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ABSTRACT
We propose a multi-agent logic of knowledge, public and
arbitrary announcements, that is interpreted on topological
spaces in the style of subset space semantics. The arbi-
trary announcement modality functions similarly to the ef-
fort modality in subset space logics, however, it comes with
intuitive and semantic differences. We provide axiomatiza-
tions for three logics based on this setting, and demonstrate
their completeness.
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1. INTRODUCTION
In [13], Moss et al. introduce a bi-modal logic with lan-

guage

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | 2ϕ,
called subset space logic (SSL), in order to formalize rea-
soning about sets and points together in one modal system.
The main interest in their investigation lies in spatial struc-
tures such as topological spaces and using modal logic and
the techniques behind for spatial reasoning, however, they
also have a strong motivation from epistemic logic. While
the modality K is interpreted as knowledge, 2 intends to
capture the notion of effort, i.e., any action that results in
increase in knowledge. They propose subset space seman-
tics for their logic. A subset space is defined to be a pair
(X,O), where X is a non-empty domain and O is a collec-
tion of subsets of X (not necessarily a topology), wherein
the modalities K and 2 are evaluated with respect to pairs
of the form (x, U), where x ∈ U ∈ O. According to subset
space semantics, given a pair (x, U), the modality K quan-
tifies over the elements of U , whereas 2 quantifies over all
open subsets of U that include the actual world x. Therefore,
while knowledge is interpreted ‘locally’ in a given observa-
tion set U , effort is read as open-set-shrinking where more
effort corresponds to a smaller neighbourhood, thus, a pos-
sible increase in knowledge. The schema 3Kϕ states that
after some effort the agent comes to know ϕ where effort can
be in the form of measurement, observation, computation,
approximation [13, 8, 14, 5], or announcement [15, 1, 16].

The epistemic motivation behind the subset space seman-
tics and the dynamic nature of the effort modality suggests
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a link between SSL and dynamic epistemic logic, in par-
ticular dynamics known as public announcement [4, 5, 3,
19, 6]. The works [4, 5, 3] propose modelling public an-
nouncements on subset spaces by deleting the states or the
neighbourhoods falsifying the announcement. This dynamic
epistemic method is not in the spirit of the effort modality:
dynamic epistemic actions result in global model change,
whereas the effort modality results in local neighbourhood
shrinking. Hence, it is natural to search for an ‘open-set-
shrinking-like’ interpretation of public announcements on
subset spaces. To best of our knowledge, Wang and Ågotnes
[19] were the first to propose semantics for public announce-
ments on subset spaces in the style of the effort modality,
although this is not necessarily on topological spaces. Bjorn-
dahl [6] then proposed a revised version of the [19] semantics.
In contrast to the aforementioned proposals, Bjorndahl uses
models based on topological spaces to interpret knowledge
and information change via public announcements. He con-
siders the language

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | int(ϕ) | [ϕ]ϕ,

where int(ϕ) means ‘ϕ is true and can be announced’, and
where [ϕ]ψ means ‘after public announcement of ϕ, ψ.’

In [1], Balbiani et al. introduce a logic to quantify over
announcements in the setting of epistemic logic based on
the language (with single-agent version here)

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | [ϕ]ϕ | 2ϕ.

In this case, unlike above, 2ϕ means ‘after any announce-
ment, ϕ (is true)’ so that 2 quantifies over epistemically de-
finable subsets (2-free formulas of the language) of a given
model. In this case, 3Kϕ again means that the agent comes
to know ϕ, but in the interpretation that there is a formula
ψ such that after announcing it the agent knows ϕ. What
becomes true or known by an agent after an announcement
can be expressed in this language without explicit reference
to the announced formula.

Clearly, the meaning of the effort 2 modality and of the ar-
bitrary announcement 2 modality are related in motivation.
In both cases, interpreting the modality requires quantifica-
tion over sets. Subset-space-like semantics provides natural
tools for this. In [16], we extended Bjorndahl’s proposal [6]
with an arbitrary announcement modality

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | int(ϕ) | [ϕ]ϕ | 2ϕ

and provided topological semantics for the 2 modality, and
proved completeness for the corresponding single-agent logic
APALint .



In the current proposal we generalize this approach to a
multi-agent setting. Multi-agent subset space logics have
been investigated in [11, 12, 4, 18]. There are some chal-
lenges with such a logic concerning the evaluation of higher-
order knowledge. The general setup is for any finite num-
ber of agents, but to demonstrate the challenges, consider
the case of two agents. Suppose for each of two agents i
and j there is an open set such that the semantic primitive
becomes a triple (x, Ui, Uj) instead of a pair (x, U). Now

consider a formula like KiK̂jKip, for ‘agent i knows that
agent j considers possible that agent i knows proposition p’.
If this is true for a triple (x, Ui, Uj), then K̂jKip must be
true for any y ∈ Ui; but y may not be in Uj , in which case

(y, Ui, Uj) is not well-defined: we cannot interpret K̂jKip.
Our solution to this dilemma is to consider neighbourhoods
that are not only relative to each agent, as usual in multi-
agent subset space logics, but that are also relative to each
state. This amounts to, when shifting the viewpoint from
x to y ∈ Ui, in (x, Ui, Uj), we simultaneously have to shift
the neighbourhood (and not merely the point in the actual
neighbourhood) for the other agent. So we then go from
(x, Ui, Uj) to (y, Ui, Vj), where Vj may be different from Uj .
If they are different, their intersection should be empty.

In order to define the evaluation neighbourhood for each
agent with respect to the state in question, we employ a
technique inspired by the standard neighbourhood semantics
[7]. We use a set of neighbourhood functions, determining the
evaluation neighbourhood relative to both the given state
and the corresponding agent. These functions need to be
partial in order to render the semantics well-defined for the
dynamic modalities in the system.

In Section 2 we define the syntax, structures, and seman-
tics of our multi-agent logic of arbitrary public announce-
ments, APALint , interpreted on topological spaces equipped
with a set of neighbourhood functions. Without arbitrary
announcements we get the logic PALint, and with neither
arbitrary nor public announcements, the logic ELint. In this
section we also show some typical validities of the logic, and
give a detailed example. In Section 3 we give axiomatiza-
tions for the logics: PALint extends ELint and APALint

extends PALint. In Section 4 we demonstrate completeness
for these logics. The completeness proof for the epistemic
version of the logic, ELint, is rather different from the com-
pleteness proof for the full logic APALint. We then compare
our work to that of others (Section 5) and conclude.

2. THE LOGIC APALint

We define the syntax, structures, and semantics of our
logic. From now on, Prop is a countable set of propositional
variables and A a finite and non-empty set of agents.

2.1 Syntax

Definition 1. The language LAPALint is defined by

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | int(ϕ) | [ϕ]ϕ | 2ϕ

where p ∈ Prop and i ∈ A. Abbreviations for the connec-
tives ∨, → and ↔ are standard, and ⊥ is defined as abbre-
viation by p ∧ ¬p. We employ K̂i for ¬Ki¬ϕ, and 3ϕ for
¬2¬ϕ. We denote the non-modal part of LAPALint (without
the modalities Ki, int, [ϕ] and 2) by LPl, the part without
2 by LPALint , and the part without 2 and [ϕ] by LELint .

Necessity forms [10] allow us to select unique occurrences of
a subformula in a given formula (unlike in uniform substi-
tution). They will be used in the axiomatization (Section
3).

Definition 2. Let ϕ ∈ LAPALint . The necessity forms
are inductively defined as

ξ(]) := ] | ϕ→ ξ(]) | Kiξ(]) | int(ξ(])) | [ϕ]ξ(]).

It is not hard to see that each necessity form ξ(]) has a
unique occurrence of ]. Given a necessity form ξ(]) and a
formula ϕ ∈ LAPALint , the formula obtained by replacing ]
by ϕ is denoted by ξ(ϕ).

In the completeness proof (Section 4) we use a complex-
ity measure on formulas based on the size and 2-depth of
formulas where the size of a formula is a weighted count of
the number of symbols and 2-depth counts the number of
the 2-modalities occurring in a formula. The measure was
first introduced in [2].

Definition 3. The size S(ϕ) of a formula ϕ ∈ LAPALint

is defined as: S(p) = 1, S(¬ϕ) = S(ϕ) + 1, S(ϕ ∧ ψ) =
S(ϕ) + S(ψ), S(Kiϕ) = S(ϕ) + 1, S(int(ϕ)) = S(ϕ) + 1,
S([ϕ]ψ) = S(ϕ) + 4S(ψ), and S(2ϕ) = S(ϕ) + 1.

The factor 4 in the clause for [ϕ]ψ is to ensure Lemma 7.
Although the choice of the number 4 might seem arbitrary,
it is the smallest natural number guaranteeing the desired
result (see the proof of Lemma 7).

Definition 4. The 2-depth of a formula ϕ ∈ LAPALint ,
denoted by d(ϕ), is defined as: d(p) = 0, d(¬ϕ) = d(ϕ),
d(ϕ ∧ ψ) = max{d(ϕ), d(ψ)}, d(Kiϕ) = d(ϕ), d(int(ϕ)) =
d(ϕ), d([ϕ]ψ) = max{d(ϕ), d(ψ)}, and d(2ϕ) = d(ϕ) + 1.

We now define three order relations on LAPALint based on
the size and 2-depth of the formulas.

Definition 5. For any ϕ,ψ ∈ LAPALint ,

• ϕ <S ψ iff S(ϕ) < S(ψ)

• ϕ <d ψ iff d(ϕ) < d(ψ)

• ϕ <Sd ψ iff (either d(ϕ) < d(ψ), or d(ϕ) = d(ψ) and
S(ϕ) < S(ψ))

We let Sub(ϕ) denote the set of subformulas of a given for-
mula ϕ.

Lemma 6. For any ϕ,ψ ∈ LAPALint ,

1. <S , <d, <
S
d are well-founded strict partial orders be-

tween formulas in LAPALint ,

2. ϕ ∈ Sub(ψ) implies ϕ <Sd ψ ,

3. int(ϕ) <Sd [ϕ]ψ,

4. ϕ ∈ LPALint iff d(ϕ) = 0,

5. ϕ ∈ LPALint implies [ϕ]ψ <Sd 2ψ.

Lemma 7. For any ϕ,ψ, χ ∈ LAPALint and i ∈ A,

1. ¬[ϕ]ψ <Sd [ϕ]¬ψ,

2. int([ϕ]ψ) <Sd [ϕ]int(ψ),

3. Ki[ϕ]ψ <Sd [ϕ]Kiψ,

4. [¬[ϕ]¬int(ψ)]χ <Sd [ϕ][ψ]χ.

Proof. We only prove Lemma 7.4. The proof demon-
strates why in the [ϕ]ψ clause of Definition 3, 4 is the small-
est natural number guaranteeing the result.



By Definition 3, we have that S([¬[ϕ]¬int(ψ)]χ) = S(ϕ)+
4S(ψ) + 4S(χ) + 9 and that S([ϕ][ψ]χ) = S(ϕ) + 4S(ψ) +
16S(χ). As for any χ ∈ LAPALint , 1 ≤ S(χ), it follows that
4S(χ)+9 ≤ 4S(χ)+9S(χ) = 13S(χ) < 16S(χ). Further, we
observe that d([¬[ϕ]¬int(ψ)]χ) = max{d(ϕ), d(ψ), d(χ)} =
d([ϕ][ψ]χ). (This is similar in the first three items.)

2.2 Background
In this section, we introduce the topological concepts that

will be used throughout this paper. All the concepts in this
section can be found in [9].

Definition 8. A topological space (X, τ) is a pair con-
sisting of a non-empty set X and a family τ of subsets of X
satisfying ∅ ∈ τ and X ∈ τ , and closed under finite inter-
sections and arbitrary unions.

The set X is called the space. The subsets of X belonging
to τ are called open sets (or opens) in the space; the family
τ of open subsets of X is also called a topology on X. If for
some x ∈ X and an open U ⊆ X we have x ∈ U , we say
that U is an open neighborhood of x.

A point x is called an interior point of a set A ⊆ X if
there is an open neighborhood U of x such that U ⊆ A. The
set of all interior points of A is called the interior of A and
denoted by Int(A). We can then easily observe that for any
A ⊆ X, Int(A) is the largest open subset of A.

Definition 9. A family B ⊆ τ is called a base for a
topological space (X, τ) if every non-empty open subset of X
can be written as a union of elements of B.

Given any family Σ = {Aα | α ∈ I} of subsets of X,
there exists a unique, smallest topology τ(Σ) with Σ ⊆ τ(Σ)
[9, Th. 3.1]. The family τ(Σ) consists of ∅, X, all finite
intersections of the Aα, and all arbitrary unions of these
finite intersections. Σ is called a subbase for τ(Σ), and τ(Σ)
is said to be generated by Σ. The set of finite intersections
of members of Σ forms a base for τ(Σ).

2.3 Structures
In this section we define our multi-agent models based on

topological spaces.

Definition 10. Given a topological space (X, τ), a neigh-
bourhood function set Φ on (X, τ) is a set of partial func-
tions θ : X ⇀ A → τ such that for all x, y ∈ Dom(θ), for
all i ∈ A, and for all U ∈ τ :

1. θ(x)(i) ∈ τ ,

2. x ∈ θ(x)(i),

3. θ(x)(i) ⊆ Dom(θ),

4. if y ∈ θ(x)(i) then θ(x)(i) = θ(y)(i),

5. θ|U ∈ Φ,

where θ|U is the partial function with Dom(θ|U ) = Dom(θ) ∩ U
and θ|U (x)(i) = θ(x)(i) ∩ U . We call the elements of Φ
neighbourhood functions.

Definition 11. A topological model with functions (or
in short, a topo-model) is a tuple M = (X, τ,Φ, V ), where
(X, τ) is a topological space, Φ a neighbourhood function set,
and V : Prop→ X a valuation function. We refer to the
part X = (X, τ,Φ) without the valuation function as a topo-
frame.

A pair (x, θ) is a neighbourhood situation if x ∈ Dom(θ)
and θ(x)(i) is called the epistemic neighbourhood at x of
agent i. If (x, θ) is a neighbourhood situation inM we write
(x, θ) ∈ M. Similarly, if (x, θ) is a neighbourhood situation
in X we write (x, θ) ∈ X .

Lemma 12. For any (X, τ,Φ) and θ ∈ Φ, Dom(θ) ∈ τ .

2.4 Semantics

Definition 13. Given a topo-modelM = (X, τ,Φ, V ) and
a neighbourhood situation (x, θ) ∈M, the semantics for the
language LAPALint is defined recursively as:

M, (x, θ) |= p iff x ∈ V (p)
M, (x, θ) |= ¬ϕ iff not M, (x, θ) |= ϕ
M, (x, θ) |= ϕ ∧ ψ iff M, (x, θ) |= ϕ and M, (x, θ) |= ψ
M, (x, θ) |= Kiϕ iff (∀y ∈ θ(x)(i))(M, (y, θ) |= ϕ)
M, (x, θ) |= int(ϕ) iff x ∈ Int [[ϕ]]θ

M, (x, θ) |= [ϕ]ψ iff M, (x, θ) |= int(ϕ)⇒
M, (x, θϕ) |= ψ

M, (x, θ) |= 2ϕ iff (∀ψ ∈ LPALint )(M, (x, θ) |= [ψ]ϕ)

where p ∈ Prop, [[ϕ]]θ = {y ∈ Dom(θ) | M, (y, θ) |= ϕ}
and θϕ : X ⇀ A → τ such that Dom(θϕ) = Int [[ϕ]]θ and
θϕ(x)(i) = θ(x)(i) ∩ Int [[ϕ]]θ.

The updated neighbourhood function θϕ is the restriction of
θ to the open set Int [[ϕ]]θ, i.e., for all x ∈ X, θϕ(x)(i) =
θ|Int[[ϕ]]θ (x)(i).

A formula ϕ ∈ LAPALint is valid in a topo-model M, de-
notedM |= ϕ, iffM, (x, θ) |= ϕ for all (x, θ) ∈M; ϕ is valid,
denoted |= ϕ, iff for all topo-models M we have M |= ϕ.
Soundness and completeness with respect to topo-models
are defined as usual.

Let us now elaborate on the structure of topo-models and
the above semantics we have proposed for LAPALint . Given
a topo-model (X, τ,Φ, V ), the epistemic neighbourhoods of
each agent at a given state x are determined by (partial)
functions θ : X ⇀ A → τ assigning an open neighbourhood
to the state in question for each agent. We allow for partial
functions in Φ, and close Φ under taking restricted func-
tions θ|U where U ∈ τ (see Definition 10, condition 5), so
that updated neighbourhood functions are guaranteed to be
well-defined elements of Φ. As in the standard subset space
semantics, by picking a neighbourhood situation (x, θ), we
first localize our focus to an open subdomain, in fact to
Dom(θ), including the state x and the epistemic neighbour-
hood of each agent at x determined by θ. Then the function
θ(x) designates an epistemic neighbourhood for each agent
i in A. It is guaranteed that every agent i is assigned a
neighbourhood by θ at every state x in Dom(θ), since each
θ(x) is defined to be a total function from A to τ . Moreover,
condition 2 of Definition 10 ensures that ∅ cannot be an epis-
temic neighbourhood, i.e., θ(x)(i) 6= ∅ for all x ∈ Dom(θ).
Finally, conditions 2 and 4 of Definition 10 make sure that
the S5 axioms for each Ki are sound with respect to all
topo-models.

We now provide some semantic results. As usual in the
subset space setting, truth of non-modal formulas only de-
pends on the state in question.

Proposition 14. Give a topo-model M = (X, τ,Φ, V ),
neighbourhood situations (x, θ1), (x, θ2) ∈M, and a formula
ϕ ∈ LPl. Then (x, θ1) |= ϕ iff (x, θ2) |= ϕ.



Proposition 15. Given M = (X, τ,Φ, V ), θ ∈ Φ and
ϕ ∈ LAPALint . Then [[int(ϕ)]]θ = Int [[ϕ]]θ.

Proof.

[[int(ϕ)]]θ = {y ∈ Dom(θ) | (y, θ) |= int(ϕ)}
= {y ∈ Dom(θ) | y ∈ Int [[ϕ]]θ}
= Int [[ϕ]]θ (since Int [[ϕ]]θ ⊆ Dom(θ))

A corollary is that Int [[int(ϕ)]]θ = IntInt [[ϕ]]θ = Int [[ϕ]]θ.

Proposition 16.

1. |= [ϕ]ψ ↔ [int(ϕ)]ψ

2. |= (int(ϕ) ∧ 〈ϕ〉int(ψ))↔ 〈ϕ〉int(ψ)

Proposition 17.

1. [[ψ]]θ
ϕ

= [[〈ϕ〉ψ]]θ

2. θϕ = θint(ϕ)

3. (θϕ)ψ = θ〈ϕ〉int(ψ)

2.5 Example
We illustrate our logic by a multi-agent version of Bjorn-

dahl’s convincing example in [6] about the jewel in the tomb.
Indiana Jones (i) and Emile Belloq (e) are both scouring
for a priceless jewel placed in a tomb. The tomb could ei-
ther contain a jewel or not, the tomb could have been re-
discovered in modern times or not, and (beyond [6]), the
tomb could be in the Valley of Tombs in Egypt or not. The
propositional variables corresponding to these propositions
are, respectively, j, d, and t. We represent a valuation of
these variables by a triple xyz, where x, y, z ∈ {0, 1}. Given
carrier set X = {xyz | x, y, z ∈ {0, 1}}, the topology τ that
we consider is generated by the base consisting of the subsets
{000, 100, 001, 101}, {010}, {110}, {011}, {111}. The idea
is that one can only conceivably know (or learn) about the
jewel or the location, on condition that the tomb has been
discovered. Therefore, {000, 100, 001, 101} has no strict sub-
sets besides empty set: if the tomb has not yet been discov-
ered, no one can have any information about the jewel or
the location.

A topo-model M = (X, τ,Φ, V ) for this topology (X, τ)
has Φ as the set of all neighbourhood functions that are
partitions of X for both agents, and restrictions of these
functions to open sets. A typical θ ∈ Φ describes com-
plete ignorance of both agents and is defined as θ(s)(i) =
θ(s)(e) = X. This corresponds most to the situation de-
scribed in [6]. A more interesting neighbourhood situation
in this model is one wherein Indiana and Emile have differ-
ent knowledge. Let us assume that Emile has the advan-
tage over Indiana so far, as he knows the location of the
tomb but Indiana doesn’t. This is the θ′ such that for all
x ∈ X, θ′(x)(i) = X whereas the partition for Emile con-
sists of sets {101, 100, 001, 000}, {111, 011}, {110, 010}, i.e.,
θ′(111)(e) = {111, 011}, etc.

We now can evaluate what Emile knows about Indiana at
111, and confirm that this goes beyond Emil’s initial epis-
temic neighbourhood. This situation however does not cre-
ate any problems in our setting since Indiana’s epistemic
neighbourhoods will be determined relative to the states in
Emile’s initial neighbourhood. Firstly, Emile knows that the
tomb is in the Valley of Tombs in Egypt

M, (111, θ′) |= Ket

and he also knows that Indiana does not know that

M, (111, θ′) |= Ke¬(Ki¬t ∨Kit)

The latter involves verifying M, (111, θ′) |= K̂it and

M, (111, θ′) |= K̂i¬t. And this is true because θ′(111)(i) =
X, and 000, 001 ∈ X, and while M, (001, θ′) |= t, we also
haveM, (000, θ′) |= ¬t. We can also check that Emile knows
that Indiana considers it possible that Emile doesn’t know
the tomb’s location

M, (111, θ′) |= KeK̂i¬(Ket ∨Ke¬t)

Announcements will change their knowledge in different ways.
Consider the announcement of j. This results in Emile know-
ing everything but Indiana still being uncertain about the
location.

M, (111, θ′) |= [j](Ke(j ∧ d∧ t)∧Ki(j ∧ d)∧¬Ki(t∨Ki¬t))

Model checking this involves computing the epistemic neigh-
bourhoods of both agents given by the updated neighbour-

hood function (θ′)j at 111. Observe that Int [[j]]θ
′

= {111, 110}.
Therefore, (θ′)j(111)(e) = Int [[j]]θ

′
∩θ′(111)(e) = {111} and

(θ′)j(111)(i) = Int [[j]]θ
′
∩ θ′(x)(i) = {111, 110}.

There is an announcement after which Emile and Indiana
know everything (for example the announcement of j ∧ t):

M, (111, θ) |= 3(Ke(j ∧ d ∧ t) ∧Ki(j ∧ d ∧ t))

As long as the tomb has not been discovered, nothing will
make Emile (or Indiana) learn that it contains a jewel or
where the tomb is located:

M |= ¬d→ 2(¬(Kej ∨Ke¬j) ∧ ¬(Ket ∨Ke¬t))

3. AXIOMATIZATION
We now provide the axiomatizations of ELint , PALint ,

and APALint , and prove their soundness and completeness
with respect to the proposed semantics.

(P) all instantiations of propositional tautologies

(K-K) Ki(ϕ→ ψ)→ (Kiϕ→ Kiψ)

(K-T) Kiϕ→ ϕ

(K-4) Kiϕ→ KiKiϕ

(K-5) ¬Kiϕ→ Ki¬Ki¬ϕ
(int-K) int(ϕ→ ψ)→ (int(ϕ)→ int(ψ))

(int-T) int(ϕ)→ ϕ

(int-4) int(ϕ)→ int(int(ϕ))

(Kint) Kiϕ→ int(ϕ)

(R1) [ϕ]p↔ (int(ϕ)→ p)

(R2) [ϕ]¬ψ ↔ (int(ϕ)→ ¬[ϕ]ψ)

(R3) [ϕ](ψ ∧ χ)↔ [ϕ]ψ ∧ [ϕ]χ

(R4) [ϕ]int(ψ)↔ (int(ϕ)→ int([ϕ]ψ))

(R5) [ϕ]Kiψ ↔ (int(ϕ)→ Ki[ϕ]ψ)

(R6) [ϕ][ψ]χ↔ [¬[ϕ]¬int(ψ)]χ

(R7) 2ϕ→ [χ]ϕ where χ ∈ LPALint

(DR1) From ϕ and ϕ→ ψ, infer ψ

(DR2) From ϕ, infer Kiϕ

(DR3) From ϕ, infer int(ϕ)

(DR4) From ϕ, infer [ψ]ϕ

(DR5) From ξ([ψ]χ) for all ψ ∈ LPALint , infer ξ(2χ)

Table 1: Axiomatizations ELint , PALint , and APALint



Definition 18. The axiomatization APALint is given in
Table 1. The axiomatization PALint is the one without
(DR5) and (R7). We get ELint if we further remove ax-
ioms (R1)-(R6) and the rule (DR4).

The parts (DR1) to (DR5) are the derivation rules and
the other parts are the axioms. A formula is a theorem of
APALint , notation ` ϕ, if it belongs to the smallest set of
formulas containing the axioms and closed under the deriva-
tion rules. (Similarly for ELint and PALint .)

Lemma 19. Axiomatization APALint satisfies substitu-
tion of equivalents. If ` ϕ↔ ψ, then ` χ[p/ϕ]↔ χ[p/ψ].

Proof. In the above, χ[p/ϕ] means uniform substitution
of ϕ for p. The proof is not trivial but proceeds along similar
lines as for public announcement logic, see [17].

Proposition 20. [ϕ]⊥ ↔ ¬int(ϕ) is a theorem of APALint .

Proposition 21. APALint is sound with respect to the
class of all topo-models.

Proof. Let M = (X, τ,Φ, V ) be a topo-model, (x, θ) ∈
M and ϕ,ψ, χ ∈ LAPALint . We show three cases.

(Kint) Suppose (x, θ) |= Kiϕ. This means, (y, θ) |= ϕ
for all y ∈ θ(x)(i). Hence, θ(x)(i) ⊆ [[ϕ]]θ. By Definition 10,
θ(x)(i) is an open neighbourhood of x, therefore we obtain
x ∈ Int [[ϕ]]θ, i.e., (x, θ) |= int(ϕ).

(R7) Let χ ∈ LPALint and suppose (x, θ) |= 2ϕ. By the
semantics, we have (x, θ) |= 2ϕ iff (∀ψ ∈ LPALint )((x, θ) |=
[ψ]ϕ). Therefore, in particular, (x, θ) |= [χ]ϕ.

(DR5) Suppose ξ([ψ]χ) is valid for all ψ ∈ LPALint .
The proof follows by induction on the complexity of ξ(]).
In case ξ(]) = ], we have ξ([ψ]χ) = [ψ]χ. By assumption,
we have that [ψ]χ is valid for all ψ ∈ LPALint . This implies
M, (x, θ) |= [ψ]χ for all ψ ∈ LPALint , all topo-models M,
and (x, θ) ∈ M. Therefore, by the semantics, M, (x, θ) |=
2χ, i.e., M, (x, θ) |= ξ(2χ). All other, inductive, cases are
elementary.

Corollary 22. The axiomatizations ELint and PALint

are sound with respect to the class of all topo-models.

4. COMPLETENESS
We now show completeness for ELint , PALint , andAPALint

with respect to the class of all topo-models. Completeness of
ELint is shown in a standard way via a canonical model con-
struction and a Truth Lemma that is proved by induction on
formula complexity. Completeness for PALint is shown by
reducing each formula in LPALint to an equivalent formula of
LELint . The proof of the completeness for APALint becomes
more involved. Reduction axioms for public announcements
no longer suffice in the APALint case, and the inductive
proof needs a subinduction where announcements are con-
sidered. Moreover, the proof system of APALint has an
infinitary derivation rule, namely the rule (DR5), and given
the requirement of closure under this rule, the maximally
consistent sets for that case are defined to be maximally con-
sistent theories (see, Section 4.2). Lastly, the Truth Lemma
requires the more complicated complexity measure on for-
mulas defined in Section 2. There, we need to adapt the
completeness proof of [2] to our setting.

4.1 Completeness of ELint and PALint

For LELint we define consistent and maximally consistent
sets in the usual way, see e.g. [6] for details, and the multi-
agent aspect does not complicate the definition. Let Xc be
the set of all maximally consistent sets of ELint . We de-
fine relations ∼i on Xc as x ∼i y iff ∀ϕ ∈ LELint (Kiϕ ∈
x iff Kiϕ ∈ y). Notice that the latter is equivalent to:
∀ϕ ∈ LELint (Kiϕ ∈ x implies ϕ ∈ y) since Ki is an S5
modality. As each Ki is of S5 type, every ∼i is an equiva-
lence relation, hence, it induces equivalence classes on Xc.
Let [x]i denote the equivalence class of x induced by the
relation ∼i. Moreover, we define ϕ̂ = {y ∈ Xc | ϕ ∈ y}.
Observe that x ∈ ϕ̂ iff ϕ ∈ x.

Lemma 23 (Lindenbaum’s Lemma). Each consistent
set can be extended to a maximally consistent set.

Definition 24. We define the canonical model
X c = (Xc, τ c,Φc, V c) as follows:

• Xc is the set of all maximally consistent sets;

• τ c is the topological space generated by the subbase

Σ = {[x]i ∩ înt(ϕ) | x ∈ Xc, ϕ ∈ LELint and i ∈ A};

• x ∈ V c(p) iff p ∈ x, for all p ∈ Prop;

• Φc = {θ∗|U | U ∈ τ c}, where we define θ∗ : Xc →
A→ τ c as θ∗(x)(i) = [x]i, for x ∈ Xc and i ∈ A.

Observe that, since ̂int(>) = Xc, we have [x]i ∩ ̂int(>) =
[x]i ∈ Σ for each i. Therefore, each [x]i is an open subset
of Xc. Moreover, the elements of Φc satisfy the required
properties given in Definition 10.

Lemma 25 (Truth Lemma). For every ϕ ∈ LELint and
for each x ∈ Xc, ϕ ∈ x iff X c, (x, θ∗) |= ϕ.

Proof. Cases for the propositional variables and Booleans
are straightforward. We only show the cases for Ki and int .

Case ϕ := Kiψ
(⇒) Suppose Kiψ ∈ x and let y ∈ θ∗(x)(i). Since

y ∈ θ∗(x)(i) = [x]i, by definition of ∼i, we have Kiψ ∈ y.
Then, by T-axiom for Ki, we obtain ψ ∈ y. Then, by IH,
X c, (y, θ∗) |= ψ. Therefore X c, (x, θ∗) |= Kiψ.

(⇐) Suppose Kiψ 6∈ x. Then, {Kiγ | Kiγ ∈ x} ∪ {¬ψ}
is a consistent set. We can then extend it to a maximally
consistent set y. As {Kiγ | Kiγ ∈ x} ⊆ y, we have y ∈
[x]i meaning that y ∈ θ∗(x)(i). Moreover, since ¬ψ ∈ y,
ψ 6∈ y. Therefore, we have a maximally consistent set y ∈
θ∗(x)(i) such that ψ 6∈ y. By (IH), X c, (y, θ∗) 6|= ψ. Hence,
X c, (x, θ∗) 6|= Kiψ.

Case ϕ := int(ψ)

(⇒) Suppose int(ψ) ∈ x. Consider the set [x]i ∩ înt(ψ)

for some i ∈ A. Obviously, x ∈ [x]i∩ înt(ψ) and [x]i∩ înt(ψ)

is open (since it is in Σ). Now let y ∈ [x]i ∩ înt(ψ). Since

y ∈ înt(ψ), int(ψ) ∈ y. Then, by (int -T), since y is maximal
consistent, we have ψ ∈ y. Thus, by IH, we have (y, θ∗) |= ψ.

Therefore, y ∈ [[ψ]]θ
∗
. This implies [x]i ∩ înt(ψ) ⊆ [[ψ]]θ

∗
.

And, since x ∈ [x]i∩ înt(ψ) ∈ τ c, we have x ∈ Int [[ψ]]θ
∗
, i.e.,

(x, θ∗) |= int(ψ).

(⇐) Suppose (x, θ∗) |= int(ψ), i.e., x ∈ Int [[ψ]]θ
∗
. Recall

that the set of finite intersections of the elements of Σ forms
a base, which we denote by BΣ, for τ c. x ∈ Int [[ψ]]θ

∗
implies



that there exists an open U ∈ BΣ such that x ∈ U ⊆ [[ψ]]θ
∗
.

Given the construction of BΣ, U is of the form

U =
⋂
i∈I1

[x1]i ∩ . . .
⋂
i∈In

[xk]i ∩
⋂

η∈Formfin

înt(η)

where I1, . . . , In are finite subsets of A, x1 . . . xk ∈ Xc and
Formfin is a finite subset of LELint . Since int is a normal
modality, we can simply write

U =
⋂
i∈I1

[x1]i ∩ . . .
⋂
i∈In

[xk]i ∩ înt(γ),

where
∧

η∈Formfin

η := γ. Since x is in each [xj ]i with 1 ≤ j ≤

k, we have [xj ]i = [x]i for all such j. Therefore, we have

x ∈ U = (
⋂
i∈I

[x]i) ∩ înt(γ) ⊆ [[ψ]]θ
∗
,

where I = I1 ∪ · · · ∪ In.

This implies, for all y ∈ (
⋂
i∈I

[x]i), if y ∈ înt(γ) then ψ ∈ y.

From this, we can say
⋃
i∈I
{Kiσ | Kiσ ∈ x} ` int(γ) → ψ.

Then, there is a finite subset Γ ⊆
⋃
i∈I
{Kiσ | Kiσ ∈ x} such

that `
∧
λ∈Γ

λ→ (int(γ)→ ψ). It then follows:

1. ` int(
∧
λ∈Γ

λ→ (int(γ)→ ψ)) (DR3)

2. ` int(
∧
λ∈Γ

λ)→ int(int(γ)→ ψ)) (int-K) and (DR1)

3. ` (
∧
λ∈Γ

int(λ))→ int(int(γ)→ ψ)) (int-K)

Observe that each λ ∈ Γ is of the form Kjα for some
Kjα ∈

⋃
i∈I
{Kiσ | Kiσ ∈ x} and we have ` Kiϕ↔ int(Kiϕ).

Therefore, ` (
∧
λ∈Γ

λ) → int(int(γ) → ψ)). Thus, since∧
λ∈Γ

λ ∈ x (by Γ ⊆ x), we have int(int(γ)→ ψ)) ∈ x. Then,

by (int-K), (DR1) and since ` int(int(γ)) ↔ int(γ) and

x ∈ înt(γ) (i.e., int(γ) ∈ x) , we obtain int(ψ) ∈ x.

Theorem 26. ELint is complete with respect to the class
of all topo-models.

Theorem 27. PALint is complete with respect to the class
of all topo-models.

Proof. This follows from Theorem 26 by reduction in a
standard way. The occurrences of the modality int on the
right-hand-side of the reduction axioms (axioms (R1)-(R6))
should not lead to any confusion: extending the complexity
measure defined in [17, Definition 7.21 p. 187] to the lan-
guage LPALint by adding the same complexity measure for
the modality int as for Ki gives us the desired result.

4.2 Completeness of APALint

We now reuse the technique of [2] in the setting of topolog-
ical semantics. Given the closure requirement under deriva-
tion rule (DR5) it seems more proper to call maximally con-
sistent sets of APALint maximally consistent theories, as
further explained below.

Definition 28. A set x of formulas is called a theory
iff APALint ⊆ x and x is closed under (DR1) and (DR5).

A theory x is said to be consistent iff ⊥ 6∈ x. A theory x
is maximally consistent iff x is consistent and any set of
formulas properly containing x is inconsistent.

Observe thatAPALint constitutes the smallest theory. More-
over, maximally consistent theories of APALint posses the
usual properties of maximally consistent sets:

Proposition 29. For any maximally consistent theory x,
ϕ 6∈ x iff ¬ϕ ∈ x, and ϕ ∧ ψ ∈ x iff ϕ ∈ x and ψ ∈ x.

In the setting of our axiomatization based on the infinitary
rule (DR5), we will say that a set x of formulas is consistent
iff there exists a consistent theory y such that x ⊆ y. Ob-
viously, maximal consistent theories are maximal consistent
sets of formulas. Under the given definition of consistency
for sets of formulas, maximal consistent sets of formulas are
also maximal consistent theories.

Definition 30. Let ϕ ∈ LAPALint and i ∈ A. Then x +
ϕ := {ψ | ϕ→ ψ ∈ x} and Kix := {ϕ | Kiϕ ∈ x}.

Lemma 31. For any theory x of APALint and
ϕ ∈ LAPALint , x + ϕ is a theory and it contains x and ϕ,
and Kix is a theory.

Lemma 32. Let ϕ ∈ LAPALint . For all theories x, x + ϕ
is consistent iff ¬ϕ 6∈ x.

Proof. Let ϕ ∈ LAPALint and x be a theory. Then ¬ϕ ∈
x iff ϕ→ ⊥ ∈ x (as ¬ϕ↔ ϕ→ ⊥ is a theorem) iff ⊥ ∈ x+ϕ.
Therefore, x + ϕ is inconsistent iff ¬ϕ ∈ x, i.e., x + ϕ is
consistent iff ¬ϕ 6∈ x.

Lemma 33 (Lindenbaum’s Lemma [1]). Each consis-
tent theory can be extended to a maximal consistent theory.

Lemma 34. If Kiϕ 6∈ x, then there is a maximally con-
sistent theory y such that Kix ⊆ y and ϕ 6∈ y.

Proof. Let ϕ ∈ LAPALint and x be such that Kiϕ 6∈
x. Thus, ϕ 6∈ Kix. Hence, by Lemma 32, Kix + ¬ϕ is
consistent. Then, by Lemma 33, there exists a maximally
consistent set y such that Kix+¬ϕ ⊆ y. Therefore Kix ⊆ y
and ϕ 6∈ y.

Lemma 35. For all ϕ ∈ LAPALint and all maximally con-
sistent theories x, 2ϕ ∈ x iff for all ψ ∈ LPALint , [ψ]ϕ ∈ x.

Proof. Let ϕ ∈ LAPALint and x be a maximally consis-
tent theory.

(⇒) Suppose 2ϕ ∈ x. Then, by (R7) and (DR1), we
have [ψ]ϕ ∈ x for all ψ ∈ LPALint .

(⇐) Suppose [ψ]ϕ ∈ x for all ψ ∈ LPALint . Consider the
necessity form ]. By assumption, ]([ψ]ϕ) for all ψ ∈ LPALint .
Then, since x is closed under (DR5), ](2ϕ) ∈ x, i.e., 2ϕ ∈ x
as well.

The definition of the canonical model for APALint is the
same as for ELint , except that the maximally consistent
sets are maximally consistent theories. We now come to
the Truth Lemma for the logic APALint . Here we use the
complexity measure ψ <Sd ϕ.

Lemma 36 (Truth Lemma). For every ϕ ∈ LAPALint

and for each x ∈ Xc, ϕ ∈ x iff X c, (x, θ∗) |= ϕ.



Proof. Let ϕ ∈ LAPALint and x ∈ X c. The proof is by
<Sd -induction on ϕ, where the case ϕ = [ψ]χ is proved by a
subinduction on χ. We therefore consider 14 cases.

Case ϕ := p

x ∈ p iff x ∈ νc(p)
iff (x, θ∗) |= p

Induction Hypothesis (IH): For all formulas ψ ∈ LAPALint ,
if ψ <Sd ϕ, then ψ ∈ x iff X c, (x, θ∗) |= ψ.

The cases negation, conjunction, and interior modality are
as in Truth Lemma 25 for ELint, where we observe that the
subformula order is subsumed in the <Sd order (see Lemma
6.2). We proceed with the knowledge operator, i.e., case
ϕ := Kiψ, and then with the subinduction on χ for case
announcement ϕ := [ψ]χ, and finally with the case ϕ := 2ψ.

Case ϕ := Kiψ
This case is also similar to the one in Truth Lemma 25 for

ELint, however, using maximally consistent theories in the
canonical model creates some differences. For the direction
from left-to-right, see Truth Lemma 25. For (⇐), suppose
Kiψ 6∈ x. Then, by Lemma 34, there exists a maximally
consistent theory y such that Kix ⊆ y and ψ 6∈ y. By ψ <Sd
Kiψ and (IH), (y, θ∗) 6|= ψ. Since Kix ⊆ y, we have y ∈ [x]i
meaning that y ∈ θ∗(x)(i). Therefore, by the semantics,
X c, (x, θ∗) 6|= Kiψ.

Case ϕ := [ψ]p

[ψ]p ∈ x iff int(ψ)→ p ∈ x (R1)
iff int(ψ) 6∈ x or p ∈ x Prop. 29
iff (x, θ∗) 6|= int(ψ) or (x, θ∗) |= p (∗)
iff (x, θ∗) |= [ψ]p (R1)

(*): By (IH), int(ψ) <Sd [ψ]p and p <Sd [ψ]p (Lemma 6.3 and
Lemma 6.2).

Case ϕ := [ψ]¬η Use (R2) and (IH) and, by Lemma 6.3
and Lemma 7.1, int(ψ) <Sd [ψ]¬η and ¬[ψ]η <Sd [ψ]¬η.

Case ϕ := [ψ](η∧σ) Use (R3) and (IH), [ψ]η <Sd [ψ](η∧
σ) and [ψ]σ <Sd [ψ](η ∧ σ).

Case ϕ := [ψ]int(η) Use (R4) and (IH) and, by Lemmas
6.3, 7.2, int(ψ) <Sd [ψ]int(η) and int([ψ]η) <Sd [ψ]int(η).

Case ϕ := [ψ]Kiη Use (R5) and (IH) and, by Lemmas
6.3, 7.3, int(ψ) <Sd [ψ]Kiη and Ki[ψ]η <Sd [ψ]Kiη.

Case ϕ := [ψ][η]σ Use (R6) and (IH) and, by Lemma
7.4, [¬[ψ]¬int(η)]σ <Sd [ψ][η]σ.

Case ϕ := [ψ]2σ For all η ∈ LPALint , [ψ][η]σ <Sd [ψ]2σ,
as [ψ]2σ has one more 2 than [ψ][η]σ . Therefore, it suffices
to show [ψ]2σ ∈ x iff ∀η ∈ LPALint , [ψ][η]σ ∈ x.

(⇐) Consider the necessity form [ψ]] and assume that
for all η ∈ LPALint , [ψ][η]σ ∈ x, i.e., for all η ∈ LPALint ,
[ψ]]([η]σ) ∈ x . As x is closed under (DR5), we obtain
[ψ]](2σ) ∈ x, i.e., [ψ]2σ ∈ x.

(⇒) Suppose [ψ]2σ ∈ x. We have

` 2σ → [η]σ, for all η ∈ LPALint (R7)
` [ψ](2σ → [η]σ) for all η ∈ LPALint (DR4)
` [ψ]2σ → [ψ][η]σ, for all η ∈ LPALint (DR1), (R1-R3)

Therefore, for all η ∈ LPALint , [ψ][η]σ ∈ x. As [ψ][η]σ <Sd
[ψ]2σ for all η ∈ LPALint , by (IH), we have for all η ∈
LPALint , (x, θ

∗) |= [ψ][η]σ. Then, by the semantics, we ob-
tain (details omitted) that (x, θ∗) |= [ψ]2σ.

Case ϕ := 2ψ Again note that for all η ∈ LPALint ,
[η]ψ <Sd 2ψ, as 2ψ has one more 2 than [η]ψ (see Lemma

6.4 and Lemma 6.5). Therefore, we obtain

2ψ ∈ x iff (∀η ∈ LPALint )([η]ψ ∈ x) Lemma 35
iff (∀η ∈ LPALint )(x, θ

∗) |= [η]ψ (IH)
iff (x, θ∗) |= 2ψ semantics

Theorem 37. APALint is complete with respect to the
class of all topo-models.

Proof. Let ϕ ∈ LAPALint such that 6` ϕ, i.e., ϕ 6∈ APALint

(Recall that APALint is the smallest theory). Then, by
Lemma 32, APALint + ¬ϕ is a consistent theory and, by
Lemma 31, ¬ϕ ∈ APALint +¬ϕ. By Lemma 33, the consis-
tent theory APALint +¬ϕ can be extended to a maximally
consistent theory y such that APALint + ¬ϕ ⊆ y. Since
y is maximally consistent and ¬ϕ ∈ y, we obtain ϕ 6∈ y
(by Proposition 29). Then, by Lemma 36 (Truth Lemma),
X c, (y, θ∗) 6|= ϕ.

5. COMPARISON TO OTHER WORK
Multi-agent epistemic systems with subset space-like se-

mantics have been proposed in [11, 12, 4, 18], however, none
of these are concerned with arbitrary announcements. Our
goal in this paper is not to provide a multi-agent generaliza-
tion of SSL per se, but to work with the effort-like modal-
ity 2 intended to capture the information change brought
about by any announcements (subject to some restrictions)
in a multi-agent setting and modelling it by way of “open-
set shrinking” similar to the effort modality, rather than by
deleting states or neighbourhoods, so that the intuitive link
between the two becomes more transparent on a semantic
level. In [3], Balbiani et al. proposed subset space seman-
tics for arbitrary announcements, however, their approach
does not go beyond the single-agent case and the semantics
provided is in terms of model restriction. An unorthodox
approach to multi-agent knowledge is proposed in [11, 12].
Roughly speaking, instead of having a knowledge modality
Ki for each agent in his syntax, Heinemann uses additional
operators to define Ki and his semantics only validate the
S4-axioms for Ki. The necessitation rule for Ki does not
preserve validity under the proposed semantics [11, 12]. In
[18] a multi-agent semantics for knowledge is provided, but
no announcements or further generalizations (unlike in their
other, single-agent, work [19]), and not in a topological set-
ting. Their use of partitions for each agent instead of a
single neighbourhood is compatible with our requirement
that all neighbourhoods for a given agent be disjoint. A fur-
ther difference from the existing literature is that we restrict
our attention to topological spaces and prove our results by
means of topological tools.

We applied the new completeness proof for arbitrary pub-
lic announcement logic of [2] to a topological setting. The
canonical modal construction is as in [6] with some multi-
agent modifications. The modality int in our system de-
mands a different complexity measure in the Truth Lemma
of the completeness proof than in [2].

6. CONCLUSIONS
We have proposed topological semantics for the multi-

agent extensions of the public announcement logic of [6], and
further extended the logic with arbitrary announcements.
We showed topological completeness of these logics. Our
work can be seen as a step toward discovering the interplay
between dynamic epistemic logic and topological reasoning.



For further research, we envisage a finitary axiomati-
zation for APALint wherein the infinitary derivation rule
(DR5) is replaced by a finitary rule. The obvious derivation
rule would derive something after any announcement if it
can be derived after announcing a fresh variable [1]. Under
subset space semantics, it is unclear how to prove that this
rule is sound.

We are still investigating expressivity and (un)decidability.
If the logic APALint is undecidable, this would contrast
nicely with the undecidability of arbitrary public announce-
ment logic. Otherwise, there may be interesting decidable
versions when restricting the class of models to particular
topologies.

The logicAPALint is also axiomatizable on the class where
the K modalities have S4 properties, a result we have not
reported in this paper for consistency of presentation. This
class is of topological interest.

In our setup all agents have the same observational pow-
ers. If agents can have different observational powers, we
can associate a topology with each agent and generalize the
logic to an arbitrary epistemic action logic.

Furthermore, we would like to explore the exact difference
between the effort modality and the arbitrary announcement
modality (in the single agent case, see [16]) by constructing a
topological model which distinguishes the two: a topological
model might have more than epistemically definable opens
with respect to the proposed semantics.
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