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Abstract. We transfer a notion of quantitative bisimilarity for labelled Markov processes [1]
to Markov decision processes with continuous state spaces. This notion takes the form of a
pseudometric on the system states, cast in terms of the equivalence of a family of functional
expressions evaluated on those states and interpreted as a real-valued modal logic. Our proof
amounts to a slight modification of previous techniques [2, 3] used to prove equivalence with
a fixed-point pseudometric on the state-space of a labelled Markov process and making heavy
use of the Kantorovich probability metric. Indeed, we again demonstrate equivalence with a
fixed-point pseudometric defined on Markov decision processes [4]; what is novel is that we
recast this proof in terms of integral probability metrics [5] defined through the family of
functional expressions, shifting emphasis back to properties of such families. The hope is that
a judicious choice of family might lead to something more computationally tractable than
bisimilarity whilst maintaining its pleasing theoretical guarantees. Moreover, we use a trick
from descriptive set theory to extend our results to MDPs with bounded measurable reward
functions, dropping a previous continuity constraint on rewards and Markov kernels.

1 Introduction

Probabilistic bisimulation is a notion of state-equivalence for Markov transition systems, first intro-
duced by Larsen and Skou [6] based upon bisimulation for nondeterministic systems by Park and
Milner [7, 8]. Roughly, states are deemed equivalent if they transition with the same probability to
classes of equivalent states.

In the context of labelled Markov processes (LMPs), a robust quantitative notion of probabilistic
bisimilarity has been devised in the form of a class of behavioural pseudometrics, or bisimilarity
metrics, defined on the state space of a given process [9, 1, 10, 2, 11]. The defining characteristic of
these metrics is that the kernel of each is probabilistic bisimilarity, and otherwise each assigns a
distance between 0 and 1 that measures the degree to which two states are bisimilar.
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Bisimilarity metrics were initially defined in terms of a family of functional expressions inter-
preted as a real-valued logic on the states of an LMP by Desharnais et al. [9], building on ideas
of Kozen [12] that logic could be generalized to handle probabilistic phenomena. Subsequently, van
Breugel and Worrell [2] used category theory to define another class of bisimilarity metrics, and
showed that their definition was equivalent to a slightly modified version of the metrics of Deshar-
nais et al. in terms of the family of functional expressions considered. Desharnais et al. [1] in turn
reformulated this latter version solely in terms of order-theoretic fixed-point theory. A crucial com-
ponent in these formulations was the recognition that the initial version, when lifted to a metric on
distributions, could be expressed as a Kantorovich metric.

For finite systems, the various formulations readily admit a variety of algorithms to estimate the
distances [9, 3, 13]. In particular, the initial formulation in terms of a family of functional expressions
led to an exponential-time algorithm based on choosing a suitable finite sub-family of functionals.
This was vastly improved in [3] wherein an iterative polynomial-time algorithm exploited the fact
that the Kantorovich metric is a specialized linear program.

In [14, 15, 4], the fixed-point presentation of the LMP bisimilarity metric was adapted to finite
Markov decision processes (MDPs) and MDPs with continuous state spaces, bounded continuous
rewards, and (weakly) continuous Markov kernels. Insofar as finite systems are concerned, the
addition of the reward parameter is minor; in fact, the iterative polynomial-time algorithm applies
more or less directly [14]. Unfortunately, even for very simple toy systems the experimental space
and time required is too great to be of practical use. This issue was explored in [16] where a Monte
Carlo approach to estimating the Kantorovich metric, and the bisimilarity metric for MDPs in
general, was devised and shown to outperform other approaches in an experimental setting. The
Monte Carlo approach was even extended to MDPs in which the state space is a compact metric
space [4]. However, this line of investigation is still very preliminary.

In this work, we seek to complete further the picture of bisimilarity metrics for MDPs by
presenting a family of functional expressions that induce the fixed-point bisimilarity metric, in
analogy with the results of [2] for LMPs. We aim to shift the study of equivalences on MDP
states to the study of such families and their properties. The right choice of family might lead to
a more easily computable equivalence whilst maintaining some important theoretical guarantees.
Additionally, we hope further to investigate Monte Carlo approaches to estimating similarity, for
example, by sampling from a given family of functions. More specifically, we carry out the following.

1. We adapt Proposition 2 of [2] to MDPs, showing that a class of functional expressions interpreted
as a real-valued logic on the states of a given MDP is dense in the class of Lipschitz functions
with respect to the pseudometric induced by the family. It is important to note that the proof
here appears almost unchanged from [2]; what is important is that we recast the result in
the terminology and conceptual framework of integral probability metrics and their generating
classes of functions.

2. We remove the continuity constraints of Theorem 7, which establishes the fixed-point bisimi-
larity metric for continuous MDPs, using techniques from descriptive set theory. This is, to the
best of our knowledge, an original result.

3. We propose a preliminary Monte Carlo technique for estimating the bisimilarity metric by
sampling from the family of functional expressions that encodes bisimilarity for MDPs. This
too, appears to be an original result, but is based on a heuristic method and experimental
evidence presented in [17].

The paper is organized as follows. In Section 2, we provide a brief summary on the relevant de-
velopment of bisimilarity metrics and related results for LMPs and MDPs. In Section 3, we establish



a family of functional expressions that induces a metric equal to a previously-defined bisimilarity
metric for MDPs, and then generalize the applicability of this result by removing previous continuity
constraints. Finally, in Section 4 and Section 5, we propose a Monte Carlo method for approximat-
ing the bisimilarity metric by sampling from a family of functional expressions, and conclude with
suggestions for future work.

2 Background

The purpose of this section is to recall the development of pseudometrics capturing bisimilarity for
labelled Markov processes, and set down what has already been carried over to Markov decision
processes. In doing so, we fix some basic terminology and notation for probabilistic systems. Unless
otherwise stated, all the results of this section can be found in Prakash’s book on labelled Markov
processes [18].

2.1 Probability Measures on Polish Metric Spaces

Since we deal primarily with uncountably infinite state spaces, we must take into account the
tension involved in imposing the right amount of structure on a space for general theoretical utility
and imposing the right amount of structure for practical application. Much of the work on labelled
Markov processes has been cast in the setting of Polish spaces and analytic spaces, which are general
enough to include most practical systems of interest while structured enough to admit many useful
theorems.

Definition 1.

1. A Polish metric space is a complete, separable metric space.
2. A Polish space is a topological space that is homeomorphic to a Polish metric space.
3. An analytic set is a subset of a Polish space that is itself the continuous image of a Polish space.
4. A standard Borel space is a measurable space that is Borel isomorphic to a Polish space.

If (X, τ) is a topological space, then Cb(X) is the set of continuous bounded real-valued func-
tions on X. If (X,BX) is a standard Borel space then we let S(X) and P(X) denote the sets of
subprobability measures and probability measures on X respectively, and remark that each is also
a standard Borel space [19]. We will also assume that the reader is familiar with the theory of
integration. If µ is a finite measure and f is an integrable function both defined on (X,BX) then
we denote the integral of f with respect to µ by µ(f).

Working at the level of standard Borel spaces allows us to use the rich structure of Polish
metric spaces without necessarily having to fix a metric beforehand. For example, when examining
probability measures on such spaces, we can sometimes restrict to compact metric spaces, which
in turn provide finite substructure for estimation schemes or over which convergence of certain
functions can be made to be uniform. The following can be found in [20] and [21] and will be used
to establish Theorem 9 in Section 3.

Definition 2. Let P be a family of Borel probability measures on a metric space (X, d).

1. P is said to be uniformly tight iff for every ε > 0 there exists a compact subset K of X such
that P (X\K) < ε for every P ∈ P.



2. P is said to be relatively compact iff every sequence of elements in P contains a weakly con-
vergent subsequence.

Theorem 1 (Prohorov’s Theorem). Suppose (X, d) is a Polish metric space. Let P ⊆ P(X).
Then P is relatively compact if and only if it is uniformly tight.

Theorem 2 (Dini’s Theorem). Suppose (K, τ) is a compact topological space, (fn)n∈N is a se-
quence of continuous real-valued functions on K, monotonically decreasing and converging pointwise
to a continuous function f . Then (fn)n∈N converges to f uniformly on K.

2.2 Stochastic Kernels and Markov Processes

Definition 3. Let (X,BX) and (Y,BY ) be standard Borel spaces. A sub-Markov kernel4 is a Borel
measurable map from (X,BX) to (S(Y ),BS(Y )). A Markov kernel is a Borel measurable map from
(X,BX) to (P(Y ),BP(Y )).

Equivalently, K is a sub-Markov (Markov) kernel from X to Y iff

1. K(x) is a sub-probability (probability) measure on (Y,BY ) for each x ∈ X, and
2. x 7→ K(x)(B) is a measurable map for each B ∈ BY .

We will simply write “K is a sub-Markov (Markov) kernel on X” when it is implicitly assumed
that Y = X. Such stochastic kernels play the role of a transition relation in stochastic transition
systems with continuous state spaces. The two Markov processes that we examine in detail are the
labelled Markov process and the Markov decision process.

Definition 4. A labelled Markov process (LMP) is a tuple (S,BS , A, {Ka : a ∈ A}), where (S,BS)
is a standard Borel space, A is a finite set of labels, and for a ∈ A, Ka is a sub-Markov kernel on
S.

Definition 5. A Markov decision process (MDP) is a tuple (S,BS , A, {Pa : a ∈ A}, r), where
(S,BS) is a standard Borel space, A is a finite set of actions, r : A × S → R is a bounded
measurable reward function, and for a ∈ A, Pa is a Markov kernel on S.

For each a ∈ A we will denote by ra : S → R the function defined by ra(s) = r(a, s).

Remark 1. In [9, 22, 23, 10], Desharnais, Panangaden, et al. consider LMPs in which the state spaces
are analytic sets; this is largely because the quotient of a Polish space may fail to be Polish but is
always guaranteed to be analytic. We will not consider analytic sets in this work, but the interested
reader should keep this in mind.

2.3 Bisimulation

We present bisimilarity for LMPs and MDPs as outlined in [10] and [4] and note that the latter
amounts to little more than a mild extension through the addition of rewards to the definition of
the former.

4 This is also known as a stochastic relation, a stochastic transition kernel, or simply a stochastic kernel.



Definition 6. Given a relation R on a set S, a subset X of S is said to be R-closed if and only if
the collection of all those elements of S that it is related to by R, R(X) = {s′ ∈ S|∃s ∈ X, sRs′},
is itself contained in X.

Definition 7. Given a relation R on a measurable space (S,Σ), we write Σ(R) for the set of those
Σ-measurable sets that are also R-closed, {X ∈ Σ|R(X) ⊆ X}.

When R is an equivalence relation then to say that a set X is R-closed is equivalent to saying
that X is a union of R-equivalence classes. In this case Σ(R) consists of those measurable sets that
can be partitioned into R-equivalence classes.

Definition 8. Let (S,BS , A, {Ka : a ∈ A}) be an LMP. An equivalence relation R on S is a
bisimulation relation if and only if it satisfies

sRs′ ⇔ for every a ∈ A and for every X ∈ Σ(R), Ka(s)(X) = Ka(s′)(X).

Bisimilarity is the largest of the bisimulation relations.

Definition 9. Let (S,BS , A, {Pa : a ∈ A}, r) be an MDP. An equivalence relation R on S is a
bisimulation relation if and only if it satisfies

sRs′ ⇔ for every a ∈ A, ra(s) = ra(s′) and for every X ∈ Σ(R), Pa(s)(X) = Pa(s′)(X).

Bisimilarity is the largest of the bisimulation relations.

It turns out that bisimulation for LMPS and MDPs can be equivalently cast as the maximal
fixed-point of a monotone functional on a complete lattice. We present this here only in the context
of MDPs; the statement for LMPs is analogous.

Theorem 3. Let (S,BS , A, {Pa : a ∈ A}, r) be an MDP, τ a Polish topology on S generating BS

and such that for each a in A, ra and Pa are continuous with respect to τ , P(S) being endowed with
the topology of weak convergence induced by τ . Assume that the image of r is contained in [0, 1].
Define F : Equ→ Equ by

sF(R)s′ ⇔ ∀a ∈ A, ra(s) = ra(s′) and ∀X ∈ Σ(R), Pa(s)(X) = Pa(s′)(X),

where Equ is the set of equivalence relations on S equipped with subset ordering. Then the greatest
fixed point of F is bisimilarity.

Lastly, we remark that bisimulation for LMPs has a logical characterization, and in turn, a
characterization in terms of a real-valued modal logic. We omit the details for lack of space, but
return to the latter idea in subsequent sections.

2.4 Probability Metrics

Metrizing bisimilarity for Markov processes essentially involves assigning a distance to their Markov
kernels via a suitable probability metric. Gibbs and Su [24] survey a variety of such metrics. LMP
bisimilarity was initially defined in terms of an integral probability metric in [10], and later recast
in terms of the Kantorovich metric in [2]. In order to present the Kantorovich metric, we first recall
the definition of lower semicontinuity.

Definition 10. Let (X, τ) be a topological space and let f : X → R ∪ {−∞,∞}. Then f is lower
semicontinuous if for each half-open interval of the form (r,∞), the preimage f−1(r,∞) ∈ τ .



The Kantorovich Metric

Definition 11. Let S be a Polish space, h a bounded pseudometric on S that is lower semicontin-
uous on S × S with respect to the product topology, and Lip(h) be the set of all bounded functions
f : S → R that are measurable with respect to the Borel σ-algebra on S and that satisfy the Lipschitz
condition f(x)− f(y) ≤ h(x, y) for every x, y ∈ S. Let P,Q ∈ P(S). Then the Kantorovich metric
K(h) is defined by

K(h)(P,Q) = sup
f∈Lip(h)

(P (f)−Q(f)).

Lemma 1. Let S, h, P , and Q be as in Definition 11. Let Λ(P,Q) consist of all measures on the
product space S × S with marginals P and Q, i.e.,

Λ(P,Q) = {λ ∈ P(S × S) : λ(E × S) = P (E) and λ(S × E) = Q(E) for all E ∈ BS}. (1)

Then the Kantorovich metric K(h) satisfies the inequality:

sup
f∈Lip(h,Cb(S))

(P (f)−Q(f)) ≤ K(h)(P,Q) ≤ inf
λ∈Λ(P,Q)

λ(h) (2)

where Lip(h,Cb(S)) denotes functions on S that are continuous and bounded, 1-Lipschitz with
respect to h, and have range [0, ‖h‖].

Note that h need not generate the topology on S, and so Lipschitz continuity with respect to h
does not immediately imply continuity on S.

The leftmost and rightmost terms in inequality 2 are examples of infinite linear programs in
duality. It is a highly nontrivial result that there is no duality gap in this case (see for example
Theorem 1.3 and the proof of Theorem 1.14 in [25]).

Theorem 4 (Kantorovich-Rubinstein Duality Theorem). Assume the conditions of Defini-
tion 11 and Lemma 1. Then there is no duality gap in equation 2, that is,

K(h)(P,Q) = sup
f∈Lip(h,Cb(S))

(P (f)−Q(f)) = inf
λ∈Λ(P,Q)

λ(h) (3)

Note that for any point masses δx, δy, we have K(h)(δx, δy) = h(x, y) since δ(x,y) is the only mea-
sure with marginals δx and δy on the right-hand side of Equation 3. As a result, we obtain that any
bounded lower semicontinuous pseudometric h can be expressed as h(x, y) = supf∈F (f(x)− f(y))
for some family of continuous functions F .

Integral Probability Metrics The intuition behind the Kantorovich metric is that the quantitive
difference between two probability measures can be measured in terms of the maximal difference
between the expected values with respect to the two measures, of a class of test functions - in this
case, the class of Lipschitz functions. For an arbitrary class of test functions, the induced metric is
known as the integral probability metric generated by that class. All definitions and results of this
subsection are taken from [5].

Definition 12. Let F be a subset of bounded measurable real-valued functions on a Polish met-
ric space (S, d). Then the integral probabilty metric associated with F is the probability metric
IPM(F ) on P(S) defined by

IPM(F )(P,Q) = sup
f∈F
|P (f)−Q(f)|

for probability measures P and Q.



For convenience, we will simply denote IPM(F ) by F . Remark that in general F is allowed to take
on infinite values, though we will work with bounded sets of functions to avoid this. Additionally,
we remark that this probability metric in turn induces a pseudometric on S via

F (x, y) := F (δx, δy).

Thus, as an abuse of notation we will use F to refer to a family of functions, the associated
probability metric, and the induced pseudometric, with the intended meaning clear from the context.

Definition 13. Let F be a subset of bounded measurable real-valued functions on a Polish metric
space (S, d). The maximal generator of the integral probability metric associated to F is the set
RF of all bounded measurable real-valued functions on (S, d), each of which satisifies the following:
g ∈ RF if and only if

|P (g)−Q(g)| ≤ F (P,Q)

for every P and Q in P(S).

It follows that RF is the largest such family, and that RF (P,Q) = F (P,Q).
The following is Theorem 3.3 of [5].

Theorem 5. Let F be an arbitrary generator of RF . Then

1. RF contains the convex hull of F ;
2. f ∈ RF implies αf + β ∈ RF for all α ∈ [0, 1] and β ∈ R;
3. If the sequence (fn)n∈N in RF converges uniformly to f , then f ∈ RF .

In particular, for a given F , RF is closed under uniform convergence.

2.5 Bisimulation Metrics

The metric analogue of bisimulation for LMPs was initially cast in terms of a family of functional
expressions, interpreted as a real-valued logic over the states of a given Markov process [9]. A
slightly modified version was then shown to be equivalent to a bisimultaion metric developed in
the context of category theory in [2]. In [1], the authors in turn recast this latter metric fully
using order-theoretic fixed-point theory for discrete systems. Finally, this method was generalized
to develop a bisimulation metric for MDPs with continuous state spaces in [4].

We present here the logic of [2] and the fixed-point results of [4], as these are the results we will
attempt to join in the subsequent sections.

Definition 14. For each c ∈ (0, 1], Fc represents the family of functional expressions generated by
the following grammar.

f ::= 1 |1− f | 〈a〉f | max(f, f) | f 	 q (4)

where q ∈ Q ∩ [0, 1] and a belongs to a fixed set of labels A.

Let M = (S,BS , A, {Ka : a ∈ A}) be an LMP. The interpretation of f ∈ Fc, fM : S → [0, 1],
is defined inductively. Let s ∈ S. Then

1M (s) = 1

(1− f)M (s) = 1− fM (s)

(〈a〉f)M (s) = c ·Ka(s)(fM )

max(f1, f2)M (s) = max((f1)M (s), (f2)M (s))

(f 	 q)M (s) = max(fM (s)− q, 0),



Henceforth, we shall omit the subscript M and use f to refer both to an expression and its inter-
pretation, with the difference clear from the context.

Remark 2. We may also add the expressions min(f, f) and f ⊕ q as shorthand for the expressions
1−max(1−f, 1−f)) and 1− ((1−f)	 q). The operations 	 and ⊕ denoted truncated subtraction
in the unit interval and truncated addition in the unit interval, respectively.

The relevance of such a formulation arises via a behavioural pseudometric.
The following is Theorem 3 of [2] and Theorem 8.2 of [18].

Theorem 6. Let M = (S,BS , A, {Ka : a ∈ A}) be an LMP and for c ∈ (0, 1], let Fc be the family
of functional expressions defined in Definition 14. Define the map dc on S × S as follows:

dc(x, y) = sup
Fc

|f(x)− f(y)|. (5)

Then dc is a pseudometric on S whose kernel is bisimilarity.

As previously mentioned, the metric dc can be formulated in terms of fixed-point theory, and
indeed this construction has been carried over to MDPs, with the minor addition of taking into
account reward differences. The following is Theorem 3.12 of [4].

Theorem 7. Let M = (S,BS , A, {Pa : a ∈ A}, r) be an MDP and let τ be a Polish topology on
S that generates BS. Assume that the image of r is contained in [0, 1], and that for each a in A,
ra and Pa are continuous, P(S) endowed with the weak topology induced by τ . Let c ∈ (0, 1) be a
discount factor, and lscm be be the set of bounded pseudometrics on S that are lower semicontinuous
on S × S endowed with the product topology induced by τ . Define Fc : lscm → lscm by

Fc(h)(s, s′) = max
a∈A

((1− c)|ra(s)− ra(s′)|+ c · K(h)(Pa(s), Pa(s′)))

where K(h) is the Kantorovich metric induced by h ∈ lscm. Then

1. Fc has a unique fixed point ρ∗c : S × S → [0, 1],
2. The kernel of ρ∗c is bisimilarity,
3. for any h0 ∈ lscm, limn→∞ Fnc (h0) = ρ∗c ,
4. ρ∗c is continuous on S × S,
5. ρ∗c is continuous in r and P , and
6. If MDP M ′ = (S,BS , A, {Pa : a ∈ A}, k · r) for some k ∈ [0, 1] then ρ∗c,M ′ = k · ρ∗c,M .

Whereas the interest in finding small bisimilar systems for LMPs lies in being able to test prop-
erties of a system specified in a given logic, the interest in finding small bisimilar systems for MDPs
concerns finding optimal planning strategies in terms of value functions. Given a discount factor
γ ∈ [0, 1), the optimal value function is the unique solution to the following Bellman optimality
fixed-point equation.

v∗(s) = max
a∈A

(ra(s) + γPa(s)(v∗)) for each s ∈ S.

In general, such a v∗ need not exist. Even if it does, there may not be a well-behaved, that is to
say measurable, policy that is captured by it. Fortunately, there are several mild restrictions under
which this is not the case. According to Theorem 8.3.6 and its preceding remarks in [26], if the state
space is Polish and the reward function is uniformly bounded then there exists a unique solution
v∗ to the Bellman optimality equation and there exists a measurable optimal policy for it as well.

The following is Theorem 3.20 in [4].



Theorem 8. Let M = (S,BS , A, {Pa : a ∈ A}, r) be an MDP and let τ be a Polish topology on
S that generates BS. Assume that the image of r is contained in [0, 1], and that for each a in
A, ra and Pa are continuous, P(S) endowed with the weak topology induced by τ . Let c ∈ (0, 1)
be a discount factor. Let v∗γ be the optimal value function for the expected total discounted reward
associated with M and discount factor γ ∈ [0, 1). Suppose γ ≤ c. Then v∗γ is Lipschitz continuous

with respect to ρ∗c with Lipschitz constant 1
1−c , i.e., |v∗γ(x)− v∗γ(y)| ≤ (1− c)−1ρ∗c(x, y).

3 Bisimulation Metrics for MDPs Revisited

The goal of this section is two-fold. First, we establish a family of functional expressions as in
Definition 14 that captures bisimulation for MDPs as defined in Theorem 7. This amounts to
little more than Proposition 2 of [2] but using the terminology of generating classes for integral
probability metrics. Second, we generalize the applicability of these results for MDPs by removing
the continuity constraints in Theorem 7.

3.1 When is the Integral Probability Metric the Kantorovich Metric?

In this section we will show that under some very mild conditions, the maximal generator of a
family of functional expressions is in fact the class of Lipschitz functions with respect to the distance
induced by that family. In this case, the integral probability metric and the Kantorovich metric
induced by the family coincide.

The following result is Lemma 4.6 of [1], itself adapted from Proposition 2 of [2], presented almost
verbatim. The imposed Lipschitz condition makes measurability concerns almost an afterthought.
What really matters here is the reframing of the result in terms of the integral probability metric
and its maximal generator. Doing so will allow us to examine simpler grammars for bisimulation,
as well as ways of approximating these.

Theorem 9. Suppose (S, d) is a Polish metric space and F is a family of real-valued functions
on S that take values in the unit interval and are 1-Lipschitz continuous with respect to d. Suppose
further that F contains the constant zero function and is closed under truncated addition with
rationals in the unit interval, subtraction from the constant function 1, and taking the pointwise
maximum of two functions. Let RF be the maximal generator of F and Lip(F ) be the set of
real-valued measurable functions on S that are 1-Lipschitz with respect to the metric induced by F .
Then RF = Lip(F ) ⊆ Cb(S).

Proof. Firstly note that since by assumption all members of the family F are 1-Lipschitz continuous
with respect to d, the induced pseudometric F ≤ d. Thus, Lip(F ) ⊆ Lip(d) ⊆ Cb(S). From the
definition of RF applied to Dirac measures, it immediately follows that each of its members is
1-Lipschitz with respect to the pseudometric induced by F . Thus, RF ⊆ Lip(F ). In particular,
every member of the maximal generator belongs to Cb(S).

The reverse inclusion Lip(F ) ⊆ RF is somewhat more complicated to establish. By Theorem 5,
we have that RF is closed with respect to uniform convergence, and thus is also generated by F ,
the closure of F with respect to uniform convergence. In fact, we will show that F is dense in
Lip(F ) in the metric of uniform convergence; for then it follows that Lip(F ) = F ⊆ RF . We do
so in two steps. First we establish the result in the case where (S, d) is a compact metric space, as
this allows us to replace pointwise convergence by uniform convergence at a certain point in the



proof. Finally, we extend this result to the general case of a Polish metric space by approximating
it from within by a suitable compact subset.

Assume that (S, d) is a compact metric space. It is easily seen that F contains the constant
zero function and remains closed under truncated addition with all constants in the unit interval,
subtraction from 1, and taking maxima; in fact, it now follows that F is closed under countable
suprema. To see this, suppose (fn)n∈N is a sequence in F . Since F is uniformly bounded by 1 it
follows that f = supn∈N fn exists and moreover it is continuous, as each fn is 1-Lipschitz continuous
with respect to d. Define (hn)n∈N in F by hn = max1≤i≤n fi. Then (hn)n∈N is monotonically
increasing and converges pointwise to f . By Theorem 2, (hn)n∈N converges uniformly to f , and
hence f belongs to F . It now also follows that F is closed under truncated subtraction with
constants in the unit interval, taking minima, and taking infima.

Let g ∈ Lip(F ). Without loss of generality, we assume the image of g belongs to [0, 1]; for
the Lipschitz property with respect to F implies that sup g − inf g ≤ 1 and we may replace g by
g′ := g − inf g. It follows that if g′ belongs to RF then so does g = g′ + inf g.

Let ε > 0. Then there exists fxyε ∈ F such that

g(x)− g(y) ≤ F (x, y) ≤ fxyε(x)− fxyε(y) + ε (6)

Define wxyε ∈ F as follows:

wxyε(z) =


fxyε(z) if fxyε(x) = g(x)

fxyε(z)	[0,1] (fxyε(x)− g(x)) if fxyε(x) > g(x)

fxyε(z)⊕[0,1] (g(x)− fxyε(x)) if fxyε(x) < g(x)

(7)

Then wxyε(x) = g(x) and wxyε(y) ≤ g(y) + ε.
Let (un)n∈N be a dense sequence in (S, d). Define (φnmε)n,m∈N ⊆ F by φnmε = wunumε and

define (φnε)n∈N by φnε = infm∈N φnmε. It follows that (φnε)n∈N ⊆ F . Moreover,

φnε(un) = g(un) ≤ g(un) + ε and for each m 6= n, φnε(um) ≤ g(um) + ε.

Define ψε = supn∈N φnε ∈ F . Then for any n ∈ N,

g(un) ≤ ψε(un) ≤ g(un) + ε. (8)

Let x ∈ S. Then as the inequalities in line 8 hold for any subsequence of (un)n∈N converging to x,
and as both g and ψε are continuous, it follows by taking limits that for any x ∈ S,

g(x) ≤ ψε(x) ≤ g(x) + ε, or equivalently‖ψε − g‖ < ε.

Define the sequence (gn)n∈N in F by gn = ψ 1
n

. Then (gn)n∈N converges uniformly to g. There-

fore, g belongs to F ⊆ RF , i.e. Lip(F ) ⊆ RF .
Now suppose (S, d) is a general Polish metric space. Let P,Q ∈ P(S). Then P = {P,Q} is finite,

hence relatively compact. By Theorem 1, P is uniformly tight. Let 0 < ε < 1
2 . Then there exists a

compact subset K of S such that P (S\K) < ε and Q(S\K) < ε.
Let G denote the functions of F restricted to K; for f ∈ F , we will write fK ∈ G . Then as

G still contains the constant zero function, and is closed under the same operations as F , and as
(K, d) is a compact metric space, we have RG = Lip(G ). Let g ∈ Lip(F ); as before, we assume



without loss of generality that the image of g is contained in [0, 1]. Moreover, let gK be g restricted
to K and remark that gK ∈ Lip(G ). Next we define PK , QK ∈ P(K) by

PK(E) =
P (E ∩K)

P (K)
and QK(E) =

Q(E ∩K)

Q(K)
.

Remark that P (K) > 1 − ε > 1
2 , and similarly for Q(K), so that each is well-defined. Then as

gK ∈ RG ,

|PK(gK)−QK(gK)| ≤ G (PK , QK).

Next for any 1-bounded measurable function u on S and it’s restriction uK to K, we have

|P (u)− PK(uK)| = |P (u · δK) + P (u · δS\K)− PK(uK)| = |(P (u · δK)− PK(uK)) + P (u · δS\K)|

≤ |1− 1

P (K)
| · P (u · δK) + 1 · P (S\K) ≤ 1

1− ε
− 1 + ε ≤ ε(2− ε)

1− ε
≤ 3ε,

where δK is the indicator function on K. Similarly |Q(u)−QK(uK)| ≤ 3ε. Finally,

|P (g)−Q(g)| ≤ |P (g)− PK(gK)|+ |PK(gK)−QK(gK)|+ |QK(gK)−Q(g)|
≤ 3ε+ G (PK , QK) + 3ε ≤ 6ε+ sup

f∈F
|PK(fK)−QK(fK)|

≤ 6ε+ sup
f∈F

(|PK(fK)− P (f)|+ |P (f)−Q(f)|+ |Q(f)−QK(fK)|)

≤ 12ε+ sup
f∈F

(|P (f)−Q(f)|) ≤ 12ε+ F (P,Q).

As ε is arbitrary, it follows that |P (g)−Q(g)| ≤ F (P,Q) and g ∈ RF .

ut

Corollary 1. Suppose (S, d) is a Polish metric space and F is a family of real-valued functions
on S that take values in the unit interval and are 1-Lipschitz continuous with respect to d. Suppose
further that F contains the constant zero function and is closed under truncated addition with
rationals in the unit interval, subtraction from the constant function 1, and taking the pointwise
maximum of two functions. Then the integral probability metric associated to F is the Kantorovich
metric of the pseudometric induced by F , i.e. F (P,Q) = K(F )(P,Q) for any P,Q ∈ P(S).

3.2 A Family of Functional Expressions for MDP Bisimulation

We now define a family of functional expressions as in Definition 14 that when evaluated on a given
MDP, capture bisimilarity.

Definition 15. For each c ∈ (0, 1], Fc represents the family of functional expressions generated by
the following grammar.

f ::= 0 |1− f | 〈a〉f | max(f, f) | f ⊕ q (9)

where q ∈ Q ∩ [0, 1] and a belongs to a fixed set of labels A.



Let M = (S,BS , A, {Pa : a ∈ A}, r) be an MDP. The interpretation of f ∈ Fc, fM : S → [0, 1],
is defined inductively. Let s ∈ S. Then

0M (s) = 0

(1− f)M (s) = 1− fM (s)

(〈a〉f)M (s) = ra(s) + c · Pa(s)(fM )

max(f1, f2)M (s) = max((f1)M (s), (f2)M (s))

(f ⊕ q)M (s) = min(fM (s) + q, 1).

As before, we shall omit the subscript M when it is clear from the context, and remark that the
family also contains the expressions min(f, f) and f 	 q.

We now show that the integral probability metric generated by Fc agrees with the Kantorovich
metric induced by the fixed-point bisimulation metric for MDPs. This is essentially the proof method
in all of Section 4 of [1].

Theorem 10. Suppose M = (S,BS , A, {Pa : a ∈ A}, r) is an MDP and let τ be a Polish topology
on S that generates BS. Assume that the image of r is contained in [0, 1], and that for each a in
A, ra and Pa are continuous, P(S) endowed with the weak topology induced by τ . Let c ∈ (0, 1) be
a discount factor, and Fc be the family of functional expressions defined in Definition 15. Let G be
a family of functional expressions such that Fc ⊆ G ⊆ Lip(Fc). Then the pseudometric induced by
G coincides with the fixed-point metric ρ∗c given by Theorem 7.

Proof. Let (S, d) be a Polish metric space such that d generates τ . Since ρ∗c is continuous, we can
assume without loss of generality that ρ∗c ≤ d, as we can simply replace d by the equivalent metric
d+ρ∗c . By structural induction, Fc ≤ ρ∗c ≤ d, and the range of each member of Fc is [0, 1]. Therefore
by Corollary 1, the integral probability metric and the kantorovich metric induced by Fc agree.

Notice that since Fc is closed under subtraction from the constant function 1, we have that for
any P,Q ∈ P(S)

Fc(P,Q) = sup
f∈Fc

|P (f)−Q(f)| = sup
f∈Fc

max(P (f)−Q(f), Q(f)− P (f))

= max( sup
f∈Fc

P (f)−Q(f), sup
f∈Fc

Q(f)− P (f))

= max( sup
f∈Fc

P (f)−Q(f), sup
f∈Fc

P (1− f)−Q(1− f))

= max( sup
f∈Fc

P (f)−Q(f), sup
f∈Fc

P (f)−Q(f))

= sup
f∈Fc

P (f)−Q(f)

which is not necessarily the case otherwise. A simple structural induction next shows that

Fc(x, y) = sup
a∈A,f∈Fc

|〈a〉f(x)− 〈a〉f(y)|.



Therefore,

Fc(x, y) = sup
a∈A,f∈Fc

max(〈a〉f(x)− 〈a〉f(y), 〈a〉f(y)− 〈a〉f(x))

= sup
a∈A,f∈Fc

max
(

(1− c)(ra(x)− ra(y)) + c(Pa(x)(f)− Pa(y)(f)),

(1− c)(ra(y)− ra(x)) + c(Pa(y)(f)− Pa(x)(f))
)

= max
a∈A

max
(

(1− c)(ra(x)− ra(y)) + c sup
f∈Fc

(Pa(x)(f)− Pa(y)(f)),

(1− c)(ra(y)− ra(x)) + c sup
f∈Fc

(Pa(y)(f)− Pa(x)(f))
)

= max
a∈A

max
(

(1− c)(ra(x)− ra(y)) + c ·Fc(Pa(x), Pa(y)),

(1− c)(ra(y)− ra(x)) + c ·Fc(Pa(x), Pa(y))
)

= max
a∈A

(1− c) max
(

(ra(x)− ra(y)), (ra(y)− ra(x))
)

+ c ·Fc(Pa(x), Pa(y))

= max
a∈A

(1− c)|ra(x)− ra(y)|+ c ·Fc(Pa(x), Pa(y))

= max
a∈A

(1− c)|ra(x)− ra(y)|+ c · K(Fc)(Pa(x), Pa(y))

= Fc(Fc)(x, y).

The penultimate line follows from Corollary 1. Therefore, Fc is a fixed-point of the functional Fc
defined in Theorem 7. As the fixed-point is unique, it follows that ρ∗c = Fc. Finally, it follows from
Theorem 9 and the definition of maximal generator that G = Fc = ρ∗c . ut

Remark 3. Theorem 10 provides another proof of Theorem 8. Consider the family G with the
expression for the Bellman operator Bγ for the MDP M = (S,BS , A, {Pa : a ∈ A}, (1 − c)r) and
discount factor γ ≤ c in [0, 1). Since Lip(Fc) is closed under Bγ and the optimal value function
scales with rewards, the result follows immediately. Otherwise, we obtain the result only for V ∗c
since Bc(f) = maxa∈A〈a〉f .

The usefulness of this theorem derives from our choice of G . On the one hand, we might attempt
to see what is the minimal family, if one exists, that captures bisimilarity. On the other hand, we
might consider explicitly adding operators, like the Bellman operator, that could help an estimation
scheme converge faster. We will explore this further in Section 4.

Practical application is still hindered by the continuity constraints on the rewards and Markov
kernels, as many interesting problems model discontinuous phenomena. In the next section, we will
work to remove these constraints.

3.3 The General Case: Continuity from Measurability

We conclude this section with a neat little result from descriptive set theory that was first pointed
out to the authors by Ernst-Erich Doberkat at the 2012 Bellairs Workshop on Probabilistic Systems
organized by Prakash. In the most interesting reinforcement learning applications, continuity of
the reward process cannot be guaranteed. Amazingly, we may remove the explicit assumption of
continuity in [4] and the result still holds! We seek to establish the following.



Theorem 11. Let (X, τ) be a Polish space and (P(X), τP(X)) be the space of probability mea-
sures on X equipped with the topology of weak convergence with respect to τ . Let K : (X,BX) →
(P(X),BP(X)) be a stochastic kernel. Then there exists a finer Polish topology τ ′ on X such that
σ(τ ′) = BX , σ(τ ′P(X)) = BP(X), and K : (X, τ ′)→ (P(X), τ ′P(X)) is continuous.

This result is a minor reworking of the following well-known measurability-to-continuity theorem,
which is Corollary 3.2.6 in [27].

Theorem 12. Suppose (X, τ) is a Polish space, Y a separable metric space, and f : X → Y a
Borel map. Then there is a finer Polish topology τ ′ on X generating the same Borel σ-algebra such
that f : (X, τ ′)→ Y is continuous.

We will also make use of this characterization of Borel σ-algebra on the set of probability
measures, which is Proposition 7.25 in [28].

Proposition 1. Let X be a separable metrizable space and E a collection of subsets of X which
generates BX and is closed under finite intersections. Then BP (X) is the smallest σ-algebra with
respect to which all functions of the form ΘE(p) = p(E), for E ∈ E, are measurable from P (X) to
[0, 1], i.e.,

BP (X) = σ[∪E∈EΘ−1E (BR)].

For ease of exposition, we will divide the result into the following series of steps.

Lemma 2. Let (X, τ) and K be as in Theorem 11. Then there exists an increasing sequence (τn)n∈N
of Polish topologies on X finer that τ such that σ(τn) = BX and K : (X, τn+1)→ (P(X), (τn)P(X))
is continuous for all n ∈ N.

Proof. By Proposition 1 for any Polish topology τ ′ generating BX , τ ′P(X) generates BP(X). It is

well known [29] that τ ′P(X) is also a Polish topology. Therefore, K : (X, τ) → (P(X), τP(X)) is a

Borel map. By Theorem 12, there exists a finer Polish topology τ0 such that σ(τ0) = BX and
K : (X, τ0) → (P(X), τP(X)) is continuous; but then K : (X, τ0) → (P(X), (τ0)P(X)) is Borel.
Repeating this argument, there exists a finer topology τ1 on X such that σ(τ1) = BX and K :
(X, τ1)→ (P(X), (τ0)P(X)) is continuous. The result now easily follows for all n ∈ N by induction.

ut

Lemma 3. Let (X, τ), K, and (τn)n∈N be as in Lemma 2. Then the least upper bound topology
τ∞ = ∨n∈Nτn exists and is Polish, σ(τ∞) = BX , and K : (X, τ∞)→ (P(X), (τn)P(X)) is continuous
for all n ∈ N.

Remark 4 ([27] Observation 2, pg. 93). Let (τn)n∈N be a sequence of Polish topologies on X such
that for any two distinct elements x, y of X, there exist disjoint sets U, V ∈ ∩n∈Nτn such that x ∈ U
and y ∈ V . Then the topology τ∞ generated by ∪n∈Nτn is Polish.

Proof. By Remark 4, τ∞ exists, is Polish, and is generated by ∪n∈Nτn. So ∪n∈Nτn is a subbasis
for τ∞. Let O ∈ τ∞. Then O is an arbitrary union of finite intersections of elements of ∪n∈Nτn.
So O = ∪j∈J(Oj,1 ∩ Oj,2 ∩ · · · ∩ Oj,nj

) for some index set J . Let i(j, k) = min{n ∈ N|Oj,k ∈ τn}
and i(j) = max{i(j, k)|1 ≤ k ≤ nj}. Then Oj = ∩1≤k≤njOj,k ∈ τi(j) because (τn)n∈N is increasing.
So O = ∪j∈JOj = ∪n∈N(∪{j|i(j)=n}Oj) = ∪n∈NO′n where O′n = ∪{j|i(j)=n}Oj ∈ τn. Therefore,
each τ∞-open set is a countable union of open sets in ∪n∈Nτn. Since each O′n ∈ σ(τn) = BX ,



τ∞ ⊆ BX and σ(τ∞) ⊆ BX . On the other hand, τ0 ⊆ τ∞ implies BX = σ(τ0) ⊆ σ(τ∞). Therefore,
σ(τ∞) = BX .

Finally, continuity of K : (X, τ∞) → (P(X), (τn)P(X)) follows from that of K : (X, τn+1) →
(P(X), (τn)P(X)), for all n ∈ N. ut

For the next result, we will need to appeal to the famous Portmanteau Theorem, as found for
example in [20].

Theorem 13 (Portmanteau Theorem). Let P and (Pn)n∈N be a sequence of probability mea-
sures on (X,Σ), a metric space with its Borel σ-algebra. Then the following five conditions are
equivalent:

1. Pn ⇒ P .
2. lim infn

∫
fdPn =

∫
fdP for all bounded, uniformly continuous real f .

3. lim supn Pn(F ) ≤ P (F ) for all closed F .
4. lim infn Pn(G) ≥ P (G) for all open G.
5. limnPn(A) = P (A) for all P -continuity sets A.

Lemma 4. The least upper bound of the weak topologies ∨n∈N(τn)P(X) exists and

∨n∈N(τn)P(X) = (τ∞)P(X).

Proof. Again, ((τn)P(X))n∈N is an increasing sequence of Polish spaces, and so ∨n∈N(τn)P(X) exists.
Clearly, ∨n∈N(τn)P(X) ⊆ (τ∞)P(X).

Suppose Pn ⇒ P in ∨n∈N(τn)P(X). Then Pn ⇒ P in (τn)P(X) for all n ∈ N. Let O be a τ∞-open

set. Then as in the proof of Lemma 3, O = ∪n∈NOn where each On ∈ τn. Let Gj = ∪jn=1On ∈
τj ⊆ BX . Then (Gj)j∈N increases to O. So Pn(O) ≥ Pn(Gj) for all n, j ∈ N. So lim infn Pn(O) ≥
lim inf Pn(Gj) ≥ P (Gj) for all j ∈ N by Theorem 13 in (τj)P(X). So lim infn Pn(O) ≥ limj P (Gj) =
P (O) by continuity from below. So Pn ⇒ P in (τ∞)P(X) by Theorem 13 in (τ∞)P(X). Therefore,
(τ∞)P(X) ⊆ ∨n∈N(τn)P(X) whence equality follows. ut

We are now able to prove the main theorem of this section.

Proof (Theorem 11). By Lemmas 2 and 3, there exist Polish topologies (τn)n∈N and τ∞ on X,
finer than τ , such that σ(τ∞) = BX and K : (X, τ∞) → (P(X), (τn)P(X)) is continuous for
all n ∈ N. This is equivalent to continuity of K : (X, τ∞) → (P(X),∨n∈N(τn)P(X)) since con-
vergence in ∨n∈N(τn)P(X) is equivalent to convergence in (τn)P(X) for all n ∈ N (again this fol-
lows from ∨n∈N(τn)P(X)-open sets being unions of (τn)P(X)-open sets). But then K : (X, τ∞) →
(P(X), (τ∞)P(X)) is continuous by Lemma 4. ut

This argument easily extends to a countable family of stochastic kernels, so that we have the
following.

Corollary 2. Let (X, τ) be a Polish space and (P(X), τP(X)) be the space of probability measures
on X equipped with the topology of weak convergence with respect to τ . Let (Kn)n∈N be a sequence
of stochastic kernels on X. Then there exists a finer Polish topology τ ′ on X such that σ(τ ′) = BX ,
σ(τ ′P(X)) = BP(X), and each Kn : (X, τ ′)→ (P(X), τ ′P(X)) is continuous.



Corollary 3. Let M = (S,BS , A, {Pa : a ∈ A}, r) be an MDP. Then there exists a Polish topology
τ on S that generates BS and makes ra and Pa continuous for each a in A, where P(S) is endowed
with the topology of weak convergence induced by τ .

Thus, if r is bounded and measurable we may apply Theorem 7 to obtain a quantitative form
of bisimilarity. It is important to keep in mind what is going on here from a practical point of view:
if we begin with a modelling scenario in which the rewards are discontinuous with a given metric
then this amounts to changing that metric to one with respect to which rewards are continuous.
Therefore the usefulness of this result is contingent on the modelling problem at hand not crucially
being dependent on any specific metric.

With that caveat in mind, we now come to the main result of this paper, a general version of
Theorem 10.

Corollary 4. Suppose M = (S,BS , A, {Pa : a ∈ A}, r) is an MDP and that the image of r is
contained in [0, 1]. Let c ∈ (0, 1) be a discount factor, Fc be the family of functional expressions
defined in Definition 15, and G be a family of functional expressions such that Fc ⊆ G ⊆ Lip(Fc).
Then the pseudometric induced by G is the unique fixed-point ρ∗c satisfying the equation

ρ∗c(x, y) = max
a∈A

((1− c)|ra(x)− ra(y)|+ c · K(ρ∗c)(Pa(x), Pa(y))) for all x, y ∈ S

and whose kernel is bisimilarity.

4 Estimating Bisimulation

In this section, we discuss how focusing on families of functional expressions may make estimating
bisimilarity more amenable in practice. Assume we are given an MDP M = (S,BS , A, {Pa : a ∈
A}, r) where the image of r is contained in [0, 1]. Computing a bisimilarity metric for a finite M
has encompassed estimating the integral probability metric Fc(P,Q), yielding an algorithm with
exponential complexity [9], computing the Kantorovich metric, K(·)(P,Q), yielding an algorithm
with polynomial complexity [3], and solving a linear program [30].

The major issue is that although computing the linear programming formulations of bisimilarity
in the ideal case can be done in polynomial time, to do so in practice is highly inefficient; to
understand why, one may remark that the linear programs for a given MDP are more complex than
solving for the discounted value function for that MDP; although the latter is also known to be
solvable in polynomial time by linear programming [31], in practice Monte Carlo techniques have
been found to be much more successful. In fact, in [4], we focused on estimating the Kantorovich
metric by replacing each P and Q by empirical measures; this idea is studied in better depth in [32].
We will not focus on that approach here.

Instead we focus on a heuristic approach implicitly used in [17] and Monte Carlo techniques used
in [33]. In the former, the problem at hand is, given a distribution over MDPs with a common state
space, to try to find a policy that optimizes the expected total geometrically-discounted sum of
rewards achieved at each state, where the average is taken over a number of sample runs performed
on a number of MDPs drawn according to the given MDP distribution. The authors attack this
problem by generating a family of functional expressions according to some distribution, and using
these to estimate optimal planning strategies - the so-called formula-based exploration / exploitation
strategies. In [33], the authors solve the problem of trying to compute the infimum over a given set
by instead sampling and then estimating the essential infimum. Since in our case we are interested
in suprema, let us recall the definition of essential supremum.



Definition 16. Let (X,BX , µ) be a measure space. The essential supremum of a bounded measur-
able function f : (X,BX)→ (R,BR) is given by the following.

ess sup f = inf{α ∈ R : µ({x ∈ X : f(x) > α}) = 0}.

In other words, ess sup f is the least real number that is an upper bound on f except for a set
of µ-measure zero. It follows that in general, ess sup f ≤ sup f . Suppose further that BX is a Borel
σ-algebra, f is continuous, and µ is a strictly positive measure, i.e. every non-empty open subset of
X has strictly positive µ-measure. Then since {x ∈ X : f(x) > α} = f−1(α,∞) is open, it follows
that it has µ-measure zero if and only if it is the empty set; in this case, the essential supremum
and the supremum agree. We will use this in conjunction with Lemma 2 from [33], restated here in
terms of the essential supremum in place of the essential infimum.

Lemma 5. Let (Ω,Σ,P) and (X,BX , µ) be probability spaces and assume that we can sample ran-
dom variables X1, X2, . . . , Xn mapping Ω to X, independently and identically distributed according
to µ. Then if f : X → R is bounded and measurable we have

max
1≤i≤n

f(Xi)→ ess sup f in µ-probability as n→∞. (10)

This allows for another Monte Carlo technique for (under)approximating the Kantorovich metric
for bisimilarity in an MDP.

Proposition 2. Let M = (S,BS , A, {Pa : a ∈ A}, r) be an MDP where the image of r is contained
in [0, 1]. Let c ∈ (0, 1) be a discount factor and Fc be the family of functional expressions defined
in Definition 15 and interpreted over M . Let Fc be the closure of Fc with respect to uniform
convergence. Let µ ∈ P(Fc) be strictly positive. Suppose f1, f2, . . . , fn are independent, identically
distributed samples drawn according to µ. Then

max
1≤i≤n

|P (fi)−Q(fi)| → Fc(P,Q) in µ-probability as n→∞. (11)

Proof. Since S is Hausdorff, Cb(S) with the uniform norm is a Banach space. Therefore, Fc, as a
closed subset of Cb(S), is itself a measurable subspace when equipped with the Borel sets given by
the uniform norm. For a given P,Q ∈ P(S) let g : Fc → R be defined by g(f) = |P (f) − Q(f)|.
Then g is continuous and bounded by 1. The result now follows from Lemma 5 and the preceding
remarks, and Corollary 4. ut

Remark in particular that

max
1≤i≤n

|fi(x)− fi(y)| → ρ∗c(x, y) in µ-probability as n→∞. (12)

To turn this into a proper algorithm is beyond the scope of this work - one needs to fix a particular
measure and provide sample complexity results, among other things. However, we remark that being
able to sample from a much smaller class than the class of all Lipschitz functions should improve
performance regardless of how other parameters are set.



5 Conclusions

We have shown, with slight modification, that the family of functional expressions developed in [9,
2] to capture quantitative bisimilarity for LMPs does the same for MDPs with continuous state
spaces and bounded measurable reward functions. We have used the same techniques as in these
previous works - in particular, a density result in Proposition 2 of [2] - reworded in the terminology of
generating classes for integral probability metrics. The hope is that by focusing on these generating
classes of functions, we may find better practical algorithms for assessing equivalence between states
in a Markov process - either by under or over-approximating a particular class, or by sampling from
it in some manner.

Moreover, we have used a trick from descriptive set theory to remove a previous continuity
constraint on the rewards and Markov kernels in Theorem 7, thereby widening its applicability.

5.1 Related Work

The notion of bisimilarity metrics, both in terms of logical expressions and in terms of how to
compute them using linear programming formulations, really derives from the work of [9] and [2] for
LMPs. In [9], the emphasis was on developing a robust theoretical notion of quantitative bisimilarity
and establishing a decision procedure for it, albeit with exponential complexity. In [2], the emphasis
was again on establishing a robust notion of quantitative bisimilarity while at the same time yielding
a theoretical polynomial complexity bound by means of the Kantorovich metric. Complexity results
in general are discussed in [30]. However, in none of these are more than a few toy examples worked
through, and the idea of Monte Carlo techniques for more efficient practical implementations is not
broached.

The idea of examining the relationship between probability measures by studying generating
classes of functions was explored in [5, 34] for integral probability metrics and stochastic orders.
Müller takes the point of view of looking at maximal generators for such orders, and demonstrates
that in general, minimal orders may not exist.

To the best of our knowledge, the only practical work to exploit optimality based on functional
expression occurs in [17]. Here, the goal is to determine an optimal planning strategy on average,
when one is acting on an unknown MDP but given a distribution over its reward and transition
parameters. The advantage of the functional expression approach here is that it is independent of
the particulars of a given model.

5.2 Future Work

The point of view of this work is that one should focus on families of functional expressions for
quantitative bisimilarity as we suspect this may be more advantageous in practice. Thus, an im-
mediate concern is to turn Proposition 2 into a full-fledged Monte Carlo algorithm. Among the
necessities are choosing the right class of functional expressions from which to sample, as small as
possible a subset of Fc, constructing a strictly positive probability measure with which to sample
the class of functionals, and most importantly, a sample complexity bound to inform us of how
many samples should be required for a given level of confidence.

From the theoretical side, we are interested in finding minimal classes that generate the same
bisimilarity metric, and equivalences obtained from using other classes. In both cases, it might be
fruitful to consider only non-empty closed subsets of Cb(S) with the uniform norm. We can order



this space, and add in the empty set, to get a complete lattice; moreover, we can equip it with
the Hausdorff metric, and the resulting Borel σ-algebra, known as the Effros Borel space, will be
a standard Borel space provided (S,BS) is as well ( [27], pg. 97). Doing so may allow us to relate
the differences between the equivalences induced by two families of functional expressions in terms
of their quantitative difference in Effros Borel space. In particular, we are interested in coarser
more easily computable equivalences, and how to relate these to the theoretical guarantees given
by bisimilarity.

In statistical parlance, the interpreted class of functional expressions is just a family of random
variables; and testing whether or not two states are bisimilar amounts to testing how their Markov
kernels differ on this test set of random variables. Conceptually, this fits in with Prakash’s view
that Markov processes should be viewed as transformers of random variables [35]. As (real-valued)
stochastic kernels subsume both random variables and subprobability measures, we may complete
this conceptual picture by viewing a Markov process - itself a family of kernels - as a transformer of
families of kernels. It remains to be seen if this point of view in general can lead to better algorithms
in practice.
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