$\mathcal{N} \mathcal{P}$-hardness of pure Nash equilibrium in Scheduling and Connection Games

Nguyen Kim Thang
LIX, Ecole Polytechnique, France.
thang@lix.polytechnique.fr.

Abstract

We prove $\mathcal{N} \mathcal{P}$-hardness of pure Nash equilibrium for some problems of scheduling games and connection games. The technique is standard: first, we construct a gadget without the desired property and then embed it to a larger game which encodes a $\mathcal{N} \mathcal{P}$-hard problem in order to prove the complexity of the desired property in a game. This technique is very efficient in proving $\mathcal{N} \mathcal{P}$-hardness for deciding the existence of Nash equilibria. In the paper, we illustrate the efficiency of the technique in proving the $\mathcal{N} \mathcal{P}$-hardness of deciding the existence of pure Nash equilibria of Matrix Scheduling Games and Weighted Connection Games. Moreover, using the technique, we can settle the complexity not only of the existence of equilibrium but also of the existence of good cost-sharing protocol.

Key words: Nash equilibrium, $\mathcal{N} \mathcal{P}$-hardness.

1 Introduction

Considering the growth of Internet as a motivation, computer scientists are interested in studying Algorithmic Game Theory, in which one of the most wellstudied objects is the stable state, called Nash equilibrium. Given a game with strategy sets for players, a pure Nash equilibrium is a strategy profile in which each player deterministically plays her chosen strategy and no one has an incentive to unilaterally change her strategy. A mixed Nash equilibrium is similar to the pure one except that now players can pick a randomized strategy - a probability distribution over their strategy sets. In 1951, Nash proved that every game with a finite number of players, each having a finite set of strategies, always possesses a mixed Nash equilibrium. However, no similar result exists for pure Nash equilibrium.

Rosenthal [14], Monderer and Shapley [12] introduced potential games which always possess a pure Nash equilibrium, for example: Congestion Games [12], Connection Games [13, chapter 19]. In these games, the existence of pure Nash equilibrium is proved by using a potential-function argument. The complexity of finding a pure equilibrium of Congestion Games is settled in [10]. Besides, it is proved that finding a pure Nash equilibrium is $\mathcal{N} \mathcal{P}$-hard in some other games, for example games with imperfect information, perfect recall [3].

We are interested in the complexity of some properties of pure Nash equilibria. Until now there are two methods, in general, to prove the $\mathcal{N} \mathcal{P}$-hardness of a problem: using gadgets or using the PCP Theorem. In the paper, we use a technique based on the former, specifically on the gadgets called negated and polynomial-time reductions. The technique is the following. First, find a negated gadget which does not have the desired property. (In fact, a negated gadget is a counter-example of the property.) Next, construct a family of games which encode a $\mathcal{N} \mathcal{P}$-hard problem, and embed the gadget into. We argue that the game has the desired property if and only if there is a solution for the instance of $\mathcal{N} \mathcal{P}$-hard problem by using the gadget to enforce players' behaviors in such a way that the game possesses the desired property.

This standard technique is successfully applied in settling the complexity on the existence of pure Nash equilibrium in games [8, 7]. In this paper, we present the technique as a framework and illustrate its application in different contexts. Interestingly, this technique is not only applied to the existence of equilibrium but also to other properties such as good cost-sharing protocol in Connection Games.

Note that, from now we use the term Nash equilibrium instead of pure Nash equilibrium. The paper is organized as follows. In Section 2, we introduce the Matrix Scheduling Games and prove the complexity of the existence of pure Nash equilibrium in this game. In Section 3, we prove the complexity of the existence of pure equilibrium in Weighted Connection Games - that answers a question in [4]. Moreover, in Connection Games we show the intractability of finding a fair cost-sharing protocol which induces an equilibrium that is not too far from the optimum.

2 Matrix Scheduling Games

In Matrix Scheduling Games, there are m machines, n players and a load matrix $\left(A_{i j}\right)_{n \times m}$ where $A_{i j} \geq 0 \forall i, j$. Each player has a set of jobs that need to be executed. Players can complete their jobs by choosing a subset of machines on which their jobs will be executed, i.e., the strategy set \mathcal{S}_{i} of player p_{i} is a collection of subsets of machines. $A_{i j}$ represents the load contribution of player p_{i} to machine m_{j} if she uses this machine. Given a strategy profile $S=\left(S_{1}, S_{2}, \ldots, S_{n}\right) \in\left(\mathcal{S}_{1} \times \mathcal{S}_{2} \times \ldots \times \mathcal{S}_{n}\right)$, the load ℓ_{j} of a machine m_{j} depends on the set of jobs executed on the machine and is defined as $\sum A_{i j}$ over all players p_{i} choosing a strategy (a subset of machines) which contains machine m_{j}. The cost of a player is the sum of all loads of machines that the player uses, i.e., $c_{i}=\sum_{m_{j} \in S_{i}} \ell_{j}$. Players are selfish and they choose a strategy which induces the cost as small as possible. Remark that, without loss of generality, the strategy set of a player is inclusion-free, i.e., no player possesses two strategies S and S^{\prime} such that $S \subset S^{\prime}$ since otherwise the player always prefer use S to S^{\prime} in order to get a smaller cost.

If players' strategies are restricted to singleton machines then the game becomes the well-studied Load Balancing Games. There always exists Nash equi-
librium on that game [9] (by using an argument of lexicographical potential function). However, without assumption on players' strategy sets, the game does not necessarily possess an equilibrium.

Lemma 1. There exists a matrix scheduling game in which there is no Nash equilibrium.

Proof: We describe the game with no Nash equilibrium. There are 4 machines and 3 players, each one has two strategies. The strategy sets of players p_{1}, p_{2} and p_{3} are $\mathcal{S}_{1}=\left\{s_{1}^{1}=\left(m_{1}, m_{3}\right) ; s_{1}^{2}=\left(m_{4}\right)\right\}, \mathcal{S}_{2}=\left\{s_{2}^{1}=\left(m_{1}\right) ; s_{2}^{2}=\left(m_{2}\right)\right\}$ and $\mathcal{S}_{3}=\left\{s_{3}^{1}=\left(m_{2}\right) ; s_{3}^{2}=\left(m_{3}\right)\right\}$, respectively. The load matrix is given as in Figure 1. $\left(A_{i j}=\infty\right.$ if it is not explicitly given.)

	m_{1}	m_{2}	m_{3}	m_{4}
p_{1}	2		10	15
p_{2}	5	4		
p_{3}		4	1	

Fig. 1. A matrix scheduling game with no Nash equilibrium.

p_{1}	p_{2}	p_{3}	Best reponse
s_{1}^{1}	s_{2}^{1}	s_{3}^{1}	$p_{1}: s_{1}^{1} \rightarrow s_{1}^{2}(17 \rightarrow 15)$
s_{1}^{1}	s_{2}^{1}	s_{3}^{2}	$p_{3}: s_{3}^{2} \rightarrow s_{3}^{1}(11 \rightarrow 4)$
s_{1}^{1}	s_{2}^{2}	s_{3}^{1}	$p_{2}: s_{2}^{2} \rightarrow s_{2}^{1}(8 \rightarrow 7)$
s_{1}^{1}	s_{2}^{2}	s_{3}^{2}	$p_{3}: s_{3}^{2} \rightarrow s_{3}^{1}(11 \rightarrow 8)$
s_{1}^{2}	s_{2}^{1}	s_{3}^{1}	$p_{3}: s_{3}^{1} \rightarrow s_{3}^{2}(4 \rightarrow 1)$
s_{1}^{2}	s_{2}^{1}	s_{3}^{2}	$p_{2}: s_{2}^{1} \rightarrow s_{2}^{2}(5 \rightarrow 4)$
s_{1}^{2}	s_{2}^{2}	s_{3}^{1}	$p_{3}: s_{3}^{1} \rightarrow s_{3}^{2}(8 \rightarrow 1)$
s_{1}^{2}	s_{2}^{2}	s_{3}^{2}	$p_{1}: s_{1}^{2} \rightarrow s_{1}^{1}(15 \rightarrow 13)$

Fig. 2. There is no stable strategy profile.

We prove that there is no Nash equilibrium in the game by verifying all 2^{3} strategy profils. In Figure 2, the first three columns represent the strategies chosen by the players. The last column shows which player is unhappy and how she can decrease her cost. For example, the first row represents a strategy profile in which all players choose their first-strategy, player p_{1} has cost 17 and she has an incentive to change to her second-strategy, which induces a cost 15 .

Using the game from previous proof as a gadget, we prove the following theorem.

Theorem 1. Deciding whether there exists a Nash equilibrium for a given matrix scheduling game is strongly $\mathcal{N} \mathcal{P}$-complete. The problem remains $\mathcal{N} \mathcal{P}$-complete even for a constant number of machines.

Proof: The strong $\mathcal{N} \mathcal{P}$-completeness is obtained by a reduction from 3 Partition [11]. Here we present a proof of $\mathcal{N} \mathcal{P}$-completeness for the game with a constant number of machines and the proof of strong $\mathcal{N} \mathcal{P}$-hardness is similar with slight modifications. Given a strategy profile, verifying whether it is an equilibrium can be done in $O(n m)$, so the problem is in $\mathcal{N} \mathcal{P}$. In the following, we prove the $\mathcal{N} \mathcal{P}$-hardness by a reduction from Partition [11].

In Partition, we are given n integer numbers a_{1}, \ldots, a_{n} and the question is whether there exists a partition of these n numbers into two subsets $\left(P_{1}, P_{2}\right)$ such that the sums of elements in these subsets are equal.

We construct a matrix scheduling game in which the existence of a Nash equilibrium is equivalent to the existence of a solution for an instance of PartiTION. Given n integers a_{1}, \ldots, a_{n}, let B be an integer such that $\sum_{i=1}^{n} a_{i}=2 B$. The reduction game consists of $n+6$ players. The first n players encode the Partition problem, the last three players encode the gadget of Lemma 1 and the remaining three players acts as connection between these groups. Each of the first n players has two strategies $\left\{m_{1}\right\}$ and $\left\{m_{2}\right\}$, the loads of player p_{i} $(1 \leq i \leq n)$ on machines m_{1}, m_{2} are the same and equal to a_{i}. Player p_{n+1} has two strategies $\left\{m_{2}\right\}$ and $\left\{m_{3}\right\}$ with loads 0 and $B / 2+\epsilon$, respectively; player p_{n+2} has two strategies $\left\{m_{1}\right\}$ and $\left\{m_{3}\right\}$ with loads 0 and $B / 2+\epsilon$, respectively. Player p_{n+3} has two strategies $\left\{\left(m_{3}, m_{4}\right)\right\}$ and $\left\{m_{8}\right\}$ with loads as shown in Table 2. The last three players represent the gadget of Lemma 1. Note that the load contribution of a player to a machine is infinity if it is not explicitly given.

	m_{1}	m_{2}	m_{3}	m_{4}	m_{5}	m_{6}	m_{7}	m_{8}
p_{1}	a_{1}	a_{1}						
p_{2}	a_{2}	a_{2}						
\vdots	\vdots	\vdots						
p_{n-1}	a_{n-1}	a_{n-1}						
p_{n}	a_{n}	a_{n}						
p_{n+1}		0	$B / 2+\epsilon$					
p_{n+2}	0		$B / 2+\epsilon$					
p_{n+3}			$B / 2$	3				$B / 2+4$
p_{n+4}				2		10	15	
p_{n+5}				5	4			
p_{n+6}					4	1		

Table 1. The load matrix of the reduction game.

First we show that if there is a solution $P=\left(P_{1}, P_{2}\right)$ for the Partition instance then there is a Nash equilibrium for this game. Consider a strategy profile in which player $p_{i}(1 \leq i \leq n)$ uses machine m_{j} for $j \in\{1,2\}$ such that $i \in P_{j}$, player p_{n+1} uses machine m_{2}, p_{n+2} uses machine m_{1}, p_{n+3} uses machines $\left(m_{3}, m_{4}\right)$ and three others play their second-strategy (defined in Lemma 1). It is straightforward that to verify that no one has an incentive to change her current strategy, hence this strategy profile is a Nash equilibrium. In this equilibrium, all n first players' cost are B.

For the converse, suppose that there is a Nash equilibrium for this game. In this equilibrium, player p_{n+3} must use machines (m_{3}, m_{4}) since otherwise, by Lemma 1, the strategy profile is not an equilibrium as it contains an unstable sub-game by the last three players. Hence, both players p_{n+1} and p_{n+2} play their
first strategy since otherwise player p_{n+3} will move. Therefore the costs of p_{n+1} and p_{n+2} are at most B. Moreover, $\sum_{i=1}^{n} a_{i}=2 B$ thus their costs are exactly B. In other words, all n first players form a partition such that the sum in two subsets are the same and therefore we obtain a solution for the Partition instance.

3 Connection Games

In Connection Games, we are given a directed graph $G=(V, E)$ with nonnegative edge $\operatorname{costs} c_{e}$ for all edges $e \in E$. There are n players, each player i has a specified source node s_{i} and $\operatorname{sink} t_{i}$. Player i 's goal is to build a network together with other players in order to connect her terminals s_{i} and t_{i} while paying as little as possible to do so. A strategy of player i is a path P_{i} from s_{i} to t_{i} in G. Given a strategy P_{i} for player i, the constructed network is $\cup_{i} P_{i}$, which induces the social cost $\sum_{e \in \cup_{i} P_{i}} c_{e}$ that is fully paid by players in the game.

Consider the Shapley cost-sharing protocol that splits the cost of an edge evenly among all players using this edge. Formally, given a strategy profile S, if n_{e} denotes the number of players whose path contains edge e then e assigns a cost c_{e} / n_{e} to each player using e. Thus, the total cost of player i in strategy profile S is $c_{i}(S):=\sum_{e \in P_{i}} c_{e} / n_{e}$. A Nash equilibrium is a strategy profile that is resilient to unilateral deviations. The Connection Games using the Shapley cost-sharing protocol is well studied in [1]. This game always possesses a Nash equilibrium. The inefficiency of the constructed network is measured by the price of anarchy ($P \circ A$) and the price of stability (PoS). The PoA is defined as the ratio between the costs of the worst Nash equilibrium and the optimum, the PoS is defined as the ratio between the costs of the best Nash equilibrium and the optimum.

3.1 Weighted Connection Games

The Weighted Connection Games is similar to the Connection Games except that in the former, each player i has additionally a weight w_{i} and she needs to carry the weight from her source to her sink. Consider the weighted Shapley cost-sharing protocol that splits the cost of an edge proportionally to the players' weight. Formally, given a strategy profile S, let W_{e} be the total weight of players whose path contains e, i.e., $W_{e}=\sum_{i: e \in P_{i}} w_{i}$, the cost of player i on edge e is $c_{e} \cdot w_{i} / W_{e}$. The total cost of player i in strategy profile S is $c_{i}(S)=\sum_{e: e \in P_{i}} c_{e}$. w_{i} / W_{e}.

As showed in [5], there does not necessarily exist an equilibrium for Weighted Connection Games. We use the counterexample in [5] as the gadget in proving the complexity on the existence of Nash equilibrium in the game. For completeness, we present here the gadget.

Lemma 2 ([5]). There is a 3-player weighted connection game using weighted Shapley cost-sharing protocol that admits no Nash equilibrium.

Fig. 3. A 3-players weighted Shapley connection game with no Nash equilibrium.

Edge	Cost
e_{1}	0
e_{2}	3ϵ
e_{3}	0
e_{4}	0
e_{5}	$w^{3} /\left(w^{2}+w+1\right)-\epsilon$
e_{6}	$w^{3} /\left(w^{2}+w+1\right)+\epsilon$
e_{7}	$\left(w^{3}+w^{2}\right) /\left(w^{2}+w+1\right)-$ $-\epsilon\left(2 w^{2}+1\right) /\left(2 w^{2}+2\right)$
e_{8}	$\left(w^{3}+w^{2}\right) /\left(w^{2}+w+1\right)-$ $-\epsilon(2 w+1) /(2 w+2)$
e_{9}	1

Fig. 4. The cost of edges in Lemma 2

Proof: Let $w>1$ be an arbitrary number and $\epsilon>0$ be much smaller than $1 / w^{3}$. Consider the network in Figure 3 with players 1,2 and 3 which have weight $w^{2}, 1$ and w, respectively. The costs of edges are given in Figure 4 and are chosen in such a way that they satisfy the following inequalities.

$$
\begin{align*}
& c_{5} \cdot \frac{w^{2}}{w^{2}+1}+c_{9} \cdot \frac{w^{2}}{w^{2}+1}>c_{7}>c_{5}+c_{9} \cdot \frac{w^{2}}{w^{2}+w+1} \tag{1}\\
& c_{6}+c_{9} \cdot \frac{w}{w^{2}+w+1}>c_{8}>c_{6} \cdot \frac{w}{w+1}+c_{9} \cdot \frac{w}{w+1} \tag{2}
\end{align*}
$$

If the second player uses path $e_{2} \rightarrow e_{5} \rightarrow e_{9}$ then the third player will use path e_{8} (by the first half of the inequality (2)) and the first player strategy will be e_{7} (by the first half of the inequality (1)). Hence, the second player will switch to the path $e_{3} \rightarrow e_{6} \rightarrow e_{9}$ to decrease her cost.

If the second player uses path $e_{3} \rightarrow e_{6} \rightarrow e_{9}$ then the third player will use path $e_{4} \rightarrow e_{6} \rightarrow e_{9}$ (by the second half of the inequality (2)) and so the first player strategy will be $e_{1} \rightarrow e_{5} \rightarrow e_{9}$ (by the second half of the inequality (1)). But in this case, the second player will switch to the path $e_{2} \rightarrow e_{5} \rightarrow e_{9}$ and get better off.

The two cases conclude the lemma.

We use this lemma as the gadget of framework to prove the $\mathcal{N} \mathcal{P}$-hardness of Nash equilibrium. We construct a larger weighted connection game based on a $\mathcal{N} \mathcal{P}$-hard problem and embed the gadget into the larger game to relate the existence of a solution for an instance of the $\mathcal{N} \mathcal{P}$-hard problem to the existence of Nash equilibrium in the game. Part of our constructed network is inspired by the contruction in [7].

Theorem 2. It is $\mathcal{N} \mathcal{P}$-complete to decide whether a given weighted Shapley connection game admits a Nash equilibrium.

Proof: It is straightforward that verifying whether a strategy profile is an equilibrium of the game can be done in polynomial time. In the following, we prove the $\mathcal{N} \mathcal{P}$-hardness by a reduction from Monotone3Sat ${ }^{1}$ [11]. Consider an instance of Monotone3Sat with set of variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and set of clauses $C=\left(c_{1}, \ldots, c_{m}\right)$. Each clause contains at most three literals and either all literals in a clause are negated or all are unnegated. Deciding whether there is a satisfying assignment for this instance is $\mathcal{N} \mathcal{P}$-hard.

We construct a game such that for each literal $x \in X$, there is a literal player p_{x} with weight 1 , source x and $\operatorname{sink} \bar{x}$. Moreover, each clause $c \in C$ gives rise to a clause player p_{c} with weight 1 , source c and sink \bar{c}. Besides, we have three additional players p_{1}, p_{2}, p_{3} of weight $w^{2}, 1, w$ and source/sink $\left(s_{1}, t\right),\left(s_{2}, t\right),\left(s_{3}, t\right)$, respectively. These three players will play the role of the gadget from Lemma 2. One additional player p_{4} has weight 1 and source/sink $\left(s_{4}, t_{4}\right)$. Remark that in the reduction network, all players have weight 1 except players p_{1} and p_{3}. In our construction, ϵ is positive and arbitrarily small.

Fig. 5. Network of players p_{x} and p_{c}. Two paths of player $p_{c_{1}}$, for $c_{1}=x_{1} \vee x_{2} \vee x_{3}$, are illustrated.

We first describe the sub-network for all players p_{x} and $p_{c}, x \in X, c \in C$. Part of this sub-network is described in Figure 5. For player p_{x}, there are two paths P_{x}^{0}, P_{x}^{1} from x to \bar{x}. Let $n_{x}:=|\{c \in C \mid x \in c\}|$ and $n_{\bar{x}}:=|\{c \in C \mid \bar{x} \in c\}|$. Path P_{x}^{1} consists of $\left(2 n_{x}+2\right)$ edges and path P_{x}^{1} consists of $\left(2 n_{\bar{x}}+2\right)$ edges. On each path, the cost of all odd ${ }^{t h}$ edges is 0 and that of all even ${ }^{t h}$ edges is 2 except

[^0]the last edge. If $n_{x}>n_{\bar{x}}$ then the cost of the last edge on path P_{x}^{0} is $\left(n_{x}-n_{\bar{x}}\right)$ and that on path P_{x}^{1} is 0 . Otherwise, the cost of the last edge on path P_{x}^{0} is 0 and that on path P_{x}^{1} is $\left(n_{\bar{x}}-n_{x}\right)$. Each player p_{c} also has two paths P_{c}^{0}, P_{c}^{1} from c to \bar{c}. Path P_{c}^{0} consists of two edges with cost $9 / 2+\epsilon$ and 1. Path P_{c}^{1} consists of seven edges and is constructed for $c=c_{j}$ in the order $j=1, \ldots, m$ as follows. For a positive clause $c=c_{j}=\left(x_{j_{1}} \vee x_{j_{2}} \vee x_{j_{3}}\right)$ with $j_{1}<j_{2}<j_{3}$, path P_{c}^{1} starts with the edge connecting source c to the first inner node v_{1} on path $P_{x_{j_{1}}}^{1}$ that has only two incident edges so far. The second edge is the unique edge $\left(v_{1}, v_{2}\right)$ of path $P_{x_{j_{1}}}^{1}$ that has v_{1} as its start vertex. The third edge connects v_{2} to the first inner node v_{3} on path $P_{x_{j_{2}}}^{1}$ that has only two incident edges so far. The fourth edge is the only edge $\left(v_{3}, v_{4}\right)$ on $P_{x_{j_{2}}}^{1}$ with start vertex v_{3}. Similarly, the fifth edge is the edge connecting v_{4} to the first inner node v_{5} of $P_{x_{j_{3}}}^{1}$ which has only two incident edges so far, followed by $\left(v_{5}, v_{6}\right)$. The last edge of P_{c}^{1} connects v_{6} to sink \bar{c}. For a negative clause $c_{\ell}=\left(\bar{x}_{\ell_{1}} \vee \bar{x}_{\ell_{2}} \vee \bar{x}_{\ell_{3}}\right)$, the construction is similar. The difference with a positive clause is that a positive clause concerns only paths (of literal players in the clause) of superscript 1 while a negative clause concerns only with those of superscript 0 .

The second part of the network consists of four players p_{1}, p_{2}, p_{3} and p_{4}. First three players have a network (with edge costs) defined in Lemma 2. The only difference is that this network has an additional edge e_{10} of cost 0 . Player p_{4} has two paths P_{4}^{0}, P_{4}^{1} connecting her source s_{4} and her $\operatorname{sink} t_{4}$. Path P_{4}^{1} consists of edge e_{8} and an additional edge $\left(t, t_{4}\right)$ of cost $m-c_{8} /(w+1)-\epsilon$. Path P_{4}^{0} shares edges of cost 1 with all paths $P_{c}^{0}, \forall c \in C$ and contains some additional edges (of cost 0) connecting those. The network with its edges' cost is shown in Figure 6. Note that each player in our network possesses two strategies. We call a 0-path (1-path, resp) of a player the path with superscript 0 (1 , resp).

Fig. 6. Network of players p_{1}, p_{2}, p_{3} and p_{4} (an edge has cost 0 if it is not given).

Given a satisfying assignment, we argue that the strategy profile in which players $p_{x}(x \in X)$ use their j-path $(j \in\{0,1\})$ corresponding to the value j of x in the solution, players $p_{c}(c \in C)$ use their 1-path, player p_{4} uses her 1-path and players p_{1}, p_{2}, p_{3} use paths $\left(e_{7}\right),\left(e_{3} \rightarrow e_{6} \rightarrow e_{9}\right),\left(e_{10} \rightarrow e_{8}\right)$ respectively is a Nash equilibrium. Player p_{x} has no incentive to switch her strategy because
her cost stays the same (it equals $\max \left\{n_{x}, n_{\bar{x}}\right\}$) even if she changes the strategy (due to the trick that we add a new edge of cost $\left|n_{x}-n_{\bar{x}}\right|$ to some paths). Player p_{c} 's cost is at most 5 since in a satisfying assignment, she shares at least an edge of cost 2 with a player $p_{x}, x \in X$. Observing that if using 0 -path, player p_{c} may share only one edge of cost 1 with player p_{4} so if she switches to 0 -path, in the best case, her cost would be $9 / 2+\epsilon+1 / 2>5$. Hence, player p_{c} is happy on the 1-path. The cost of player p_{4} is $m-\epsilon$ and she is happy on her current strategy. It is easy to verify that all three players p_{1}, p_{2} and p_{3} are also happy.

Suppose there is a Nash equilibrium in this game. Hence, in this equilibrium, player p_{4} must use her 1-path since otherwise the strategy profile is not an equilibrium (by Lemma 2). The cost of p_{4} is at least $m-\epsilon$ and this happens in case p_{4} shares edge e_{8} with p_{3}. Therefore all players p_{c} use her 1-path because if there is a player p_{c} uses her 0-path, player p_{4} has an incentive to change her strategy and get a cost at most $m-1 / 2$. The fact that players $p_{c}(\forall c \in C)$ play their 1-path means that, for each $c \in C$, there is at least one player p_{x} shared an edge with p_{c} (otherwise, p_{c} will change her strategy). Hence, the assignment in which $x_{i}=1$ if p_{x} uses 1-path and $x_{i}=0$ otherwise gives a satisfying assignment for the Monotone3Sat instance.

3.2 Cost-Sharing protocol for Good Equilibrium

The inefficiency of equilibria is measured by the price of anarchy (PoA) and the price of stability (PoS). In previous subsection, we consider the Shapley costsharing protocol as the allocation of cost to players in the constructed network. Under this cost-sharing protocol, the PoA may be as large as n which is the number of players in the game and the PoS may be as large as $\log n[1]$. A natural question is whether there exists a cost-sharing protocol which guarantees a small inefficiency of the game. Chen, Roughgarden and Valiant [6] have studied the inefficiency of the Connection Games while considering the set of admissible costsharing protocols. A cost-sharing protocol is admissible if it satisfies: (i)Budgetbalance: the cost of each edge in the constructed network is fully passed on to its users; (ii)Separability: the cost shares of an edge are completely determined by the set of players that use it; (iii)Stability: for every network using the costsharing protocol, there is at least one Nash equilibrium. In that paper, they leave a challenging open question in designing an admissible cost-sharing protocol such that for all networks, the PoS induced from this protocol is small, say constant.

Consider the Shapley cost-sharing protocol. This protocol has a good property, namely fairness (it divides evenly the cost of an edge to players using this edge). We are interested in a question similar to the one above but restricted to admissible cost-sharing protocols which possess a fairness property. First, we define the property ϵ-fairness which is desired in a cost-sharing protocol. Intuitively, in these protocols, if an edge is shared by several players, no one pays a too large fraction of the cost.

Definition 1. Given $0<\epsilon<1 / 2$, an ϵ-fair cost-sharing protocol is a costsharing protocol in which if there are at least two players sharing an edge then no one pays more than $1-\epsilon$ fraction of this edge cost.

In Connection Games where all players have the same sink, there is a costsharing protocol which induces $\operatorname{PoS}=1$ for every network [2]. Nevertheless, the best Nash equilibrium is not very efficient compared to the optimal outcome in general case. Precisely, [6] obtained that for any admissible cost-sharing protocol, the PoS is at least $3 / 2$. Here, we present our proof for this lower bound.

Lemma 3 ([6]). There is a directed network whose PoS is at least 3/2 for any admissible cost-sharing protocol.
Proof: Consider the network in Figure 7, player p_{i} has source/sink $\left(s_{i}, t_{i}\right)$ for $1 \leq i \leq n$. The backbone path consists of edges $e_{1}, e_{2}, \ldots, e_{n}$ of cost $1+1 / n$ altering with edges of cost 0 . Players can use the backbone path or other paths to connect her terminals. Player $p_{i}(2 \leq i \leq n)$ has a path containing three edges of cost $1 / 2$ that we call one-hop-source edge and one-hop-sink edge the first and the last among these three edges, respectively. The optimum, where all players use the backbone path, is of cost $n+1$. We will prove that for any admissible cost-sharing protocol, an equilibrium of n players on this network has cost at least $3(n-1) / 2+1$.

Fig. 7. Network of n players whose $\operatorname{PoS}=3 / 2$ (an edge has cost 0 if it is not explicitly given).

Fix an admissible cost-sharing protocol. We claim that in an equilibrium induced by the protocol, the first player does not use the backbone path. Assume that in an equilibrium S, p_{1} uses the backbone path. Player p_{i} 's cost $(2 \leq i \leq n)$ restricted to the backbone path is at most $1 / 2$ before edge e_{i} and at most $1 / 2$ after (including) edge e_{2} since otherwise p_{i} has incentive to use her one-hopsource edge or one-hop-sink edge. Hence, the total cost of all players $p_{i}(2 \leq$ $i \leq n$) restricted on the backbone path is at most $n-1$, so p_{1} pays at least 2 on the backbone path. In this case, p_{1} would switch to the one-hop path of cost 1, that contradicts to the assumption of equilibrium. Moreover, we claim that in an equilibrium, no player entirely uses the backbone path. Suppose in an equilibrium there are $k-1$ players (different to the first player) entirely using the backbone path, i.e., $(n-k)$ other players use at least one of their one-hop edges in order to connect their terminals. The cost restricted on the backbone
path of each one in these $(n-k)$ players is at most 1 (otherwise a player, whose restricted cost is larger than 1 , would change her path restricted on the backbone by an one-hop edge with or without a backward edge of cost $1 / 2$). Therefore, the total cost shared by $k-1$ players entirely using the backbone path is at least k. In other words, there is a player p_{i} who strictly pays more than 1 on the backbone path, it means that she strictly pays more than $1 / 2$ on her path before e_{i} or after (including) e_{i}. Hence, this player can decrease her cost by switching her strategy.

Consider an equilibrium S and let $R=\left\{j: e_{j} \in S\right\}$. If $R=\emptyset$ then in S each player $p_{i}(2 \leq i \leq n)$ pays $3 / 2$ and player p_{1} pays 1 . The total cost is $3 / 2 \cdot(n-1)+1$. If $R \neq \emptyset$, let i be the smallest element in R. If $i>1$ then p_{i} uses her one-hop-source edge and no player p_{j} uses an edge e_{j} with $j \leq i$ on the backbone, since otherwise that would contradict the minimality of i. Thus, player p_{i} fully pays edge e_{i}. In this case, the total cost of p_{i} is $3 / 2+1 / n$ and she has an incentive to switch her strategy. Hence $i=1$. Let T be the set of players using e_{1} in S and $k:=\min \left\{j: p_{j} \in T\right\}$. Remark that no one uses the full backbone path. Since S is an equilibrium, edge e_{k} is shared by p_{k} and some other player of index $\ell<k$ (otherwise, p_{k} is the only one who pays edge e_{k} and she is not happy). Since $\ell<k$ and p_{ℓ} uses an edge e_{k}, player p_{ℓ} must use a path containing $\left\{e_{k}, e_{k+1}, \ldots, e_{n}\right\}$ (she can not use her one-hop-sink edge). That means the backbone path is entirely bought. Moreover, no one uses the backbone path, i.e., each player uses at least an edge of cost $1 / 2$. Hence, the total cost in S is $n+1 / 2 \cdot(n-1)$.

The following theorem shows that it is intractable to find an ϵ-fair admissible cost-sharing protocol which ensures small inefficiency of equilibria of the game. It also highlights an intuition in designing a cost-sharing protocol for the Connection Games with good PoS: this kind of cost-sharing protocol may not be fair.

Theorem 3. Given a network $G(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q}$ and a set of players, deciding whether there exists an ϵ-fair cost-sharing protocol such that the $\operatorname{PoS} \leq 3 / 2-\delta$ is $\mathcal{N} \mathcal{P}$-hard, where $\delta>0$ can be chosen arbitrarily small.

Acknowledgments. We thank Christoph Dürr and Nguyen Hai Linh for helpful and interesting discussions.

References

1. Elliot Anshelevich, Anirban Dasgupta, Jon Kleinberg, Eva Tardos, Tom Wexler, and Tim Roughgarden. The price of stability for network design with fair cost allocation. In Proceeding of the 45th IEEE Symposium on Foundations of Computer Science (FOCS), pages 295-304, 2004.
2. Elliot Anshelevich, Anirban Dasgupta, Éva Tardos, and Tom Wexler. Near-optimal network design with selfish agents. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC), pages 511-520, 2003.
3. Jean R. S. Blair, David Mutchler, and Michael Van Lent. Perfect recall and pruning in games with imperfect information. Computational Intelligence, 12:131-154, 1996.
4. Chandra Chekuri, Julia Chuzhoy, Liane Lewin-Eytan, Joseph Naor, and Ariel Orda. Non-Cooperative Multicast and Facility Location Games. In Proceedings of the 7th ACM Conference on Electronic Commerce (EC), pages 72-81, 2006.
5. Ho-Lin Chen and Tim Roughgarden. Network Design with Weighted Players. In Proceedings of the 18th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages 29-38, 2006.
6. Ho-Lin Chen, Tim Roughgarden, and Gregory Valiant. Designing Networks with Good Equilibria. In Proceedings of the 19th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2008.
7. Juliane Dunkel and Andreas S. Schulz. On the Complexity of Pure-Strategy Nash Equilibria in Congestion and Local-Effect Games. In Internet and Network Economics, Second International Workshop (WINE), pages 62-73, 2006.
8. Christoph Dürr and Nguyen Kim Thang. Nash Equilibria in Voronoi Games on Graphs. In Proceedings of the 15 th Annual European Symposium on Algorithms (ESA), pages 17-28, 2007.
9. Eyal Even-Dar, Alexander Kesselman, and Yishay Mansour. Convergence time to Nash equilibrium in load balancing. ACM Transactions on Algorithms, 3(3), 2007.
10. Alex Fabrikant, Christos H. Papadimitriou, and Kunal Talwar. The complexity of pure Nash equilibria. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC), pages 604-612, 2004.
11. Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman \& Co., New York, NY, USA, 1990.
12. Dov Monderer and Lloyd S. Shapley. Potential games. Games and Economic Behavior, 14:124-143, 1996.
13. Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani. Algorithmic Game Theory. Cambridge University Press, New York, NY, USA, 2007.
14. R.W. Rosenthal. A class of games possessing pure-strategy Nash equilibria. International Journal of Game Theory, 2:65-67, 1973.

[^0]: ${ }^{1}$ The choice of Monotone3Sat is driven by the simplicity in drawing the network. We can make reduction from 3SAT with exactly the same arguments

