−→ R

P + Q
A−−→ R

sum
P

A−−⇀ R

P + Q
A−−⇀ R

sum
Q

A−−⇀ R

P + Q
A−−⇀ R

sum

P
A−−→ P ′

P |Q A−−→ P ′ |Q
par

Q
A−−→ Q′

P |Q A−−→ P |Q′
par

P
A−−⇀ M

P |Q A−−⇀ λn(Mn |Q)

par
Q

A−−⇀ N

P |Q A−−⇀ λn(P |Nn)

par

∇n(Pn
A−−→ P ′n)

νn.Pn
A−−→ νn.P ′n

res
∇n(Pn

A−−⇀ P ′n)

νn.Pn
A−−⇀ λm νn.(P ′nm)

res
∇y(My

↑xy
−−→ M ′y)

νy.My
↑x
−−⇀ M ′

open

out x y P
↑xy
−−→ P

out
P

↓x
−−⇀ M Q

↑x
−−⇀ N

P |Q τ−−→ νn.(Mn |Nn)

close
P

↑x
−−⇀ M Q

↓x
−−⇀ N

P |Q τ−−→ νn.(Mn |Nn)

close

in x M
↓x
−−⇀ M

in
P

↓x
−−⇀ M Q

↑xy
−−→ Q′

P |Q τ−−→ (My) |Q′
com

P
↑xy
−−→ P ′ Q

↓x
−−⇀ N

P |Q τ−−→ P ′ | (Ny)

com

19

Encoding one-step transitions

• We differentiate between bound transitions and free transitions:

〈P
x̄y
−−→ Q〉 = 〈P〉

↑xy
−−→ 〈Q〉 〈P τ−−→ Q〉 = 〈P〉 τ−−→ 〈Q〉

〈P
x(y)

−−→ Q〉 = 〈P〉
↓x
−−⇀ λy.〈Q〉 〈P

x̄(y)

−−→ Q〉 = 〈P〉
↑x
−−⇀ λy.〈Q〉

• Examples of definition clauses

νn.Pn
A−−→ νn.Qn

4
= ∇n(Pn

A−−→ Qn)

νy.Py
↑X
−−⇀ Q

4
= ∇y(Py

↑Xy
−−→ Qy)

in X M
↓X
−−⇀ M

4
= >

P |Q τ−−→ S | (T Y)
4
= ∃X.P

↑XY
−−→ S ∧Q

↓X
−−⇀ T

20

• Consider the process (y)[x = y]x̄z.0. It cannot make any transition, since
y has to be “fresh”. Therefore following statement should be provable

∀x∀Q∀α.[((y)[x = y](x̄z.0)
α−−→ Q) ⊃ ⊥]

• Scoping and freshness are captured precisely by ∇:

{x, z, Q, α} : w . ([x = w](x̄z.0)
α−−→ Q) −→ ⊥

defL

{x, z, Q, α} : . .∇y.([x = y](x̄z.0)
α−−→ Q) −→ ⊥

∇L

{x, z, Q, α} : . . ((y)[x = y](x̄z.0)
α−−→ Q) −→ ⊥

defL

{x, z, Q, α} :−→ . . ((y)[x = y](x̄z.0)
α−−→ Q) ⊃ ⊥

⊃ R

• The success of defL depends on the failure of unification problem

λw.x = λw.w.

21

Proposition 5. Adequacy. Let P and Q be processes and α an action.
Let N be the set of free names fn(P) ∪ (fn(Q) ∪ fn(α) − bn(A)). The

transition P
α−−→ Q is derivable in π-calculus if and only if the sequent

. : . −→ ū . 〈P α−−→ Q〉,

where ū is an enumeration of the set N , is provable in FOλ∆∇.

22

Strong bisimulation

Definition 6. [Milner et al.] A binary relation S on processes is a
strong simulation if it satisfies the following requirements:

1. if P
α−−→ P′ and α is a free action, then for some Q′, Q

α−−→ Q′ and
P′SQ′,

2. if P
x(y)
−−→ P′ and y 6∈ n(P, Q), then for some Q′, Q

x(y)
−−→ Q′ and for all w,

P′[w/y]SQ′[w/y], and

3. if P
x̄(y)
−−→ P′ and y 6∈ n(P, Q) then for some Q′, Q

x̄(y)
−−→ Q′ and P′SQ′.

The relation S is a strong bisimulation if both S and its inverse are
simulations. The relation .∼, strong bisimilarity, on processes is defined
by P

.∼ Q if and only if there exists a bisimulation S such that PSQ.

23

Strong bisimulation

The corresponding definition clause

bisim P Q
4
= ∀A∀P ′ [(P

A−−→ P ′) ⊃ ∃Q′.(Q
A−−→ Q′) ∧ bisim P ′ Q′] ∧

∀A∀Q′ [(Q
A−−→ Q′) ⊃ ∃P ′.(P

A−−→ P ′) ∧ bisim Q′ P ′] ∧
∀X∀P ′ [(P

↓X
−−⇀ P ′) ⊃ ∃Q′.(Q

↓X
−−⇀ Q′) ∧ ∀w.bisim (P ′w) (Q′w)] ∧

∀X∀Q′ [(Q
↓X
−−⇀ Q′) ⊃ ∃P ′.(P

↓X
−−⇀ P ′) ∧ ∀w.bisim (Q′w) (P ′w)] ∧

∀X∀P ′ [(P
↑X
−−⇀ P ′) ⊃ ∃Q′.(Q

↑X
−−⇀ Q′) ∧ ∇w.bisim (P ′w) (Q′w)] ∧

∀X∀Q′ [(Q
↑X
−−⇀ Q′) ⊃ ∃P ′.(P

↑X
−−⇀ P ′) ∧ ∇w.bisim (Q′w) (P ′w)]

24

Theorem 7. Soundness. Let P and Q be two processes. If the sequent

. : . −→ ū . bisim 〈P〉 〈Q〉,

where ū are the free names in (P, Q), is provable in FOλ∆∇ then P
.∼ Q.

Proof We show that the set

S = {(R, T) | . : . −→ w̄ . bisim 〈R〉 〈T〉}

where w̄ are free names in (R, T), is a strong bisimulation.

Conjecture 1. S is the largest bisimulation.

25

Distinction and Strong Equivalence

Definition 8. [Milner] P and Q are strongly equivalent, written P ∼ Q,
if Pθ .∼ Qθ for all (free name) substitution θ.

Theorem 9. If ∀ū.bisim P Q, where ū are the free names in P and Q, is
provable then P ∼ Q.

Definition 10. Distinction. [Milner] A distinction is a symmetric
irreflexive relation between names. Let D be a distinction. A
substitution θ respects D if, for all (x, y) ∈ D, xθ 6= yθ.

Definition 11. P and Q are strongly D-equivalent, written P ∼D Q, if
Pθ ∼D Qθ for all substitution θ respecting D.

26

Theorem 12. Let D be a finite distinction, and let ū be the list of
distinct names in D. If ∇ū∀w̄.bisim P Q, where w̄ are free names in
(P, Q) not already in ū, is provable, then P ∼D Q.

Conjecture 2. Completeness of the above encodings.

27

Examples: let P = (x|ȳ|z̄) and let

Q = (x.ȳ.z̄ + x.z̄.ȳ + ȳ.x.z̄ + ȳ.z̄.x + z̄.x.ȳ + z̄.ȳ.x)

then

P
.∼ Q, P ∼{x,y} (Q + τ.ȳ), P ∼ (Q + τ.ȳ + τ.z̄).

The corresponding judgments are provable.

∇x∇y∇z.bisim P Q ∇x∇y∀z.bisim P (Q + τ.ȳ)

∀x∀y∀z.bisim P (Q + τ.ȳ + τ.z̄)

28

Summary

• The notion of abstractions in computation systems can be given a logical
interpreation via appropriate use of proof-level binders. This gives a
declarative readings of the specifications of computation systems and its
properties.

• We are modeling computations with deductions. This allows use to use
cut (modus ponen) and cut-elimination to aid the reasoning process.
In certain cases, it is possible to exploit uniformity in proof search for
automatic verification.

• The use of eigenvariables and defL rules gives us a lazy way to perform
computation. This can potentially be applied to other areas such

29

as symbolic bisimulations, symbolic traces analysis (e.g., [Hennessy,
Boreale]), etc.

• Future work: extend FOλ∆∇ with induction and co-induction.

30

