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Abstract

In this paper we study a game where every player is to choose a vertex (facility) in a given
undirected graph. All vertices (customers) are then assigned to closest facilities and a player’s
payoff is the number of customers assigned to it. We show that deciding the existence of a Nash
equilibrium for a given graph is NP-hard. We also introduce a new measure, the social cost
discrepancy, defined as the ratio of the costs between the worst and the best Nash equilibria.
We show that the social cost discrepancy in our game is Ω(

√
n/k) and O(

√
kn), where n is the

number of vertices and k the number of players.

1 Introduction

Summer is a holiday season for everyone and it is also the season of competition between ice-cream
sellers on beaches. On a colorful crowded beach, an ice-cream seller need to choose a “good”
location that maximize his profit known that tourists will go to the closest seller to buy ice-creams.
A similar competition holds between service providers, enterprises to decide where to open a new
facility, a new market in order to attract as much of clients as possible.

The Voronoi Game is a simple geometric model for the competitive facility location. Competitive
facility location studies the placement of sites by competing market players. Voronoi game is widely
studied on a continuous space, for example on a 2-dimensional rectangle. Players alternatively place
points in the space. Then the Voronoi diagram is considered. Every player gains the total surface of
the Voronoi cells of his points. The geometric concepts are combined with game theory arguments
to study if there exists any winning strategy.

We consider the discrete version of the Voronoi game which plays on a given graph instead on a
continuous space. Formally, the discrete Voronoi game plays on a given undirected graph G(V,E)
with n = |V | and k players. Every player has to choose a vertex (facility) from V , and every
vertex (customer) is assigned to the closest facilities. If there are more than one closest facility
then the vertex is assigned in equal fraction to these closest facilities. One may think that each
vertex consists of a group of clients in which one half go to a facility and the other half go to
another facility if there are two closest facilities to this group. A player’s payoff (utility) is the
number of vertices assigned to his facility. The social cost is the total distance that customers go
to their closest facilities, i.e. it is defined as the sum of the distances to the closest facility over all
vertices. The optimization problem with the objective function as this social cost is the well-known
k-median problem which is NP-complete [7, chapter 25].

In the paper, first we show that the existence of Nash equilibria is a graph property for a fixed
number of players. There exist Nash equilibria for some graphs but there are none for others.
∗LIX, CNRS UMR 7161, Ecole Polytechnique 91128 Palaiseau, France. Supported by ANR Alpage.
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We show that the best-response dynamic does not converge to a Nash equilibria on cycle and line
graphs, but does converge for a variant of this game. Moreover, we show that deciding this graph
property is an NP-hard problem.

We introduce a new measure of inefficiency of equilibria in a game, called social cost discrepancy
defined as the ratio of the costs between the worst and the best Nash equilibria. We show that the
social cost discrepancy in Voronoi game is Ω(

√
n/k) and O(

√
kn). Hence for a constant number of

players we have tight bounds. Interestingly, in analyzing this measure, we introduce the notion of
Delaunay triangulation on discrete setting and that matches the usual Delaunay triangulation in
continuous surface.

Related work Most prior work studies Voronoi game on continuous surface. Ahn et al. [1] were
the firsts to demonstrate that there exists a winning strategy for the one dimensional arena case,
i.e. a line segment [0, 1]. In two dimensional case, the scenario differs significantly. Intuitively,
the difficulty is arisen since the Voronoi cells in one dimension are simply lines or curves but in
two dimension, they becomes much more complicated. Cheong et al. [2], Fekete and Meijer [4]
characterized the winning strategy for the game played on 2D rectangle as a function of width-
height ratio of the rectangle.

The closest game related to our work is the facility location game introduced in [8]. The facility
location game plays on bipartite weighted graph in which there are k suppliers, each chooses to
open a single facility within the set of facilities, and m markets that the suppliers will serve. Given
a strategy profile, a supplier serves the markets closest to it and receives a payment from these
markets. A market receives a value if it is served. The payment in this game makes it fundamentally
different to the Voronoi game. Vetta [8] proved that there always exist a Nash equilibrium in this
game and the price of anarchy is at most 2 with respect to the total profit of the game (the formal
definition is in [8]).

Ispired by the Voronoi game on graphs, introduced in the conference version of this paper([3]),
Mavronicolas et al. [6] study the game on cycle graphs, particularly on the characterization of
equilibrium and on the price of anarchy on such graph. Zhao et al. [9] study the isolation game,
which may be considered as the dual of the Voronoi game.

Organization In Section 2, we give the formal description of the Voronoi game and the definition
of the social cost discrepancy. Next, we warm up by studying the game on cycle graph in Section
3. In Section 4, we prove that it is NP-complete to decide whether a given game admits an
equilibrium. We bound the social cost discrepancy of the game in Section 5

2 The Voronoi game and the social cost discrepancy

2.1 The Voronoi game

For this game we need to generalize the notion of vertex partition of a graph: A generalized partition
of a graph G(V,E) is a set of n-dimensional non-negative vectors, which sum up to the vector with
1 in every component, for n = |V |.

The Voronoi game on graphs consists of:

• A graph G(V,E) and k players. We assume k < n for n = |V |, otherwise the game has a
trivial structure. The graph induces a distance between vertices d : V ×V → N∪{∞}, which
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is defined as the minimal number of edges of any connecting path, or infinite if the vertices
are disconnected.

• The strategy set of each player is V . A strategy profile of k players is a vector f = (f1, . . . , fk)
associating each player to a vertex.

• For every vertex v ∈ V — called customer — the distance to the closest facility is denoted as
d(v, f) := minfi

d(v, fi). Customers are assigned in equal fractions to the closest facilities as
follows. The strategy profile f defines the generalized partition {F1, . . . , Fk}, where for every
player 1 ≤ i ≤ k and every vertex v ∈ V ,

Fi,v =

{
1/| arg minj d(v, fj)| if d(v, fi) = d(v, f)
0 otherwise.

We call Fi the Voronoi cell of player i. The radius of the Voronoi cell of player i is defined
as maxv d(v, fi) where the maximum is taken over all vertices v such that Fi,v > 0.

• The payoff (utility) of player i is the (fractional) amount of customers assigned to it, that is
pi :=

∑
v∈V Fi,v. (see figure 1 for an example)

• The social cost of strategy profile f is cost(f) :=
∑

v∈V d(v, f).

1 5
62 5

6 2 1
3

Figure 1: A strategy profile of a graph (players are dots) and the corresponding payoffs.

We defined players’ payoffs in such a way, that there is a subtle difference between the Voronoi
game played on graphs and the Voronoi game played on a continuous surface. Consider a situation
where a player i moves to a location already occupied by a single player j who is not neighbor of i.
Then, in the continuous case player i gains exactly a half of the previous payoff of player j (since
it is now shared with i). However, in our setting (the discrete case), player i can sometimes gain
more than a half of the previous payoff of player j (see figure 3).

A simple observation leads to the following bound on the players payoff.

Lemma 1 In a Nash equilibrium the payoff pi of every player i is bounded by n/2k < pi < 2n/k.

Proof: If a player gains p and some other player moves to the same location then both payoffs are
at least p/2. Therefore the ratio between the largest and the smallest payoffs among all players can
be at most 2. If all players have the same payoff, it must be exactly n/k, since the payoffs sum up
to n. Otherwise there is at least one player who gains strictly less than n/k, and another player
who gains strictly more than n/k. This concludes the proof. �
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2.2 The social cost discrepancy

When consider the inefficiency of equilibria in a game, the most popular measures are the price of
anarchy and the price of stability. The price of anarchy (stability) is defined as the ratio between
the worst (best) objective value of an equilibrium of the game and that of an optimal solution.

We introduce the social discrepancy defined as the ratio between the worst and the best pure
equilibrium. The idea is that a small social cost discrepancy guarantees that the social costs of
Nash equilibria do not differ too much, and measures a degree of choice in the game. Additionally,
in some settings it may be unfair to compare the cost of a Nash equilibrium with the optimal
solution, which may not be attained by selfish players or may not be an outcome of the game.

social discrepancy

PoA

equilibrium
best

equilibrium
worstOPT

PoS

Figure 2: Illustration of different measures of inefficiency.

Note that the social discrepancy is not the ratio between the price of anarchy and the price of
stability since each of these measures may be attained by different instances of a game.

3 The cycle graph

Let G(V,E) be the cycle on n vertices with V = {vi : i ∈ Zn} and E = {(vi, vi+1) : i ∈ Zn}, where
addition is modulo n. The game plays on the undirected cycle, but it will be convenient to fix an
arbitrary orientation. Let u0, . . . , u`−1 be the distinct facilities chosen by k players in a strategy
profile f with ` ≤ k, numbered according to the orientation of the cycle. For every j ∈ Z`, let cj ≥ 1
be the number of players who choose the facility uj and let dj ≥ 1 be the length of the directed
path from uj to uj+1 following the orientation of G. Now the strategy profile is defined by these 2`
numbers, up to permutation of the players. We decompose the distance into dj = 1 + 2aj + bj , for
0 ≤ bj ≤ 1, where 2aj + bj is the number of vertices between facilities uj and uj+1. So if bj = 1,
then there is a vertex in midway at equal distance from uj and uj+1.

With these notations the payoff of player i located on facility uj is

pi :=
bj−1

cj−1 + cj
+
aj−1 + 1 + aj

cj
+

bj
cj + cj+1

.

All Nash equilibria of the game on the cycle graph are explicitly characterized. The intuition
is that the cycle is divided by the players into segments of different length, which roughly differ
at most by a factor 2. The exact statement is more subtle because several players can be located
at a same facility and the payoff is computed differently depending on the parity of the distances
between facilities.
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Proposition 1 ([6]) For a given strategy profile, let γ be the minimal payoff among all players,
i.e., γ := min{pi|1 ≤ i ≤ k}. Then this strategy profile is a Nash equilibrium if and only if, for all
j ∈ Z`:

P1. cj ≤ 2.

P2. dj ≤ 2γ.

P3. If ci 6= ci+1 then b2γc is odd.

P3. If cj = 1 and dj−1 = dj = 2γ then 2γ is odd.

P4. If cj = cj+1 = 1 and di−1 + di = di+1 = 2γ then 2γ is odd.
If cj = cj−1 = 1 and di−1 = di + di+1 = 2γ then 2γ is odd.

A method to find Nash equilibrium in some games is to apply the best-response dynamic from
an initial strategy profile. However, in our game, even in the simple cycle graph in which all Nash
equilibria can be exactly characterized, in general there is no hope to use the best-response dynamic
to find Nash equilibria in the game.

Proposition 2 On the cycle graph, the best response dynamic does not converge.

Proof: Figure 3 shows an example of a graph, where the best response dynamic can iterate forever.

1 5
6
→ 2 etc.1→ 1 1

6
1
2
→ 2

old → new payoff

2 1
3
→ 2 1

2

Figure 3: The best response dynamic does not converge on this graph.

�

Nevertheless there is a slightly different Voronoi game in which the best response dynamic
converges : The Voronoi game with disjoint facilities is identical with the previous game, except
that players who are located on the same facility now gain zero.

Proposition 3 On the cycle graph, for the Voronoi game with disjoint facilities, the best response
dynamic does converge to pure Nash equilibria.

Proof: To show convergence we use a potential function. For this purpose we define the dominance
order : Let A,B be two multisets. If |A| < |B| then A � B. If |A| = |B| ≥ 1, and maxA > maxB
then A � B. If |A| = |B| ≥ 1,maxA = maxB and A\{maxA} � B\{maxB} then A � B. This
is a total order.

The potential function is the multiset {d0, d1, . . . , dk−1}, that is all distances between successive
occupied facilities. Player i’s payoff — renumbered conveniently — is simply (di + di+1)/2 since
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there is at most one player located on a vertex. Now consider a best response for player i moving to
a vertex not yet chosen by another player, say between player j and j+1. Therefore in the multiset
{d0, d1, . . . , dk−1}, the values di, di+1, dj are replaced by di + di+1, d

′, d′′ for some values d′, d′′ ≥ 1
such that dj = d′ + d′′. The new potential value is dominated by the previous one. This proves
that after a finite number of iterations, the best response dynamic converges to a Nash equilibrium.

�

4 Existence of a Nash equilibrium is NP-hard

In this section we show that it is NP-hard to decide whether for a given graph G(V,E) there is
a Nash equilibrium for k players. For this purpose we define a more general but equivalent game,
which simplifies the reduction.

In the generalized Voronoi game 〈G(V,E), U, w, k〉 we are given a graph G, a set of facilities
U ⊆ V , a positive weight function w on vertices and a number of players k. Here the set of strategies
of each player is only U instead of V . Also the payoff of a player is the weighted sum of fractions
of customers assigned to it, i.e., the payoff of player i is pi :=

∑
v∈V w(v)Fi,v.

Lemma 2 For every generalized Voronoi game 〈G(V,E), U, w, k〉 there is a standard Voronoi game
〈G′(V ′, E′), k〉 with V ⊆ V ′, which has the same set of Nash equilibria and which is such that |V ′|
is polynomial in

∑
v∈V w(v).

Proof: To construct G′ we will augment G in two steps. Start with V ′ = V .
First, for every vertex u ∈ V such that w(u) > 1, let Hu be a set of w(u)− 1 new vertices. Set

V ′ = V ′ ∪Hu and connect u with every vertex from Hu.
Second, let H be a set of k(a+ 1) new vertices where a = |V ′| =

∑
v∈V w(v). Set V ′ = V ′ ∪H

and connect every vertex of U with every vertex of H.
Now in G′(V ′, E′) every player’s payoff can be decomposed in the part gained from V ′\H and

the part gained from H. We claim that in a Nash equilibrium every player chooses a vertex from
U . If there is at least one player located in U , then the gain from H for any other player is 0 if
located in V ′\(U ∪ H), is 1 if located in H and is at least a + 1 if located in U . Since the total
payoff from V ′\H over all players is a, this forces all players to be located in U .

Clearly by construction, for any strategy profile f ∈ Uk, the payoffs are the same for the gener-
alized Voronoi game in G as for the standard Voronoi game in G′. Therefore we have equivalence
of the set of Nash equilibria in both games. �

Our NP-hardness proof will need the following gadget.

Lemma 3 For the graph G shown in figure 4 and k = 2 players, there is no Nash equilibrium.

Proof: We will simply show that given an arbitrary location of one player, the other player can
move to a location where he gains at least 5. Since the total payoff over both players is 9, this will
prove that there is no Nash equilibrium.

By symmetry without loss of generality the first player is located at the vertices u1 or u2. Now
if the second player is located at u6, his payoff is at least 5. �

Theorem 1 Given a graph G(V,E) and a set of k players, deciding the existence of Nash equilib-
rium for k players on G is NP-complete for arbitrary k, and polynomial for constant k.
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u1 u2 u3 u4

u5
u6

u7 u8

u9

Figure 4: Example of a graph with no Nash equilibrium for 2 players.

Proof: The problem is clearly in NP, since best responses can be computed in polynomial time,
therefore it can be verified efficiently if a strategy profile is a Nash equilibrium. Since there are nk

different strategy profiles, for n = |V |, the problem is polynomial when k is constant.
For the proof of NP-hardness, we will reduce 3-Partition — which is unary NP-complete

[5] — to the generalized Voronoi game, which by Lemma 2 is itself reduced to the original Voronoi
game. In the 3-Partition problem we are given integers a1, . . . , a3m and B such that B/4 <
ai < B/2 for every 1 ≤ i ≤ 3m,

∑3m
i=1 = mB and have to partition them into disjoint sets

P1, . . . , Pm ⊆ {1, . . . , 3m} such that for every 1 ≤ j ≤ m we have
∑

i∈Pj
ai = B.

We construct a weighted graph G(V,E) with the weight function w : V → N and a set U ⊆ V
such that for k = m + 1 players (m ≥ 2) there is a Nash equilibrium to the generalized Voronoi
game 〈G,U,w, k〉 if and only if there is a solution to the 3-Partition instance. We define the
constants c =

(
3m
3

)
+ 1 and d =

⌊
Bc−c+c/m

5

⌋
+ 1. The graph G consists of 3 parts. In the first part

V1, there is for every 1 ≤ i ≤ 3m a vertex vi of weight aic. There is also an additional vertex v0 of
weight 1. In the second part V2, there is for every triplet (i, j, k) with 1 ≤ i < j < k ≤ 3m a vertex
uijk of unit weight1. Every vertex uijk is connected to v0, vi, vj and vk. The third part V3, consists
of the 9 vertex graph of Figure 4 where each of the vertices u1, . . . , u9 has weight d. To complete
our construction, we define the facility set U := V2 ∪ V3. Note that although the graph for the
generalized Voronoi game is disconnected, the reduction of Lemma 2 to the original Voronoi game
will connect V2 with V3.

First we show that if there is a solution P1, . . . , Pm to the 3-Partition instance then there is
a Nash equilibrium for this graph. Simply for every 1 ≤ q ≤ m if Pq = {i, j, k} then player q is
assigned to the vertex uijk. Player m + 1 is assigned to u2. Now player (m + 1)’s payoff is 9d,
and the payoff of each other player q is Bc + c/m. To show that this is a Nash equilibrium we
need to show that no player can increase his payoff. There are different cases. If player m + 1
moves to a vertex uijk, his payoff will be at most 3

4Bc + c/(m+ 1) < 9d, no matter if that vertex
was already chosen by another player or not. If player 1 ≤ q ≤ m moves from vertex uijk to a
vertex u` then his gain can be at most 5d < Bc + c/m. But what can be his gain, if he moves to
another vertex ui′j′k′? In case where i = i′, j = j′, k 6= k′, aic + ajc is smaller than 3

4Bc because
ai + aj + ak = B and ak > B/4. Since ak′ < B/2, and player q gains only half of it, his payoff is at
most aic+ ajc+ ak′c/2 + c/m < Bc+ c/m so he again cannot improve his payoff. The other cases
are similar.

1Ideally we would like to give it weight zero, but there seems to be no simple generalization of the game which
allows zero weights, while preserving the set of Nash equilibria.
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w(u2) = d

w(v1) = a1c

w(v2) = a2c

w(v3) = a3c

w(u1) = d w(u3) = d

w(u4) = d

w(u6) = dw(u5) = d

w(u8) = d

w(u9) = d

w(v0) = 1
U

w(u7) = d

w(u1,2,5) = 1

w(u1,2,4) = 1

w(u1,2,3) = 1

w(u3n−2,3n−1,3n) = 1

w(v3n) = a3nc

Figure 5: Reduction from 3-Partition.

Now we show that if there is a Nash equilibrium, then it corresponds to a solution of the 3-
Partition instance. So let there be a Nash equilibrium. First we claim that there is exactly one
player in V3. Clearly if there are 2 players, this contradicts equilibrium by Lemma 3. If there are
3 players or more, then by a counting argument there are vertices vi, vj , vk which are at distance
more than one from any player. One of the players located at V3 gains at most 3d and if he moves
to uijk, his payoff would be at least 3

4Bc + c/m > 3d. Now if there is no player in V3, then any
player moving to u2 will gain 9d > 3

2Bc + c/m which is an upper bound for the payoff of players
located in V2. So we know that there is a single player in V3 and the m players in V2 must form
a partition, since otherwise there is a vertex vi ∈ V1 at distance at least 2 to any player. So, by
the previous argument, there would be a player in V2 who can increase his payoff by moving to
the other vertex in V2 as well. (He moves in such a way that his new facility is at distance 1 to
vi.) Moreover, in this partition, each player gains exactly Bc+ c/m because if one gains less, given
all weights in V1 are multiple of c, he gains at most Bc− c+ c/m and he can always augment his
payoff by moving to V3 (5d > Bc− c+ c/m). �

5 Social cost discrepancy

In this section, we study how much the social cost of Nash equilibria can differ for a given graph,
assuming Nash equilibria exist. Recall that the social cost of a strategy profile f is cost(f) :=∑

v∈V d(v, f). Since we assumed k < n the cost is always non-zero. The social cost discrepancy of
the game is the maximal fraction cost(f)/cost(f ′) over all Nash equilibria f, f ′. For unconnected
graphs, the social cost can be infinite, and so can be the social cost discrepancy. Therefore in this
section we consider only connected graphs.

Lemma 4 There are connected graphs for which the social cost discrepancy is Ω(
√
n/k), where n

is the number of vertices and k the number of players.

Proof: We construct a graph G as shown in figure 6. The total number of vertices in the graph is
n = k(2a + b + 2). We distinguish two strategy profiles f and f ′: the vertices occupied by f are
marked with round dots, and the vertices of f ′ are marked with triangular dots.

By straightforward verification, it can be checked that both f and f ′ are Nash equilibria.
However the social cost of f is Θ(kb + ka2) while the social cost of f ′ is Θ(kab + ka2). The ratio
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a

b

Figure 6: Example of a graph with high social cost discrepancy.

between both costs is Θ(a) = Θ(
√
n/k) when b = a2 and thus the cost discrepancy is lower bounded

by this quantity. �

In continuous setting, Delaunay triangulation for a set P of points in the plane is a triangulation
such that no point in P is inside the circumcircle of any triangle in the triangulation. Moreover,
Delaunay triangulations maximize the minimum angle of all the angles of the triangles in the
triangulation; they tend to avoid skinny triangles. The Delaunay triangulation, considered as the
dual of Voronoi diagram together with these nice properties, is an important object as well as a tool
in mathematics and computational geometry. Here, we give the definition of Delaunay triangulation
on graph which is a generalization of Delaunay triangulation in continuous setting (see Figure 7
for an illustration). Interestingly, this notion is useful in analyzing the social cost discrepancy of
Voronoi game.

Definition 1 Given a strategy profile f , the Delaunay triangulation corresponding to f is a graph
Hf on the k players in profile f . There is an edge (i, j) in Hf either if there is a vertex v in G
with Fi,v > 0 and Fj,v > 0 or if there is an edge (v, v′) in G with Fi,v > 0 and Fj,v′ > 0.

We will need to partition the Delaunay triangulation into small sets, called stars. For a given
graph G(V,E) a star is vertex set A ⊆ V such that |A| ≥ 2, and there is a center vertex v0 ∈ A
such that for every v ∈ A, v 6= v0 we have (v0, v) ∈ E. Note that our definition allows the existence
of additional edges between vertices from A.

Lemma 5 For any connected graph G(V,E), V can be partitioned into stars.

Proof: We define an algorithm to partition V into stars.
As long as the graph contains edges, we do the following. We start choosing an edge: If there

is a vertex u with a unique neighbor v, then we choose the edge (u, v); otherwise we choose an
arbitrary edge (u, v). Consider the vertex set consisting of u, v as well as of any vertex w that
would be isolated when removing edge (u, v). Add this set to the partition, remove it as well as
adjacent edges from G and continue.

Clearly the set produced in every iteration is a star. Also when removing this set from G, the
resulting graph does not contain an isolated vertex. This property is an invariant of this algorithm,
and proves that it ends with a partition of G into stars. �
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(a) (b)

Figure 7: The Voronoi diagram and Delaunay triangulation in continuous and discrete settings. In
continuous setting (a), the Voronoi diagram and the Delaunay triangulation are characterized by
dashed and continuous lines, respectively. In discrete setting (b), the edges of graph are drawn in
continuous and players are dots. The Voronoi diagram and the Delaunay triangulation in this case
are characterized by dotted and dashed lines, respectively.

Note that, when a graph is partitioned into stars, the centers of these stars form a dominating
set of this graph. Nevertheless, vertices in a dominating set are not necessarily centers of any
star-partition of a given graph.

= r

U

≤ 2r
≤ 4r

W

q

Figure 8: Illustration of Lemma 6.

The following lemma states that given two different Nash equilibria f and f ′, every player in f
is not too far from some player in f ′. For this purpose we partition the Delaunay triangulation Hf

into stars, and bound the distance from any player of a star to f ′ by some value depending on the
star.

Lemma 6 Let f be an equilibrium and A be a star of a star partition of the Delaunay triangulation
Hf . Let r be the maximal radius of the Voronoi cells over all players i ∈ A. Then, for any
equilibrium f ′, there exists a player f ′j such that d(fi, f

′
j) ≤ 6r for every i ∈ A.
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Proof: Let U = {v ∈ V : mini∈A d(v, fi) ≤ 4r}. If we can show that there is a facility f ′j ∈ U we
would be done, since by definition of U there would be a player i ∈ A such that d(fi, f

′
j) ≤ 4r and

the distance between any pair of facilities of A is at most 2r. This would conclude the lemma.
So for a proof by contradiction, assume that in the strategy profile f ′ there is no player located

in U . Now consider the player with smallest payoff in f ′. His payoff is not more than n/k. However
if this player would choose as a facility the center of the star A, then he would gain strictly more:
By the choice of r, any vertex in W is at distance at most 3r to the center of the star. However, by
assumption and definition of U , any other facility of f ′ would be at distance strictly greater than
3r to any vertex in W . So the player would gain at least all vertices around it at distance at most
3r, which includes W . Since any player’s payoff is strictly more than n/2k by Lemma 1, and since
a star contains at least two facilities by definition, this player would gain strictly more than n/k,
contradicting that f ′ is an equilibrium. This concludes the proof. �

Theorem 2 For any connected graph G(V,E) and any number of players k the social cost discrep-
ancy is O(

√
kn), where n = |V |.

Proof: Let f, f ′ be arbitrary equilibria on G(V,E). We will consider a generalized partition of V
and for each part bound the cost of f ′ by c

√
kn times the cost of f for some constant c.

For a non-negative n-dimensional vector W we define the cost restricted to W as costW (f) =∑
v∈V Wv · d(v, f). Now the cost of f would write as the sum of costW (f) over the vectors W from

some fixed generalized partition.
Fix a star partition of the Delaunay triangulation Hf . Let A be an arbitrary star from this

partition, a = |A|, and let W be the sum of the corresponding Voronoi cells, i.e., W =
∑

i∈A Fi.
We will show that costW (f ′) = O(

√
kn · costW (f)), which would conclude the proof. There will be

two cases k ≤ n/4 and k > n/4.
By the previous lemma there is a vertex f ′j such that d(fi, f

′
j) ≤ 6r for all i ∈ A, where r is the

largest radius of all Voronoi cells corresponding to the star A. So the cost of f ′ restricted to the
vector W is

costW (f ′) =
∑
v∈V

Wv · d(v, f ′) ≤
∑
v∈V

Wv · d(v, f ′j)

=
∑
v∈V

∑
i∈A

Fi,v · d(v, f ′j)

≤
∑
v∈V

∑
i∈A

Fi,v ·
(
d(v, fi) + d(fi, f

′
j)
)

≤ costW (f) + 6r · |W |, (1)

where |W | :=
∑

v∈V Wv.
Moreover by definition of the radius, there is a vertex v with Wv > 0 such that the shortest

path to the closest facility in A has length r. So the cost of f restricted to W is bigger than the
cost restricted to this shortest path:

costW (f) ≥ (
1
k
· 1 +

1
k
· 2 + . . .+

1
k
· r) ≥ 1

k
· r(r − 1)/2.

(The fraction 1
k appears because a vertex can be assigned to at most k players.)
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First we consider the case k ≤ n/4. We have

costW (f) ≥ |W | − |A| ≥ a(n/2k − 1) ≥ an/4k.

The first inequality is because the distance of all customers which are not facilites to a facility is
at least one. The second inequality is due to Lemma 1 and |W | is the sum of payoffs of all players
in A.

Note that |W | ≤ n and 2 ≤ a ≤ k . Now if r ≤
√
an, then

costW (f ′)
costW (f)

≤ 1 +
6r|W |

costW (f)
≤ 1 +

6r · a · 2n/k
an/4k

= O(r) = O(
√
kn).

And if r ≥
√
an, then

costW (f ′)
costW (f)

≤ 1 +
6r|W |

costW (f)
) ≤ 1 +

6r · a · 2n/k
r(r − 1)/2k

= O(an/r) = O(
√
kn).

Now we consider case n > k > n/4. In any equilibrium, the maximum payoff is at most 2n/k.
Moreover the radius r of any Voronoi cell is upper bounded by n/k + 1, otherwise the player with
minimum gain (which is at most n/k) could increase his gain by moving to a vertex which is at
distance at least r from every other facility. Therefore r = O(1). Summing (1) over all stars with
associated partition W , we obtain cost(f ′) ≤ cost(f) + cn, for some constant c. Remark that the
social cost of any equilibrium is at least n− k. Hence, cost(f ′)

cost(f) = O(n) = O(
√
kn). �

6 Open problems

It would be interesting to close the gap between the lower and upper bounds for the social cost
discrepancy. The price of anarchy is still to be studied. Just notice that it can be as large as Ω(n),
as for the star graph and k = n − 1 players: The unique Nash equilibria locates all players in the
center, while the optimum is to place every player on a distinct leaf. Furthermore, it is expected
that the social cost discrepancy would be considered in other games in order to better understand
Nash equilibria in these games.
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