
Partial Information and Uniform Strategies

Hans van Ditmarsch and Sophia Knight

LORIA, CNRS – Université de Lorraine, France

Abstract. We present an alternating-time temporal epistemic logic with
uniform strategies, interpreted in a novel way on transition systems for
modelling situations in which agents with partial information interact to
determine the way the system updates. This logic uATEL allows us to
model what properties agents can enforce when they act according to
strategies based on their knowledge. Apart from the usual memoryless
strategies, we distinguish state-based memory, where agents recall the
history of previous states, from perfect recall, where agents also recall
their actions. We show that this makes a difference. Our logic includes
three strategic operators for groups, representing the case where all the
agents in the group cooperate actively, but do not share their knowledge,
the case where some agents in the group may be passive, and the case
where all the agents in the group share their knowledge. We include a
detailed comparison to the literature on the subject.

1 Introduction

Linear temporal logic [15], Computation tree logic [6], and CTL* [7] are tempo-
ral logics for reasoning about distributed systems. LTL is concerned with infinite
histories of states representing possible computations, CTL can reason about the
branching structure of potential computations, and CTL* combines the expres-
sive capabilities of both LTL and CTL. While the distributed systems that these
logics model are implicitly understood to be systems consisting of many agents
acting individually, there is no explicit mention of these agents or their actions
in any of the above-mentioned temporal logics.

Alternating-time temporal logic [3] is a branching-time temporal logic for
distributed systems where the effects of agents’ actions are made explicit. In
ATL, a formula of the form 〈〈Γ 〉〉©ϕ, where Γ is a set of agents,© is the ‘next’
temporal modality, and ϕ is a state formula, signifies that the agents in the
group Γ can cooperate to ensure that the formula ϕ is true in next state of the
system, no matter what the agents who are not in Γ do. Thus, ATL provides a
natural and interesting way of analyzing the properties of multi-agent systems,
with the advantage of being able to analyse the effects of the actions of both
specific agents and groups of agents.

Epistemic logic [13], on the other hand, is a different kind of modal logic
which also models multi-agent systems, but only statically, without considering
changes in these systems over time. Instead, epistemic logic is concerned with
the agents’ knowledge — another crucial aspect of multi-agent systems.

2

Thus, ATL is concerned with agents’ abilities to control the outcomes of
executions of dynamic multi-agent systems, while epistemic logic is concerned
with agents’ knowledge in static multi-agent systems. It is clear that combin-
ing these two focuses could yield a compelling and relevant logic for describing
the interaction between agents’ ability to act and their knowledge. Alternating-
time temporal epistemic logic was proposed by [10] to combine knowledge and
agency. Epistemic modalities are added to ATL, but the traditional semantics
are used for both modalities. This approach allows some interesting applications,
but since the original semantics are used for both modalities, the full interaction
between the agents’ knowledge and their actions is not captured. In particular,
it is possible that an agent has different strategies in (epistemically) indistin-
guishable states of the system. It is reasonable not to allow this, and to require
strategies to be uniform. For this, a strategy must correspond to what an agent
knows.

Indeed, since [10] various proposals combining epistemic logic and ATL in
a way that captures the interplay between agents’ actions and their knowledge
have been made, such as [12, 16, 11, 2, 4]. We discuss the related work in detail
at the end of the paper, but we will point out some basic differences in our work
here. The most novel aspect of our logic is that we allow agents with different
memory abilities to interact in the same system. Many versions of epistemic
ATL, for example [12, 16], consider both full memory and memoryless agents
(and implicitly, finite memory agents represented as memoryless agents). But
in these logics, every agent in the entire system is assumed to have the same
type of memory. It is interesting to consider systems where different agents have
different memory abilities. For example, a system could consist of some simple,
finite memory agents, interacting with other more sophisticated perfect memory
agents. Furthermore, in some settings there may be a group of “friendly” agents
with known memory capabilities, and a different group of adversarial agents
with unknown memory capabilities. By modelling the friendly agents as limited
memory agents and the adversaries as perfect memory agents, we can consider
the worst case scenario, and verify security properties of a system.

Besides allowing the combination of agents with different memory capabili-
ties, another novel aspect of our logic is that we allow agents to have arbitrary
equivalence relations on histories. Just as agents in epistemic Kripke models are
traditionally allowed to have any equivalence relations on the states of a system,
our systems allow agents to have any equivalence relation on the histories of the
system. For example, we can model an agent who has perfect recall, except she
always forgets when the system has been in a specific state. Or we could model
an agent who only remembers every other past state. Or an agent could remem-
ber everything, until the system enters a certain state, at which point the agent’s
memory is wiped out. Combined with the fact that different agents are allowed
to have different types of equivalence relations on histories, allowing them to
have arbitrary equivalence relations as well makes our systems quite general.
As far as we know, ours are the only ATL-type systems that allow arbitrary
equivalence relations on histories.

3

The ATL tradition, wherein agents are modelled but not actions, views per-
fect recall as remembering histories of states, whereas the PDL tradition [9],
wherein actions are modelled but not agents, views perfect recall as remember-
ing histories of actions. In our framework, these are available as different memory
capabilities. Our definition of perfect recall is therefore different from that in [12,
16, 2], as it does not just consider past states, but also considers the agent’s own
past actions. We can also model what is elsewhere called perfect recall memory,
but we call it ‘state-based memory’ since it is not as strong as our concept of per-
fect recall memory. Our definition of perfect recall models agents who remember
all the past states of the system, but also remember their own past actions, and
can reason about the effects of their actions.

In Section 2, we present epistemic concurrent games structures and we define
strategies. In Section 3 we present our alternating-time temporal epistemic logic
with uniform strategies. Section 4 compares our work to the tradition in ATL
with epistemic operators.

2 Epistemic Concurrent Game Structures

In this section, we present a variation on concurrent game structures. We intro-
duce an indistinguishability relation on the set of states for each agent, which
puts a new requirement on the transition relation. This model is appropriate in
our setting, because our goal is modelling agents with partial information about
the state of the system and the effects of their actions on the outcome. The
agents’ partial information about the current state is represented by their in-
distinguishability relations, while the actions they can choose reflect the agents’
limited information about the way the system updates.

Definition 1. An epistemic concurrent game structure (ECGS) is a tuple 〈Q,Π,
Σ,B,∼, π, Av, δ〉 where

– Q is a set of states,
– Π is a set of propositions,
– Σ = {a1, ..., an} is a finite set of agents.
– B is a finite set of actions.
– ∼: Σ → P(Q×Q) is an equivalence function associating to each agent ai

an equivalence relation ∼i.
– π : Q→ Π is the valuation function,
– Av : Q×Σ → P(B) is the availability function defining the available actions

for an agent in a state, with the requirement that for all q1, q2 ∈ Q and all
ai ∈ Σ: Av(q1, ai) 6= ∅, and if q1 ∼i q2 then Av(q1, ai) = Av(q2, ai).

– δ : Q × Σ × B → P(Q) is the transition function, with the determinacy
requirement that for any q ∈ Q, for any (b1, ..., bn) ∈ Bn such that bi ∈
Av(q, ai) for i = 1, ..., n, it is required that

⋂n
i=1 δ(q, ai, bi) be a singleton.

The uniformity requirementAv(q1, ai) = Av(q2, ai) reflects the fact that an agent
is aware of what actions are available, so if two states are indistinguishable to
the agent, the same actions must be available.

4

We now define strategies in this setting. The notion of a strategy is depen-
dent on an agent’s knowledge about the state of the system: if an agent cannot
distinguish two histories, then the agent cannot behave differently in those two
histories. Thus, the definition of a strategy for an agent is modular with respect
to the agent’s equivalence relation on histories. So we will begin by defining
strategies, and then we will define three interesting equivalence relations on his-
tories.

In order to define strategies, we must first define histories in ECGS’s. We
need a few subsidiary definitions first. The following assume an n-agent ECGS
〈Q,Π,Σ,B,∼, π, Av, δ〉.

Definition 2. We extend the notion of available actions to a vector of n actions.
For q ∈ Q, let Av(q) = {〈b1, b2, ..., bn〉 ∈ Bn | ∀ai ∈ Σ, bi ∈ Av(q, ai)}.

Definition 3. For q ∈ Q and b∗ ∈ Av(q), define the b∗-successor of q as follows:
Succ(q, b∗) = q′ iff

⋂n
i=1 δ(q, ai, bi) = {q′}.

Definition 4. In an ECGS L, suppose h = q0.b
∗
1.q1.b

∗
2.q2...qk−1.b

∗
k.qk, where

qj ∈ Q for j ∈ {0, ..., k} and b∗j ∈ Bn for j ∈ {1, ..., k}. Then h is a history for
L if qj = Succ(qj−1, b

∗
j) for j ∈ {1, ..., k}. We denote the set of all histories for

L as Hist(L).

Note that all histories are finite, even though infinite executions are possible.
Finally we can define a strategy. For this definition, we extend the Av function

from state-agent pairs to history-agent pairs in the obvious way, as the set of
actions available at the last state in the history: Av(q0.b1.q1...qk, ai) = Av(qk, ai).

Definition 5. Given an ECGS L, let ≈i be an arbitrary equivalence relation on
Hist(L), and ai ∈ Σ. A ≈i uniform strategy for ai is a function fi : Hist(L)→
B satisfying the following requirements:

1. For all h ∈ Hist(L), fi(h) ∈ Av(h, ai).
2. If h1 ≈i h2 then f(h1) = f(h2).

Now that we have given the definition of a strategy with respect to a general
equivalence relation, we present several interesting equivalence relations giving
rise to different classes of strategies.

Definition 6. Histories h1 = q0...qk and h2 = r0...rj are memoryless equivalent
for agent ai iff qk ∼i rj. This is denoted h1 ∼mi h2. If fi is a ∼mi uniform strategy
for agent ai, then it is called a memoryless strategy for ai.

This equivalence relation describes agents who are only aware of the present
state but forget everything that has already happened. Next we define strategies
for agents who remember the past states of the system.

Definition 7. For h1, h2 ∈ H and ai ∈ Σ, h1 and h2 are state memory equiva-
lent, written h1 ∼si h2 iff h1 = q0.q1...qk and h2 = r0.r1...rk and for j = 0, ..., k,
qj ∼i rj. If fi is a ∼si uniform strategy for agent ai, then it is called a strategy
with state memory for ai.

5

This equivalence relation and class of strategies describe agents who remem-
ber all the past states of the system, but either do not remember their own
actions, or do not reason about the effects of their own actions. Next we give
the equivalence relations for agents who remember every state of the system,
remember all their own actions, and understand all the effects of their actions.

Definition 8. In an n-agent ECGS, histories h1 and h2 are perfect-recall equiv-
alent for agent i, written h1 ∼pri h2, iff either h1 = q1 and h2 = q2 (where q1, q2 ∈
Q) and q1 ∼i q2, or h1 = q0.b

∗
1.q1...qj−1.b

∗
j .qj and h2 = r0.c

∗
1.r1...rj−1.c

∗
j .rj and

all of the following conditions hold:

1. q0.b
∗
1.q1...qj−1 ∼

pr
i r0.c

∗
1.r1...rj−1, and

2. qj ∼i rj, and

3. bi = ci where b∗j = 〈b1, ..., bn〉 and c∗j = 〈c1, ..., cn〉.

The intuition behind this definition is an agent who remembers its own ac-
tions, and can reason about their effects, rather than an agent who just remem-
bers the past states. The perfect recall agent does not observe or remember
other agents’ actions, however. State memory is often called perfect recall in
ATL, whereas our perfect recall is more like PDL perfect recall. In our setting
for epistemic ATL there is a real difference between the two. To motivate the
definition of perfect recall equivalence, and the differences between the three
types of memory we have discussed, consider the following single-agent example.

2.1 Example

A robot is in a simple maze made up of square spaces. The robot can only
perceive whether there are walls immediately in front of, behind and to each
side of it, and cannot perceive anything else about the state of the world. The
robot has an orientation, either north, south, east or west, and a position in
the maze, but the robot is not aware of its orientation and cannot perceive the
position, but only the walls around it. We consider the following simple maze:

In the following pictures, the arrow represents the robot: both its orientation
and its position in the maze. The state of the system consists of the position
and orientation of the robot. So, for example, the following three states are

6

indistinguishable:

s1 s2 s3

s4

s5

ks ∼
s1 s2 s3

s4

s5

+3 ∼
s1 s2 s3

s4

s5

��

The following two states, however, are distinguishable, because in the first
one, the robot perceives that there is only a wall in front, while in the second
one it perceives that there are walls on either side:

s1 s2 s3

s4

s5

KS
6∼

s1 s2 s3

s4

s5

KS

Also, the following two states are distinguishable for the robot, because it
can distinguish between having an open space in front of it or behind it:

s1 s2 s3

s4

s5

+3 6∼
s1 s2 s3

s4

s5

ks

In the following, we denote the states of the system as pairs (s, o) where s
is the robot’s position in the system (s1 through s5), and o is its orientation
(n, s, e, or w).

So now we can state the full equivalence relation for the robot:

(s1, n) ∼ (s3, s) ∼ (s5, w) (s4, n) ∼ (s4, s) (s2, n)
(s1, e) ∼ (s3, w) ∼ (s5, n) (s4, e) ∼ (s4, w) (s2, e)
(s1, s) ∼ (s3, n) ∼ (s5, e) (s2, s)
(s1, w) ∼ (s3, e) ∼ (s5, s) (s2, w)

Those in the rightmost column are singleton equivalence classes, since the robot
can distinguish the single wall being on its left, right, in front of or behind it.

The robot’s actions are go left, go right, go forward or go back, denoted
(l, r, f, b). All of these actions are available at every state. The forward action

7

does not change the robot’s orientation, but all of the other actions do. Further-
more, the actions change the robot’s position if there is space available where
the robot tries to go. However, if the robot for example goes left when there is
a wall to its left, it changes its orientation but not its position. The following
diagram shows the possible transitions between positions and orientations, the
combination of which gives the state of the system. The left hand side shows
the positions and the right hand side shows the orientations. The arrows in the
left hand side are unlabelled because the identity of the transition action be-
tween positions depends on the robot’s orientation in the starting position: for

example, (s4, n)
f−−→ (s2, n) whereas (s4, w)

r−−→ (s2, n).

s1
&&

<< s2ff
�� &&

��

s3ff bb

s4

FF

<<

��
s5

FF

\\

nOO

b

��

f

��
r

��
l

��
eoo

b
// faa

r
uu

l

__

w

r

55

f
!!

l

��
s

r

UU

f

AA

l

??

For clarity, here is part of the transition relation only for position s1, for any
orientation:

f r b l
(s1, n) (s1, n) (s2, e) (s1, s) (s1, w)
(s1, e) (s2, e) (s1, s) (s1, w) (s1, n)
(s1, s) (s1, s) (s1, w) (s1, n) (s2, e)
(s1, w) (s1, w) (s1, n) (s2, e) (s1, s)

Now, suppose that the robot knows the structure of the maze, but is dropped
into a state without knowing its position or orientation. We want to investigate
what the robot can achieve by taking actions to explore the system, depending
on whether it is a memoryless, state memory, or perfect recall agent.

Suppose the robot starts out in state (s4, n). Consider the following three
sequences of actions.

1. (s4, n).b.(s5, n)
2. (s4, n).f.(s2, n).l.(s1, w)
3. (s4, n).f.(s2, n).r.(s3, e)

First of all, suppose the agent is memoryless. Then, the histories 1, 2, and 3
are all equivalent, since the last states are equivalent.

On the other hand, with state memory, the robot can distinguish 1 from 2.
In fact, it is easy to see that the robot can distinguish any history that starts in

8

position s4 and ends in position s5 from any history that starts in s4 and ends
in s1. But the agent cannot distinguish 2 from 3. This is because the robot only
looks at the past states, and (s1, w) ∼ (s3, e), as do the first two states in the
histories. The robot does not consider its own past actions.

However, if the robot has perfect recall, it can also distinguish 2 and 3, since
the two histories have different sequences of actions. Thus, with perfect recall,
the agent is allowed to remember its own past actions and distinguish histories
based on this information, as well as information about the states.

3 The logic uATEL

In this section we present a logic uATEL for alternating-time temporal epistemic
logic with uniform strategies.

Definition 9. The syntax of uATEL is as follows.

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Kiϕ | 〈〈A〉〉]© ϕ | 〈〈A〉〉]2ϕ | 〈〈A〉〉]ϕUϕ

where p ∈ Π, i ∈ Σ, A ⊆ Σ, and] is one of a, p and c.

For a single agent ai, we write 〈〈ai〉〉 rather than 〈〈{ai}〉〉. We also use ∧ and
→ in the usual way, defined in terms of ∨ and ¬. The subindices a, p, c for
the coalitional modalities stand for different semantics. Before we give these
semantics, we motivate the differences with some further examples.

Example 1. There are two agents, a1 and a2, and five states: s0, s1, s2, w, and l.
s0 ∼1 s1 and s1 ∼2 s2. There are three actions, b, c, and d, and two propositions,
which we also call w (for win) and l (for lose), with w |= w and l |= l. The
transitions are as follows:

s0 a1
b c d

a2

b w l l
c l l l
d l l l

s1 a1
b c d

a2

b l l l
c w l l
d l w l

s2 a1
b c d

a2

b l l l
c l l l
d l w l

Here is a picture of the system, where all the transitions are available at
s0, s1, and s2, and the ones not displayed go to l.

s0 s1 s2

w

a1 a2

(b,b)

(b,c)
(c,d)

�� (c,d)
~~

The question is, in state s0, do the agents have a strategy to reach w? a2
knows the state is s0, so she will definitely do b. But a1 does not know whether

9

the state is s0 or s1. If the state were s1, he would rationally want to do c, since
a2 would now know whether the state was s1 or s2, so a2 would do d to be safe.
So in s0, a1 wants to do b, but in s1 a1 wants to do c. The problem is that a1
cannot distinguish s0 and s1, so he has no strategy to be sure to get the system
to reach w. So our semantics must say that

s0 |= ¬〈〈{a1, a2}〉〉 © w.

Now observe that this reasoning does not hold in the case of the general knowl-
edge semantics, which only considers the union of equivalence relations for the
agents in the group, so that in this case from state s0 we only need to consider
that state and s1, but only with the common knowledge semantics, that it its
transitive closure, in this case, all three states s0, s1, s2. This is embodied in the
semantics for 〈〈{a1, as}〉〉a (where a stands for ‘active’).

Given are an ECGS L and q ∈ L. For Γ ⊆ Σ, ∼∗Γ is the transitive reflexive
closure of

⋃
ai∈Γ ∼i. We use λ to denote an element of Q+ (where Q is the set

of states of L), and λ[i] denotes the ith state in the string λ, starting from 0,
e.g. if λ = q0.q1.q2 then λ[1] = q1. We also need to define a group strategy:

Definition 10. For a group of agents Γ ⊆ Σ, we say F = {fa | a ∈ Γ} is a
group strategy for Γ if for all ai ∈ Γ , fai is a uniform strategy for ai.

Now we can give a possible semantics for the “next” operator.

(L, q) |= 〈〈Γ 〉〉a© ϕ iff there exists a group strategy FΓ for Γ such that
∀q′ ∼∗Γ q,∀λ ∈ out(q′, FΓ), (L, λ[1]) |= ϕ

This active coalitional strategy semantics matches with the intuitive notion of a
group of agents having a strategy to reach a goal particularly in settings where
all the agents in the group are active in trying to reach the goal, but also have
other choices they could make which would prevent the goal from being reached.
It is less intuitive in situations where there are agents in the group whose actions
cannot affect the outcome of the system from a certain state, as we will see in
the following example.

Example 2. Consider a system with two agents a1 and a2 and states {s0, ..., s4},
where s0 ∼a1 s1 but not for a2, and all the other states can be distinguished
by both agents. There is one proposition p, only s2 |= p, and the transitions are
δ(s0, a1, e) = {s2, s3}, δ(s0, a2, b) = {s2}, δ(s0, a2, c) = {s3}, δ(s1, a1, e) = {s4},
δ(s1, a2, d) = {s4}. So, a1 has no effect on the execution of the system. At
both starting states she can only choose e. Agent a2, on the other hand, can
distinguish s0 and s1, and at s0, he can choose the b action to make p true, but
at s1, a2 has only one choice and p cannot become true no matter what either
agent does. So, we want that s0 |= 〈〈a2〉〉 © p but, s0 |= ¬〈〈{a1, a2}〉〉 © p.

Let us consider whether it is reasonable that the semantics tells us that
s0 |= ¬〈〈{a1, a2}〉〉 © p. On the one hand, it is strange to think that while the
smaller group consisting only of a2 can bring about©p, the larger group {a1, a2}

10

cannot bring about ©p. In fact, this violates the property in traditional ATL
that if Γ1 ⊆ Γ2 then 〈〈Γ1〉〉© ϕ→ 〈〈Γ2〉〉© ϕ [8]. On the other hand, if we think
of a group strategy as a strategy where all the agents in the group are active and
aware that their actions will reach the outcome, this outcome is less surprising.

In the 〈〈Γ 〉〉a semantics above we indeed get that s0 |= ¬〈〈{a1, a2}〉〉a © p.
We now propose an alternative 〈〈Γ 〉〉p semantics (p for ‘passive’) that achieves
s0 |= 〈〈{a1, a2}〉〉p© p.

(L, q) |= 〈〈Γ 〉〉p© ϕ iff there exists a group strategy FB for some B ⊆ Γ
such that ∀q′ ∼∗B q, ∀λ ∈ out(q′, FB), (L, λ[1]) |= ϕ.

This is the passive coalitional strategy. In the active strategy operator, the strat-
egy works at all points that any agent considers possible, but in the passive
operator, there is a subset of agents who control the strategy, and it works at
all states they consider possible, but there are also passive agents in the group
whose actions and knowledge make no difference.

We propose a third strategic operator as well. In the active and passive
coalition operators the agents can coordinate their actions into a group strategy,
but they cannot coordinate or combine their knowledge prior to acting. We
would like to also analyze what a group of agents can achieve when they share
all the knowledge they possess, as well as acting strategically together. We can
model this situation simply by quantifying over the states that are equivalent
to the current state for all agents in the group (i.e., the accessibility relation
for distributed knowledge among that group), rather than quantifying over the
states that are equivalent for at least one agent in the group, and recursively
so (i.e., the accessibility relation for common knowledge among that group), as
in the above semantics. We call this the communication strategy operator and
annotate it with a c.

(L, q) |= 〈〈Γ 〉〉c© ϕ iff there exists a group strategy FΓ for Γ such that
∀q′ ∈ {r ∈ Q | r ∼i q ∀i ∈ Γ},∀λ ∈ out(q′, FΓ), (L, λ[1]) |= ϕ.

When the agents share their knowledge, the issue of active and passive strategies
no longer arises, because they now coincide.

After these preparations, we now give the complete semantics of uATEL,
wherein we have only spelled out the 2 and U versions for one of the three
coalitional modalities (the other two are similar).

Definition 11 (Semantics of uATEL). Let an ECGS L and a state q in L be
given.

– for p ∈ Π, L, q |= p iff p ∈ π(q),
– L, q |= ¬ϕ iff L, q 6|= ϕ,
– L, q |= ϕ1 ∨ ϕ2 iff L, q |= ϕ1 or L, q |= ϕ2,
– L, q |= Kiϕ iff for all q′ ∼i q, L, q′ |= ϕ.
– L, q |= 〈〈Γ 〉〉a©ϕ iff there exists a group strategy FΓ for Γ such that ∀q′ ∼∗Γ q,
∀λ ∈ out(q′, FΓ), L, λ[1] |= ϕ,

11

– L, q |= 〈〈Γ 〉〉a2ϕ iff there exists a group strategy FΓ for Γ such that ∀q′ ∼∗Γ q,
∀λ ∈ out(q′, FΓ), L, λ[n] |= ϕ for all n ≥ 0,

– L, q |= 〈〈Γ 〉〉aϕ1Uϕ2 iff there exists a group strategy FΓ for Γ such that
∀q′ ∼∗Γ q, ∀λ ∈ out(q′, FΓ), there exists m ∈ N such that L, λ[m] |= ϕ2 and
for all 0 ≤ n ≤ m, L, λ[n] |= ϕ1,

– L, q |= 〈〈Γ 〉〉p© ϕ iff there exists a group strategy FB for some B ⊆ Γ such
that ∀q′ ∼∗B q, ∀λ ∈ out(q′, FB), L, λ[1] |= ϕ,

– L, q |= 〈〈Γ 〉〉c© ϕ iff there exists a group strategy FΓ for Γ such that
∀q′ ∈ {r ∈ Q | r ∼i q for all i ∈ Γ}, ∀λ ∈ out(q′, FΓ), L, λ[1] |= ϕ,

If ϕ holds at all states in all EGCS’s, then we write |= ϕ (for ‘ϕ is valid’).

Some elementary results for this semantics are as follows.

Proposition 1. For all sets of agents Γ and for all formulas ϕ: |= 〈〈Γ 〉〉aϕ →
〈〈Γ 〉〉pϕ and |= 〈〈Γ 〉〉pϕ→ 〈〈Γ 〉〉cϕ.

Proposition 2. If Γ1 ⊆ Γ2, |= 〈〈Γ1〉〉pϕ→ 〈〈Γ2〉〉pϕ and |= 〈〈Γ1〉〉cϕ→ 〈〈Γ2〉〉cϕ.

Whereas this is false: “|= 〈〈Γ1〉〉aϕ → 〈〈Γ2〉〉aϕ implies |= 〈〈Γ1〉〉cϕ → 〈〈Γ2〉〉cϕ.”
An obvious embedding is the following. We use |=ATL for the ATL semantics,
and 〈〈Γ 〉〉 as the ATL coalitional operator. A perfect information system M is an
ECGS such that for all agents i, for all states q and q′, q ∼i q′ iff q = q′.

Proposition 3. M, q |=ATL 〈〈Γ 〉〉ϕ if and only if M, q |= 〈〈Γ 〉〉aϕ.

3.1 Example

In this section, we present an extended example based on the following scenario.
Consider a game played by two agents using a deck of cards with all the face
cards (J ,Q,K,A) removed. The deck is shuffled and each agent is given one card.
Each agent sees their own card without revealing it to the other agent. Then
each agent has the choice of trading their card for a different one from the deck,
once, or keeping their card. The agents’ goal is for the sum of their cards to be
at least seven.

First we model this game as an ECGS. We model it as a three agent sys-
tem, where a1 and a2 represent the two agents playing the game and the third
agent, env represents the environment, resolving choices that would otherwise
be nondeterministic. We define the set of states as

Q = {(x, y, z) | x ∈ {i, f} and y, z ∈ {2, 3, ..., 10}},

where (i, y, z) represents an initial state where a1 has card y and a2 has card
z, and (f, y, z) represents a final state, after the agents have decided whether
to swap their cards, where a1 has card y and a2 has card z. The equivalence
relations are as follows:

(x1, y1, z1) ∼1 (x2, y2, z2) iff x1 = x2 and y1 = y2

(x1, y1, z1) ∼2 (x2, y2, z2) iff x1 = x2 and z1 = z2

(x1, y1, z1) ∼env (x2, y2, z2) iff x1 = x2 and y1 = y2 and z1 = z2

12

The set of actions is B = {swap, stay}∪{(x, y) | x, y ∈ {2, ..., 10}}. The transition
relation is as follows:

δ((i, y, z), a1, stay) = {(f, y, z′) | z′ ∈ {2, ..., 10}}
δ((i, y, z), a1, swap) = {(f, y′, z′) | y′, z′ ∈ {2, ..., 10}}
δ((i, y, z), a2, stay) = {(f, y′, z) | y′ ∈ {2, ..., 10}}
δ((i, y, z), a2, swap) = {(f, y′, z′) | y′, z′ ∈ {2, ..., 10}}

δ((i, y, z), env, (y′, z′)) = {(f, y, z), (f, y, z′), (f, y′, z), (f, y′, z′)}
δ((f, y, z), a, stay) = {(f, y, z)} for all a ∈ Σ

Thus, in an initial state, each agent chooses whether to keep their card or
change it. If they change their card, the environment picks a new card for them.
Then, in a final state, all three agents only have one action available, stay, which
does not change the state (we only include this because our semantics require
infinite runs).

Finally, our only proposition will be w, representing that the agents win, and
π((x, y, z)) = {w} iff x = f and y + z ≥ 7. Otherwise π((x, y, z)) = ∅.

Now we will investigate which formulas are true at certain states in this
system. First, consider the state (i, 8, 1): the first agent has an 8 and the second
agent has 1. Intuitively, would we say that the group consisting of both agents
has a winning strategy from this state? Of course,

(i, 8, 1) |= ¬〈〈a2〉〉a© w,

because acting alone a2 has no strategy to ensure that they reach a winning
state, but

(i, 8, 1) |= 〈〈a1〉〉a© w,

because a1 can use the strategy of keeping his card and be sure to win. But
notice that

(i, 8, 1) |= ¬〈〈{a1, a2}〉〉a© w,

since, for example (i, 1, 1) ∼2 (i, 8, 1) and there is no strategy from (i, 1, 1) for
{a1, a2} to achieve w in the next state. However, it is true that

(i, 8, 1) |= 〈〈{a1, a2}〉〉p© w,

because {a1} ⊆ {a1, a2}, and no matter what a2 does, a1 has a winning strategy.
So there is a passive strategy for a1 and a2 to reach w at the next state, because
a2 has an active strategy for this goal, and nothing a1 does can interfere with
this accomplishment, so a1 passively brings about w at the next state. And of
course,

(i, 8, 1) |= 〈〈{a1, a2}〉〉c© w.

Intuitively, this is because the agents share their knowledge and then decide on
a strategy, so they both know that keeping their cards is a good strategy.

13

To highlight the differences between 〈〈Γ 〉〉c and the other two strategic oper-
ators, consider the state (i, 4, 5). Here, we have both

(i, 4, 5) |= ¬〈〈{a1, a2}〉〉a© w, and (i, 4, 5) |= ¬〈〈{a1, a2}〉〉p© w.

Intuitively, this means that the agents do not have enough information about
their current state to have either an active or a passive group strategy to reach
a winning state. However, if the agents share all their information, they realize
that both of them keeping their cards is a good group strategy. Thus,

(i, 4, 5) |= 〈〈{a1, a2}〉〉c© w.

In terms of the semantics, this is because there are no other states that are
equivalent to (i, 4, 5) for both a1 and a2, so the group strategy only needs to
guarantee the desired outcome at this single state.

4 Related Work

Uniform strategies In this paper we have only considered uniform strategies,
since we are considering what agents are able to accomplish, and an agent must
choose their actions based on their own knowledge. Non-uniform strategies, how-
ever, may be useful sometimes, for example for analyzing worst-case scenarios
where agents could perhaps secretly communicate or otherwise gain unexpected
knowledge. Only [10], the first paper about ATEL, does not consider uniform
strategies. Interestingly, in the original paper on ATL there is a discussion of
ATL with incomplete information, and uniform strategies are defined [3, p.706–
710]. However, in their approach the agents’ equivalence relations are defined in
terms of propositions (i.e., valuations) rather than in terms of states, leading to
many restrictions on the expressible formulas and making the logic quite compli-
cated. It is well-known that in multi-agent Kripke models such an identification
of states with valuations is very restrictive for the expressivity of a logic.

De re or de dicto A second major aspect of ATEL-type logics is whether they
allow de dicto or de re strategies. A de re strategy to achieve something is a
uniform strategy that will succeed starting from any state the agent considers
possible. A de dicto strategy to achieve something, on the other hand, is a
uniform strategy that will succeed from the present state, but not from every
state the agent considers possible. So if an agent has a de re strategy to achieve
something, the agent knows that he has the strategy and knows what the strategy
is. But if the agent has a de dicto strategy, he does not know what the strategy
is. Note that a de dicto strategy is in general uniform- even though it does not
succeed from all the states the agent considers possible, it requires the agent to
take the same action in all states that are equivalent for him.

In the current paper, we only consider de re strategies, as we are concerned
with what agents can be sure to achieve based on their knowledge. While de dicto
strategies are interesting from an outside perspective, they are not useful to the
agents inside the system, trying to achieve certain goals. Like our logic, ATOL

14

[12] and ATL with perfect and imperfect information and recall [16] can only
express de re abilities, whereas other logics can only express de dicto abilities, for
example Epistemic Coalition Logic in [2]. Some logics can express both de dicto
and de re abilities. For example, in Constructive Strategic Logic [11], the basic
group operator expresses de dicto ability, but combining this operator with a
special epistemic operator expresses de re ability. In [4], six variants of epistemic
ATL are considered, with both de dicto and de re abilities. It is shown that the
expressiveness of ATL with de re abilities (“subjective abilities”) and ATL with
de dicto abilities (“objective abilities”) are incomparable, both in the perfect
recall and imperfect recall cases. Similar results are shown for ATL∗ with de re
and de dicto abilities.

Coalitional operators In logics with uniform strategies the semantics for the
coalitional operator (followed by next) has the following generic form

L, q |= 〈〈Γ 〉〉 © ϕ iff there exists a group strategy FΓ such that ∀q′ ∼? q,
∀λ ∈ out(q′, FΓ), L, λ[1] |= ϕ,

where the definition of ∼? is variable. Most often, the relation is either
⋃
a∈H ∼a

(general knowledge for group of agents H), as in [16], or it is (
⋃
a∈H ∼a)∗, the

transitive closure of
⋃
a∈H ∼a (common knowledge for H). We have seen in

Example 1 that the former is not felicitous. Similarly, in [4], six varieties of ATL
and six varieties of ATL∗ are compared, and the semantics of the ability operators
in all the varieties of the logics are defined using the union of the equivalence
relations of the agents (i.e., general knowledge). It would be interesting to know if
defining the semantics in terms of the common knowledge relation would change
the results presented in that paper.

In ATOL [12] the semantics of the ability operator is much more subtle. The
operator is defined as follows, where A and Γ are groups of agents and K is
either C,E or D, for common knowledge, general knowledge and distributed
knowledge, respectively.

L, q |= 〈〈A〉〉K(Γ)© ϕ iff there is a group strategy FA such that ∀q′ ∼KΓ
q,∀λ ∈ out(q′, SA), L, λ[1] |= ϕ.

The ability operator in this logic is very powerful: not only does it subsume
both the union relation semantics (which can be expressed as 〈〈A〉〉E(A)) and the
common knowledge semantics (which can be expressed as 〈〈A〉〉C(A)), it is even
possible to define the ability of one group of agents with respect to the knowledge
of another group of agents. We have the following correspondence with our logic.

Proposition 4. Consider a ECGS L with memoryless agents, and q ∈ L.

1. L, q |= 〈〈Γ 〉〉aϕ if and only if L, q |=ATOL 〈〈Γ 〉〉C(Γ)ϕ.
2. L, q |= 〈〈Γ 〉〉pϕ if and only if ∃Γ ′ ⊆ Γ such that L, q |=ATOL 〈〈Γ ′〉〉C(Γ ′)ϕ.
3. L, q |= 〈〈Γ 〉〉cϕ if and only if L, q |=ATOL 〈〈Γ 〉〉D(Γ)ϕ.

In item 2, since we consider a finite set of agents, it follows that L, q |= 〈〈Γ 〉〉pϕ
if and only if L, q |=ATOL

∨
Γ ′⊆Γ 〈〈Γ ′〉〉C(Γ ′)ϕ. So, for memoryless systems, our

15

logic can be translated into ATOL. However, our system can deal with non-
memoryless systems as well. Even for memoryless systems ATOL can express
properties that our logic cannot express, such as 〈〈Γ1〉〉E(Γ2)©ϕ, where Γ2 6⊆ Γ1.

Memory Abilities Another difference among the various logics is whether they
allow perfect recall or not. Traditional ATL [3] allows agents to have perfect
recall, although it was shown in [4] that in the perfect information setting, for
ATL it does not matter whether agents have perfect recall or not — this only
matters in the case of ATL∗. In [10] only perfect recall agents are considered. In
[16], four different classes of operators are considered: IR for perfect information
and recall, iR for imperfect information and perfect recall, Ir for perfect infor-
mation and imperfect recall, and ir for imperfect information and recall. These
different levels of abilities determine which strategies are considered admissible.
Interestingly, in the logic of [16] it is possible to combine different ability op-
erators within the same formula, for example 〈〈A〉〉iR © 〈〈B〉〉Ir2ϕ means that
group A has an imperfect information perfect recall strategy so that at the next
state group B will have a perfect information imperfect recall strategy to make
ϕ always true. While being able to express such formulas is interesting, it is not
clear what the meaning of them is—for example, if some of the agents are in
both groups A and B in the above formula, it means that sometimes they are
being considered as memoryless agents and sometimes as perfect recall agents.
The logic ATOL [12] is mostly concerned with memoryless agents.

Combining memory abilities One of the new aspects of our work is the ability
to represent models with agents of different ability in the same system and in
the same logic. We do this by treating an agent’s memory abilities as part of the
underlying system rather than as an aspect of the semantics of the logic. This
is similar to the way that each agent’s knowledge is traditionally encoded in the
system as an arbitrary equivalence relation on states, but now we encode an
agent’s knowledge as an equivalence relation on histories rather than on states.
So, rather than being an aspect of the logic, the agent’s memory ability becomes
an aspect of the system. This makes it possible to discuss agents with different
memory abilities in the same formula, which is impossible in the other varieties
of epistemic ATL. For example, we can have a formula such as 〈〈ab〉〉2ϕ where a
is an agent with perfect recall and b is a memoryless agent. This formula is not
expressible in other logics.

5 Conclusion and Future Work

We have presented a logic for reasoning about the abilities of agents to cooperate
to achieve a goal when they are uncertain about the state of the world. Our
systems allow different agents to have different memory abilities. We presented
a new definition of perfect recall, which takes the history of states and the history
of actions into account.

We intend further to study the properties of this logic, such as decidability
and complexity. For example, in [5], it is proven that model checking is undecid-
able for a variant of epistemic ATL with strategies based on common knowledge.

16

We also wish to be able to describe memory abilities in the logical language. We
are further contemplating dynamic operators for change of memory ability, and
other levels of cooperation than the three considered in this paper.

Yet another future direction is that the logic uATEL may help to pave the
way to a coalitional event logic. Pauly’s game logic [14] corresponds to the next
temporal fragment of ATEL, and this game logic is subsumed by the coalitional
announcement logic (CAL) of [1]. Coalitional announcements are public events
enacted by coalitions.

Acknowledgements
We thank the reviewers for their comments. Hans van Ditmarsch is also affiliated
to the IMSc, Chennai, as associated researcher. This research is supported by
European Research Council grant EPS 313360.

References

1. Ågotnes, T., van Ditmarsch, H.: Coalitions and announcements. In: Proc. of 7th
AAMAS. pp. 673–680. IFAAMAS (2008)

2. Ågotnes, T., Alechina, N.: Epistemic coalition logic: completeness and complexity.
In: AAMAS. pp. 1099–1106 (2012)

3. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002)

4. Bulling, N., Jamroga, W.: Comparing variants of strategic ability: how uncertainty
and memory influence general properties of games. Autonomous Agents and Multi-
Agent Systems 28(3), 474–518 (2014)

5. Diaconu, R., Dima, C.: Model-checking alternating-time temporal logic with strate-
gies based on common knowledge is undecidable. Applied Artificial Intelligence
26(4), 331–348 (2012)

6. Emerson, E.A., Clarke, E.M.: Using branching-time temporal logic to synthesize
synchronization skeletons. Sci. Comput. Programm. 2, 241–266 (1982)

7. Emerson, E.A., Halpern, J.Y.: “sometimes” and “not never” revisited: on branching
versus linear time temporal logic. J. ACM 33(1), 151–178 (1986)

8. Goranko, V., van Drimmelen, G.: Complete axiomatization and decidability of
alternating-time temporal logic. Theor. Comp. Science 353(13), 93 – 117 (2006)

9. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge MA
(2000), foundations of Computing Series

10. van der Hoek, W., Wooldridge, M.: Cooperation, knowledge, and time: Alternating-
time temporal epistemic logic and its applications. Stud. Log. 75(1), 125–157 (2003)

11. Jamroga, W., Ågotnes, T.: Constructive knowledge: what agents can achieve under
imperfect information. Journal of Appl. Non-Classical Logics 17(4), 423–475 (2007)

12. Jamroga, W., van der Hoek, W.: Agents that know how to play. Fundam. Inform.
63(2-3), 185–219 (2004)

13. Kripke, S.: Semantical analysis of modal logic. Zeitschrift fur Mathematische Logik
und Grundlagen der Mathematik (1963)

14. Pauly, M.: A modal logic for coalitional power in games. Journal of Logic and
Computation 12(1), 149–166 (2002)

15. Pnueli, A.: The temporal logic of programs. In: The Eighteenth Annual IEEE
Symposium on Foundations of Computer Science. pp. 46–57 (1977)

16. Schobbens, P.Y.: Alternating-time logic with imperfect recall. Electr. Notes Theor.
Comput. Sci. 85(2), 82–93 (2004)

