
Induction and Coinduction in Sequent Calculus

Alwen Tiu

École Polytechnique and Penn State University

Joint work with

Dale Miller (INRIA/École Polytechnique)
Alberto Momigliano (University of Leicester)

July 3, 2003

Outline

1. Motivations

2. Deductive systems as logical specifications

3. Reasoning in proof search

4. A design of logic

5. A notion of definition

6. A fixed point interpretation of definitions

7. Induction and coinduction

8. Consistency

9. Examples

10. Related work

11. Conclusion and future work

1

Motivations

• Using logic to specify and to reason about deductive systems, e.g.,
sequent calculus, structured or natural operational semantics, etc.

• We are interested in formalizing structural induction and reasoning
methods for non-finite behaviors (e.g., bisimulation). The latter typically
involves coinduction.

2

Deductive systems as logical speficiations

• The static structures of a deductive system, i.e., its syntactic expressions,
are encoded as terms in logic. The dynamic structures, i.e., its inference
rules, can be encoded as logical theories, which typically involves a simple
class of formula, e.g. Horn clauses.

• Consider a fragment of an operational semantics for imperative languages

B ⇓ true M ⇓V
(if B M N)⇓V

B ⇓ false N ⇓V
(if B M N)⇓V .

These inference rules can be specified as the following Horn clauses:

∀B∀M∀N∀V [B ⇓ true ∧M ⇓V ⊃ (if B M N)⇓V]

∀B∀M∀N∀V [B ⇓ false ∧N ⇓V ⊃ (if B M N)⇓V]

3

Reasoning in proof search

• Properties of a logical specification are expressed as logical formulas,
e.g.,

∀B∀M∀V.M ⇓V ⊃ (if B M M)⇓V

and proof search is used to verify if the properties hold.

• Advantages: formal proofs, (partial) proof automation, proof
generalization, better syntax.

• The properties we can prove depend on the strength of the (meta) logic.
Typical interesting properties involves the use of structural induction
(e.g., subject reduction) or coinduction (e.g., bisimulation) as proof
methods. We consider making these proof methods explicit in a proof
system, as inference rules.

4

A design of logic

• We currently focus on developing the proof theory part, no formal
semantics yet.

• Guidelines for the design: cut-elimination, and examples and applications.
The latter is mostly drawn from previous works by Miller and McDowell
on encoding abstract transition systems in sequent calculus.

• The core logic is intuitionistic logic where formulas are of type o (following
Church) and we allow quantification on higher-order type, as long as it
does not contain the type o.

5

The core inference rules

A, Γ −→ A init
∆ −→ B B, Γ −→ C

∆, Γ −→ C cut

⊥, Γ −→ B ⊥L Γ −→ > >R
B, B, Γ −→ C

B, Γ −→ C cL

B, Γ −→ D
B ∧ C, Γ −→ D ∧L C, Γ −→ D

B ∧ C, Γ −→ D ∧L Γ −→ B Γ −→ C
Γ −→ B ∧ C ∧R

B, Γ −→ D C, Γ −→ D
B ∨ C, Γ −→ D ∨L Γ −→ B

Γ −→ B ∨ C ∨R Γ −→ C
Γ −→ B ∨ C ∨R

Γ −→ B C, Γ −→ D
B ⊃ C, Γ −→ D ⊃ L B, Γ −→ C

Γ −→ B ⊃ C ⊃ R

B[y/x], Γ −→ C
∃x.B, Γ −→ C ∃L Γ −→ B[t/x]

Γ −→ ∃x.B ∃R

B[t/x], Γ −→ C
∀x.B, Γ −→ C ∀L Γ −→ B[y/x]

Γ −→ ∀x.B ∀R

6

A notion of definition

We extend the core logic by allowing non-logical constants to be introduced.
To each predicate p, we associate a definition clause

∀x̄.p x̄
4= B x̄

where B x̄ is some formula. We call p x̄ the head of the definition and
B x̄ the body. A definition is a collection of definition clauses. The notion
of definitions has been previously studied by Schroeder-Heister, Eriksson,
Girard, Miller and McDowell. Given some stratifications on definitions (e.g.,
the head of a definition cannot occur negatively in the body), we can prove
cut-elimination.

7

Definition and equality

Notice that in the notion of definition shown before there are no pattern
matching on the head of the definition; they are encoded in the body, e.g.,
to encode a predicate nat to express natural numbers we write

nat x
4= [x = 0] ∨ ∃y.[x = (sy)] ∧ nat y,

instead of the more familiar definition

nat 0
4
= >

nat (sx)
4
= nat x.

This requires us to take equality predicate as primitive. Both presentations
are operationally equivalent. However, the former presentation allows for a
simpler formulation of the (co)induction rules to be introduced later.

8

Introduction rules for definitions and equality

• Given a definition p x̄
4= B x̄, the introduction rules for p are

B t̄, Γ −→ C
p t̄, Γ −→ C

defL Γ −→ B t̄
Γ −→ p t̄

defR

• The rules for equality

{Γθ −→ Cθ | sθ =βη tθ}
[s = t], Γ −→ C

eqL Γ −→ [t = t] eqR

That is, on the right, pattern matching is used; on the left, we use
unification. Note that eigenvariables can be instantiated in eqL.

9

Encoding logical specifications as definitions

• Example: consider a fragment of the operational semantics for eval

M ⇓V
4= . . .

(∃B,M ′, N.[M = (if B M ′ N)] ∧B ⇓ true ∧M ′ ⇓V)∨
(∃B,M ′, N.[M = (if B M ′ N)] ∧B ⇓ false ∧N ⇓V)∨
. . .

• Prove the statement:

∀B∀M∀V.M ⇓V ⊃ (if B M M)⇓V

10

A fixed point interpreation of definitions

A definition clause can be seen as expressing a fixed point equation. That

is, a definition p x̄
4= B x̄ can be read as [Girard]

“p x̄ if and only if x̄ is some terms t̄ such that B x̄ holds”.

In other words, provability of a judgment

−→ p t̄

expresses the fact that p t̄ is in a solution (not necessarily the least one)
of the corresponding fixed point equation of p. Stratification of definitions
ensures that each definition is monotone. Hence, we can generalize the
rules for definition to capture least fixed points (induction) and greatest
fixed points (coinduction).

11

Induction and Coinduction

• Based on fixed point interpretation, the induction rules make use of
the notion of pre-fixed point, or invariants. Given a definition clause

p x̄
4= B x̄ the induction rules for p are

BIx̄ −→ I x̄ I t̄, Γ −→ C
p t̄, Γ −→ C

IL Γ −→ B t̄
Γ −→ p t̄

IR

where I x̄ is a formula denoting an invariant of the induction and BI x̄
is B x̄ where every occurrence of p is replaced by I.

• The coinduction rules are defined dually.

B t̄, Γ −→ C
p t̄, Γ −→ C

IL I x̄ −→ BIx̄ Γ −→ I t̄
Γ −→ p t̄

IR

12

Consistency

Consider the definiton p
4= p. The least fixed point is ∅ while the greatest

fixed point is {p} (Herbrand universe). Therefore one would expect to have
the following proofs:

⊥ −→ ⊥ init ⊥ −→ ⊥ init

p −→ ⊥ IL and
> −→ > init −→ >>R−→ p .

These two proofs are not composable, otherwise the logic would be
inconsistent!

13

(Co)Inductive definitions

We require that a definition to be used either as an inductive definition or
as a coinductive one, but not both, in a proof. We therefore distinguish
inductive from coinductive definitions. An inductive definition is written as
p x̄

µ
= B x̄, the coinductive one is p x̄

ν= B x̄.

We have cut-elimination (and hence consistency), with some restrictions on
the coinduction rules.

14

Example: append

• Consider the familiar append clause that concatenate two lists.

append l1 l2 l3
µ
= (l1 = nil ∧ l2 = l3)∨

∃l′1∃l′3∃x.l1 = (x :: l′1) ∧ l3 = (x :: l′3) ∧ append l′1 l2 l′3.

• We would like to show that whenever append l l2 l, then it must be the
case that l2 is the empty list (nil). Formally,

∀l∀l2.append l l2 l ⊃ l2 = nil.

• We use the invariant I = λl1λl2λl3.l1 = l3 ⊃ l2 = nil.

15

The induction is on the first and third argument. The inductive step is
formally proved as follows.

−→ l′1 = l′1
eqR

(x :: l′1) = (x :: l′3) −→ l′1 = l′3
eqL

l1 = (x :: l′1), l3 = (x :: l′3), l1 = l3 −→ l′1 = l′3
eqL; eqL

. . . , l′2 = nil −→ l′2 = nil
init

l1 = (x :: l′1), l3 = (x :: l′3), (l
′
1 = l′3 ⊃ l′2 = nil), l1 = l3 −→ l′2 = nil

⊃ L
l1 = (x :: l′1), l3 = (x :: l′3), (l

′
1 = l′3 ⊃ l′2 = nil) −→ l1 = l3 ⊃ l′2 = nil

⊃ R

l1 = (x :: l′1) ∧ l3 = (x :: l′3) ∧ (l′1 = l′3 ⊃ l′2 = nil) −→ l1 = l3 ⊃ l′2 = nil

∧L;∧L

16

Example: CCS one-step transitions

A.P
A−−→ P

P
A−−→ P ′

P |Q A−−→ P ′ |Q
Q

A−−→ Q′

P |Q A−−→ P |Q′

P (µx.P x)
A−−→ Q

µx.P x
A−−→ Q

P
A−−→ R

P + Q
A−−→ R

Q
A−−→ R

P + Q
A−−→ R

P
↓A
−−→ R Q

↑A
−−→ R

P |Q τ−−→ R | S
P

↑A
−−→ R Q

↓A
−−→ R

P |Q τ−−→ R | S

One-step transitions can be encoded straightforwardly as inductive
definitions, e.g.,

P |Q τ−−→ R | S µ
= ∃A.P

↓A−−→ R ∧Q
↑A−−→ R

µx.P x
A−−→ Q

µ
= P (µx.P x)

A−−→ Q

17

Example: CCS simulation

• More interesting is the encoding of the (strong) simulation relation
between two processes, i.e., transitions by one process can be imitated
by the other, as the definition

sim P Q
ν
= ∀A∀P

′
.P

A−−→ P
′ ⊃ ∃Q

′
.Q

A−−→ Q
′ ∧ sim P

′
Q
′

• Consider two processes P = µx.(a.x) and Q = µx.((a.x | a.x)). Their
transition patterns are

P
a−→ P

a−→ P
a−→ . . .

Q
a−→ (Q | a.Q)

a−→ (Q |Q)
a−→ ((Q | a.Q) |Q)

a−→ . . .

Clearly they are similar, since the only observable action is a.

18

• This can be proved formally using coinduction rules. The invariant is

S := λPλQ.(P = µx.a.x) ∧ ∃Q
′
.Q

a−−→ Q |Q′
.

• An interesting subcase of the proof is to show that S is indeed a post
fixed point, i.e, proving the sequent S R T −→ BS R T where (BSR T)
is the formula

∀A∀R
′
.R

A−−→ R
′ ⊃ ∃T1.T

A−−→ T1 ∧ [R
′
= µx.a.x ∧ ∃T2.T1

a−−→ T1 | T2]

• Intuitively, what we have to show is that the pattern of T in the invariant
repeats itself during the transition steps.

(T
a−−→ T | T1) −→ (T

a−−→ (T | T1))
init

(T
a−−→ T | T1) −→ ((T | T1)

a−−→ (T | T1) | T1)
defR

(T
a−−→ T | T1) −→ ∃T2.((T | T1)

a−−→ (T | T1) | T2)
∃R

19

Example: soundness of the encoding of simulation

Lemma 1. For all P and Q, if −→ sim P Q is provable then Q simulates
P .

Proof By using cuts, cut-elimination and permutability of inference rules.

20

Related Work

• Calculus of partial inductive definitions [Eriksson], but no cut-elimination.

• Craciunescu has a form of coinduction rule in a constraint logic
programming language. But again, no cut-elimination.

• Circular proofs [Santocanale, Cockett]. Cut-elimination is non-
terminating in general, but cut can always be pushed up in a proof
indefinitely.

21

Conclusion and Future Work

• We currently have a proof system with both induction and coinduction.
We proved cut-elimination and hence consistency of the logic. A
prototype of the logic has been implemented by Alberto Momigliano
on top of HOL/Isabelle.

• Future work:

– Extend the logic with the ∇ quantifier (Miller and Tiu) to capture
reasoning with names.

– Study the connection to circular proofs, e.g., how to recover the
invariants from a circular proof object.

– Semantics, type systems.
– Proof search properties, e.g., permutability of rules, structures of

invariants.

22

