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Abstract

We propose a multi-agent logic of knowledge, public announcements
and arbitrary announcements, interpreted on topological spaces in the
style of subset space semantics. The arbitrary announcement modality
functions similarly to the effort modality in subset space logics, however,
it comes with intuitive and semantic differences. We provide axiomatiza-
tions for three logics based on this setting, with S5 knowledge modality,
and demonstrate their completeness. We moreover consider the weaker ax-
iomatizations of three logics with S4 type of knowledge and prove sound-
ness and completeness results for these systems.

Keywords: Topology, subset space logic, dynamic epistemic logic, arbi-
trary (public) announcements

1 Introduction
Moss and Parikh (1992) introduce a bi-modal logic with language

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | 2ϕ,

called subset space logic (SSL), in order to formalize reasoning about sets and
points together in a particular modal system. The main interest in their inves-
tigation lies in spatial structures such as topological spaces, and using modal
logic and the techniques behind it for spatial reasoning; however, they also have
a strong motivation from epistemic logic. While the modality K is interpreted
as knowledge, 2 is intended to capture the notion of effort, i.e., any action
that results in an increase in knowledge ; such as measurement, computation,
approximation or even an announcement. While the shape of effort may vary
depending on the context and the source of information, one fundamental and
common constituent is taken to be observation (Moss and Parikh, 1992). Such a
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rich epistemic setting capturing observational effort and knowledge therefore de-
mands well-equipped models in order to be able to represent the aforementioned
concepts. Moss and Parikh (1992) therefore propose subset space semantics for
their logic. A subset space is defined to be a pair (X,O), whereX is a non-empty
set of states and O is a collection of subsets of X (not necessarily a topology,
however topological spaces constitute a particular case of subset spaces).1 The
elements of O are considered as possible observations or possible observation
sets, and the formulas are interpreted not only with respect to the actual state,
but with respect to pairs of the form (x, U), where x ∈ U ∈ O: while x repre-
sents the way the actual state of affairs is, the neighbourhood U with x ∈ U ∈ O
is taken to be a truthful observation that can be made about the actual state
x (Moss and Parikh, 1992). According to subset space semantics, given a pair
(x, U), the modality K quantifies over the elements of U , whereas 2 quantifies
over all subsets of U in O that include the actual world x. Therefore, while
knowledge is interpreted ‘locally’ in a given turthful observation set U , effort
is read as neighbourhood-shrinking where more effort corresponds to a smaller
neighbourhood, i.e., a more refined truthful observation, thus, a possible in-
crease in knowledge. The schema 3Kϕ states that after some effort the agent
comes to know ϕ, where effort can be in the form of measurement, computation,
approximation (Moss and Parikh, 1992; Dabrowski et al., 1996; Parikh et al.,
2007; Baskent, 2012), or announcement (Plaza, 1989; Balbiani et al., 2008; van
Ditmarsch et al., 2014).

The epistemic motivation behind the subset space semantics and the dy-
namic nature of the effort modality suggests a link between SSL and dynamic
epistemic logic, in particular dynamics known as public announcement, as also
noted by Georgatos (2011), and studied in (Baskent, 2007, 2012; Balbiani et al.,
2013; Wáng and Ågotnes, 2013b; Bjorndahl, 2016). Baskent (2007, 2012) and
Balbiani et al. (2013) propose modelling public announcements on subset spaces
by deleting the states or the neighbourhoods falsifying the announcement. This
dynamic epistemic method is not in the spirit of the effort modality: dynamic
epistemic actions result in global model change, whereas the effort modality
results in local neighbourhood shrinking without leading to any change in the
model under consideration. Hence, it is natural to search for a ‘neighbour-
hood-shrinking-like’ interpretation of public announcements on subset spaces.
Wáng and Ågotnes (2013b) first proposed semantics for public announcements
on subset spaces in the style of the effort modality, although the subset spaces
used here are not necessarily topological spaces. Bjorndahl (2016) then pro-
posed a revised version of the semantics of (Wáng and Ågotnes, 2013b). In
contrast to the aforementioned proposals, Bjorndahl (2016) uses models based
on topological spaces to interpret knowledge and information change via public
announcements. He considers the language

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | int(ϕ) | [ϕ]ϕ,

1The topological version of the subset space logics, the so-called topologic, has been exten-
sively studied by Georgatos (1993, 1994, 1997).

2



where int(ϕ), roughly speaking, means ‘ϕ is true and can be announced’ and
where [ϕ]ψ means ‘after public announcement of ϕ, ψ (is true).’ More precisely,
in this topological framework, the novel modality int(ϕ) plays the role of the
precondition for the public announcement of ϕ and it is interpreted as the
interior operator on topological spaces. The precondition int(ϕ) is stronger than
ϕ only being true: it moreover states that ϕ is supported by a truthful observation
(as opposed to the standard precondition for the public announcements, that
is, the announced formula only being true, see e.g. (van Ditmarsch et al., 2007,
2015a) for a survey). This modality is also an important part of our current
work and it will be analysed in detail, both syntactically and semantically, in
later sections.

Balbiani et al. (2008) introduce a logic to quantify over announcements in
the setting of epistemic logic based on the language (with single-agent version
here)

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | [ϕ]ϕ | 2ϕ.

In this case, unlike the above SSL setting where 2ϕ is read as ‘after any effort,
ϕ (is true)’, the so-called arbitrary announcement modality 2ϕ means ‘after
any announcement, ϕ (is true)’. It therefore quantifies over only epistemically
definable subsets (2-free formulas of the language) of a given model. In this case,
3Kϕ again means that the agent comes to know ϕ, but in the interpretation
that there is a formula ψ such that after announcing it the agent knows ϕ. What
becomes true or known by an agent after an announcement can be expressed in
this language without explicit reference to the announced formula.

Clearly, the meaning of the effort 2 modality (of Moss and Parikh (1992))
and of the arbitrary announcement 2 modality (of Balbiani et al. (2008)) are
related in motivation. In both cases, interpreting the modality requires quan-
tification over sets. Subset-space-like semantics provides natural tools for this.
van Ditmarsch et al. (2014) extended the proposal in (Bjorndahl, 2016) with an
arbitrary announcement modality

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | int(ϕ) | [ϕ]ϕ | 2ϕ

and provided topological semantics for the 2 modality, and proved completeness
for the corresponding single-agent logic APALint . We generalize this approach
to a multi-agent setting, wherein the language becomes

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | int(ϕ) | [ϕ]ϕ | 2ϕ

The only difference with the previous language is that the knowledge operator
now has an index: Kiϕ means that agent i knows ϕ. Multi-agent subset space
logics have been investigated in (Heinemann, 2008, 2010; Baskent, 2007; Wáng
and Ågotnes, 2013a). There are some challenges with such a logic concerning
the evaluation of higher-order knowledge. The general setup is for any finite
number of agents, but to demonstrate the challenges, consider the case of two
agents. If we extend the setup from the single agent case in the straightforward
way, then for each of two agents i and j there is an open set and the semantic
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primitive becomes a triple (x, Ui, Uj) instead of a pair (x, U). Now consider a
formula like KiK̂jKip, for ‘agent i knows that agent j considers possible that
agent i knows proposition p’. If this is true for a triple (x, Ui, Uj), then K̂jKip
must be true for any y ∈ Ui; but y may not be in Uj , in which case (y, Ui, Uj)

is not well-defined: we cannot interpret K̂jKip. Our solution to this dilemma
is to consider neighbourhoods that are not only relative to each agent, as usual
in multi-agent subset space logics, but that are also relative to each state. This
amounts to, when shifting the viewpoint from x to y ∈ Ui, in (x, Ui, Uj), we
simultaneously have to shift the neighbourhood (and not merely the point in the
actual neighbourhood) for the other agent. So we then go from (x, Ui, Uj) to
(y, Ui, Vj), where Vj may be different from Uj : Uj represents j’s observation at x
and Vj represents j’s observation at y. Therefore, the neighbourhood shift from
Uj to Vj does not mean a change of agent j’s observation at the actual state.
While the tuple (x, Ui, Uj) represents the actual state and the view points of
both agents, the components (y, Vj) of the latter tuple merely represents agent
j’s epistemic state from agent i’s perspective at y, a possibly different state from
the actual state x.

In order to define the evaluation neighbourhood for each agent with respect
to the state in question, we employ a technique inspired by the standard neigh-
bourhood semantics (Chellas, 1980). We use a set of neighbourhood functions,
determining the evaluation neighbourhood relative to both the given state and
the corresponding agent. These functions need to be partial in order to render
the semantics well-defined for the dynamic modalities in the system.

Using topological spaces enriched with a set of (partial) neighbourhood func-
tions as models allows us to work with different notions of knowledge. In the
standard (single-agent) SSL setting, as the knowledge modality quantifies over
the elements of a fixed neighbourhood, the S5 type knowledge is inherent to the
way the semantics defined. With our approach, however, the epistemic view of
an agent changes according to the neighbourhood functions when the evaluation
state changes, therefore, the valid properties of knowledge are determined by
the constraints imposed on the neighbourhood functions. To this end, we work
with both the S5 and S4 types of knowledge in this paper: while the former is
the standard notion of knowledge in the subset space setting, the latter reveals
a novel aspect of our approach, namely, the ability to capture different notions
of knowledge.

In Section 2 we define the syntax, structures, and semantics of our multi-
agent logic of arbitrary public announcements, APALint , interpreted on topo-
logical spaces equipped with a set of neighbourhood functions. Without ar-
bitrary announcements we get the logic PALint, and with neither arbitrary
nor public announcements, the logic ELint. In this section we also show some
typical validities, and give two detailed examples. In Section 3 we give axioma-
tizations for the logics: PALint extends ELint and APALint extends PALint.
In Section 4 we demonstrate completeness for these logics. The completeness
proof for the epistemic version of the logic, ELint, is rather different from the
completeness proof for the full logic APALint. Section 5 adapts the logics to
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the case of S4 knowledge. In Section 6 we compare our work to that of others,
and then conclude.

2 The logic APALint

We define the syntax, structures, and semantics of our logic. From now on,
Prop is a countable set of propositional variables and A a finite and non-empty
set of agents.

2.1 Syntax
Definition 1. The language LAPALint is defined by

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | int(ϕ) | [ϕ]ϕ | 2ϕ

where p ∈ Prop and i ∈ A. Abbreviations for the connectives ∨, → and ↔
are standard, and ⊥ is defined as abbreviation by p ∧ ¬p. We employ K̂iϕ for
¬Ki¬ϕ, and 3ϕ for ¬2¬ϕ. We denote the non-modal part of LAPALint

(without
the modalities Ki, int , [ϕ] and 2) by LPl, the part without 2 by LPALint , and
the part without 2 and [ϕ] by LELint .

Necessity forms (Goldblatt, 1982) allow us to select unique occurrences of
a subformula in a given formula (unlike in uniform substitution). They will be
used in the axiomatization (Section 3).

Definition 2. Let ϕ ∈ LAPALint
. The necessity forms are inductively defined

as
ξ(]) := ] | ϕ→ ξ(]) | Kiξ(]) | int(ξ(])) | [ϕ]ξ(]).

Each necessity form ξ(]) has a unique occurrence of ]. Given a necessity
form ξ(]) and a formula ϕ ∈ LAPALint , the formula obtained by replacing ] by
ϕ is denoted by ξ(ϕ).

In the Truth Lemma of the completeness proof (Lemma 40, Section 4) we
need a complexity measure on formulas wherein, for example, [ψ]ϕ is less com-
plex than 2ϕ. Therefore, the subformula complexity of formulas does not suffice.
The appropriate complexity measure is composed of a measure S(ϕ) that is a
weighted count of the number of symbols and a measure d(ϕ) that counts the
number of the 2-modalities occurring in a formula.

Definition 3. The size S(ϕ) of formula ϕ ∈ LAPALint
is defined as:

S(p) = 1,

S(¬ϕ) = S(ϕ) + 1,

S(ϕ ∧ ψ) = S(ϕ) + S(ψ) + 1,

S(Kiϕ) = S(ϕ) + 1,

S(int(ϕ)) = S(ϕ) + 1,

S([ϕ]ψ) = 4(S(ϕ) + 4)S(ψ),

S(2ϕ) = S(ϕ) + 1.

5



The clauses for conjunction and public announcement in S(ϕ) are different
from the similar measure defined in (Balbiani and van Ditmarsch, 2015), and also
different from the measure used in (van Ditmarsch et al., 2015b). The measures
used there are of course fine, however, we preferred a complexity measure that
we could not only use in the completeness proof of APALint but also in the
completeness proof of public announcement logic PALint .

Definition 4. The 2-depth d(ϕ) of formula ϕ ∈ LAPALint is defined as:

d(p) = 0,

d(¬ϕ) = d(ϕ),

d(ϕ ∧ ψ) = max{d(ϕ), d(ψ)},
d(Kiϕ) = d(ϕ),

d(int(ϕ)) = d(ϕ),

d([ϕ]ψ) = max{d(ϕ), d(ψ)},
d(2ϕ) = d(ϕ) + 1

We now define three order relations on LAPALint
based on the size and 2-

depth of the formulas.

Definition 5. For any ϕ,ψ ∈ LAPALint ,
• ϕ <S ψ iff S(ϕ) < S(ψ)

• ϕ <d ψ iff d(ϕ) < d(ψ)

• ϕ <Sd ψ iff (either d(ϕ) < d(ψ), or d(ϕ) = d(ψ) and S(ϕ) < S(ψ))

We let Sub(ϕ) denote the set of subformulas of a given formula ϕ.

Lemma 6. For any ϕ,ψ ∈ LAPALint
,

1. <S , <d, <Sd are well-founded strict partial orders between formulas in
LAPALint

,
2. ϕ ∈ Sub(ψ) implies ϕ <Sd ψ ,
3. int(ϕ) <Sd [ϕ]ψ,
4. ϕ ∈ LPALint

iff d(ϕ) = 0,
5. ϕ ∈ LPALint implies [ϕ]ψ <Sd 2ψ.

Lemma 7. For any ϕ,ψ, χ ∈ LAPALint
and i ∈ A,

1. int(ϕ)→ p <Sd [ϕ]p,
2. int(ϕ)→ ¬[ϕ]ψ <Sd [ϕ]¬ψ,
3. [ϕ]ψ ∧ [ϕ]χ <Sd [ϕ](ψ ∧ χ),
4. int(ϕ)→ int([ϕ]ψ) <Sd [ϕ]int(ψ),
5. int(ϕ)→ Ki[ϕ]ψ <Sd [ϕ]Kiψ,
6. [¬[ϕ]¬int(ψ)]χ <Sd [ϕ][ψ]χ.

Proof. We prove Lemma 7.3, 7.4 and 7.6. The proofs for the other items follow
similarly. We define ϕ→ ψ as ¬(ϕ∧¬ψ), so that S(ϕ→ ψ) = S(ϕ) +S(ψ) + 3.

6



(7.3) On the left-hand-side, we have S([ϕ]ψ ∧ [ϕ]χ) = 1 + 4(S(ϕ) + 4)(S(ψ) +
S(χ)). However, S([ϕ](ψ∧χ)) = 4(S(ϕ)+4)(1+S(ψ)+S(χ)) = 4(S(ϕ)+
4) + 4(S(ϕ) + 4)(S(ψ) + S(χ)). Thus, S([ϕ]ψ ∧ [ϕ]χ) < S([ϕ](ψ ∧ χ)).
Moreover, d([ϕ]ψ ∧ [ϕ]χ) = max{d(ϕ), d(ψ), d(χ)} = d([ϕ](ψ ∧ χ)) (This
is similar in the other items). Therefore, by Definition 5, we obtain [ϕ]ψ∧
[ϕ]χ <Sd [ϕ](ψ ∧ χ).

(7.4) On the left-hand-side, we have S(int(ϕ) → int([ϕ]ψ)) = S(int(ϕ)) +
S(int([ϕ]ψ)) + 3 = 1 + S(ϕ) + 1 + S([ϕ]ψ) + 3 = 5 + S(ϕ) + 4S(ϕ)S(ψ) +
16S(ψ).However, S([ϕ]int(ψ)) = 4S((ϕ)+4)S(int(ψ)) = 4S((ϕ)+4)(S(ψ)+
1) = 16+4S(ϕ)+4S(ϕ)S(ψ)+16S(ψ). Therefore, S(int(ϕ)→ int([ϕ]ψ)) <
S([ϕ]int(ψ)). As in case (7.3) the 2-depth of both formulas is the same.
Therefore, int(ϕ)→ int([ϕ]ψ) <Sd [ϕ]int(ψ).

(7.6) By Definition 3, we have that S([¬[ϕ]¬int(ψ)]χ) = 4(S(¬[ϕ]¬int(ψ)) +
4)S(χ) = 4(5+4(S(ϕ)+4)(2+S(ψ)))S(χ) = 4S(χ)(37+8S(ϕ)+16S(ψ)+
4S(ϕ)S(ψ)).On the other hand, S([ϕ][ψ]χ) = 4(S(ϕ)+4)4(S(ψ)+4)S(χ) =
4S(χ)(64+16S(ϕ)+16S(ψ)+4S(ϕ)S(ψ)). Thus, as for any χ ∈ LAPALint ,
1 ≤ S(χ), S([¬[ϕ]¬int(ψ)]χ) < S([ϕ][ψ]χ). Further, we observe that
d([¬[ϕ]¬int(ψ)]χ) = max{d(ϕ), d(ψ), d(χ)} = d([ϕ][ψ]χ).
Therefore, [¬[ϕ]¬int(ψ)]χ <Sd [ϕ][ψ]χ.

2.2 Background on Topology
In this section, we introduce the topological concepts that will be used through-
out this paper. All the concepts in this section can be found in (Dugundji,
1966).

Definition 8. A topological space is a pair (X, τ), where X is a non-empty set
and τ is a family of subsets of X containing X and ∅, where τ is closed under
finite intersections and arbitrary unions.

The set X is called the space. The subsets of X belonging to τ are called
open sets (or opens) in the space; the family τ of open subsets of X is also called
a topology on X. If for some x ∈ X and an open U ⊆ X we have x ∈ U , we say
that U is an open neighborhood of x.

A point x is called an interior point of a set A ⊆ X if there is an open
neighborhood U of x such that U ⊆ A. The set of all interior points of A is
called the interior of A and denoted by Int(A). We can then easily observe that
for any A ⊆ X, Int(A) is an open set and is indeed the largest open subset of
A.

Definition 9. A family B ⊆ τ is called a base for a topological space (X, τ) if
every non-empty open subset of X can be written as a union of elements of B.

We can also give an equivalent definition of an interior point by referring
only to a base B for a topological space (X, τ): for any A ⊆ X, x ∈ Int(A) if
and only if there is an open set U ∈ B such that x ∈ U and U ⊆ A.
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Given any family Σ = {Aα | α ∈ I} of subsets of X, there exists a unique,
smallest topology τ(Σ) with Σ ⊆ τ(Σ) (Dugundji, 1966, Theorem 3.1, page
65). The family τ(Σ) consists of ∅, X, all finite intersections of the Aα, and all
arbitrary unions of these finite intersections. Σ is called a subbase for τ(Σ), and
τ(Σ) is said to be generated by Σ. The set of finite intersections of members of
Σ forms a base for τ(Σ).

2.3 Multi-agent topological model
In this section we define multi-agent models based on topological spaces.

Definition 10. Given a topological space (X, τ), a neighbourhood function set
Φ on (X, τ) is a set of (partial) neighbourhood functions θ : X ⇀ A → τ such
that for all x ∈ D(θ), for all i ∈ A, and for all U ∈ τ :

1. x ∈ θ(x)(i),
2. θ(x)(i) ⊆ D(θ),
3. for all y ∈ X, if y ∈ θ(x)(i) then y ∈ D(θ) and θ(x)(i) = θ(y)(i),
4. θ|U ∈ Φ,

where D(θ) is the domain of θ, θ|U is the neighbourhood function with
D(θ|U ) = D(θ) ∩ U and θ|U (x)(i) = θ(x)(i) ∩ U .

Definition 11. A multi-agent topological model ( topo-model) is a tupleM =
(X, τ,Φ, V ), where (X, τ) is a topological space, Φ a neighbourhood function
set, and V : Prop→ P(X) a valuation function. The part X = (X, τ,Φ) is a
multi-agent topological frame (topo-frame).

A pair (x, θ) is a neighbourhood situation if x ∈ D(θ). The open set θ(x)(i) is
called an epistemic neighbourhood at x of agent i. An epistemic neighbourhood
θ(x)(i) serves as the actual, truthful observation set of the agent i at state
x. This representation is important as we study a notion of knowledge based
on observation like in (Moss and Parikh, 1992). If (x, θ) is a neighbourhood
situation in M we write (x, θ) ∈ M. Similarly, if (x, θ) is a neighbourhood
situation in X we write (x, θ) ∈ X .

The following lemma shows that the domain of every neighbourhood function
is open.

Lemma 12. For any (X, τ,Φ) and θ ∈ Φ, D(θ) ∈ τ .

Proof. Let (X, τ,Φ) be a topo-frame, θ ∈ Φ and x ∈ D(θ). By Definition 10,
we have x ∈ θ(x)(i) ∈ τ and θ(x)(i) ⊆ D(θ). Therefore, x ∈ Int(D(θ)). Hence,
D(θ) = Int(D(θ)), i.e., D(θ) ∈ τ .

2.4 Semantics
Definition 13. Given a topo-modelM = (X, τ,Φ, V ) and a neighbourhood situ-
ation (x, θ) ∈M, the semantics for the language LAPALint

is defined recursively
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as:

M, (x, θ) |= p iff x ∈ V (p)
M, (x, θ) |= ¬ϕ iff notM, (x, θ) |= ϕ
M, (x, θ) |= ϕ ∧ ψ iff M, (x, θ) |= ϕ andM, (x, θ) |= ψ
M, (x, θ) |= Kiϕ iff (∀y ∈ θ(x)(i))(M, (y, θ) |= ϕ)
M, (x, θ) |= int(ϕ) iff x ∈ Int([[ϕ]]θ)
M, (x, θ) |= [ϕ]ψ iff M, (x, θ) |= int(ϕ) impliesM, (x, θϕ) |= ψ
M, (x, θ) |= 2ϕ iff (∀ψ ∈ LPALint

)(M, (x, θ) |= [ψ]ϕ)

where p ∈ Prop, [[ϕ]]θ = {y ∈ D(θ) | M, (y, θ) |= ϕ} and updated neighbourhood
function θϕ : X ⇀ A → τ is defined such that θϕ = θ|Int[[ϕ]]θ . More precisely,
D(θϕ) = Int([[ϕ]]θ) and θϕ(x)(i) = θ(x)(i) ∩ Int([[ϕ]]θ) for all x ∈ D(θϕ).

A formula ϕ ∈ LAPALint
is valid in a topo-model M, denoted M |= ϕ, iff

M, (x, θ) |= ϕ for all (x, θ) ∈M; ϕ is valid, denoted |= ϕ, iff for all topo-models
M we haveM |= ϕ. Soundness and completeness with respect to topo-models
are defined as usual.

Let us now elaborate on the structure of topo-models and the above se-
mantics we have proposed for LAPALint

. Given a topo-model (X, τ,Φ, V ), the
epistemic neighbourhoods of each agent at a given state x are determined by
(partial) functions θ : X ⇀ A → τ assigning an open neighbourhood to the
state in question for each agent. We allow for partial functions in Φ, and close
Φ under restricted functions θ|U where U ∈ τ (see Definition 10, condition
4), so that updated neighbourhood functions are guaranteed to be well-defined
elements of Φ. As in the standard subset space semantics, by picking a neigh-
bourhood situation (x, θ), we first localize our focus to an open subdomain, in
fact to D(θ) (see Lemma 12), including the state x and the epistemic neighbour-
hood of each agent at x determined by θ. Then the function θ(x) designates an
epistemic neighbourhood for each agent i in A. It is guaranteed that every agent
i is assigned a neighbourhood by θ at every state x in D(θ), since each θ(x) is
defined to be a total function from A to τ . Moreover, condition (1) of Definition
10 ensures that ∅ cannot be an epistemic neighbourhood, i.e., θ(x)(i) 6= ∅ for
all x ∈ D(θ) and i ∈ A. Finally, conditions (1) and (3) of Definition 10 make
sure that the S5 axioms for each Ki are sound with respect to all topo-models.
We will see in Section 5 that our setting allows us to work with the weaker S4
notion of knowledge by relaxing the conditions on the neighbourhood functions
in Φ.

The semantics proposed for the propositional variables and the Booleans
is rather usual both for the standard Kripke semantics and for the classical
subset space semantics (Moss and Parikh, 1992; Parikh et al., 2007). In fact,
as will be shown in Proposition 14, the truth value of the non-modal formulas
depends only on the actual state. While neighourhood functions, and thus the
neighbourhoods defined play no role in the truth value of these formulas, they
are essential in the evaluation of modal formulas, and in capturing observation
based knowledge and information dynamics. We now take a closer look at the
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semantic clauses for the modalities in LAPALint with a particular focus on Ki

and int .
As also mentioned in Section 1, the opens of a topo-modelM = (X, τ,Φ, V )

are considered to be the possible observation sets. In other words, opens of a
topology can be considered as the propositions that the agents can in principle
observe (but might not have observed yet). On the other hand, θ(x)(i) gives us
the truthful observation agent i currently has at the actual state x. Stating the
semantic clause for knowledge given in Definition 13 in a slightly different way
gives us that

M, (x, θ) |= Kiϕ iff θ(x)(i) ⊆ [[ϕ]]θ,

i.e, according to our proposed semantics, agent i knows ϕ at x (with respect to θ)
iff his current truthful observation entails ϕ. In particular, this semantic clause
implies that the agents cannot know a proposition ϕ unless it is entailed by some
possible observation, i.e., by an open set. In this sense, the topology of the model
in question restricts the set of propositions the agents can know, based on what
they can and cannot observe. We therefore capture an observation-based notion
of knowledge in a subset space-like setting by using topological spaces.

The operator int can be thought of as the most curious modality of the
language LAPALint

. Commonly in public announcement logics, it is sufficient
for the announcement to be true in order to be announced. But in our logic,
following Bjorndahl (2016), the requirement is stronger . As can be seen in
the semantic clause of the public announcement modality, int behaves as the
precondition of the announcement, which constitutes a stronger requirement for
announcing ϕ than the truth of ϕ since Int([[θ]]θ) ⊆ [[θ]]θ (see (Bjorndahl, 2016)
for differences between these two requirements). More precisely, by spelling out
the definition of the topological interior operator, we obtain

M, (x, θ) |= int(ϕ) iff (∃U ∈ τ)(x ∈ U and U ⊆ [[ϕ]]θ).

Given that the elements of τ are taken to be possible observation sets, the
precondition int(ϕ) requires existence of a truthful observation set entailing the
announcement formula ϕ. In other words, the precondition of an announcement
is it being (in principle) observable. In this respect, a true proposition cannot be
announced if it does not have any open subsets including the actual state. For
example, on a topo-model with no singleton opens, the agents can never know
the actual state (as in (Georgatos, 1994, Example 1, p. 149)). Strengthening
the precondition of a formula-parametrized epistemic action is also common
in logics of protocols (van Benthem et al., 2009a). There is also an obvious,
one-way relation between the modalities Ki and int . While the semantics of
Kiϕ refers to a particular open of the form θ(x)(i) that represents the agent’s
current, truthful observation entailing ϕ, the truth condition for int(ϕ) demands
only existence of such an open (without referring to any particular element of
τ or to any agent i ∈ A.). Therefore, the former claim “having a truthful
observation entailing ϕ” implies the latter existential claim on observation. We
therefore haveKiϕ→ int(ϕ) valid with respect to our topological semantics (see
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also Table 1, axiom (Kint)), however, the other direction does not always hold:
existence of an open U with x ∈ U ⊆ [[ϕ]]θ does not guarantee that U = θ(x)(i).

In general in public announcement logics, the effect of a public announce-
ment is interpreted as model restriction by eliminating the states where the
announced formula is not true (van Ditmarsch et al., 2007; Balbiani et al., 2013;
van Benthem, 2007). Therefore, information gain via public announcements
leads to a model change with respect to the aforementioned approach. How-
ever, inspired by the intuition behind the subset space semantics and its dynamic
modality effort, the information increase in our setting is modelled locally as
shrinkage of the initial open neighbourhood to a smaller open neighbourhood
without leading to a global change of the model in question.

As usual, the announcement of a formula by an external source in our set-
ting does not depend on the epistemic state of the agents but depends only on
whether its precondition is satisfied in the actual state, more specifically in our
case, whether it is satisfied by the actual neighbourhood situation. Therefore,
given that knowledge of each agent at a neighbourhood situation (x, θ) is eval-
uated within the open set defined by the function θ at the state x, we want the
effect of an announcement of ϕ to be the shrinkage of D(θ) to its largest open
subset where ϕ is true with respect to the same neighbourhood function. Since
the modality int is evaluated as the topological operator Int , we obtain exactly
the desired result as a consequence of the announcement of ϕ: (1) we preserve
the evaluation structure by restricting the initial open state space D(θ) to an
open set again, in particular, to the open set Int([[ϕ]]θ) induced by the formula ϕ
with respect to the neighbourhood function θ, (2) since the topological interior
operator Int gives the largest open set where ϕ is true with respect to θ, the
precondition of an announcement in this setting is not too strong compared to
the precondition of being merely true in the sense that the agents can obtain
knowledge only via opens sets. To this end, the int operator enables us to
control the shrinkage induced by an announcement in an optimal way.

We now provide some semantic results. As usual in the subset space setting,
the truth of non-modal formulas only depends on the state in question:

Proposition 14. Given a topo-model M = (X, τ,Φ, V ), neighbourhood situa-
tions (x, θ1), (x, θ2) ∈M, and a formula ϕ ∈ LPl, (x, θ1) |= ϕ iff (x, θ2) |= ϕ.

Moreoever, the precondition modality int corresponds exactly the topologi-
cal interior operator Int :

Proposition 15. GivenM = (X, τ,Φ, V ), θ ∈ Φ and ϕ ∈ LAPALint
,

[[int(ϕ)]]θ = Int([[ϕ]]θ).

Proof.

[[int(ϕ)]]θ = {y ∈ D(θ) | (y, θ) |= int(ϕ)}
= {y ∈ D(θ) | y ∈ Int([[ϕ]]θ)}
= Int([[ϕ]]θ) (since Int([[ϕ]]θ) ⊆ D(θ))

11



Corollary 16. For any topo-modelM = (X, τ,Φ, V ), θ ∈ Φ and ϕ ∈ LAPALint

1. Int([[int(ϕ)]]θ) = Int(Int([[ϕ]]θ)) = Int([[ϕ]]θ) , and
2. θϕ = θint(ϕ) .

Proof. Here we only show the second item. By Definition 13 and Proposition
15, we obtain

D(θϕ) = Int([[ϕ]]θ) = Int([[int(ϕ)]]θ) = D(θint(ϕ)).

Therefore, both θϕ and θint(ϕ) are defined for the same states. Moreover,
for any x ∈ D(θϕ) and any i ∈ A,

θϕ(x)(i) = θ(x)(i) ∩ Int([[ϕ]]θ) = θ(x)(i) ∩ Int([[int(ϕ)]]θ) = θint(ϕ)(x)(i).

Therefore, θϕ = θint(ϕ).

Proposition 17.
1. |= [ϕ]ψ ↔ [int(ϕ)]ψ

2. |= (int(ϕ) ∧ 〈ϕ〉int(ψ))↔ 〈ϕ〉int(ψ)

Proof. We only show the first item.

(x, θ) |= [ϕ]ψ
iff (x, θ) |= int(ϕ) implies (x, θϕ) |= ψ
iff (x, θ) |= int(int(ϕ)) implies (x, θϕ) |= ψ (by Corollary 16.1)
iff (x, θ) |= int(int(ϕ)) implies (x, θint(ϕ)) |= ψ (by Corollary 16.2)
iff (x, θ) |= [int(ϕ)]ψ

Proposition 18. For any topo-model M = (X, τ,Φ, V ), θ ∈ Φ and ϕ,ψ ∈
LAPALint , we have

1. [[ψ]]θ
ϕ

= [[〈ϕ〉ψ]]θ, and
2. (θϕ)ψ = θ〈ϕ〉int(ψ).

Proof. LetM = (X, τ,Φ, V ) be a topo-model, θ ∈ Φ and ϕ,ψ ∈ LAPALint
.

1.
[[ψ]]θ

ϕ

= {y ∈ D(θϕ) | (y, θϕ) |= ψ}
= {y ∈ Int([[ϕ]]θ) | (y, θϕ) |= ψ} (*)
= {y ∈ D(θ) | y ∈ Int([[ϕ]]θ) and (y, θϕ) |= ψ} (**)
= {y ∈ D(θ) | (y, θ) |= 〈ϕ〉ψ}
= [[〈ϕ〉ψ]]θ

(*): since D(θϕ) = Int([[ϕ]]θ) and (**): since Int([[ϕ]]θ) ⊆ D(θ).
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2. By Definition 13, we have that D(θ〈ϕ〉int(ψ)) = Int([[〈ϕ〉int(ψ)]]θ), and
D((θϕ)ψ) = Int([[ψ]]θ

ϕ

). Proposition 18.1 implies [[int(ψ)]]θ
ϕ

= [[〈ϕ〉int(ψ)]]θ.
Then, by Proposition 15, we obtain

D((θϕ)ψ) = Int([[ψ]]θ
ϕ

)

= [[int(ψ)]]θ
ϕ

= Int([[int(ψ)]]θ
ϕ

)

= Int([[〈ϕ〉int(ψ)]]θ)

= D(θ〈ϕ〉int(ψ)).

Therefore, both (θϕ)ψ and θ〈ϕ〉int(ψ) are defined for the same states. More-
over, for any x ∈ D((θϕ)ψ) and i ∈ A, we have

(θϕ)ψ(x)(i)
= θϕ(x)(i) ∩ Int([[ψ]]θ

ϕ

)
= θ(x)(i) ∩ Int([[ϕ]]θ) ∩ Int([[ψ]]θ

ϕ

)
= θ(x)(i) ∩ [[int(ϕ)]]θ ∩ [[int(ψ)]]θ

ϕ

(by Proposition 15)
= θ(x)(i) ∩ [[int(ϕ)]]θ ∩ [[〈ϕ〉int(ψ)]]θ (by Proposition 18.1)
= θ(x)(i) ∩ [[int(ϕ) ∧ 〈ϕ〉int(ψ)]]θ

= θ(x)(i) ∩ [[〈ϕ〉int(ψ)]]θ (by Proposition 17.2)
= θ(x)(i) ∩ Int([[〈ϕ〉int(ψ)]]θ) (since [[〈ϕ〉int(ψ)]]θ ∈ τ)
= θ〈ϕ〉int(ψ)(x)(i)

where [[〈ϕ〉int(ψ)]]θ ∈ τ follows from Proposition 15 and Proposition 18.1
by

Int [[ψ]]θ
ϕ

= [[int(ψ)]]θ
ϕ

= [[〈ϕ〉int(ψ)]]θ.

Therefore, we conclude that (θϕ)ψ = θ〈ϕ〉int(ψ).

2.5 The least topological model
Recalling the semantics for LAPALint

proposed in Section 2.4, given a topo-
modelM = (X, τ,Φ, V ) every formula is evaluated with respect to a pair called
neighbourhood situation (x, θ) in M such that x ∈ D(θ) ⊆ X. Since the
neighbourhood functions may be partial and the epistemic neighbourhoods are
defined via these functions, we do not necessarily use the whole domain of the
topo-model in question in the evaluation of the formulas but only the states for
which a neighbourhood function is defined. In other words, for any topo-model
M = (X, τ,Φ, V ), only the states in

D(Φ) :=
⋃
{D(θ) | θ ∈ Φ}

are concerned with the truth value of the formulas in LAPALint
. In this sec-

tion we describe topo-models that are indistinguishable on that domain restric-
tion. Roughly speaking, we will categorize the topo-models with respect to their
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neighbourhood function sets and show that the class of all topo-models having
the “equivalent” neighbourhood function sets can be partitioned in such a way
that the elements of the same equivalence class are modally equivalent with
respect to LAPALint

and each equivalence class has a minimal element.
In order to be able define such a partition, we first need to make precise what

we mean by partial functions, and correspondingly, neighbourhood function sets
being equivalent. Given any two partial functions θ : X ⇀ Y and θ′ : X ′ ⇀ Y ′,
we say θ and θ′ are equivalent, denoted by θ ≡ θ′ iff

1. D(θ) = D(θ′), and
2. for all x ∈ D(θ), θ(x) = θ′(x).

Informally speaking, two partial functions are equivalent if and only if they give
the same total function when they are restricted to their respective domains. In
particular, for any two equivalent partial functions θ : X ⇀ Y and θ′ : X ′ ⇀ Y ′,
it might be the case that X 6= X ′. Similarly, we say two neighbourhood func-
tion sets Φ and Φ′ (defined on (X, τ) and (X ′, τ ′), respectively) are equivalent,
denoted by Φ ≡ Φ′, iff there is a bijection f : Φ→ Φ′ such that θ ≡ f(θ) for all
θ ∈ Φ.

Let F (K) denote the class of all topo-frames (topo-models) and FΦ (KΦ)
denote the class of all topo-frames (topo-models) whose neighbourhood function
set is equivalent to Φ. Intuitively speaking, even if the topo-frames in FΦ can
be based on different topological spaces (both the spaces and the topologies
may vary), FΦ groups together the topo-frames whose neighbourhood functions
behave exactly the same way, in particular, as the ones in Φ. We therefore
slightly abuse the notation and denote the neighbourhood function set of each
topo-frame (topo-model) in FΦ (KΦ) by Φ. Essentially, every topo-frame in
FΦ has the same set of neighbourhood situations (modulo the above defined
equivalence) and we write (x, θ) ∈ FΦ if (x, θ) is a neighbourhood situation of a
topo-frame in FΦ (and similarly for KΦ). Moreover, for all X = (X, τ,Φ) ∈ FΦ,
we have (1) D(Φ) ⊆ X and (2) {θ(x)(i) | (x, θ) ∈ X , i ∈ A} ⊆ τ (otherwise Φ
could not be defined on (X, τ), see Definition 11). Lastly, given a topo-model
M = (X, τ,Φ, V ) ∈ KΦ, we define

KΦ,V := {M′ ∈ KΦ | M′ = (X ′, τ ′,Φ, V ′) and V ′|D(Φ) = V |D(Φ)},

i.e., KΦ,V is the class of all topo-models carrying the neighbourhood function
set Φ and whose valuation functions coincide with V on D(Φ). Observe that
the set of all KΦ,V ⊆ KΦ partitions the class KΦ.

For any frames X1 = (X1, τ1,Φ),X2 = (X2, τ2,Φ) ∈ FΦ,

X1 vΦ X2 iff X1 ⊆ X2 and τ1 ⊆ τ2.

Clearly, vΦ is also a partial order. We sayM = (X, τ,Φ, V ) is a minimal model
in KΦ,V if its frame is a minimal frame in FΦ with respect to vΦ.

Proposition 19.
1. There exists a unique minimal frame (the least frame) in each FΦ.
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2. There exist a unique minimal model (the least model) in each KΦ,V .

Proof.
1. Let X = (X, τ,Φ) be a topo-frame in F. Consider the topology τΦ gen-

erated by ΣΦ := {θ(x)(i) | (x, θ) ∈ FΦ, i ∈ A}, i.e., by the set of all
epistemic neighbourhoods defined by the neighbourhood functions in Φ.
As ΣΦ covers D(Φ), the generated topology τΦ constitutes the smallest
topology on the domain D(Φ) satisfying conditions (1) D(Φ) ⊆ X and (2)
{θ(x)(i) | (x, θ) ∈ X , i ∈ A} ⊆ τΦ. Therefore, for all X = (X, τ,Φ) ∈ FΦ,
D(Φ) ⊆ X and τΦ ⊆ τ , i.e., (D(Φ), τΦ,Φ) vΦ X .

2. By definition of KΦ,V , the valuation function of each topo-model in this
class coincides on D(Φ), therefore, the least model in KΦ,V is
(D(Φ), τΦ,Φ, V |D(Φ)).

Theorem 20. For each class KΦ,V , all topo-models in KΦ,V are modally equiv-
alent with respect to LAPALint

.

Proof. We show that for anyM1 = (X1, τ1,Φ, V1),M2 = (X2, τ2,Φ, V2) ∈ KΦ,V ,
(x, θ) ∈ KΦ, and ϕ ∈ LAPALint

:

M1, (x, θ) |= ϕ iffM2, (x, θ) |= ϕ.

The proof follows by <Sd induction on ϕ, where the case ϕ = [ψ]χ is proved
by a subinduction on χ. Here we only show the base case ϕ = p, the case
for ϕ = int(ψ) and the subinductive clauses χ = p and χ = 2σ for case
announcement ϕ = [ψ]χ. The inductive cases negation, conjunction and Ki

follow from Lemma 6.2, and the subinduction on χ for case announcement
ϕ = [ψ]χ follows from Lemma 7, and finally the case for ϕ = 2ψ follows from
Lemma 6.5.

Base Case: ϕ := p

M1, (x, θ) |= p iff x ∈ V1(p)
iff x ∈ V1(p) ∩ D(Φ) since x ∈ D(θ)
iff x ∈ V2(p) ∩ D(Φ) since V1(p) ∩ D(Φ) = V2(p) ∩ D(Φ)
iff x ∈ V2(p) since x ∈ D(θ)
iff M2, (x, θ) |= p

Inductive Hypothesis (IH): For all formulas ψ ∈ LAPALint
, if ψ <Sd ϕ,

thenM1, (x, θ) |= ψ iffM2, (x, θ) |= ψ, for any (x, θ) ∈ KΦ.

Case ϕ := int(ψ)

Let Int1 and Int2 denote the interior operators of the topological spaces
(X1, τ1) and (X2, τ2), respectively.

(⇒) SupposeM1, (x, θ) |= int(ψ), i.e., x ∈ Int1{y ∈ D(θ) | M1, (y, θ) |=
ψ}. By Lemma 6.2 and (IH) we have

{y ∈ D(θ) | M1, (y, θ) |= ψ} = {y ∈ D(θ) | M2, (y, θ) |= ψ},
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thus, x ∈ Int1{y ∈ D(θ) | M2, (y, θ) |= ψ}. Therefore, there is an open
U ∈ τ1 such that

x ∈ U ⊆ {y ∈ D(θ) | M2, (y, θ) |= ψ}.

Now consider the set D(θ) ∩ U . It is non-empty since x ∈ D(θ) ∩ U .
Moreover, D(θ) ∩ U = D(θ|U ) and θ|U ∈ Φ. Therefore, D(θ|U ) ∈ τ2 since
M2 ∈ KΦ. And, obviously,
x ∈ D(θ) ∩ U = D(θ|U ) ⊆ {y ∈ D(θ) | M2, (y, θ) |= ψ}, hence, x ∈
Int2{y ∈ D(θ) | M2, (y, θ) |= ψ} meaning thatM2, (x, θ) |= int(ψ).
(⇐) Similar to the above case.

Case ϕ := [ψ]χ
This case follows from a subinduction on χ. Here we only show the case
χ = p and χ = 2σ, and the other cases are equally elementary and follow
from Lemma 7 and the validities (R2)-(R6) appear in the axiomatization
in Table 1.

Subcase ϕ := [ψ]p

M1, (x, θ) |= [ψ]p iff M1, (x, θ) |= int(ψ)→ p by the validity (R1)
iff M2, (x, θ) |= int(ψ)→ p by Lemma 7.1 and (IH)
iff M2, (x, θ) |= [ψ]p by the validity (R1)

Subcase ϕ := [ψ]2σ
For all η ∈ LPALint , [ψ][η]σ <Sd [ψ]2σ, as [ψ]2σ has one more 2 than
[ψ][η]σ .

M1, (x, θ) |= [ψ]2σ
iff M1, (x, θ) |= int(ψ) impliesM1, (x, θ

ψ) |= 2σ
iff M1, (x, θ) |= int(ψ) implies (∀η ∈ LPALint

)(M1, (x, θ
ψ) |= [η]σ)

iff (∀η ∈ LPALint
)(M1, (x, θ) |= int(ψ) impliesM1, (x, θ

ψ) |= [η]σ)
iff (∀η ∈ LPALint

)(M1, (x, θ) |= [ψ][η]σ)
iff (∀η ∈ LPALint )(M2, (x, θ) |= [ψ][η]σ) *
iff M2, (x, θ) |= [ψ]2σ (by a similar argument)

(*): by [ψ][η]σ <Sd [ψ]2σ and (IH)

Corollary 21. Each class KΦ,V can be represented by its least element
(D(Φ), τΦ,Φ, V |D(Φ)) up to modal equivalence.

2.6 Examples
In this section we present two examples demonstrating how our multi-agent
topological semantics works. The first example is a multi-agent version of an
example presented in (Bjorndahl, 2016) for Bjorndahl’s single-agent setting and
the second one is concerned with two agents learning bit by bit (finite) prefixes
of a pair of infinite binary sequences.
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2.6.1 The Jewel in the Tomb

We illustrate our logic by a multi-agent version of Bjorndahl’s convincing ex-
ample in (Bjorndahl, 2016) about the jewel in the tomb. Indiana Jones (i) and
Emile Belloq (e) are both scouring for a priceless jewel placed in a tomb. The
tomb could either contain a jewel or not, the tomb could have been rediscov-
ered in modern times or not, and (beyond Bjorndahl (2016)), the tomb could
be in the Valley of Tombs in Egypt or not. The propositional variables cor-
responding to these propositions are, respectively, j, d, and t. We represent a
valuation of these variables by a triple xyz, where x, y, z ∈ {0, 1}. Given carrier
set X = {xyz | x, y, z ∈ {0, 1}}, the topology τ that we consider is generated
by the base consisting of the subsets {000, 100, 001, 101}, {010}, {110}, {011},
{111}.

100 101 011 111

000 001 010 110

Figure 1: Dashed squares represent the elements of the base generating the
topology τ .

The idea is that one can only conceivably know (or learn) about the jewel
or the location, on condition that the tomb has been discovered. Therefore,
{000, 100, 001, 101} has no strict subsets besides empty set: if the tomb has not
yet been discovered, no one can have any information about the jewel or the
location.

A topo-model M = (X, τ,Φ, V ) for this topology (X, τ) has Φ as the set
of all neighbourhood functions that are partitions of X for both agents, and
restrictions of these functions to open sets. A typical θ ∈ Φ describes complete
ignorance of both agents and is defined as θ(s)(i) = θ(s)(e) = X. This corre-
sponds most to the situation described in Bjorndahl (2016). A more interesting
neighbourhood situation in this model is one wherein Indiana and Emile have
different knowledge. Let us assume that Emile has the advantage over Indiana
so far, as he knows the location of the tomb but Indiana doesn’t. This is the θ′
such that for all x ∈ X, θ′(x)(i) = X whereas the partition for Emile consists
of sets {000, 100, 001, 101}, {110, 010}, {111, 011}, i.e., θ′(111)(e) = {111, 011},
etc.

We now can evaluate what Emile knows about Indiana at 111, and confirm
that this goes beyond Emil’s initial epistemic neighbourhood. This situation
however does not create any problems in our setting since Indiana’s epistemic
neighbourhoods will be determined relative to the states in Emile’s initial neigh-
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100 101 011 111

000 001 010 110
Figure 2: Patterned sets represent
Emile’s neighbourhoods defined by θ′:
θ′(111)(e) = θ′(011)(e) = {111, 011},
θ′(010)(e) = θ′(110)(e) = {010, 110},
θ′(000)(e) = θ′(100)(e) = θ′(001)(e) =
θ′(101)(e) = {000, 100, 001, 101}.

100 101 011 111

000 001 010 110

Figure 3: As D((θ′)j) = Int [[j]]θ
′

=
{111, 110}, the updated neighbourhood
function (θ′)j is defined only for these
points. Patterned sets again repre-
sent Emile’s neighbourhoods defined
by (θ′)j : (θ′)j(111)(e) = {111} and
(θ′)j(110)(e) = {110}. For Indiana,
we have (θ′)j(111)(ß) = (θ′)j(110)(i) =
{111, 110}.

bourhood. Firstly, Emile knows that the tomb is in the Valley of Tombs in Egypt

M, (111, θ′) |= Ket

and he also knows that Indiana does not know that:

M, (111, θ′) |= Ke¬(Ki¬t ∨Kit).

The latter involves verifying M, (s, θ′) |= K̂it and M, (s, θ′) |= K̂i¬t for all
s ∈ θ′(111)(e) = {111, 011}. And this is true for both elements 111 and 110
of θ′(111)(e), because θ′(110) = θ′(111)(i) = X, and 000, 001 ∈ X, and while
M, (001, θ′) |= t, we also haveM, (000, θ′) |= ¬t. We can also check that Emile
knows that Indiana considers it possible that Emile doesn’t know the tomb’s
location:

M, (111, θ′) |= KeK̂i¬(Ket ∨Ke¬t).
Announcements will change their knowledge in different ways. Consider the
announcement of j.

This results in Emile knowing everything but Indiana still being uncertain
about the location:

M, (111, θ′) |= [j](Ke(j ∧ d ∧ t) ∧Ki(j ∧ d) ∧ ¬(Kit ∨Ki¬t)).

Model checking this involves computing the epistemic neighbourhoods of both
agents given by the updated neighbourhood function (θ′)j at 111. Observe that
Int([[j]]θ

′
) = {111, 110}. Therefore, (θ′)j(111)(e) = Int([[j]]θ

′
) ∩ θ′(111)(e) =

{111} and (θ′)j(111)(i) = Int([[j]]θ
′
) ∩ θ′(111)(i) = {111, 110}.

There is an announcement after which Emile and Indiana know everything
(for example the announcement of j ∧ t):

M, (111, θ) |= 3(Ke(j ∧ d ∧ t) ∧Ki(j ∧ d ∧ t)).
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Observe that Int([[j∧t]]θ′) = {111}, thus, (θ′)j(111)(e) = (θ′)j(111)(j) = {111}.
As long as the tomb has not been discovered, nothing will make Emile (or

Indiana) learn that it contains a jewel or where the tomb is located:

M |= ¬d→ 2(¬(Kej ∨Ke¬j) ∧ ¬(Ket ∨Ke¬t)).

2.6.2 Binary Strings

We begin the example by defining a topology over the set of ordered pairs of
binary strings, i.e., the domain of our topology is X = {0, 1}∞ × {0, 1}∞.

Note that we can consider X to be points in the unit square [0, 1] × [0, 1],
by looking at each element of {0, 1}∞ as the binary representation of a real
number in [0, 1]. So for example, (01000..., 11000...) represents (.25, .75). This
correspondence is not one-to-one, however, because many points in [0, 1] have
more than one possible representation as binary strings. For example, 1000...
and 0111... both represent 0.5. In fact, every fraction of the form i

2k
for some

i, k ∈ N with 0 < i < 2k has two possible representations, while every other
element of [0, 1] has a unique representation. Therefore, every element of [0, 1]×
[0, 1] has either one, two, or four possible representations in {0, 1}∞ × {0, 1}∞.
So, we can consider each element of {0, 1}∞×{0, 1}∞ to represent one element
of [0, 1] × [0, 1], but every element of [0, 1] × [0, 1] does not represent a unique
element of {0, 1}∞ × {0, 1}∞.

Let us now introduce some notation. If s ∈ {0, 1}∞, for n ∈ N+, we let
s|n be the first n bits of s, and we let s[n] be the nth bit of s. As usual, we
let {0, 1}∗ be the set of finite strings over {0, 1} and for d ∈ {0, 1}∗, |d| is the
length of d. For d ∈ {0, 1}∗ we define Sd = {x ∈ {0, 1}∞ | x||d| = d}, in other
words, Sd is the set of all infinite binary strings that have d as a prefix. Note
that Sε is {0, 1}∞, since ε is the empty string. Note also that when we consider
the elements of {0, 1}∞ as points on the unit interval, we can think of Sd as a
certain subinterval of the unit interval. More precisely, each Sd is the interval
bounded by d

2|d| and d+1
2|d| when d is viewed as the binary representation of a

natural number. As above, we cannot, however, go in the opposite direction
and consider all such intervals to be sets of the form Sd, since there are multiple
possible representations of some of the points in [0, 1] as binary strings.

Now consider the topology τ generated by the set

B = {Sd | d ∈ {0, 1}∗}.

It is not hard to see that B indeed constitutes a base over the domain {0, 1}∞:
1. Since Sε ∈ B, we have

⋃
B = {0, 1}∞.

2. For any U1, U2 ∈ B, we have either U1∩U2 = ∅, U1∩U2 = U1 or U1∩U2 =
U2. Therefore, B is closed under finite intersections.

For our example, we use the product space ({0, 1}∞ × {0, 1}∞, τ × τ) and we
have two agents a and b. Intuitively speaking, agent a is concerned with the
bits of the first coordinate and agent b is concerned with the bits of the second
coordinate encoded as infinite binary strings. Let θε((x, y))(a) = θε((x, y))(b) =
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{0, 1}∞ × {0, 1}∞, and for i ∈ N+, let θi((x, y))(a) = Sx|i × {0, 1}∞, and let
θi((x, y))(b) = {0, 1}∞×Sy|i , where D(θi) = {0, 1}∞×{0, 1}∞. In other words,
for agent a, θi gives the set of pairs where the first component of the pair
agrees with x in the first i bits, with any possible second value for the pair.
Similarly for agent b. We note that θi+1 always is more informative than θi.
Finally, in order to obtain our neighbourhood function set Φ, we must close
the set of functions described above under open domain restriction, so we let
Φ = {θ : X ⇀ {a, b} → τ | ∃i ∈ N+ ∪ {ε}, U ∈ τ such that θ = θi|U}. It is easy
to see that Φ satisfies the properties of a neighbourhood function set given in
Definition 10.

In order to evaluate formulas on this topo-frame, we define atomic proposi-
tions

Prop = {xi | i ∈ N+} ∪ {yi | i ∈ N+}

where
V (xi) = {(x, y) ∈ {0, 1}∞ × {0, 1}∞ | x[i] = 1};
V (yi) = {(x, y) ∈ {0, 1}∞ × {0, 1}∞ | y[i] = 1}.

Intuitively speaking, the propositional variables refer to the x- and y-coordinates
of the pairs of infinite binary strings. We read xi as “the ith bit of the x-
coordinate is 1 ” and yi as “the ith bit of the y-coordinate is 1 ”.

We can now evaluate some formulas on the topo-model

M = ({0, 1}∞ × {0, 1}∞, τ × τ,Φ, V )

at the state (x, y) = (010000....., 110110.....) and given the initial situation de-
scribed by the function θ1. In other words, we have that a knows that the first
bit of x is 0, b knows that the first bit of y is 1, and both are ignorant about
the other’s bits, and this is common knowledge. In formulas, we have

M, ((x, y), θ1) |= Ka¬x1 a knows that x[1] = 0
M, ((x, y), θ1) |= Kby1 b knows that y[1] = 1
M, ((x, y), θ1) |= Ka¬(Kbx1 ∨Kb¬x1) a knows that b

does not know the value of x[1]
M, ((x, y), θ1) |= Kb¬(Kay1 ∨Ka¬y1) b knows that a

does not know the value of y[1]
. . . etc., etc.

Now consider announcements of the following form: given ((x, y), θn) (wherein
a and b know up to the nth bit of x and y, respectively), the announcement
ϕn+1
x is of the form ‘if the nth bit of x is 1, then the (n + 1)th bit is j, and if

the nth bit of x is 0, then n + 1th bit of x is 1 − j’ with the restriction that
the announcement is indeed truthful and where j ∈ {0, 1}. So it can only be
announced for j = 0 or j = 1 but not for both. In other words, ϕn+1

x is either of
the form ‘the nth bit of x is equal to its n+ 1st bit’ or of the form ‘the nth bit
of x is different from its n+ 1st bit’ but they cannot be announced at the same
time as only one of them can be truthful. Then this announcement informs a
but not b of the value of the (n+ 1)th digit of x.
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For b it is merely an extension of the initial sequences (that he is unable to
distinguish anyway, as we will see) with either 1 or 0. But he does not know
which is the real one. Then, the next announcement ϕn+1

y informs b of the
n + 1th bit of y, ‘if the nth bit of y is 1, then the (n + 1)th bit of y is j, and
if the nth bit of y is 0, then (n + 1)th bit of y is 1 − j’. We observe that θn
successively restricted to the denotation of ϕn+1

x and ϕn+1
y is a restriction of

θn+1. We can go on in the same way, and successively announce the first n bits
of both sequences by public announcements in such a way that a learns every
prefix of x and b learns every prefix of y up to length n, as desired; but a remains
uncertain about every bit in the y-prefix that b learnt, and b remains uncertain
about every bit in the x-prefix that a learnt. For example, given that the agents
a and b only learnt their first bits and that x = 010000 . . . and y = 110110 . . . ,
the next two announcements are now:

ϕ2
x = (¬x1 → x2) ∧ (x1 → ¬x2)

ϕ2
y = (y1 → y2) ∧ (¬y1 → ¬y2)

where
Int([[ϕ2

x]]θ1) = S01 × {0, 1}∞ ∪ S10 × {0, 1}∞
Int([[ϕ2

y]]θ1) = {0, 1}∞ × S11 ∪ {0, 1}∞ × S00.

θ(x, y)(b)

S0

S1

S0 S1

θ(x, y)(a)

(x, y) Figure 4: Initial situation where
a knows the 1st bit of x is
0 and b knows the first bit of
y is 1, and both are ignorant
about the other’s bit. We have
θ((x, y))(a) = S0 × {0, 1}∞ and
θ((x, y))(b) = {0, 1}∞ × S1.

⇓ 〈ϕ2
x〉

θϕ
2
x(x, y)(b)

θϕ
2
x(x, y)(a)

(x, y)

S0

S1

S00 S01 S10 S11

Figure 5: After the announce-
ment of ϕ2

x, we obtain the follow-
ing smaller neighbourhoods given
by the updated function θϕ

2
x :

θϕ
2
x((x, y)(a) = S01×{0, 1}∞, and

θϕ
2
x((x, y)(b) = (S01 ∪ S10)× S1.
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⇓ 〈ϕ2
y〉

(θϕ
2
x)ϕ

2
y (x, y)(b)

(θϕ
2
x)ϕ

2
y (x, y)(a)

(x, y)

S00

S01

S10

S11

S00 S01 S10 S11

Figure 6: After further announc-
ing ϕ2

y, the updated function
(θϕ

2
x)ϕ

2
y gives the neighbour-

hoods: (θϕ
2
x)ϕ

2
y (x, y)(a) = S01 ×

(S00 ∪ S11), and
(θϕ

2
x)ϕ

2
y (x, y)(b) = (S01 ∪ S10) ×

S11

Figures 4-6 depict the neighbourhood transformations that result from the
announcement ϕ2

x and, after that, the announcement of ϕ2
y, consecutively. One

can show (details omitted) that

M, ((x, y), θ1) |= 3Kax2

M, ((x, y), θ1) |= 〈ϕ2
x〉(Kax2 ∧ ¬(Kbx2 ∨Kb¬x2))

M, ((x, y), θ1) |= 〈ϕ2
x〉〈ϕ2

y〉(Kby2 ∧ ¬(Kay2 ∨Ka¬y2))
M, ((x, y), θ2) |= Kax2

We can observe that θi|ϕi+1
x |ϕi+1

y is a restriction of θi+1, as required in this
modelling. After every finite sequence of such announcements, a knows a prefix
of x and b knows a prefix of y, and a is uncertain between two dual prefixes
of y and b is uncertain between two prefixes of x. So, for example, after 10
announcements, a is uncertain whether y starts with 110110 or 001001, etc.

3 Axiomatization
We now provide the axiomatizations of ELint , PALint , and APALint , and prove
their soundness and completeness with respect to the proposed semantics.

Definition 22. The axiomatization APALint is given in Table 1. The axioma-
tization PALint is the one without (DR5) and (R7). We get ELint if we further
remove axioms (R1)-(R6) and the rule (DR4).

In Table 1, the items (DR1) to (DR5) are the derivation rules and the other
items are the axioms. While the derivation rules (DR1)-(DR4) are standard
necessitation rules for the modalities in the language LPALint

, the rule (DR5)
is infinitary. In an infinitary proof system the notion of a derivation is non-
standard since a derivation of a formula can involve infinitely many premises; in
our system an application of the rule (DR5) requires infinitely many premises.
We can think of a derivation as a finite-depth tree with possibly infinite branch-
ing, where the leaves are axioms or premises, the root is the derived formula,
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(P) all instantiations of propositional tautologies
(K-K) Ki(ϕ→ ψ)→ (Kiϕ→ Kiψ)

(K-T) Kiϕ→ ϕ

(K-4) Kiϕ→ KiKiϕ

(K-5) ¬Kiϕ→ Ki¬Ki¬ϕ
(int-K) int(ϕ→ ψ)→ (int(ϕ)→ int(ψ))

(int-T) int(ϕ)→ ϕ

(int-4) int(ϕ)→ int(int(ϕ))

(Kint) Kiϕ→ int(ϕ)

(R1) [ϕ]p↔ (int(ϕ)→ p) *
(R2) [ϕ]¬ψ ↔ (int(ϕ)→ ¬[ϕ]ψ) *
(R3) [ϕ](ψ ∧ χ)↔ [ϕ]ψ ∧ [ϕ]χ *
(R4) [ϕ]int(ψ)↔ (int(ϕ)→ int([ϕ]ψ)) *
(R5) [ϕ]Kiψ ↔ (int(ϕ)→ Ki[ϕ]ψ) *
(R6) [ϕ][ψ]χ↔ [¬[ϕ]¬int(ψ)]χ *
(R7) 2ϕ→ [χ]ϕ where χ ∈ LPALint **

(DR1) From ϕ and ϕ→ ψ, infer ψ
(DR2) From ϕ, infer Kiϕ

(DR3) From ϕ, infer int(ϕ)

(DR4) From ϕ, infer [ψ]ϕ *
(DR5) From ξ([ψ]χ) for all ψ ∈ LPALint

, infer ξ(2χ) **

Table 1: The axiomatization APALint (minus (∗∗): PALint ; and minus addi-
tionally, (∗): ELint .

and a step in the tree from child nodes to parent node corresponds to the ap-
plication of a derivation rule. We write Γ ` ϕ if ϕ is derived from a set of
formulas Γ in this way, and ` ϕ when ϕ is derived only from axioms. Note that,
due to the infinitary derivation rule (DR5) of APALint , the set of formulas Γ
deriving ϕ within this system can be infinite (see e.g. (Rybakov, 1997, Chapter
5.4) for a precise treatment of infinitary calculi). We define APALint to be the
set of all ϕ ∈ LAPALint

such that ` ϕ. Equivalently, APALint is the smallest
subset of LAPALint

containining the axioms in APALint and closed under its
derivation rules. An element of APALint is called a theorem (of APALint).
We similarly define the systems ELint and PALint from axiomatizations ELint

and PALint , respectively. However, derivations of ELint and PALint are of the
form of finite-depth trees with finite branching, since ELint and PALint contain
only finitary derivation rules.

Proposition 23. APALint is sound with respect to the class of all topo-models.

Proof. The soundness of the axiomatization APALint is, as usual, shown by
proving that all axioms are validities and that all derivation rules preserve va-
lidities. Having proved that, soundness follows by induction on the depth of the
derivation tree.
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We prove six relevant cases: the first case shows the validity of the reduction
axiom for Ki, the next two illustrate the need for the constraint in Definition
10.3, the third is concerned with the relation between the knowledge and the
interior modalities, and the last two prove validity of the axiom and validity
preservation of the inference rule involving the arbitrary announcement modality
2. LetM = (X, τ,Φ, V ) be a topo-model, (x, θ) ∈M and ϕ,ψ, χ ∈ LAPALint .

(R5) Suppose (x, θ) |= [ϕ]Kiψ. This means that if (x, θ) |= int(ϕ)
then (x, θϕ) |= Kiψ. Also suppose that (x, θ) |= int(ϕ) and let z ∈ θ(x)(i)
such that (z, θ) |= int(ϕ), i.e., that z ∈ Int([[ϕ]]θ). Then, by assumption, the
former implies that (x, θϕ) |= Kiψ. In other words, (y, θϕ) |= ψ for all y ∈
θϕ(x)(i). Recall, by Definition 13, that θϕ(x)(i) = θ(x)(i) ∩ Int([[ϕ]]θ). Thus,
since z ∈ θ(x)(i) ∩ Int([[ϕ]]θ) = θϕ(x)(i), we obtain (z, θϕ) |= ψ implying that
(z, θ) |= [ϕ]ψ. Since z has been chosen arbitrarily from θ(x)(i), the results holds
for every element of θ(x)(i). Therefore, (x, θ) |= Ki[ϕ]ψ. Since we also have
(x, θ) |= int(ϕ), we conclude (x, θ) |= int(ϕ)→ Ki[ϕ]ψ. The converse direction
follows similarly.

(K-4) Suppose (x, θ) |= Kiϕ. This means, (y, θ) |= ϕ for all y ∈ θ(x)(i).
Let y ∈ θ(x)(i) and z ∈ θ(y)(i). By Definition 10.3, θ(y)(i) = θ(x)(i) and Defi-
nition 10.1 guarantees that θ(y)(i) 6= ∅. Therefore, by assumption, (z, θ) |= ϕ.

(K-5) Suppose (x, θ) |= ¬Kiϕ. This means, (y0, θ) 6|= ϕ for some y0 ∈
θ(x)(i). Let y ∈ θ(x)(i). By Definition 10.3, θ(x)(i) = θ(y)(i). Therefore, as
y0 ∈ θ(y)(i) by assumption, we have that there is a z ∈ θ(y)(i), namely z = y0,
such that (z, θ) 6|= ϕ.

(Kint) Suppose (x, θ) |= Kiϕ. This means, (y, θ) |= ϕ for all y ∈ θ(x)(i).
Hence, θ(x)(i) ⊆ [[ϕ]]θ. By Definition 10, θ(x)(i) is an open neighbourhood of
x, therefore we obtain x ∈ Int [[ϕ]]θ, i.e., (x, θ) |= int(ϕ).

(R7) Let χ ∈ LPALint
and suppose (x, θ) |= 2ϕ. By the semantics, we

have (x, θ) |= 2ϕ iff (∀ψ ∈ LPALint
)((x, θ) |= [ψ]ϕ). Therefore, in particular,

(x, θ) |= [χ]ϕ.
(DR5) The proof follows by induction on the complexity of ξ(]).
In case ξ(]) = ], we have ξ([ψ]χ) = [ψ]χ. Suppose ξ([ψ]χ) is valid for all

ψ ∈ LPALint
. By assumption, we have that [ψ]χ is valid for all ψ ∈ LPALint

.
This implies M, (x, θ) |= [ψ]χ for all ψ ∈ LPALint

, all topo-models M, and
(x, θ) ∈ M. Therefore, by the semantics, M, (x, θ) |= 2χ, i.e., M, (x, θ) |=
ξ(2χ).

All other, inductive cases are similar, so here we present only the case for
ξ(]) = int(ξ′(])). In this case, we have ξ([ψ]χ) = int(ξ′([ψ]χ)). Suppose
that int(ξ′([ψ]χ)) is valid for all ψ ∈ LPALint

. This implies that ξ′([ψ]χ) is
valid for all ψ ∈ LPALint

. Otherwise, there is a topo-model M = (X, τ,Φ, V )
and (x, θ) ∈ X such that M, (x, θ) 6|= ξ′([ψ]χ) for some ψ ∈ LPALint . This
means x 6∈ [[ξ′([ψ]χ)]]θ. Since Int([[ξ′([ψ]χ)]]θ) ⊆ [[ξ′([ψ]χ)]]θ, we also obtain that
x 6∈ Int([[ξ′([ψ]χ)]]θ), i.e., M, (x, θ) 6|= int(ξ′([ψ]χ)) contradicting validity of
int(ξ′([ψ]χ)). Then, by IH, we have ξ′(2χ) valid. This means that [[ξ′(2χ)]]θ =
D(θ) for all topo-model M = (X, τ,Φ, V ) and all θ ∈ Φ. As D(θ) ∈ τ (by
Lemma 12), we have D(θ) = Int(D(θ)) = Int([[ξ′(2χ)]]θ) = [[int(ξ′(2χ))]]θ. We
can then conclude that int(ξ′(2χ)) is valid.
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Corollary 24. ELint and PALint are sound with respect to the class of all
topo-models.

4 Completeness
We now show completeness for ELint , PALint , and APALint with respect to
the class of all topo-models. Completeness of ELint is shown in a standard
way via a canonical model construction and a Truth Lemma that is proved by
induction on formula complexity. Completeness for PALint is shown by reducing
each formula in LPALint

to an equivalent formula of LELint
. The proof of the

completeness for APALint becomes more involved. Reduction axioms for public
announcements no longer suffice in the APALint case, and the inductive proof
needs a subinduction where announcements are considered. Moreover, the proof
system of APALint has an infinitary derivation rule, namely the rule (DR5), and
given the requirement of closure under this rule, the maximally consistent sets
for that case are defined to be maximally consistent theories (see, Section 4.2).
Lastly, the Truth Lemma requires the more complicated complexity measure on
formulas defined in Section 2. There, we need to adapt the completeness proof
of Balbiani and van Ditmarsch (2015) to our setting.

4.1 Completeness of ELint and PALint

Let us start with introducing some standard notions used in the completeness
proof. These notions can also be found in Blackburn et al. (2001). A set x of
formulas in LELint

is called consistent if x 6` ⊥, and inconsistent otherwise. A
formula ϕ is consistent if {ϕ} is consistent. A set of formulas x is called maxi-
mally consistent if x is consistent, and any set of formulas properly containing
x is inconsistent.

We would like to point out that the logic ELint is in fact familiar to modal
logicians. Its axiomatization consists of the S4-type modality int , the S5-type
modalitiesKi and the connecting axioms (Kint). In fact, this axiomatization has
been introduced by Goranko and Passy (1992) in a more general way as an ex-
tension of normal modal logics with the global modality, where our (Kint) plays
the role of the so-call “inclusion” axiom scheme. As also studied in (Blackburn
et al., 2001, Chapter 7.1), from the syntactic point of view, the system ELint

can be treated as a normal multi-modal logic. Therefore, proofs of Lemma 25
and Lemma 26 (below) are standard (see, e.g. Proposition 4.16 and Lemma
4.17 in (Blackburn et al., 2001, p. 199), respectively).

Lemma 25. For any maximally consistent set x of formulas in ELint :
1. x is closed under (DR1),
2. ELint ⊆ x,
3. for all formulas ϕ ∈ LELint , ϕ ∈ x or ¬ϕ ∈ x,
4. for all formulas ϕ,ψ ∈ LELint , ϕ ∧ ψ ∈ x iff ϕ ∈ x and ψ ∈ x.
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Let Xc be the set of all maximally consistent sets of ELint . We define
relations ∼i on Xc as x ∼i y iff ∀ϕ ∈ LELint (Kiϕ ∈ x iff Kiϕ ∈ y). Notice that
the latter is equivalent to: ∀ϕ ∈ LELint

(Kiϕ ∈ x implies ϕ ∈ y) since Ki is an S5
modality. As each Ki is of S5 type, every ∼i is an equivalence relation, hence,
it induces equivalence classes on Xc. Let [x]i denote the equivalence class of x
induced by the relation ∼i. Moreover, we define ϕ̂ = {y ∈ Xc | ϕ ∈ y}. Observe
that x ∈ ϕ̂ iff ϕ ∈ x.

Lemma 26 (Lindenbaum’s Lemma). Each consistent set can be extended to a
maximally consistent set.

Definition 27. We define the canonical model X c = (Xc, τ c,Φc, V c) as follows:
• Xc is the set of all maximally consistent sets of ELint ;
• τ c is the topological space generated by the subbase

Σ = {[x]i ∩ înt(ϕ) | x ∈ Xc, ϕ ∈ LELint and i ∈ A};

• x ∈ V c(p) iff p ∈ x, for all p ∈ Prop;
• Φc = {θc|U | U ∈ τ c}, where we define θc : Xc → A → τ c as θc(x)(i) =

[x]i, for x ∈ Xc and i ∈ A.

We first need to show that (Xc, τ c,Φc) is indeed a topo-frame.

Lemma 28. (Xc, τ c,Φc) is a topo-frame.

Proof. In order to show the above statement, we need to show that (Xc, τ c) is
a topological space, and Φc satisfies the conditions in Definition 10. For the
former, we only need to show that Σ covers Xc, i.e., that

⋃
Σ = Xc, since τ c is

generated by a subbase, namely by Σ (in the way described in Section 2.2). Since
every element of Σ is a subset of Xc, we obviously have

⋃
Σ ⊆ Xc. Observe

moreover that, since înt(>) = Xc, we have [x]i ∩ înt(>) = [x]i ∈ Σ for each
x ∈ Xc and i ∈ A. Now let x ∈ Xc. Since every ∼i is an equivalence relation,
in particular, each ∼i is reflexive, we have x ∈ [x]i. Therefore, we obtain⋃
x∈Xc [x]i = Xc ⊆

⋃
Σ for any i ∈ A. Hence, we conclude

⋃
Σ = Xc implying

that (Xc, τ c) is a topological space. We now show that Φc satisfies the conditions
in Definition 10. Let θ ∈ Φc. Thus, by definition of Φc, we have θ = θc|U for
some U ∈ τ c (in particular, note that θc = θc|Xc). Therefore, we have that
D(θ) = D(θc) ∩ U = Xc ∩ U = U ⊆ Xc and θ(x)(i) = θc(x)(i) ∩ U = [x]i ∩ U
for any x ∈ D(θ) and i ∈ A. As argued above, [x]i ∈ Σ for all x ∈ Xc and
each i ∈ A. We therefore obtain that function θ is defined as a partial function
such that θ : Xc ⇀ A → τ c. For condition (1), let x ∈ D(θ). Since D(θ) = U
and θ(x)(i) = [x]i ∩ U , we also have x ∈ [x]i ∩ U = θ(x)(i) for all i ∈ A.
Moreover, since θ(x)(i) = [x]i ∩ U ⊆ U = D(θ), we also satisfy condition (2).
For condition (3), let y ∈ θ(x)(i). As θ(x)(i) = [x]i ∩ U , we have y ∈ [x]i and
y ∈ D(θ). While the latter proves the first consequent of condition (3), the
former implies [y]i = [x]i since [x]i is an equivalence class. We therefore obtain
θ(y)(i) = [y]i ∩ U = [x]i ∩ U = θ(x)(i). Condition (4) is satisfied by definition
of Φc.
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Lemma 29 (Truth Lemma). For every ϕ ∈ LELint and for each x ∈ Xc,
ϕ ∈ x iff X c, (x, θc) |= ϕ.

Proof. The case for the propositional variables follows from the definition of V c
and the cases for the Booleans are straightforward. We only show the cases for
Ki and int .

Case ϕ = Kiψ
(⇒) Suppose Kiψ ∈ x and let y ∈ θc(x)(i). Since y ∈ θc(x)(i) = [x]i, by

definition of ∼i, we have Kiψ ∈ y. Then, by T-axiom for Ki, we obtain ψ ∈ y.
Then, by IH, X c, (y, θc) |= ψ. Therefore X c, (x, θc) |= Kiψ.

(⇐) Suppose Kiψ 6∈ x. Then, {Kiγ | Kiγ ∈ x} ∪ {¬ψ} is a consistent set.
We can then extend it to a maximally consistent set y. As {Kiγ | Kiγ ∈ x} ⊆ y,
we have y ∈ [x]i meaning that y ∈ θc(x)(i). Moreover, since ¬ψ ∈ y, ψ 6∈ y.
Therefore, we have a maximally consistent set y ∈ θc(x)(i) such that ψ 6∈ y. By
(IH), X c, (y, θc) 6|= ψ. Hence, X c, (x, θc) 6|= Kiψ.

Case ϕ = int(ψ)

(⇒) Suppose int(ψ) ∈ x. Consider the set [x]i ∩ înt(ψ) for some i ∈ A.
Obviously, x ∈ [x]i ∩ înt(ψ) and [x]i ∩ înt(ψ) is open (since it is in Σ). Now
let y ∈ [x]i ∩ înt(ψ). Since y ∈ înt(ψ), int(ψ) ∈ y. Then, by (int -T), since
y is maximal consistent, we have ψ ∈ y. Thus, by IH, we have (y, θc) |= ψ.
Therefore, y ∈ [[ψ]]θ

c

. This implies [x]i ∩ înt(ψ) ⊆ [[ψ]]θ
c

. And, since x ∈
[x]i ∩ înt(ψ) ∈ τ c, we have x ∈ Int [[ψ]]θ

c

, i.e., (x, θc) |= int(ψ).
(⇐) Suppose (x, θc) |= int(ψ), i.e., x ∈ Int [[ψ]]θ

c

. Recall that the set
of finite intersections of the elements of Σ forms a base, which we denote by
BΣ, for τ c. x ∈ Int [[ψ]]θ

c

implies that there exists an open U ∈ BΣ such that
x ∈ U ⊆ [[ψ]]θ

c

. Given the construction of BΣ, U is of the form

U =
⋂
i∈I1

[x1]i ∩ · · ·
⋂
i∈In

[xk]i ∩
⋂

η∈Formfin

înt(η)

where I1, . . . , In are finite subsets of A, x1 . . . xk ∈ Xc and Formfin is a finite
subset of LELint . Since int is a normal modality, we can simply write

U =
⋂
i∈I1

[x1]i ∩ · · ·
⋂
i∈In

[xk]i ∩ înt(γ),

where
∧
η∈Formfin

η := γ. Since x is in each [xj ]i with 1 ≤ j ≤ k, we have
[xj ]i = [x]i for all such j. Therefore, we have

x ∈ U = (
⋂
i∈I

[x]i) ∩ înt(γ) ⊆ [[ψ]]θ
c

,

where I = I1 ∪ · · · ∪ In.
This implies, for all y ∈ (

⋂
i∈I [x]i), if y ∈ înt(γ) then ψ ∈ y. From this,

we can say
⋃
i∈I{Kiσ | Kiσ ∈ x} ` int(γ) → ψ. Then, there is a finite subset
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Γ ⊆
⋃
i∈I{Kiσ | Kiσ ∈ x} such that `

∧
λ∈Γ λ→ (int(γ)→ ψ). It then follows:

1. ` int(
∧
λ∈Γ λ→ (int(γ)→ ψ)) (DR3)

2. ` int(
∧
λ∈Γ λ)→ int(int(γ)→ ψ)) (int-K) and (DR1)

3. ` (
∧
λ∈Γ int(λ))→ int(int(γ)→ ψ)) (int-K)

Observe that each λ ∈ Γ is of the form Kjα for some Kjα ∈
⋃
i∈I{Kiσ | Kiσ ∈

x} and we have ` Kiϕ↔ int(Kiϕ). Therefore, ` (
∧
λ∈Γ λ)→ int(int(γ)→ ψ)).

Thus, since
∧
λ∈Γ λ ∈ x (by Γ ⊆ x), we have int(int(γ) → ψ)) ∈ x. Then, by

(int-K), (DR1) and since ` int(int(γ)) ↔ int(γ) and x ∈ înt(γ) (i.e., int(γ) ∈
x), we obtain int(ψ) ∈ x.

Our canonical model construction is similar to the one for the single-agent
case in Bjorndahl (2016). We give a comparison in Section 6.

Theorem 30. ELint is complete with respect to the class of all topo-models.

Theorem 31. PALint is complete with respect to the class of all topo-models.

Proof. This follows from Theorem 30 by reduction in a standard way: using the
size measure S(ϕ) of Definition 3 for the language LPALint

provides the desired
result via Lemma 7 (note that the strict orders <S and <Sd given in Definition
5 are equivalent on the language LPALint ). We refer to (van Ditmarsch et al.,
2007, Chapter 7.4) for a detailed presentation of the completeness method via
reduction, and in particular to (Wang and Cao, 2013, Theorem 10, p. 111) for
an analogous proof. A similar proof for single-agent ELint is also presented in
(Bjorndahl, 2016, Section 4).

4.2 Completeness of APALint

We now reuse the technique of Balbiani and van Ditmarsch (2015) in the set-
ting of topological semantics. Given the closure requirement under derivation
rule (DR5) it seems more proper to call maximally consistent sets of APALint

maximally consistent theories, as further explained below.

Definition 32. A set x of formulas is called a theory iff APALint ⊆ x and x
is closed under (DR1) and (DR5). A theory x is said to be consistent iff ⊥ 6∈ x.
A theory x is maximally consistent iff x is consistent and any set of formulas
properly containing x is inconsistent.

The set APALint constitutes the smallest theory. Moreover, maximally con-
sistent theories of APALint posses the usual properties of maximally consistent
sets:

Proposition 33. For any maximally consistent theory x, ϕ 6∈ x iff ¬ϕ ∈ x,
and ϕ ∧ ψ ∈ x iff ϕ ∈ x and ψ ∈ x.
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In the setting of our axiomatization based on the infinitary rule (DR5), we
will say that a set x of formulas is consistent iff there exists a consistent theory y
such that x ⊆ y. Obviously, maximal consistent theories are maximal consistent
sets of formulas. Under the given definition of consistency for sets of formulas,
maximal consistent sets of formulas are also maximal consistent theories.

Definition 34. Let ϕ ∈ LAPALint
and i ∈ A. Then x+ ϕ := {ψ | ϕ→ ψ ∈ x},

Kix := {ϕ | Kiϕ ∈ x}, and int(x) := {ϕ | int(ϕ) ∈ x}.

Lemma 35. For any theory x of APALint and ϕ ∈ LAPALint
,

1. x+ ϕ is a theory that contains x and ϕ,
2. Kix is a theory,
3. int(x) is a theory, and
4. int(x) ⊆ x.

Proof. Follows in a similar way as in the proof of Balbiani et al. (2008, Lemma
4.11) and here we only prove items 3 and 4. Suppose x is a theory of APALint

and ϕ ∈ LAPALint .
3. Suppose ϕ ∈ APALint . Since ϕ is a theorem, by (DR3), int(ϕ) is a

theorem of APALint as well. Therefore, int(ϕ) ∈ x meaning that ϕ ∈
int(x). Hence, APALint ⊆ int(x). Let us now show that int(x) is closed
under (DR1). Suppose ϕ,ϕ → ψ ∈ int(x). This means, by definition
of int(x), that int(ϕ), int(ϕ → ψ) ∈ x. By (int-K) and x being closed
under (DR1), we obtain int(ψ) ∈ x, i.e., ψ ∈ int(x). Finally we show that
int(x) is closed under (DR5). Let ξ([ψ]χ) ∈ int(x) for all ψ ∈ PALint .
This means int(ξ([ψ]χ)) ∈ x for all ψ ∈ PALint . As int(ξ([ψ]χ)) is also a
necessity form and x is closed under (DR5), int(ξ(2χ)) ∈ x meaning that
ξ(2χ) ∈ int(x). We therefore conclude that int(x) is a theory.

4. Suppose ϕ ∈ int(x). This means int(ϕ) ∈ x. Therefore, by (int-T) and
(DR1), we obtain ϕ ∈ x. As ϕ has been taken arbitrarily from int(x), we
conclude that int(x) ⊆ x.

Lemma 36. Let ϕ ∈ LAPALint . For all theories x, x+ϕ is consistent iff ¬ϕ 6∈ x.

Proof. Let ϕ ∈ LAPALint and x be a theory. Then ¬ϕ ∈ x iff ϕ → ⊥ ∈ x (as
¬ϕ ↔ ϕ → ⊥ is a theorem) iff ⊥ ∈ x + ϕ. Therefore, x + ϕ is inconsistent iff
¬ϕ ∈ x, i.e., x+ ϕ is consistent iff ¬ϕ 6∈ x.

Lemma 37 (Lindenbaum’s Lemma Balbiani et al. (2008)). Each consistent
theory can be extended to a maximal consistent theory.

Lemma 38. If Kiϕ 6∈ x, then there is a maximally consistent theory y such
that Kix ⊆ y and ϕ 6∈ y.

Proof. Let ϕ ∈ LAPALint and x be such that Kiϕ 6∈ x. Thus, ϕ 6∈ Kix. Hence,
by Lemma 36, Kix + ¬ϕ is consistent. Then, by Lemma 37, there exists a
maximally consistent set y such that Kix + ¬ϕ ⊆ y. Therefore Kix ⊆ y and
ϕ 6∈ y.
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Lemma 39. For all ϕ ∈ LAPALint and all maximally consistent theories x,
2ϕ ∈ x iff for all ψ ∈ LPALint , [ψ]ϕ ∈ x.

Proof. Let ϕ ∈ LAPALint
and x be a maximally consistent theory.

(⇒) Suppose 2ϕ ∈ x. Then, by (R7) and (DR1), we have [ψ]ϕ ∈ x for all
ψ ∈ LPALint

.
(⇐) Suppose [ψ]ϕ ∈ x for all ψ ∈ LPALint . Consider the necessity form

]. By assumption, ]([ψ]ϕ) for all ψ ∈ LPALint . Then, since x is closed under
(DR5), ](2ϕ) ∈ x, i.e., 2ϕ ∈ x as well.

The definition of the canonical model for APALint is the same as for ELint ,
except that the maximally consistent sets are maximally consistent theories of
APALint . We now come to the Truth Lemma for the logic APALint . Here we
use the complexity measure ψ <Sd ϕ, and we recall that θc : Xc → A → τ c is
defined as θc(x)(i) = [x]i, for x ∈ Xc and i ∈ A.

Lemma 40 (Truth Lemma). For every ϕ ∈ LAPALint
and for each x ∈ Xc,

ϕ ∈ x iff X c, (x, θc) |= ϕ.

Proof. Let ϕ ∈ LAPALint and x ∈ X c. The proof is by <Sd -induction on ϕ, where
the case ϕ = [ψ]χ is proved by a subinduction on χ. We therefore consider 13
cases.

Case ϕ = p
x ∈ p iff x ∈ V c(p)

iff (x, θc) |= p

Induction Hypothesis (IH): For all formulas ψ ∈ LAPALint
, if ψ <Sd ϕ, then

ψ ∈ x iff X c, (x, θc) |= ψ.
The cases negation and conjunction are as in Truth Lemma 29 for ELint,

where we observe that the subformula order is subsumed under the <Sd order
(see Lemma 6.2). We proceed with the knowledge and interior modalities, i.e.,
cases ϕ = Kiψ and ϕ = int(ψ) respectively, and then with the subinduction on
χ for case announcement ϕ = [ψ]χ, and finally with the case ϕ = 2ψ.

Case ϕ = Kiψ
For the direction from left-to-right, see Truth Lemma 29. For (⇐), suppose

Kiψ 6∈ x. Then, by Lemma 38, there exists a maximally consistent theory y
such that Kix ⊆ y and ψ 6∈ y. By ψ <Sd Kiψ and (IH), (y, θc) 6|= ψ. Since
Kix ⊆ y, we have y ∈ [x]i meaning that y ∈ θc(x)(i). Therefore, by the
semantics, X c, (x, θc) 6|= Kiψ.

Case ϕ = int(ψ)
For the direction from left-to-right, see Truth Lemma 29. For (⇐), suppose

int(ψ) 6∈ x. We want to show that x 6∈ Int([[ψ]]θ
c

), i.e., show that for all U ∈ BΣ

with x ∈ U , we obtain U 6⊆ [[ψ]]θ
c

, where BΣ is the base of X c constructed by
closing Σ under finite intersections (as in the proof of Truth Lemma 29). Let
U ∈ BΣ such that x ∈ U . Given the construction of BΣ, U is of the form

U = (
⋂
i∈I

[x]i) ∩ înt(γ),
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where I and int(γ) are as in Truth Lemma 29. In order to complete the proof, we
construct a maximally consistent theory y ∈ U such that y 6∈ [[ψ]]θ

c

. Therefore,
this maximally consistent theory y should satisfy the following properties:

1.
⋃
i∈I{Kiσ | Kiσ ∈ x} ⊆ y, i.e., y ∈

⋂
i∈I [x]i,

2. int(γ) ∈ y, i.e., y ∈ înt(γ),
3. ¬ψ ∈ y, or equivalently, ψ 6∈ y.

Toward the goal of finding this maximal consistent y, we first construct a con-
sistent theory z (that we then later expand to the maximal consistent theory
y). Consider the set of formulas

z0 :=
⋃
i∈I
{Kiσ | Kiσ ∈ x} ∪ {int(γ)} ∪APALint ,

and close z0 under (DR1) and (DR5) to obtain z. It is guaranteed that z is
a theory since it includes APALint and it is closed under (DR1) and (DR5).
Moreover, z0 ⊆ x, since (1)

⋃
i∈I{Kiσ |Kiσ ∈ x} ⊆ x and (2) int(γ) ∈ x because

x ∈ U = (
⋂
i∈I [x]i) ∩ înt(γ), and thus, x ∈ înt(γ). Therefore, z0 ⊆ x and since

z is the smallest theory containing z0 (by construction), we obtain z ⊆ x. It
follows that z is consistent since x is consistent, being a maximally consistent
theory. We now consider the set int(z). Similarly, int(z) is a consistent theory
such that int(z) ⊆ z ⊆ x (by Lemma 35.3-4 and x being a maximally consistent
theory). Furthermore,

⋃
i∈I{Kiσ | Kiσ ∈ x}∪{int(γ)} ⊆ int(z), since ` Kiσ ↔

int(Kiσ) and Kiσ ∈ z for each i ∈ I, and similarly since ` int(γ)↔ int(int(γ))
and int(γ) ∈ z. In fact, given that z is the smallest theory constructed from z0

by closing z0 under (DR1) and (DR5) and int(z) is also a consistent theory such
that z0 ⊆ int(z) ⊆ z, we obtain int(z) = z. Observe that, since int(ψ) 6∈ x and
z ⊆ x, we have int(ψ) 6∈ z. Therefore, the fact that int(ψ) 6∈ int(z) = z implies
that ψ 6∈ z. Finally, we extend the consistent theory z to the set of formulas
z+¬ψ. By Lemma 35.1, we know that z+¬ψ is a theory such that z ⊆ z+¬ψ
and ¬ψ ∈ z + ¬ψ. Moreover, since ψ 6∈ z, Lemma 36 implies that z + ¬ψ is a
consistent theory. Thus, by Lemma 37, there exists a maximally consistent set
y such that z+¬ψ ⊆ y. Hence, we have a maximally consistent set y such that:

1.
⋃
i∈I{Kiσ | Kiσ ∈ x} ⊆ y, since

⋃
i∈I{Kiσ | Kiσ ∈ x} ⊆ z ⊆ y,

2. int(γ) ∈ y, since int(γ) ∈ z ⊆ y, and
3. ¬ψ ∈ y, since ¬ψ ∈ z + ¬ψ ⊆ y.

Therefore, y ∈ (
⋂
i∈I [x]i)∩ înt(γ) = U (by (1) and (2)) such that y 6∈ [[ψ]]θ

c

(by
IH)). Thus, U 6⊆ [[ψ]]θ

c

implying that x 6∈ Int([[ψ]]θ
c

).
Case ϕ = [ψ]p

[ψ]p ∈ x iff int(ψ)→ p ∈ x (R1)
iff (x, θc) |= int(ψ)→ p ((IH) and Lemma 7.1)
iff (x, θc) |= [ψ]p (R1)

Case ϕ := [ψ]¬η Use (R2) and (IH) and, by Lemma 7.2, int(ψ)→ ¬[ψ]η <Sd
[ψ]¬η.
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Case ϕ := [ψ](η∧σ) Use (R3) and (IH) and, by Lemma 7.3, [ψ]η∧ [ψ]σ <Sd
[ψ](η ∧ σ).

Case ϕ := [ψ]int(η) Use (R4) and (IH) and, by Lemma 7.4, int(ψ) →
int([ψ]η) <Sd [ψ]int(η).

Case ϕ := [ψ]Kiη Use (R5) and (IH) and, by Lemma 7.5, int(ψ) →
Ki[ψ]η <Sd [ψ]Kiη.

Case ϕ := [ψ][η]σ Use (R6) and (IH) and, by Lemma 7.6, [¬[ψ]¬int(η)]σ <Sd
[ψ][η]σ.

Case ϕ := [ψ]2σ For all η ∈ LPALint
, [ψ][η]σ <Sd [ψ]2σ, as [ψ]2σ has

one more 2 than [ψ][η]σ . Therefore, it suffices to show [ψ]2σ ∈ x iff ∀η ∈
LPALint

, [ψ][η]σ ∈ x.
(⇐) Consider the necessity form [ψ]] and assume that for all η ∈ LPALint ,

[ψ][η]σ ∈ x, i.e., for all η ∈ LPALint , [ψ]]([η]σ) ∈ x . As x is closed under (DR5),
we obtain [ψ]](2σ) ∈ x, i.e., [ψ]2σ ∈ x.

(⇒) Suppose [ψ]2σ ∈ x. We have

` 2σ → [η]σ, for all η ∈ LPALint
(R7)

` [ψ](2σ → [η]σ) for all η ∈ LPALint
(DR4)

` [ψ]2σ → [ψ][η]σ, for all η ∈ LPALint (DR1), (R1-R3)

Therefore, for all η ∈ LPALint
, [ψ][η]σ ∈ x. As [ψ][η]σ <Sd [ψ]2σ for all η ∈

LPALint
, by (IH), we have for all η ∈ LPALint

, (x, θc) |= [ψ][η]σ. We then obtain

(∀η ∈ LPALint
)(x, θc) |= [ψ][η]σ

iff (∀η ∈ LPALint
)((x, θc) |= int(ψ) implies (x, (θc)ψ) |= [η]σ)

iff (x, θc) |= int(ψ) implies (∀η ∈ LPALint
)((x, (θc)ψ) |= [η]σ)

iff (x, θc) |= int(ψ) implies (x, (θc)ψ) |= 2σ
iff (x, θc) |= [ψ]2σ

Case ϕ := 2ψ Again note that for all η ∈ LPALint
, [η]ψ <Sd 2ψ, as 2ψ has

one more 2 than [η]ψ (see Lemma 6.4 and Lemma 6.5). Therefore, we obtain

2ψ ∈ x iff (∀η ∈ LPALint )([η]ψ ∈ x) Lemma 39
iff (∀η ∈ LPALint

)(x, θc) |= [η]ψ (IH)
iff (x, θc) |= 2ψ semantics

Theorem 41. APALint is complete with respect to the class of all topo-models.

Proof. Let ϕ ∈ LAPALint
such that 6` ϕ, i.e., ϕ 6∈ APALint (Recall thatAPALint

is the smallest theory). Then, by Lemma 36, APALint + ¬ϕ is a consistent
theory and, by Lemma 35.1, ¬ϕ ∈ APALint +¬ϕ. By Lemma 37, the consistent
theory APALint + ¬ϕ can be extended to a maximally consistent theory y
such that APALint + ¬ϕ ⊆ y. Since y is maximally consistent and ¬ϕ ∈ y,
we obtain ϕ 6∈ y (by Proposition 33). Then, by Lemma 40 (Truth Lemma),
X c, (y, θc) 6|= ϕ.
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5 S4 knowledge on multi-agent topo-models
In the literature of epistemic logic, not only S5 but also weaker systems such as
S4 (Hintikka, 1962), S4.2 (Lenzen, 1978; Stalnaker, 2006), and S4.3 (van der
Hoek, 1991; Baltag and Smets, 2008) have commonly been studied as epistemic
logics for agents with different reasoning powers. Among the aforementioned
systems, S4 especially is of topological importance since it has been proven (due
to McKinsey and Tarski (1944) in a different but still topological setting, where
the knowledge modality is interpreted as the interior operator) that S4 is the
logic of all topological spaces. In this section we propose a weaker topological se-
mantics for the language LAPALint making only S4 axioms for knowledge sound,
rather than the S5 axioms. This way we show that our multi-agent topo-models
are more general than (Moss and Parikh, 1992; Dabrowski et al., 1996; Bjorn-
dahl, 2016; Wáng and Ågotnes, 2013a), in the sense that they can be adapted
to model this weaker notion of knowledge, namely S4 type of knowledge. This
result further suggests that we might be able to model intermediate knowledge
notions such as S4.2 and S4.3 type knowledge on similar structures and poses
the question of identifying such structures, which we aim to pursue in future
work.

The S4 type of knowledge does not satisfy the axiomK-5: ¬Kiϕ→ Ki¬Ki¬ϕ,
and the topo-models on which it is interpreted are therefore also different. We
define the logic wELint interpreted on weak topo-models, its axiomatization,
and corresponding extensions to wPALint and wAPALint .

Definition 42. A weak multi-agent topological model (weak topo-model) is a
topo-modelM = (X, τ,Φ, V ) as in Def. 10 with clause 3 replaced by

3. for all y ∈ X, if y ∈ θ(x)(i) then y ∈ D(θ) and θ(y)(i) ⊆ θ(x)(i).
A weak topo-frame is defined analogously to Definition 11.

Definition 43. The axiomatization of wELint is that of ELint minus the axiom
K-5. The axiomatizations for wPALint and wAPALint are the obvious further
extensions with the ∗ and ∗∗-ed axioms. (See Table 1.)

Soundness of wELint , wPALint , and wAPALint follow from Proposition
23 and Corollary 24. As for completeness, we again use a canonical model
construction similar to the one for the stronger logics, however, adapted for the
S4-type knowledge. Let us first introduce some notation and basic concepts.

Let Xc be the set of all maximally consistent sets of wELint , where a maxi-
mally consistent set of wELint is defined similarly as in Section 4.1. We define
relations Rci on Xc as

xRciy iff ∀ϕ ∈ LELint (Kiϕ ∈ x implies ϕ ∈ y).

Let Rci (x) denote the upward closed set generated by x with respect to the
relation Rci , i.e., Rci (x) = {y ∈ Xc | xRciy}. Moreover, we define ϕ̂ = {y ∈
Xc | ϕ ∈ y}. Observe that x ∈ ϕ̂ iff ϕ ∈ x.
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Definition 44. We define the (weak) canonical model
X c = (Xc, τ c,Φc, V c) as follows:
• Xc is the set of all maximally consistent sets of wELint ;
• τ c is the topological space generated by the subbase

Σ = {Rci (x) ∩ înt(ϕ) | x ∈ Xc, ϕ ∈ LELint
and i ∈ A};

• x ∈ V c(p) iff p ∈ x, for all p ∈ Prop;
• Φc = {θc|U | U ∈ τ c}, where we define θc : Xc → A → τ c as θc(x)(i) =
Rci (x), for x ∈ Xc and i ∈ A.

Observe that (Xc, τ c,Φc) is a weak topo-frame. This can be shown as in
the proof of Lemma 28. As in the previous case we have înt(>) = Xc, thus,
each Rci (x) is an open set in τ c. Moreover, Φc satisfies the required properties
of the elements of Φ given in Definition 42. Observe that D(θc) = Xc and
D(θc|U ) = U for all U ∈ τ c. Moreover, θc|U (x)(i) = Rci (x) ∩ U when x ∈ U .

Lemma 45 (Truth Lemma). For every ϕ ∈ LELint and for each x ∈ Xc

ϕ ∈ x iff X c, (x, θc) |= ϕ.

Proof. Proof is similar to the proof of Lemma 29 except that that we replace
each [x]i by Rci (x).

Theorem 46. wELint , wPALint , and wAPALint are complete with respect to
the class of all weak topo-models.

Proof. For completeness of wELint , let ϕ ∈ LELint
such that wELint 6` ϕ. This

implies that {¬ϕ} is a consistent set. Then, by Lindenbaum’s Lemma, it can
be extended to a maximally consistent set x such that ¬ϕ ∈ x. Therefore, by
Truth Lemma 2 (Lemma 45), Xc, (x, θc) 6|= ϕ. For completeness of wPALint ,
see proof of Theorem 31. The completeness proof of APALint follows similarly
as in Theorem 41, however, the canonical model is the same as for wELint ,
except that the maximally consistent sets are maximally consistent theories of
wAPALint .

We therefore obtain that the semantic behaviour of the epistemic modality
Ki in our setting depends on the properties of the neighbourhood functions
similar to the case for the standard neighbourhood semantics (see, e.g., Chellas
(1980)) rather than the subset space setting where S5 type of knowledge seems
intrinsic to the semantics. Moreover, by appropriate modifications on condition
(3) of Definition 42, we can generalize our setting further to work with knowledge
modalities of intermediate strength, such as S4.2 and S4.3 type of knowledge.
If we add further conditions to Definition 42, we obtain S4.2 and S4.3 types of
knowledge. More precisely, for S4.2 we add

3′. for all y, z ∈ X, if y, z ∈ θ(x)(i) then y, z ∈ D(θ) and θ(y)(i)∩ θ(z)(i) 6= ∅
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and for S4.3 we add
3′. for all y, z ∈ X, if y, z ∈ θ(x)(i) then y, z ∈ D(θ) and either θ(y)(i) ⊆

θ(z)(i) or θ(z)(i) ⊆ θ(y)(i).
Soundness and completeness results for these cases follow similarly as in the
above case.

On the other hand, it is not trivial whether and how our semantics can be
adapted to versions of wELint in which the modalities Ki are weaker than S4.
It is not hard to see that we can obtain such semantics that makes KT -, and
even K-type modalities sound, by simply dropping the conditions (3) and also
(1) of Definition 42, respectively. However, it is an open question whether these
systems are complete with respect to the corresponding semantics. Roughly
speaking, in the current setting, what also makes Ki a topological modality that
interacts well with the interior operator is it being at least an S4 type modality
(see, e.g., (van Benthem and Bezhanishvili, 2007, Section 2) for this connection).
A closer look at the canonical model constructions and the corresponding truth
lemmas (Lemma 29, Lemma 40 and Lemma 45) reveals that it is crucial in
the completeness proofs that the canonical relations for the Ki modalities are
reflexive and transitive. Topological semantics for these weaker modalities is
left for future research.

6 Comparison to other work
In this section we compare our work in greater detail to some of the prior
literature that we already referred to. In this comparison, a justified large
position is taken by an embedding from single-agent topological semantics to
multi-agent topological semantics and vice versa, wherein the (single-agent)
work of Bjorndahl (2016) plays a large role. His use of the interior operator and
topological semantics motivated our own approach: our semantics for LELint

and LPALint
are essentially multi-agent extensions of Bjorndahl’s semantics for

the single-agent versions of these languages. This is the first subsection. The
subsection after that contains a review of other related works.

6.1 From multi-agent to single-agent and vice versa
We show that we can construct a point-wise modally equivalent topo-model
(X, τ,Φ, V ) from a topological model without functions (X, τ, V ) as in (Bjorn-
dahl, 2016) and vice versa. To recall, Bjorndahl (2016) uses subset space mod-
els based on topological spaces, i.e., his models are the same as our topological
models without functions; denoted by M = (X, τ, V ). Moreover, just as in the
standard subset space semantics (Moss and Parikh, 1992; Parikh et al., 2007), he
evaluates the formulas with respect to pairs of the form (x, U) where x ∈ U ∈ τ .
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The crucial modalities Kϕ, int(ϕ) and [ψ]ϕ are therefore interpreted as

(x, U) |= Kϕ iff (∀y ∈ U)((y, U) |= ϕ)
(x, U) |= int(ϕ) iff x ∈ Int [[ϕ]]U

(x, U) |= [ψ]ϕ iff (x, U) |= int(ϕ) implies (x, Int([[ϕ]]U )) |= ψ

where p ∈ Prop, and [[ϕ]]U = {y ∈ U | (y, U) |= ϕ}.
In the single-agent case, it is clear that a neighbourhood situation (x, θ) of

a given topo-model M = (X, τ,Φ, V ) reverts to an epistemic scenario (x, U)
ofM− = (X, τ, V ) as in Bjorndahl (2016); van Ditmarsch et al. (2014), where
M− denotes M = (X, τ,Φ, V ) without the Φ component and U = θ(x)(i)
(and where i is the unique agent, i.e., A = {i}). For the other direction, given a
model (without a neighbourhood function set)M = (X, τ, V ), for each epistemic
scenario (x, U) ∈ M, we define a neighbourhood function θU : X ⇀ {i} → τ
such that D(θU ) = U and θ(x)(i) = U for all x ∈ U . We therefore define the
neighbourhood function set for M as

ΦM = {θU | (x, U) ∈M },

where ΦM denotes the neighbourhood function set constructed from M in the
above described way. It is not hard to see that ΦM satisfies the properties given
in Definition 11, and thus it is indeed a neighbourhood function set on the
underlying topological space of M. Therefore, M+ = (X, τ,ΦM, V ) is a topo-
model given any M = (X, τ, V ). It is easy to see that for any M = (X, τ, V )
andM = (X ′, τ ′,Φ, V ′),

(M+)− = M and (M−)+ =M.

Theorem 47.
1. For any M = (X, τ, V ), any (x, U) ∈M and any ϕ ∈ LPALint

,

M, (x, U) |= ϕ iff M+, (x, θU ) |= ϕ.

2. For anyM = (X, τ,Φ, V ), any (x, θ) ∈M, and any ϕ ∈ LPALint ,

M, (x, θ) |= ϕ iffM−, (x, θ(x)(i)) |= ϕ.

Proof. The proofs for both items follow in a similar way by induction on the
size of the formulas in LPALint

: using the size measure S(ϕ) from Definition
3 provides the desired result via Lemma 7. The cases for the propositional
variables, Booleans and the modalities K and int are standard. The case ϕ :=
[ψ]χ for the public announcement modality follows by subinduction on χ. It
is crucial for this case that our semantics and Bjorndahl’s semantics make the
same reduction axiom schemes, namely the axiom schemes (R1)-(R6) given in
Table 1, valid. Here we present only the subcase for χ = p of item (1). The
other cases follow in a similar way.
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Subcase ϕ := [ψ]p

M, (x, U) |= [ψ]p iff M, (x, U) |= int(ψ)→ p by the validity (R1)*
iff M+, (x, θU ) |= int(ψ)→ p by Lemma 7.1 and (IH)
iff M+, (x, θU ) |= [ψ]p by the validity (R1)**

*: with respect to the semantics in Bjorndahl (2016)
**: with respect to the semantics given in Definition 13.

In other words, Theorem 47.1 states that M, (x, U) and M+, (x, θU ) are modally
equivalent with respect to LPALint

. Moreover, for all ϕ ∈ LPALint
, M |=

ϕ iff M+ |= ϕ, i.e., M and M+ are (globally) modally equivalent with re-
spect to the same language. Further, Theorem 47.2 shows that M, (x, θ) and
M−, (x, θ(x)(i)) are modally equivalent with respect to LPALint

. However,M is
not necessarily (globally) modally equivalent toM−, as the following example
demonstrates.

Example 48. The reason why M and M− are not necessarily modally equiv-
alent is that while M− reverts to using the full topology τ , the view on that
in M is restricted by Φ. For a counterexample, consider the topo-model M =
(X, τ,Φ, V ) where X = {1, 2} and τ is the discrete topology on X. We set
Φ = {θ} where D(θ) = {2} and θ(2) = {2}. Hence, the only neighbourhood
situation of M is (2, θ). Finally we let V (p) = {1}. Therefore, M, (2, θ) |=
¬Kp and as (2, θ) is the only neighbourhood situation of the model, we obtain
M |= ¬Kp of item . On the other hand, (1, {1}) is an epistemic scenario of
M− andM−, (1, {1}) |= Kp, therefore,M− 6|= ¬Kp.

Moreover, as demonstrated in Section 6.1, the single-agent version of our
proposal does not lead to any restriction compared to (Bjorndahl, 2016) and
even provides a larger class of models to work with.

6.2 Survey of the literature
In this section, we compare mainly three aspects of our work to that of others
in the relevant literature:

Multi-agent epistemic systems. Multi-agent epistemic systems with subset
space-like semantics have been proposed in (Heinemann, 2008, 2010; Baskent,
2007; Wáng and Ågotnes, 2013a), however, none of these are concerned with
public or arbitrary public announcements. An unorthodox approach to multi-
agent knowledge is proposed in (Heinemann, 2008, 2010). Roughly speaking,
instead of having a knowledge modality Ki for each agent as a primitive oper-
ator in his syntax, Heinemann uses additional operators to define Ki and his
semantics only validate the S4-axioms forKi. The necessitation rule forKi does
not preserve validity under the proposed semantics (Heinemann, 2008, 2010).
On the other hand, we follow the methods of dynamic epistemic logic in our
multi-agent generalization by extending the single-agent case with a knowledge
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modality Ki for each agent and proposed a multi-agent topological semantics
for this language general enough to model both S4 and S5 type of knowledge
and flexible enough for further generalizations as shown in Section 5. In (Wáng
and Ågotnes, 2013a) a multi-agent semantics for knowledge on subset spaces
is provided, but no announcements or further generalizations (unlike in their
other, single-agent, work (Wáng and Ågotnes, 2013b)) are considered, and a
purely topological case is not examined. Their use of partitions for each agent
instead of a single neighbourhood is compatible with our requirement that all
neighbourhoods for a given agent be disjoint. A further difference from the
existing literature is that we restrict our attention to topological spaces and
prove our results by means of topological tools. For example, our completeness
proofs employ direct topological canonical model constructions without a detour
referring to different types of semantics and completeness results therein.

Completeness proof. We applied the new completeness proof for arbitrary
public announcement logic of Balbiani and van Ditmarsch (2015) to a topological
setting. The modality int in our system demands a different complexity measure
in the Truth Lemma of the completeness proof of APALint than in (Balbiani and
van Ditmarsch, 2015). Moreoever, we modified the complexity measure given
in (van Ditmarsch et al., 2015b) to make it work for both the completeness of
APALint and of PALint . The canonical modal construction is as in (Bjorndahl,
2016) with some multi-agent modifications. We defined the set Σ from which the
topology of the canonical model is generated in a similar way as in (Bjorndahl,
2016), however, having multiple agents renders this set weaker in the sense that
while it constitutes a base in the single-agent case, it becomes a subbase in the
multi-agent setting.

Single agent case. In standard (single-agent) subset space semantics (Moss
and Parikh, 1992; Dabrowski et al., 1996) and in the later extensions (Wáng
and Ågotnes, 2013b; Bjorndahl, 2016; Balbiani et al., 2013; van Ditmarsch et al.,
2014), the modality K quantifies over the elements of a given open neighbour-
hood U that is fixed from the beginning of the evaluation. This makes K behave
like a universal modality within U , therefore, S5 as an underlying epistemic sys-
tem becomes intrinsic to the semantics. However, in our proposal, the soundness
of the epistemic axioms (i.e., axioms involving only the modality K) depends
on the constraints posed on the neighbourhood functions and relaxing these
constraints enables us to work with weaker notions of knowledge, such as S4 as
shown in Section 5. In this sense, our approach generalizes the epistemic aspect
of aforementioned literature.

Recall that Balbiani et al. (2013) proposed subset space semantics for arbi-
trary announcements, however, their approach does not go beyond the single-
agent case and the semantics provided is in terms of model restriction.

Temporal epistemic logics and protocol logics. We can compare the log-
ics we have presented here to some other dynamic modal logics. When modelling
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dynamic operators, there are two main approaches: one can either start with an
initial model and then view operators as changing or transforming the initial
model, or one can include the dynamic operators in the initial model, and view
operators as transitions within this unchanging model. In our logics we take
the second approach: the dynamic operators are not model transformers but
are interpreted by a shift of perspective in the unmodified initial model, repre-
sented by an updated neighbourhood function. Our dynamic systems APALint

and PALint are therefore in contrast with the framework of traditional dy-
namic epistemic logic; in fact they are also akin to, for example, temporal epis-
temic logics (Halpern et al., 2004; van der Meyden and Wong, 2003) or dynamic
(PDL-type) logics (Harel et al., 2000), and more specifically to the subset logic
for reasoning about change (Georgatos, 2011). In such logics temporal/action
operators are also interpreted by a perspective shift, i.e., by a relation within
the model representing such modalities. For example, PDL-style, x is a world,
M, x |= [a]p if (x, y) ∈ Ra and M, y |= p. A similar PDL-stype approach is
adapted to a subset space logic by Georgatos (2011), and he studied an action-
based knowledge change in this framework. In temporal epistemic logics the
interaction is slightly more involved, so we have, for example, that when x1x2x3

is a path, M, x1x2x3 |= Xp if M, x2 |= p, involving a similar shift of perspec-
tive or state, rather than a model transformation. In APALint , our ‘designated
points’ are pairs (x, θ) which we can see as a multi-agent generalization (viewed
as, (x, θ(x)(a), θ(x)(b))) of the pairs (x, U) in subset space logic. One difference
from the PDL and temporal operator interpretation is that the perspective shift
for public announcement interpretation is in the second argument of the pair,
the neighbourhood function, rather than in the first argument, which repre-
sents the agent’s actual state: M, (x, θ) |= [q]p iff M, (x, θ) |= int(q) implies
M, (x, θq) |= p. Another difference from many temporal logics is that subject
to executability, the public announcement is a ‘computable’ dynamic modality:
although it is a perspective shift, the shift is computed from the announcement
formula and not a given in the underlying model, as in LTL or CTL, where
we have maximum freedom to specify the underlying model. However, the exe-
cutability precondition int is also reminiscent of other logics, namely (dynamic
epistemic, or dynamic) logics of protocols, see e.g. (Wang, 2010; Hoshi, 2009).
In such logics, public announcements, or other epistemic actions, cannot be
executed merely if the announcement formula is true, but only if the announce-
ment formula is in the list of ‘permitted formulas to be announced’, i.e., allowed
according to the protocol. A strong link between logics of protocols, dynamic
epistemic logics, and temporal epistemic logics is provided in works (van Ben-
them et al., 2009b; Dégremont et al., 2011): instead of, as in dynamic epistemic
logic, thinking of an initial model that is transformed by successive dynamic
modalities (such as for announcement), we can also see these dynamic transi-
tions as interpreted by internal shifts in a larger model, namely the so-called
protocol-generated tree that consists of the initial model plus the transformed
model(s) in relation. To illustrate this, for a final example, givenM, x |= [q]p in
standard public announcement logic, instead of interpreting the announcement
of q as a model restriction, i.e., asM|q, x |= p, we can also consider the disjoint
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union ofM andM|q plus a pair (x0, x1) linking them, and see the interpreta-
tion of [q] as a shift along (x0, x1) inM⊕M|q. This is instructive, because here
we see again that, unlike in APALint , the shift can be seen as occurring in an
accessibility relation, and does not have to consist of shrinking a neighbourhood
from (x, θ) to (x, θp).

7 Conclusions
We have proposed topological semantics for multi-agent public announcement
logic with arbitrary announcements. We showed topological completeness of
this logic APALint and some obvious fragments, and also for logics based on a
weaker version of knowledge. Our work can be seen as a step toward discovering
the interplay between dynamic epistemic logic and topological reasoning.

Our goal was not so much to provide a multi-agent generalization of SSL or
topologic per se, but to have an intuitively appealing interpretation of the effort-
like modality 2 (information change brought about by any announcement) in
a multi-agent setting, by way of modelling it as “open-set shrinking”. In this
respect, our work complements (Georgatos, 2011; Bjorndahl, 2016).

We are still investigating expressivity and (un)decidability. If the logic
APALint is decidable, this would contrast nicely with the undecidability of
arbitrary public announcement logic (French and van Ditmarsch, 2008). Oth-
erwise, there may be decidable fragments when restricting the class of models
to particular topologies.

In our setup all agents have the same observational power, represented by
each topo-model carrying only one topology. To model the informational atti-
tudes of a group of agents with different observational powers, we could associate
a possibly different topology with each agent and we could further generalize
our setting to an arbitrary epistemic action logic.

The exact difference between the effort modality and the arbitrary announce-
ment modality remains elusive both in the single and in the multi-agent cases. Is
it possible to construct a topological model (for the single agent case) which dis-
tinguishes the two: might a topological space have non-epistemically definable
opens with respect to the proposed semantics? Such a model would necessarily
have an uncountable domain. What is the right semantics for the effort modality
on multi-agent topo-models? And, how does it interact with the arbitrary an-
nouncement modality? We plan to address these interesting questions in future
work.

The acknowledgements section has been removed for the purpose of blind
reviewing.
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