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Abstract. We prove NP-hardness of pure Nash equilibrium for some
problems of scheduling games and connection games. The technique is
standard: first, we construct a gadget without the desired property and
then embed it to a larger game which encodes a NP-hard problem in
order to prove the complexity of the desired property in a game. This
technique is very efficient in proving NP-hardness for deciding the exis-
tence of Nash equilibria. In the paper, we illustrate the efficiency of the
technique in proving the NP-hardness of deciding the existence of pure
Nash equilibria of Matrix Scheduling Games and Weighted Connection
Games. Moreover, using the technique, we can settle the complexity not
only of the existence of equilibrium but also of the existence of good
cost-sharing protocol.
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1 Introduction

Considering the growth of Internet as a motivation, computer scientists are in-
terested in studying Algorithmic Game Theory, in which one of the most well-
studied objects is the stable state, called Nash equilibrium. Given a game with
strategy sets for players, a pure Nash equilibrium is a strategy profile in which
each player deterministically plays her chosen strategy and no one has an in-
centive to unilaterally change her strategy. A mixed Nash equilibrium is similar
to the pure one except that now players can pick a randomized strategy – a
probability distribution over their strategy sets. In 1951, Nash proved that ev-
ery game with a finite number of players, each having a finite set of strategies,
always possesses a mixed Nash equilibrium. However, no similar result exists for
pure Nash equilibrium.

Rosenthal [14], Monderer and Shapley [12] introduced potential games which
always possess a pure Nash equilibrium, for example: Congestion Games [12],
Connection Games [13, chapter 19]. In these games, the existence of pure Nash
equilibrium is proved by using a potential-function argument. The complexity of
finding a pure equilibrium of Congestion Games is settled in [10]. Besides, it is
proved that finding a pure Nash equilibrium is NP-hard in some other games,
for example games with imperfect information, perfect recall [3].
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We are interested in the complexity of some properties of pure Nash equi-
libria. Until now there are two methods, in general, to prove the NP-hardness
of a problem: using gadgets or using the PCP Theorem. In the paper, we use
a technique based on the former, specifically on the gadgets called negated and
polynomial-time reductions. The technique is the following. First, find a negated
gadget which does not have the desired property. (In fact, a negated gadget is a
counter-example of the property.) Next, construct a family of games which en-
code a NP-hard problem, and embed the gadget into. We argue that the game
has the desired property if and only if there is a solution for the instance of
NP-hard problem by using the gadget to enforce players’ behaviors in such a
way that the game possesses the desired property.

This standard technique is successfully applied in settling the complexity on
the existence of pure Nash equilibrium in games [8, 7]. In this paper, we present
the technique as a framework and illustrate its application in different contexts.
Interestingly, this technique is not only applied to the existence of equilibrium
but also to other properties such as good cost-sharing protocol in Connection
Games.

Note that, from now we use the term Nash equilibrium instead of pure Nash
equilibrium. The paper is organized as follows. In Section 2, we introduce the
Matrix Scheduling Games and prove the complexity of the existence of pure Nash
equilibrium in this game. In Section 3, we prove the complexity of the existence
of pure equilibrium in Weighted Connection Games – that answers a question in
[4]. Moreover, in Connection Games we show the intractability of finding a fair
cost-sharing protocol which induces an equilibrium that is not too far from the
optimum.

2 Matrix Scheduling Games

In Matrix Scheduling Games, there are m machines, n players and a load ma-
trix (Aij)n×m where Aij ≥ 0 ∀i, j. Each player has a set of jobs that need
to be executed. Players can complete their jobs by choosing a subset of ma-
chines on which their jobs will be executed, i.e., the strategy set Si of player
pi is a collection of subsets of machines. Aij represents the load contribution
of player pi to machine mj if she uses this machine. Given a strategy profile
S = (S1, S2, . . . , Sn) ∈ (S1×S2× . . .×Sn), the load `j of a machine mj depends
on the set of jobs executed on the machine and is defined as

∑
Aij over all play-

ers pi choosing a strategy (a subset of machines) which contains machine mj .
The cost of a player is the sum of all loads of machines that the player uses, i.e.,
ci =

∑
mj∈Si

`j . Players are selfish and they choose a strategy which induces the
cost as small as possible. Remark that, without loss of generality, the strategy
set of a player is inclusion-free, i.e., no player possesses two strategies S and S′

such that S ⊂ S′ since otherwise the player always prefer use S to S′ in order
to get a smaller cost.

If players’ strategies are restricted to singleton machines then the game be-
comes the well-studied Load Balancing Games. There always exists Nash equi-
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librium on that game [9] (by using an argument of lexicographical potential func-
tion). However, without assumption on players’ strategy sets, the game does not
necessarily possess an equilibrium.

Lemma 1. There exists a matrix scheduling game in which there is no Nash
equilibrium.

Proof: We describe the game with no Nash equilibrium. There are 4 machines
and 3 players, each one has two strategies. The strategy sets of players p1, p2

and p3 are S1 = {s1
1 = (m1,m3); s2

1 = (m4)},S2 = {s1
2 = (m1); s2

2 = (m2)}
and S3 = {s1

3 = (m2); s2
3 = (m3)}, respectively. The load matrix is given as in

Figure 1. (Aij =∞ if it is not explicitly given.)

m1 m2 m3 m4

p1 2 10 15
p2 5 4
p3 4 1

Fig. 1. A matrix scheduling game
with no Nash equilibrium.

p1 p2 p3 Best reponse

s11 s12 s13 p1 : s11 → s21 (17→ 15)

s11 s12 s23 p3 : s23 → s13 (11→ 4)

s11 s22 s13 p2 : s22 → s12 (8→ 7)

s11 s22 s23 p3 : s23 → s13 (11→ 8)

s21 s12 s13 p3 : s13 → s23 (4→ 1)

s21 s12 s23 p2 : s12 → s22 (5→ 4)

s21 s22 s13 p3 : s13 → s23 (8→ 1)

s21 s22 s23 p1 : s21 → s11 (15→ 13)

Fig. 2. There is no stable strategy profile.

We prove that there is no Nash equilibrium in the game by verifying all
23 strategy profils. In Figure 2, the first three columns represent the strategies
chosen by the players. The last column shows which player is unhappy and how
she can decrease her cost. For example, the first row represents a strategy profile
in which all players choose their first-strategy, player p1 has cost 17 and she has
an incentive to change to her second-strategy, which induces a cost 15. �

Using the game from previous proof as a gadget, we prove the following
theorem.

Theorem 1. Deciding whether there exists a Nash equilibrium for a given ma-
trix scheduling game is strongly NP-complete. The problem remains NP-complete
even for a constant number of machines.

Proof: The strong NP-completeness is obtained by a reduction from 3-
Partition [11]. Here we present a proof of NP-completeness for the game with
a constant number of machines and the proof of strong NP-hardness is similar
with slight modifications. Given a strategy profile, verifying whether it is an
equilibrium can be done in O(nm), so the problem is in NP. In the following,
we prove the NP-hardness by a reduction from Partition [11].
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In Partition, we are given n integer numbers a1, . . . , an and the question
is whether there exists a partition of these n numbers into two subsets (P1, P2)
such that the sums of elements in these subsets are equal.

We construct a matrix scheduling game in which the existence of a Nash
equilibrium is equivalent to the existence of a solution for an instance of Parti-
tion. Given n integers a1, . . . , an, let B be an integer such that

∑n
i=1 ai = 2B.

The reduction game consists of n + 6 players. The first n players encode the
Partition problem, the last three players encode the gadget of Lemma 1 and
the remaining three players acts as connection between these groups. Each of
the first n players has two strategies {m1} and {m2}, the loads of player pi
(1 ≤ i ≤ n) on machines m1,m2 are the same and equal to ai. Player pn+1 has
two strategies {m2} and {m3} with loads 0 and B/2 + ε, respectively; player
pn+2 has two strategies {m1} and {m3} with loads 0 and B/2 + ε, respectively.
Player pn+3 has two strategies {(m3,m4)} and {m8} with loads as shown in
Table 2. The last three players represent the gadget of Lemma 1. Note that the
load contribution of a player to a machine is infinity if it is not explicitly given.

m1 m2 m3 m4 m5 m6 m7 m8

p1 a1 a1

p2 a2 a2

...
...

...
pn−1 an−1 an−1

pn an an

pn+1 0 B/2 + ε
pn+2 0 B/2 + ε
pn+3 B/2 3 B/2 + 4
pn+4 2 10 15
pn+5 5 4
pn+6 4 1

Table 1. The load matrix of the reduction game.

First we show that if there is a solution P = (P1, P2) for the Partition
instance then there is a Nash equilibrium for this game. Consider a strategy
profile in which player pi (1 ≤ i ≤ n) uses machine mj for j ∈ {1, 2} such that
i ∈ Pj , player pn+1 uses machine m2, pn+2 uses machine m1, pn+3 uses machines
(m3,m4) and three others play their second-strategy (defined in Lemma 1). It is
straightforward that to verify that no one has an incentive to change her current
strategy, hence this strategy profile is a Nash equilibrium. In this equilibrium,
all n first players’ cost are B.

For the converse, suppose that there is a Nash equilibrium for this game. In
this equilibrium, player pn+3 must use machines (m3,m4) since otherwise, by
Lemma 1, the strategy profile is not an equilibrium as it contains an unstable
sub-game by the last three players. Hence, both players pn+1 and pn+2 play their
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first strategy since otherwise player pn+3 will move. Therefore the costs of pn+1

and pn+2 are at most B. Moreover,
∑n
i=1 ai = 2B thus their costs are exactly

B. In other words, all n first players form a partition such that the sum in
two subsets are the same and therefore we obtain a solution for the Partition
instance. �

3 Connection Games

In Connection Games, we are given a directed graph G = (V,E) with nonneg-
ative edge costs ce for all edges e ∈ E. There are n players, each player i has a
specified source node si and sink ti. Player i’s goal is to build a network together
with other players in order to connect her terminals si and ti while paying as
little as possible to do so. A strategy of player i is a path Pi from si to ti in G.
Given a strategy Pi for player i, the constructed network is ∪iPi, which induces
the social cost

∑
e∈∪iPi

ce that is fully paid by players in the game.
Consider the Shapley cost-sharing protocol that splits the cost of an edge

evenly among all players using this edge. Formally, given a strategy profile S,
if ne denotes the number of players whose path contains edge e then e assigns
a cost ce/ne to each player using e. Thus, the total cost of player i in strategy
profile S is ci(S) :=

∑
e∈Pi

ce/ne. A Nash equilibrium is a strategy profile that
is resilient to unilateral deviations. The Connection Games using the Shapley
cost-sharing protocol is well studied in [1]. This game always possesses a Nash
equilibrium. The inefficiency of the constructed network is measured by the price
of anarchy (PoA) and the price of stability (PoS). The PoA is defined as the
ratio between the costs of the worst Nash equilibrium and the optimum, the PoS
is defined as the ratio between the costs of the best Nash equilibrium and the
optimum.

3.1 Weighted Connection Games

The Weighted Connection Games is similar to the Connection Games except
that in the former, each player i has additionally a weight wi and she needs
to carry the weight from her source to her sink. Consider the weighted Shapley
cost-sharing protocol that splits the cost of an edge proportionally to the players’
weight. Formally, given a strategy profile S, let We be the total weight of players
whose path contains e, i.e., We =

∑
i:e∈Pi

wi, the cost of player i on edge e is
ce ·wi/We. The total cost of player i in strategy profile S is ci(S) =

∑
e:e∈Pi

ce ·
wi/We.

As showed in [5], there does not necessarily exist an equilibrium for Weighted
Connection Games. We use the counterexample in [5] as the gadget in proving the
complexity on the existence of Nash equilibrium in the game. For completeness,
we present here the gadget.

Lemma 2 ([5]). There is a 3-player weighted connection game using weighted
Shapley cost-sharing protocol that admits no Nash equilibrium.
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t

e2

e7

e9

e5 e6

e1 e4e3

e8

s1 s2 s3

Fig. 3. A 3-players weighted Shap-
ley connection game with no Nash
equilibrium.

Edge Cost

e1 0

e2 3ε

e3 0

e4 0

e5 w3/(w2 + w + 1)− ε
e6 w3/(w2 + w + 1) + ε

e7 (w3 + w2)/(w2 + w + 1)−
− ε(2w2 + 1)/(2w2 + 2)

e8 (w3 + w2)/(w2 + w + 1)−
− ε(2w + 1)/(2w + 2)

e9 1

Fig. 4. The cost of edges in Lemma 2

Proof: Let w > 1 be an arbitrary number and ε > 0 be much smaller than 1/w3.
Consider the network in Figure 3 with players 1,2 and 3 which have weight w2, 1
and w, respectively. The costs of edges are given in Figure 4 and are chosen in
such a way that they satisfy the following inequalities.

c5 ·
w2

w2 + 1
+ c9 ·

w2

w2 + 1
> c7 > c5 + c9 ·

w2

w2 + w + 1
(1)

c6 + c9 ·
w

w2 + w + 1
> c8 > c6 ·

w

w + 1
+ c9 ·

w

w + 1
(2)

If the second player uses path e2 → e5 → e9 then the third player will use
path e8 (by the first half of the inequality (2)) and the first player strategy will
be e7 (by the first half of the inequality (1)). Hence, the second player will switch
to the path e3 → e6 → e9 to decrease her cost.

If the second player uses path e3 → e6 → e9 then the third player will use
path e4 → e6 → e9 (by the second half of the inequality (2)) and so the first
player strategy will be e1 → e5 → e9 (by the second half of the inequality (1)).
But in this case, the second player will switch to the path e2 → e5 → e9 and get
better off.

The two cases conclude the lemma.
�

We use this lemma as the gadget of framework to prove the NP-hardness
of Nash equilibrium. We construct a larger weighted connection game based on
a NP-hard problem and embed the gadget into the larger game to relate the
existence of a solution for an instance of the NP-hard problem to the existence
of Nash equilibrium in the game. Part of our constructed network is inspired by
the contruction in [7].

Theorem 2. It is NP-complete to decide whether a given weighted Shapley
connection game admits a Nash equilibrium.
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Proof: It is straightforward that verifying whether a strategy profile is an equi-
librium of the game can be done in polynomial time. In the following, we prove
the NP-hardness by a reduction from Monotone3Sat1 [11]. Consider an in-
stance of Monotone3Sat with set of variables X = {x1, . . . , xn} and set of
clauses C = (c1, . . . , cm). Each clause contains at most three literals and either
all literals in a clause are negated or all are unnegated. Deciding whether there
is a satisfying assignment for this instance is NP-hard.

We construct a game such that for each literal x ∈ X, there is a literal
player px with weight 1, source x and sink x̄. Moreover, each clause c ∈ C
gives rise to a clause player pc with weight 1, source c and sink c̄. Besides,
we have three additional players p1, p2, p3 of weight w2, 1, w and source/sink
(s1, t), (s2, t), (s3, t), respectively. These three players will play the role of the
gadget from Lemma 2. One additional player p4 has weight 1 and source/sink
(s4, t4). Remark that in the reduction network, all players have weight 1 except
players p1 and p3. In our construction, ε is positive and arbitrarily small.

P 1
x1

x1

x̄3

x3

x̄1

x2

x̄2

P 0
x2

19/2 + ε

P 0
c1

P 1
c1

0
2

0

0

2
0

2
0

0

2
0

xi

0
2

0

0

2
0

2
0

2
0

x̄i xj

0

x̄j

P 0
x3

2 2 2

P 0
x1

P 1
x2 P 1

x3

P 0
xi

P 1
xi

P 0
xj

P 1
xj

c1 c̄1

nx̄ − nx

nx − nx̄

Fig. 5. Network of players px and pc. Two paths of player pc1 , for c1 = x1 ∨ x2 ∨ x3,
are illustrated.

We first describe the sub-network for all players px and pc, x ∈ X, c ∈ C.
Part of this sub-network is described in Figure 5. For player px, there are two
paths P 0

x , P
1
x from x to x̄. Let nx := |{c ∈ C|x ∈ c}| and nx̄ := |{c ∈ C|x̄ ∈ c}|.

Path P 1
x consists of (2nx + 2) edges and path P 1

x consists of (2nx̄ + 2) edges. On
each path, the cost of all oddth edges is 0 and that of all eventh edges is 2 except

1 The choice of Monotone3Sat is driven by the simplicity in drawing the network.
We can make reduction from 3Sat with exactly the same arguments
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the last edge. If nx > nx̄ then the cost of the last edge on path P 0
x is (nx − nx̄)

and that on path P 1
x is 0. Otherwise, the cost of the last edge on path P 0

x is 0
and that on path P 1

x is (nx̄−nx). Each player pc also has two paths P 0
c , P

1
c from

c to c̄. Path P 0
c consists of two edges with cost 9/2 + ε and 1. Path P 1

c consists
of seven edges and is constructed for c = cj in the order j = 1, . . . ,m as follows.
For a positive clause c = cj = (xj1 ∨ xj2 ∨ xj3) with j1 < j2 < j3, path P 1

c starts
with the edge connecting source c to the first inner node v1 on path P 1

xj1
that

has only two incident edges so far. The second edge is the unique edge (v1, v2) of
path P 1

xj1
that has v1 as its start vertex. The third edge connects v2 to the first

inner node v3 on path P 1
xj2

that has only two incident edges so far. The fourth
edge is the only edge (v3, v4) on P 1

xj2
with start vertex v3. Similarly, the fifth

edge is the edge connecting v4 to the first inner node v5 of P 1
xj3

which has only
two incident edges so far, followed by (v5, v6). The last edge of P 1

c connects v6

to sink c̄. For a negative clause c` = (x̄`1 ∨ x̄`2 ∨ x̄`3), the construction is similar.
The difference with a positive clause is that a positive clause concerns only paths
(of literal players in the clause) of superscript 1 while a negative clause concerns
only with those of superscript 0.

The second part of the network consists of four players p1, p2, p3 and p4. First
three players have a network (with edge costs) defined in Lemma 2. The only
difference is that this network has an additional edge e10 of cost 0. Player p4 has
two paths P 0

4 , P
1
4 connecting her source s4 and her sink t4. Path P 1

4 consists of
edge e8 and an additional edge (t, t4) of cost m− c8/(w+ 1)− ε. Path P 0

4 shares
edges of cost 1 with all paths P 0

c ,∀c ∈ C and contains some additional edges (of
cost 0) connecting those. The network with its edges’ cost is shown in Figure 6.
Note that each player in our network possesses two strategies. We call a 0-path
(1-path, resp) of a player the path with superscript 0 (1, resp).

e4

t t4

m− c8
(w+1)

− ε

cmc2c1

s4

0

c̄11 c̄21 c̄m1

e7

s1

e1 e2

s2

e3

s3

e10

s4

e8

e9

t

e5 e6

c8

P 1
4

P 0
4

Fig. 6. Network of players p1, p2, p3 and p4 (an edge has cost 0 if it is not given).

Given a satisfying assignment, we argue that the strategy profile in which
players px (x ∈ X) use their j-path (j ∈ {0, 1}) corresponding to the value j of
x in the solution, players pc (c ∈ C) use their 1-path, player p4 uses her 1-path
and players p1, p2, p3 use paths (e7), (e3 → e6 → e9), (e10 → e8) respectively is
a Nash equilibrium. Player px has no incentive to switch her strategy because
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her cost stays the same (it equals max{nx, nx̄}) even if she changes the strategy
(due to the trick that we add a new edge of cost |nx−nx̄| to some paths). Player
pc’s cost is at most 5 since in a satisfying assignment, she shares at least an edge
of cost 2 with a player px, x ∈ X. Observing that if using 0-path, player pc may
share only one edge of cost 1 with player p4 so if she switches to 0-path, in the
best case, her cost would be 9/2 + ε+ 1/2 > 5. Hence, player pc is happy on the
1-path. The cost of player p4 is m− ε and she is happy on her current strategy.
It is easy to verify that all three players p1, p2 and p3 are also happy.

Suppose there is a Nash equilibrium in this game. Hence, in this equilibrium,
player p4 must use her 1-path since otherwise the strategy profile is not an
equilibrium (by Lemma 2). The cost of p4 is at least m− ε and this happens in
case p4 shares edge e8 with p3. Therefore all players pc use her 1-path because
if there is a player pc uses her 0-path, player p4 has an incentive to change her
strategy and get a cost at most m− 1/2. The fact that players pc (∀c ∈ C) play
their 1-path means that, for each c ∈ C, there is at least one player px shared an
edge with pc (otherwise, pc will change her strategy). Hence, the assignment in
which xi = 1 if px uses 1-path and xi = 0 otherwise gives a satisfying assignment
for the Monotone3Sat instance. �

3.2 Cost-Sharing protocol for Good Equilibrium

The inefficiency of equilibria is measured by the price of anarchy (PoA) and the
price of stability (PoS). In previous subsection, we consider the Shapley cost-
sharing protocol as the allocation of cost to players in the constructed network.
Under this cost-sharing protocol, the PoA may be as large as n which is the
number of players in the game and the PoS may be as large as log n [1]. A natural
question is whether there exists a cost-sharing protocol which guarantees a small
inefficiency of the game. Chen, Roughgarden and Valiant [6] have studied the
inefficiency of the Connection Games while considering the set of admissible cost-
sharing protocols. A cost-sharing protocol is admissible if it satisfies: (i)Budget-
balance: the cost of each edge in the constructed network is fully passed on to
its users; (ii)Separability : the cost shares of an edge are completely determined
by the set of players that use it; (iii)Stability : for every network using the cost-
sharing protocol, there is at least one Nash equilibrium. In that paper, they leave
a challenging open question in designing an admissible cost-sharing protocol such
that for all networks, the PoS induced from this protocol is small, say constant.

Consider the Shapley cost-sharing protocol. This protocol has a good prop-
erty, namely fairness (it divides evenly the cost of an edge to players using this
edge). We are interested in a question similar to the one above but restricted
to admissible cost-sharing protocols which possess a fairness property. First, we
define the property ε-fairness which is desired in a cost-sharing protocol. Intu-
itively, in these protocols, if an edge is shared by several players, no one pays a
too large fraction of the cost.

Definition 1. Given 0 < ε < 1/2, an ε-fair cost-sharing protocol is a cost-
sharing protocol in which if there are at least two players sharing an edge then
no one pays more than 1− ε fraction of this edge cost.
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In Connection Games where all players have the same sink, there is a cost-
sharing protocol which induces PoS = 1 for every network [2]. Nevertheless, the
best Nash equilibrium is not very efficient compared to the optimal outcome in
general case. Precisely, [6] obtained that for any admissible cost-sharing protocol,
the PoS is at least 3/2. Here, we present our proof for this lower bound.

Lemma 3 ([6]). There is a directed network whose PoS is at least 3/2 for any
admissible cost-sharing protocol.

Proof: Consider the network in Figure 7, player pi has source/sink (si, ti) for
1 ≤ i ≤ n. The backbone path consists of edges e1, e2, . . . , en of cost 1 + 1/n
altering with edges of cost 0. Players can use the backbone path or other paths
to connect her terminals. Player pi (2 ≤ i ≤ n) has a path containing three edges
of cost 1/2 that we call one-hop-source edge and one-hop-sink edge the first and
the last among these three edges, respectively. The optimum, where all players
use the backbone path, is of cost n + 1. We will prove that for any admissible
cost-sharing protocol, an equilibrium of n players on this network has cost at
least 3(n− 1)/2 + 1.

1 + 1/n

1/2

1/2

1/2

1/21/21/2

1 + 1/n

s1

1

s2

s3

sn

t1

t2

t3

tn

e1

1/2

1/2

1/2

e2 en

1 + 1/n1 + 1/n 1 + 1/n

Fig. 7. Network of n players whose PoS = 3/2 (an edge has cost 0 if it is not explicitly
given).

Fix an admissible cost-sharing protocol. We claim that in an equilibrium
induced by the protocol, the first player does not use the backbone path. Assume
that in an equilibrium S, p1 uses the backbone path. Player pi’s cost (2 ≤ i ≤ n)
restricted to the backbone path is at most 1/2 before edge ei and at most 1/2
after (including) edge e2 since otherwise pi has incentive to use her one-hop-
source edge or one-hop-sink edge. Hence, the total cost of all players pi (2 ≤
i ≤ n) restricted on the backbone path is at most n − 1, so p1 pays at least
2 on the backbone path. In this case, p1 would switch to the one-hop path of
cost 1, that contradicts to the assumption of equilibrium. Moreover, we claim
that in an equilibrium, no player entirely uses the backbone path. Suppose in an
equilibrium there are k − 1 players (different to the first player) entirely using
the backbone path, i.e., (n − k) other players use at least one of their one-hop
edges in order to connect their terminals. The cost restricted on the backbone
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path of each one in these (n− k) players is at most 1 (otherwise a player, whose
restricted cost is larger than 1, would change her path restricted on the backbone
by an one-hop edge with or without a backward edge of cost 1/2). Therefore,
the total cost shared by k − 1 players entirely using the backbone path is at
least k. In other words, there is a player pi who strictly pays more than 1 on the
backbone path, it means that she strictly pays more than 1/2 on her path before
ei or after (including) ei. Hence, this player can decrease her cost by switching
her strategy.

Consider an equilibrium S and let R = {j : ej ∈ S}. If R = ∅ then in S
each player pi (2 ≤ i ≤ n) pays 3/2 and player p1 pays 1. The total cost is
3/2 · (n − 1) + 1. If R 6= ∅, let i be the smallest element in R. If i > 1 then pi
uses her one-hop-source edge and no player pj uses an edge ej with j ≤ i on
the backbone, since otherwise that would contradict the minimality of i. Thus,
player pi fully pays edge ei. In this case, the total cost of pi is 3/2 + 1/n and
she has an incentive to switch her strategy. Hence i = 1. Let T be the set of
players using e1 in S and k := min{j : pj ∈ T}. Remark that no one uses the
full backbone path. Since S is an equilibrium, edge ek is shared by pk and some
other player of index ` < k (otherwise, pk is the only one who pays edge ek
and she is not happy). Since ` < k and p` uses an edge ek, player p` must use
a path containing {ek, ek+1, . . . , en} (she can not use her one-hop-sink edge).
That means the backbone path is entirely bought. Moreover, no one uses the
backbone path, i.e., each player uses at least an edge of cost 1/2. Hence, the
total cost in S is n+ 1/2 · (n− 1). �

The following theorem shows that it is intractable to find an ε-fair admis-
sible cost-sharing protocol which ensures small inefficiency of equilibria of the
game. It also highlights an intuition in designing a cost-sharing protocol for the
Connection Games with good PoS: this kind of cost-sharing protocol may not
be fair.

Theorem 3. Given a network G(V,E) with edge costs c : E → Q and a set of
players, deciding whether there exists an ε-fair cost-sharing protocol such that
the PoS ≤ 3/2− δ is NP-hard, where δ > 0 can be chosen arbitrarily small.
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