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We propose a variant of public announcement logic for asynchronous systems. To capture12
asynchrony, we introduce two different modal operators for sending and receiving messages.13
The natural approach to defining the semantics leads to a circular definition, but we describe14
two restricted cases in which we solve this problem. The first case requires the Kripke model15
representing the initial epistemic situation to be a finite tree, and the second one only allows16
announcements from the existential fragment. After establishing some validities, we study17
the model checking problem and the satisfiability problem in cases where the semantics is18
well-defined, and we provide several complexity results.19

1. Introduction20

Asynchrony plays a central role in distributed systems such as robotic rescue teams, smart21

cities, autonomous vehicles, etc. In such systems, there may be an unpredictable delay22

between sending and receiving messages, and there is not always access to a centralized23

clock. Recently, with the proliferation of multi-agent systems (MAS), where independent24

agents interact, communicate, and make decisions under imperfect information, modelling25

the evolution of knowledge as informative events occur has become increasingly important26

for both verification and design. For instance, it is often crucial to know whether an agent27

has received some information, so it would be highly desirable to be able to analyse28

messages such as ‘agent a knows that agent b received message m,’ i.e., we want to29

model30

messages with epistemic content, (1)

and because we are considering automated systems where agents do not lie, make31

logical mistakes, or have inaccurate factual information (for instance autonomous vehicles32

communicating about their position), we also make the classic assumption that33

34

messages are true when they are sent. (2)
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Public Announcement Logic (PAL) (Plaza 2007) is one of the first and most influential35

proposals for modelling the relationship between knowledge and announcements. In PAL,36

true announcements are made to a group of agents. This logic later led to the powerful37

and much studied dynamic epistemic logic (DEL) (van Ditmarsch et al. 2007), which can38

describe more complex forms of communication, such as semi-private announcements,39

private announcements and much more. However, both these logics assume synchronicity:40

In PAL messages are immediately received by all agents at the same time, as soon as41

they are sent and in DEL agents may perceive events differently, but events immediately42

change the epistemic state of agents as soon as they occur. In asynchronous settings,43

however, messages are not delivered instantly, and agents may receive them at different44

points in time, making PAL intrinsically unfit for reasoning about such settings. This45

fact becomes even more evident when we consider that in PAL, every announcement46

immediately leads to common knowledge, while common knowledge is not achievable in47

asynchronous systems (Halpern and Moses 1990; Moses and Tuttle 1988). The only work48

we know of considering how DEL can capture asynchrony is (Dégremont et al. 2011),49

but in this logic an agent can only consider possible ‘future’ events if they do not change50

her epistemic state. This is related to the principle of inertia (Braüner et al. 2016; van51

Lambalgen 2010), which states that in absence of any observation, one assumes that52

nothing has happened. This assumption is natural in contexts, where agents believe that53

they can observe all events at the time of their occurrence. In asynchronous systems54

however, agents should know that even when they do not observe anything, or when they55

do not receive any messages, it is possible that messages are being sent and received by56

other agents. Therefore the inertia principle does not apply in our setting, and agents57

should be able to58

imagine possible pending messages. (3)

Our aim is to propose a logic in the spirit of PAL for reasoning about (1) epistemic59

messages in asynchronous systems, (2) that are true at the time of announcement and60

where (3) agents can imagine messages that have been sent but not yet received.61

Because this is an ambitious endeavour, we make a few assumptions to start as simply62

as possible:63
Broadcasts: all messages are sent to every agent

External source: messages are emitted by an external, omniscient source

FIFO: messages are received in the order they are sent.

64

The first assumption comes from PAL, and is natural in the context of smart cities for65

instance, where autonomous vehicles broadcast their current position or direction. The66

second one is a choice made to simplify the syntax by not having to model the origin of67

announcements, as in PAL. Announcements from an external, omniscient source can in68

some cases be used to model messages broadcast by agents within the system, in particular,69

an omniscient outside agent broadcasting that agent a knows ϕ is in many situations70

equivalent to agent a broadcasting ϕ to the other agents within the system. This captures71

the fact that in order for an agent within the system to make a true announcement, she72

should know that the announcement is true before she broadcasts it. Thus upon receiving73

an announcement made by agent a, another agent learns both the announcement and74
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new announcementchannel

FIFO for agent a

FIFO for agent b

FIFO for agent c

Fig. 1. Agent architecture.

the fact that a knows it, modelled within the framework where announcements come75

from an external source by the announcement of Kaψ (Ka being the classic knowledge76

operator of epistemic logics, see for instance Fagin et al. (2004)). However, depending on77

assumptions about the agents’ epistemic and reasoning capacities, this way of modelling78

agents’ announcements may not be completely faithful to the real situation. We discuss79

this issue briefly in the future work section.80

Concerning the last assumption, FIFO is a simple but classic scheme of communication81

in asynchronous systems (see for instance Brand and Zafiropulo (1983); Chambart and82

Schnoebelen (2008); Yu and Gouda (1982)).83

Figure 1 depicts the architecture of such a system with three autonomous agents84

receiving messages from a public channel and reading them when they are ready to85

process them. To represent the fact that agents read messages in the order they were sent,86

we provide each one with a private FIFO channel. Each copy receives the same messages87

from the public channel, in the order in which they are announced, but the moment at88

which these messages are read differs from one agent to another.89

In PAL, messages are received at the same time they are sent, and thus the announcement90

operator combines both sending and receiving. In contrast, in our setting, messages are91

not received immediately and they may be received at different times by different agents.92

The syntax reflects this aspect by providing both a sending operator, which adds new93

messages to the public channel, and a receiving operator for each agent, which allows her94

to read the first message in her FIFO queue that she has not read yet. Thus, in our logic,95

we provide the following modal constructions:96

— 〈ψ〉ϕ, which means ‘ψ is currently true, and after its announcement, ϕ holds;’97
— ©aϕ, which means ‘after agent a reads the next announcement, ϕ holds;’98
— Kaϕ, which means ‘agent a knows that ϕ holds.’99

Interestingly, the natural semantics for this logic presents a challenging problem of100

circular definition: In order to define the truth of epistemic formulas, we classically101

quantify over the set of all states that the agent considers possible, where states include102

the current content of the public channel and pointers to the last message read by each103

agent. But some states are not consistent and must not be considered: intuitively a state104

is consistent if the announcements it contains were true at the time they were made.105

Therefore, defining consistent states requires defining the truth of formulas, and vice106

versa. PAL presents a similar circularity, as the definition of the update of a model by107

an announcement and the definition of the truth values are mutually dependent, thus108

this phenomenon is not inherent to the asynchronous setting. However, only asynchrony109
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makes it a problem. Indeed in PAL a simple definition by mutual induction is possible. In110

an asynchronous setting, however, agents do not know what or how many messages other111

agents have received; in particular, an agent may consider it possible that some formula112

has been announced that is bigger than all those that have actually been announced,113

which makes a mutual induction impossible for lack of a decreasing quantity. This114

circularity problem is inherent in the asynchronous setting, and is independent from the115

assumptions of broadcasts, external source and FIFO described above. It only depends116

on the assumptions that announcements can talk about knowledge (1), that they must be117

true (2) and that agents can imagine pending messages (3).118

We partially solve the issue by defining three restricted cases in which we manage119

to avoid circularity. The first one requires the Kripke model representing the initial120

epistemic situation to be a finite tree; the second one only allows announcements from121

the existential fragment of our logic, and the third one makes the assumption that only a122

bounded number of announcements can be made during each time unit (a strong form123

of non-Zeno assumption), and that agents have access to a global clock. In the second124

case, the semantics is defined thanks to an application of the Knaster–Tarski fixed point125

theorem (Tarski 1955).126

We then discuss some properties of our logics, compare them to PAL, and establish127

some validities that hold whenever the semantics is well-defined; we also study the model128

checking problem for our logic and establish the following complexity results:129

Restrictions Complexity of model checking

Propositional announcements Pspace -complete

Finite tree initial models in Pspace

Announcements from the existential fragment in Exptime , Pspace -hard

130

Finally, we study the satisfiability problem in the case of propositional announcements,131

and we establish that it is NExptime -complete.132

The paper is organized as follows. In Section 2, we recall (synchronous) PAL. In133

Section 3, we present our logic, and discuss the circularity problem that arises from the134

definition of the semantics, and present an example to illustrate the logic. In Section 4,135

we exhibit cases where it can be solved. We then present some properties in Section 5136

(a comparison with PAL and some validities), we study the model checking problem in137

Section 6 and the satisfiability problem in Section 7. Finally, we discuss related work in138

Section 8 and future work in Section 9.139

This paper is an extended version of Knight et al. (2015). Section 7 is completely new140

material. The other sections are based on the older version of this paper but include more141

details, improvements and clarifications.142

2. Background: Public Announcement Logic143

In this section, we recall PAL (Plaza 2007), the classic logic for synchronous public144

announcements. Let AP be a countable infinite set of atomic propositions, and let Ag be145

a finite set of agents.146
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(a) w : pu : ¬p v : pa a, b
w : p v : p

a, b
(b)

Fig. 2. A Kripke model and an updated Kripke model.

Definition 2.1. The syntax of PAL is given by the following grammar:147

ϕ ::= p | (ϕ ∧ ϕ) | ¬ϕ | Kaϕ | 〈ϕ〉
PAL
ϕ,

where p ranges over AP and a ranges over Ag .148

The intuitive meaning of the last two operators is the following: Kaϕ means that agent a149

knows ϕ, and 〈ψ〉
PAL
ϕ means that ψ is true and after ψ has been publicly announced and150

publicly received by all the agents (meaning that all agents know that each agent received151

the message), ϕ holds. We define the following usual abbreviations: ⊥:= p∧¬p, � := ¬ ⊥,152

ϕ ∨ ϕ′ := ¬(¬ϕ ∧ ¬ϕ′) and the dual of the knowledge modality, K̂aϕ := ¬Ka¬ϕ, which153

reads as ‘agent a considers it possible that ϕ holds.’154

The semantics of PAL relies on classic Kripke models and the possible worlds semantics,155

widely used in logics of knowledge (Fagin et al. 2004).156

Definition 2.2. A Kripke model is a tuple M = (W, {→a}a∈Ag ,Π), where:157

— W is a non-empty finite set of worlds,158

— for each a ∈ Ag , →a ⊆ W ×W is an accessibility relation for agent a,159

— Π : W −→ 2AP is a valuation on worlds.160

A pointed model (M, w) is a model M with a specified world w. For the sake of161

generality, we allow arbitrary relations and not only equivalence relations as traditional162

in epistemic logic (Fagin et al. 2004; van Ditmarsch et al. 2007).†163

Example 2.1. Let us consider the Kripke model of Figure 2a, where w, u and v are164

worlds, a and b are agents and p is an atomic proposition. The arrows represent the165

agents’ accessibility relations. At world w, agent a considers u and v possible, and agent166

b considers only world v possible. Now assume that p is announced in (M, w). This is167

possible, as p holds in w. As a result of this announcement, all agents know that p holds,168

and thus the resulting epistemic situation is obtained by removing all worlds, where p169

does not hold, i.e., u. This updated model is represented in Figure 2b.170

The update of a Kripke model by an announcement and the semantics of PAL are defined171

by mutual induction.172

Definition 2.3. The update of a Kripke model M with an announcement ψ is the Kripke173

model Mψ = (Wψ, {→ψ
a }a∈Ag ,Π

ψ), where174

— Wψ = {u ∈ W | M, u |= ψ};175

— →ψ
a = →a ∩ (Wψ ×Wψ) for all agents a;176

— Πψ is the function Π restricted to Wψ ,177

† This allows for alternative semantics of knowledge such as S4 (Hintikka 1962), S4.2 (Lenzen 1978),

S4.3 (van der Hoek 1990), S4.4 (Kutschera 1976), KD45 for beliefs (Fagin et al. 2004), etc.
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and the truth condition relation M, w |= ϕ (read as ϕ is true in M, w) is defined as178

M, w |= p ifp ∈ Π(w)

M, w |= (ϕ1 ∧ ϕ2)ifM, w |= ϕ1 and M, w |= ϕ2

M, w |= ¬ϕ ifM, w �|= ϕ

M, w |= Kaϕ iffor all u such that w →a u, M, u |= ϕ

M, w |= 〈ψ〉
PAL
ϕ ifM, w |= ψ and Mψ, w |= ϕ.

179

Observe that the definition by structural induction on ϕ is sound: defining the semantics180

of 〈ψ〉
PAL
ϕ requires having defined the update of a Kripke model by announcement ψ,181

which only requires having defined the semantics of ψ, a subformula of ϕ.182

Example 2.2. Let M be the model of Figure 2a. We have M, w |= 〈p〉
PAL
Kap. Indeed, the183

announcement p is true, that is M, w |= p, and Mp, w |= Kap. Note that Mp is the model184

of Figure 2b.185

The model-checking problem of PAL is P -complete (the membership in P is established186

in Benthem (2011) and P-hardness in Schnoebelen (2002)‡) and the satisfiability problem187

for PAL is Pspace -complete (Lutz 2006). A tableau proof system for PAL is provided in188

Baltag et al. (2008).189

3. Asynchronous broadcast logic190

In this section, we present our framework for reasoning about asynchronous epistemic191

announcements in a public channel. As in Section 2, AP is a countable infinite set of192

atomic propositions, and Ag is a finite set of agents. For pedagogical reasons, we first193

introduce models, then the syntax and finally the semantics of our logic, even though by194

doing so we need to refer to the language before we formally define it.195

3.1. Models196

Agents start with an initial state of knowledge of the world, which is modelled by an initial197

pointed epistemic model, or Kripke model. Then true announcements are made by some198

external entity, and sent in the public channel. The whole sequence of announcements that199

have been made up to the present moment is modelled as a sequence of formulas from200

our logic, whose syntax we introduce later in Section 3.2. Agents read these messages201

independently, possibly at different times, but in FIFO order. To represent which messages202

each agent has already read, and thus which ones remain to be read, we simply map each203

agent to the number of announcements she has read. Such a mapping is called a cut.204

3.1.1. Initial Kripke model. An initial model is given as a Kripke model M =205

(W, {→a}a∈Ag ,Π), as defined in Definition 2.2. It represents the initial knowledge of206

agents before any announcements are made, and it corresponds to the notion of initial207

‡ Epistemic logic is an extension of the fragment of CTL with only the next operators AX and EX, proven to

be P-hard.
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knowledge in (Raynal 2013), p. 5. In practice, (M, w) is directly provided by the modeller208

or inferred from what agents perceive (Balbiani et al. 2013; Gasquet et al. 2015).209

3.1.2. Announcements. We consider that, in a given scenario, not every formula may be210

announced, but rather that there is a certain set of relevant announcements. Furthermore,211

we allow the number of times an announcement can be made to be bounded. To212

represent this, we define the notion of announcement protocols (Asynchronous Broadcast213

Logic (ABL) is the language defined in Section 3.2).214

Definition 3.1. An announcement protocol is a multiset of formulas in ABL, where the215

multiplicity of an element ψ is either an integer or ∞.216

Example 3.1. The reader may imagine a card game where it is only possible to announce217

‘agent a has a heart card’ once and ‘agent a does not know whether agent b has a heart218

card or not’ twice. We let the proposition ♥a mean ‘agent a has a heart card,’ and define219

the announcement protocol to be {{♥a , K̂a♥b ∧ K̂a¬♥b , K̂a♥b ∧ K̂a¬♥b}}.220

Given an announcement protocol A, we denote by Seq(A) the set of finite sequences221

σ = [ϕ1, . . . , ϕk] such that the multiset {{ϕ1, . . . , ϕk}} is a submultiset of A. We define the222

size of a sequence σ as |σ| :=
∑k

i=1 |ϕi|. For σ, σ′ ∈ Seq(A), we write σ � σ′ if σ is a prefix223

of σ′. The sequence σ|k is the prefix of σ of length k. Given a formula ϕ and a sequence224

of formulas σ, ϕ::σ (resp. σ::ϕ) is the sequence obtained by adding ϕ at the beginning225

(resp. at the end) of σ.226

3.1.3. States. We now define the set of possible states of the models in which the formulas227

of our logic will be evaluated.228

Definition 3.2. Let M be an initial model and A an announcement protocol. We define229

the set of possible states SM,A as follows:230

SM,A = {(w, σ, c) | w ∈ W,σ ∈ Seq(A) and c : Ag −→ {0, . . . , |σ|}} .

The first element of a state represents the world the system is in. The second element231

is the list of messages that have already been announced. The last element, c, is called232

a cut, and for each a ∈ Ag , c(a) is the number of announcements of σ that agent a has233

received so far. Given two cuts c and c′, we write c < c′ if for all a, c(a) � c′(a) and there234

exists b such that c(b) < c′(b): in other words, c < c′ if all agents have received at least as235

many messages in c′ as in c, and at least one agent received strictly more messages in c′.236

Typical elements of SM,A are denoted S , S ′, etc.237

Example 3.2. Consider the state S = (w, [ϕ,ψ, χ], c), where c(a) = 2 and c(b) = 1. S238

represents the situation where in initial world w, the sequence [ϕ,ψ, χ] of formulas has239

been announced, agent a has received ϕ and ψ, and agent b has only received ϕ. Only240

χ remains in the queue of a and has not been read yet, and only ψ and χ remain in the241

queue of b. We represent S as follows:242
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w
a :
b :

ϕ ψ χ

and we may also write S = (w, [ϕ,ψ, χ], a �→ 2
b �→ 1 ).243

Example 3.3. Consider the state S = (w, ε, 0), where ε denotes the empty sequence of244

formulas and 0 is the function that assigns 0 to all agents. S represents an initial world245

w in which no announcement has been made (and therefore no announcement has been246

received either). It can be represented as follows:247

w
a :
b : no

mes
sa

ge
s

Example 3.4. State S = (w, [ϕ, χ], 0), which represents the situation where in initial world248

w, ϕ and χ have successively been announced, but neither agent a or agent b received any249

announcement yet. We depict it as follows:250

w
a :
b :

ϕ χ

3.1.4. Consistent states. Definition 3.2 allows for all combinations of worlds, sequences of251

announcements allowed by the announcement protocol, and cuts. This definition is an over-252

approximation of the set of states we want to consider: indeed, because announcements253

must be true, some of the states in S are inconsistent. For example, suppose that w is a254

world in M where p does not hold. Because only true announcements can be made, p255

cannot be announced in world w, and thus the state (w, [p], 0) is inconsistent.256

Example 3.5. Let us consider the following initial model, where w, u, v and z are worlds,257

a and b are agents and p is a proposition. The arrows represent the agents’ accessibility258

relations, before any announcements have been made. So at world w, agent a considers u259

and v possible, and agent b considers world z possible.260

w : p

u : ¬p v : p z : p

a
a

b

Now assuming that the announcement protocol A contains p, ϕ and ψ, a partial261

depiction of the asynchronous model M ⊗ A is below. We depict the states w, u, v, and262

z where no announcement has been made, as well as copies of u where two different263

sequences of announcements have been made, and received in one state by agent b and264
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in a different state by agent a. Of course, the entire model M⊗A is infinite so we do not265

depict all the states here.266

w
a :
b : no

mes
sa

ge
s

u
a :
b : no

mes
sa

ge
s

v
a :
b : no

mes
sa

ge
s

z
a :
b : no

mes
sa

ge
s

u
a :
b :

p ϕ

u
a :
b :

ψ
. . .

a a b a b

State
u

a :
b :

p ϕ

is not consistent because p has been announced even though p is not267

true in u. This notion of inconsistency is the source of the circularity problem, as we268

discuss in Section 3.4. For now, we define the relations that capture which states an agent269

considers possible before removal of inconsistent ones.270

3.1.5. Pre-accessibility relation and asynchronous pre-model. We now define, for each271

agent, a pre-accessibility relation that does not yet take consistency into account, but272

is only based on the agents’ accessibility relations in the initial model, and the messages273

it has already read.274

Definition 3.3. The pre-accessibility relation for agent a, written Ra, is defined as follows:275

given S = (w, σ, c) and S ′ = (w′, σ′, c′), we have SRaS
′ if:276

1. w →a w
′, and277

2. σ|c(a) = σ′|c′(a).278

The first clause simply says that for S ′ to be considered possible by a when in S , world w′279

must be considered possible by a from w. The second clause says that agent a is aware of,280

and only aware of, messages that she has received: therefore she can only consider possible281

states where she has received exactly the same messages. Then, because the principle of282

inertia does not apply to the asynchronous setting, she can imagine any possible sequence283

of pending announcements, as long as it is compatible with the announcement protocol.284

Also, as she has no information about what messages the other agents have received, c′(b)285

can be anything if b �= a: agent a considers it possible that b received more, or fewer,286

messages than she actually has. Note that the second clause also implies c(a) = c′(a).287

Given an initial model M and an announcement protocol A, we define the asynchronous288

pre-model M ⊗ A := (SM,A, {Ra}a∈Ag ), where SM,A is the set of possible states, and for289

a ∈ Ag , Ra is the pre-accessibility relation for agent a.290

3.2. Language291

We now introduce the syntax of our logic, which we call Asynchronous Broadcast Logic,292

or ABL for short. Note that we do not use the term ‘public announcement’ in the name293

of our logic as it has a strong synchronous connotation: public announcements are often294

thought of as becoming common knowledge the moment they are made.295
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Definition 3.4 (Syntax). The set of ABL-formulas is given by the following grammar:296

ϕ ::= p | (ϕ ∧ ϕ) | ¬ϕ | Kaϕ | 〈ϕ〉ϕ | ©a ϕ,

where p ranges over AP and a ranges over Ag .297

The intuitive meaning of the last three operators is the following: Kaϕ means that agent a298

knows ϕ, 〈ψ〉ϕ means that ψ is true and after ψ has been put on the public channel, ϕ299

holds, and ©aϕ means that agent a has a pending message, and after she has received300

and read it, ϕ holds. We define the dual of the announcement operator: [ψ]ϕ := ¬〈ψ〉¬ϕ,301

meaning that if ψ is true, then ϕ holds after its announcement. |ϕ| is the length of ϕ, and302

we denote by propositional formula a formula that uses no modalities, i.e., containts no303

occurrences of Ka, 〈ϕ〉, or ©a.304

In (synchronous) PAL (see Definition 2.1), the operator 〈ψ〉
PAL

captures both the305

broadcast and the reception of an announcement ψ, because in the synchronous setting,306

sending and reception occur simultaneously. In our asynchronous setting, not only can307

sending and reception occur at different times, but also different agents may receive the308

same message at different times. Therefore, we capture the broadcast of a formula ψ309

with operator 〈ψ〉, while agent a’s reception of a broadcasted formula is captured by the310

operator ©a.311

3.3. Truth conditions312

For the rest of the section, we fix an initial model M and an announcement protocol A.313

As discussed in Section 3.1.4, some possible states from Definition 3.2 are inconsistent,314

because they contain announcements that were not true at the time they were announced.315

Also, because agents should not consider inconsistent states possible, we described how316

defining consistency is necessary to define the semantics of the knowledge operator,317

which in turn is necessary to define the consistency of states that contain epistemic318

announcements, hence a circularity problem.319

We describe in Figure 3, the definition of consistency (represented with symbol �) as320

well as truth conditions for our logic. This definition is circular, and therefore the semantics321

as presented here is not well-founded, although it conveys the intended meaning of our322

operators. In the next section, we will describe restricted cases in which we can provide a323

semantics that is well-defined.324

The intuitive meaning of (w, σ, c) |= � is that the state (w, σ, c) is consistent, that is,325

all announcements in σ were true when they were made. The first clause is obvious: the326

initial state where no announcement has been made is consistent. The second clause gives327

two possibilities for a state to be consistent. Either there was an earlier consistent state328

(w, σ, c′) in which some agents received some already announced formulas, increasing the329

cut from c′ to c, or a new, true announcement ψ has been made from an earlier consistent330

state, extending the history from σ′ to σ′::ψ.331

For the formulas, the first three clauses are straightforward. The fourth clause says that332

agent a knows ϕ if ϕ holds in all consistent states that she considers possible. The fifth333

clause says that 〈ψ〉ϕ holds in a state S if ψ can be announced (it is true in S), and ϕ334
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Truth conditions for consistency:

( 0) |= (always)
(w, σ, c) |= if there is c < c s.t. (w, σ, c ) |= , or

σ = σ ::ψ, (w, σ , c) ∈ SM,A,
(w, σ , c) |= and (w, σ , c) |= ψ

Truth conditions for formulas:

(w, σ, c) |= p if p ∈ Π(w)
(w, σ, c) |= (ϕ1 ∧ ϕ2) if (w, σ, c) |= ϕ1 and (w, σ, c) |= ϕ2

(w, σ, c) |= ¬ϕ if (w, σ, c) = ϕ
(w, σ, c) |= Kaϕ if for all S s.t. (w, σ, c)RaS and S |= , S |= ϕ
(w, σ, c) |= ψ ϕ if σ::ψ ∈ Seq(A), (w, σ, c) |= ψ and (w, σ::ψ, c) |= ϕ
(w, σ, c) |= aϕ if c(a) < |σ| and (w, σ, c+a) |= ϕ

where c+a(b) =
c(b) if b = a
c(b) + 1 if b = a

Fig. 3. Consistency and semantics.

holds in the state obtained by adding ψ to the public channel. The last clause says that335

©aϕ holds if agent a has at least one unread announcement in the channel, and ϕ holds336

after she reads the first unread message.337

3.4. Circularity338

By observing the truth conditions for consistency and for formulas in Figure 3, one can see339

that defining whether a state is consistent requires one to define whether an announcement340

can be made, and this requires the semantics of our logic to be defined. But to define341

the semantics of the knowledge operators, we need to define which consistent states are342

considered possible by the agent, which requires us to define which states are consistent,343

hence the circularity.344

Let us consider the following example, where Ag = {a}. Let the initial model be M =345

(W,→a,Π) where W = {w}, →a = {(w,w)} and Π(w) = �, and let the announcement pro-346

tocol be A = {{Kap}}. According to Figure 3, we have: (w, [Kap], 0) |= � iff (w, ε, 0) |= Kap.347

But, as (w, ε, 0)Ra(w, [Kap], 0), the definition of the truth value of (w, ε, 0) |= Kap depends348

on the truth value of (w, [Kap], 0) |= �. To sum up, the definition of (w, [Kap], 0) |= �349

depends on itself.350

The circularity problem depends on assumptions (1), (2) and (3) from the introduction:351

— Announcements can be epistemic352
— Announcements are true353
— Agents can imagine pending messages354

If one of these assumptions is dropped, the circularity problem is easily solved: if355

announcements do not need to be true, then all states are consistent; if announcements356

are only propositional formulas, consistency of a state (w, σ, c) can be trivially checked by357

evaluating all propositional formulas in σ in the world w. The last point is only a little358
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bit less obvious: if agents cannot imagine pending annoucements, then the definition of359

the pre-accessibility relation Ra for agent a (see Definition 3.3) is that (w, σ, c)Ra(w
′, σ′, c′)360

if w →a w
′, c(a) = c′(a) and σ|c(a) = σ′: the only sequence of announcements that she361

considers possible is the one she has already received. In that case, the length of the362

sequence of announcements |σ| together with the size of the formula to evaluate can be363

used to define truth conditions for consistency and for formulas by induction. Indeed,364

evaluating a formula Kaϕ in a state (w, σ, c) only requires evaluating the consistency of365

states (w′, σ′, c′) such that |σ′| � |σ|, which in turn only requires evaluating formulas ψ ∈ σ366

in states (w′, σ′′, c′), where σ′′ is a strict prefix of σ.367

We also note that it is possible to solve the circularity problem by only constraining368

the last assumption instead of completely dropping it. Indeed, under a bounded non-369

Zeno behaviour assumption (only a bounded finite number of discrete events occur in370

a finite time), and assuming a global clock that is common knowledge, the imagination371

of the agents is sufficiently constrained to solve the circularity problem rather easily (see372

Appendix B).373

In relation with the above discussion, we point out that the circularity problem does374

not depend on the following assumptions:375

— Announcements are broadcast376

— Announcements are made by an external source377

— Announcements are received in FIFO order.378

In Section 4, we will describe several restricted settings in which we manage to overcome379

this problem. But first, we present a small example to better understand the intuitions380

behind our logic.381

3.5. Example382

We consider two agents Ag = {B,C}, where B stands for Bonnie and C for Clyde. Bonnie383

and Clyde go to rob a bank, and Bonnie stays in the car, while Clyde goes to the vault.384

At noon, Bonnie notices that Clyde left the paper with the secret code to open the vault385

in the car. She uses her smartphone to broadcast the code on their chat group. But Clyde386

has also realized that he forgot the paper, and before he receives Bonnie’s message, he387

sends a message saying that he does not know the code.388

In the following, let p represent the fact that the secret code is 0000, and q the fact that389

the vault is open. The situation at noon is represented by the following initial pointed390

Kripke model (M, w):391

u : p, q w : p,¬q v : ¬p,¬qB C

B, C B, C B, C

In the initial world w, Bonnie knows p, i.e., she knows the code, but Clyde does not. On392

the other hand, Clyde knows that q is not true, i.e., he knows that the vault is closed, but393

Bonnie does not (Clyde could have memorized the code before leaving the car, and thus394
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he might have opened the vault). In fact, we observe that initially Bonnie knows that ‘the395

vault is open if, and only if, Clyde knows the code’ or, in epistemic logic, KB(q ↔ KCp).396

The initial state at noon is
w B :

C : no
mess

ag
es

. In our scenario, first p is announced by397

Bonnie, and then ¬KCp is announced by Clyde. The actual state becomes
w B :

C :

p ¬KCp

.
398

Intuitively, since only true announcements are made, we see that ¬KCp can only be399

announced before Clyde receives the announcement of p. We would like to verify whether,400

after Bonnie receives both announcements but Clyde receives neither (the signal inside401

the bank is weak), that is in state
w B :

C :

p ¬KCp

, Bonnie knows ¬q, i.e., does she know that402

the vault is not open, and what does she know about Clyde’s knowledge. In fact, we can403

prove that the following holds:404

(w, ε, 0) |= 〈p〉〈¬KCp〉 ©B ©B(KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp) (4)

The meaning is that, after both announcements have been made and received by Bonnie405

but not by Clyde,406

— Bonnie knows that the vault is not open: intuitively, because Clyde told her he did not407

have the code, and thus could not have opened it (recall that q represents the situation408

at noon, i.e., before Bonnie announced p). In state
w B :

C :

p ¬KCp

, all consistent possible409

states for B are of the form (w, σ, c) for some σ and c: they share the same world w in410

which q does not hold. Indeed, Bonnie initially considers world u possible, but states411

with world u and announcement ¬KCp are not consistent. Therefore, Bonnie knows412

¬q.413

— Bonnie does not know whether Clyde knows the code (because she does not know414

whether Clyde received her message).415

In state
w B :

C :

p ¬KCp

, Bonnie considers state
w B :

C :

p ¬KCp

as possible, and in this state416

Clyde knows p. But Bonnie also considers possible state
w B :

C :

p ¬KCp

, in which Clyde417

considers state
v B :

C : no
mess

ag
es

possible, and thus does not know p.418

We note that this example highlights the differences between asynchronous broadcast419

logic and (synchronous) PAL. Since sending and receiving occur at the same time in420

PAL, we can informally translate the asynchronous broadcast formula 〈p〉〈¬KCp〉 ©B421

©B(KB¬q∧¬KBKCp∧¬KB¬KCp) to the PAL formula 〈p〉
PAL

〈¬KCp〉
PAL

(KB¬q∧¬KBKCp∧422

¬KB¬KCp). Assuming the same initial Kripke model and state w, we first notice that423

in PAL any formula of the form 〈p〉
PAL

〈¬KCp〉
PAL
ϕ is false because after a proposition424

p is announced, KCp holds in any circumstances, so that ¬KCp cannot be announced.425

We can try to simulate the state, where Bonnie has received both announcements but426
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Clyde received neither by using private announcements, made to Bonnie but not to427

Clyde. Consider the trivial translation of our ABL formula into a formula with private428

announcements:429

〈p〉B〈¬KCp〉B(KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp),

where 〈ϕ〉B means that ϕ is sent to B and not to C . In all versions of PAL with any430

variant of synchronous private or semi-private announcement (e.g. Baltag and Moss431

2004; Baltag et al. 1998; Gerbrandy and Groeneveld 1997; ?), this formula is still false in432

(M, w): because Bonnie receives ¬KCp immediately when it is sent, Clyde cannot receive433

p between the announcement of ¬KCp and its reception by Bonnie, so that Bonnie knows434

that Clyde does not know p. Thus, this example shows that there is no obvious translation435

from asynchronous broadcast logic to a variant of DEL, and that asynchronous broadcast436

logic is indeed quite different from DEL.437

The proof of (4) can be found in Appendix A. Note that here, we anticipate the fact438

that we are in one of the cases, where we can solve the circularity problem: indeed, all439

announcements are in the existential fragment of our language (see Section 4.2).440

4. Solving the circularity problem441

In this section, we show how we solve the circularity problem identified in the last section442

for several restricted cases.443

4.1. When the initial model is a finite tree444

If we assume in the initial model M = (W, {→a}a∈Ag ,Π) the relation
⋃
a →a forms a finite445

tree over W , then the circularity problem can be avoided. In this case, we can define a446

well-founded order on tuples of the form (w, σ, c, ϕ), where ϕ is either a formula in ABL447

or �, the idea being that a tuple (w, σ, c, ϕ) means ‘w, σ, c |= ϕ’.448

Definition 4.1. The order ≺ is defined as follows:449

(w, σ, c, ϕ) ≺ (w′, σ′, c′, ϕ′) if either450451

1 w is a descendent of w′ in M,452
2 or w = w′ and |σ| + |ϕ| < |σ′| + |ϕ′|,453

3 or w = w′, |σ| + |ϕ| = |σ′| + |ϕ′| and c < c′,454

where |�| = 1.455

It is clear that ≺ is a well-founded order, and with this order Figure 3 forms a456

well-founded inductive definition of consistency and semantics of our language.457

We detail the non-trivial cases. For the second clause of Figure 3, observe that by458

Point 3 of Definition 4.1, if c′ < c then (w, σ, c′,�) ≺ (w, σ, c,�), and for all w, σ′, c and459

ψ, by Point 2 of Definition 4.1, we have (w, σ′, c, ψ) ≺ (w, σ′::ψ, c,�).460

For the clause for Kaϕ of Figure 3, by Point 1 of Definition 4.1 we have that for all461

ϕ, σ, σ′, c, c′, if w′ is a child of w then (w′, σ′, c′, ϕ) ≺ (w, σ, c, Kiϕ).462

Finally, for the clause for 〈ψ〉ϕ of Figure 3, by Point 2 of Definition 4.1 we have that463

(w, σ::ψ, c, ϕ) ≺ (w, σ, c, 〈ψ〉ϕ) for all w, σ, c, ϕ and ψ (note that |〈ψ〉ϕ| = 1 + |ψ| + |ϕ|).464
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Example 4.1. Suppose that we have only one agent a. Let us consider initial model M:465

w : p

u : ¬p v : p

a a

In this model, p holds in the actual world w, but agent a does not know it. Assume466

that p can be announced at least once (p ∈ A). We show that, as expected, after p is467

announced and agent a receives this announcement, agent a knows that p holds. Formally,468

we prove that, in M ⊗ A, we have (w, ε, 0) |= 〈p〉 ©a Kap. To do so, we in fact show469

that (w, [p], a �→ 1) |= Kap, from which it follows that (w, [p], 0) |= ©aKap, hence the470

desired result. By Definition 3.3 for pre-accessibility relations, every state S such that471

(w, [p], a �→ 1)RaS is of the form S = (w′, p::σ, a �→ 1), where w′ ∈ {u, v} and σ is a472

sequence of announcements. We must show that every such state either is inconsistent or473

satisfies p.474

First, for w′ = u. According to the clause for p in Figure 3, we have that (u, ε, 0) �|= p,475

and by the second clause in Figure 3 it follows that (u, [p], 0) �|= �, from which it also476

follows also that (u, [p], a �→ 1) �|= � and (u, p::σ, a �→ 1) �|= �, for any σ.477

Now, for w′ = v, by the first clause for p in Figure 3, it follows that for all states of478

the form S = (v, p::σ, a �→ 1), S |= p, so that finally every state related to (w, [p], a �→ 1) is479

either inconsistent or verifies p. Note that we could also prove that S is consistent.480

In practice, this setting can be used as an approximation scheme: taking the tree481

unfolding of models and cutting them at level � amounts to assuming that agents cannot482

reason about deeper nesting of knowledge. This approach is similar to the well known483

idea of bounded rationality (Jones 1999), where it is assumed that due to computational484

limits, agents have only approximate, bounded information about other agents’ knowledge,485

which is represented by allowing only finite-length paths in the Kripke model. We point486

out, however, that this method of approximation is only appropriate in certain settings.487

One issue is that it does not allow the accurate representation of transitive accessibility488

relations, where the leaves of an initial model of any depth � may be reached just by489

evaluating a formula with one knowledge operator. This setting calls for more work to490

clarify what the finite tree restriction really captures.491

4.2. Announcing existential formulas492

Now, we again allow the initial model to be arbitrary. In particular, we may use one of493

the common models of knowledge, for example an initial model whose underlying frame494

is KD45 (relations are serial, transitive and Euclidean) or S5 (relations are equivalence495

relations); see Fagin et al. (2004). However, we restrict the announcement protocol to the496

existential fragment of our logic, generated by the following rule:497

ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | K̂aϕ | ©a ϕ | 〈ϕ〉ϕ

where p ranges over AP and a ranges over Ag . Formulas of the existential fragment are498

called existential formulas. If an announcement protocol contains only existential formulas,499
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f(Γ) = Γ ∪ (w, σ, c, p) | p ∈ Π(w)
∪ (w, σ, c,¬p) | p Π(w)
∪ (w, σ, c, (ϕ ∧ ψ)) | (w, σ, c, ϕ) ∈ Γ and (w, σ, c, ψ) ∈ Γ

∪ (w, σ, c, (ϕ ∨ ψ)) | ((w, σ, c, ϕ) ∈ Γ or (w, σ, c, ψ) ∈ Γ

∪ (w, σ, c, K̂aϕ) | there exists (w , σ , c ) s.t. (w, σ, c)Ra(w , σ , c ),
(w , σ , c , ) ∈ Γ and (w , σ , c , ϕ) ∈ Γ

∪ ( 0, ) | w ∈ W

∪ (w, σ, c, ) | there is c < c s.t. (w, σ, c , ) ∈ Γ

∪ (w, σ, c, ) | (w, σ , c, ) ∈ Γ and (w, σ , c, ψ) ∈ Γ,
where σ = σ :: ψ

∪ (w, σ, c, aϕ) | c(i) < |σ| and (w, σ, c+a, ϕ) ∈ Γ

∪ (w, σ, c, ψ ϕ) | σ::ψ ∈ Seq(A), (w, σ, c, ψ) ∈ Γ and (w, σ::ψ, c, ϕ) ∈ Γ

Fig. 4. Function f that applies one step of the truth conditions.

we call it an existential announcement protocol. For instance, the announcement protocol500

in Example 3.1 is existential.501

Here, we tackle the circularity problem by defining consistency and truth conditions502

separately. We first define as a fixed point the semantics of existential announcements in503

A, together with consistency. In a second step, we define the semantics of the full logic504

with existential announcements as described in Figure 3, using the fixed point to evaluate505

consistency.506

We fix an initial model M = (W, {→a}a∈Ag ,Π) and an existential announcement507

protocol A. Let B be the set of all pairs (S, ϕ) such that S is a state of M ⊗ A and ϕ508

is either a formula in A or �, the symbol for consistency. Observe that (P(B),⊆) forms509

a complete lattice. We now consider the function f : P(B) → P(B) defined in Figure 4.510

Function f takes a set Γ of truth pairs (pairs (S, ϕ) such that S |= ϕ), and extends it with511

the new truth pairs that can be inferred from Γ by applying each of the rules in Figure 3512

once. For instance, if (w, σ, c) |= ϕ and (w, σ, c) |= ψ, then (w, σ, c) |= (ϕ ∧ ψ). That is, if513

(w, σ, c, ϕ) and (w, σ, c, ψ) are in Γ, then (w, σ, c, (ϕ∧ψ)) is in f(Γ), which explains line 3 of514

Figure 4. Every other line of Figure 4 similarly follows from one of the truth conditions.515

Now, as we restrict to existential formulas, it is easy to see that f is monotone, that516

is, if Γ1 ⊆ Γ2 then f(Γ1) ⊆ f(Γ2). By the Knaster–Tarski theorem (Tarski 1955), f has a517

least fixed point Γ∗ :=
⋃
n∈N f

n(�).518

We can now define the truth condition for consistency as: S |= � if (S,�) ∈ Γ∗, and519

use Figure 3 to define the semantics of the language with existential announcements.520

Remark 4.1. If announcements of the form Kaϕ were allowed, we would have to add521 {
(w, σ, c, Kaϕ) | for all (w′, σ′, c′) such that (w, σ, c)Ra(w

′, σ′, c′),

either (w′, σ′, c′,�) �∈ Γ or (w′, σ′, c′, ϕ) ∈ Γ

}

522
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to the definition of f in Figure 4. But then, if (w, σ, c)Ra(w
′, σ′, c′) we would have:523524

— (w, σ, c, Kap) ∈ f(�);525

— (w, σ, c, Kap) /∈ f({(w′, σ′, c′,�), (w′, σ′, c′,¬p)})526

It would thus no longer hold that f(Γ1) ⊆ f(Γ2) whenever Γ1 ⊆ Γ2. As f is clearly not a527

decreasing function either, we would not be able to apply the Knaster–Tarski theorem.528

Remark 4.2. The Knaster–Tarski theorem is often used to define the denotational529

semantics of programming languages (Winskel 1993) in the same spirit as what we530

do here to define consistency.531

5. Semantic properties532

In this section, we establish some semantic properties of our logic. First, we compare it533

with PAL, explaining why ABL is not a conservative extension of PAL when we have at534

least two agents. Then, we establish some validities of ABL that show how the correctly535

defined semantics captures the intuitions we have about asynchrony.536

For the rest of the section, we assume that we have a class of initial models and a537

class of announcement protocols for which the circularity problem can be solved and538

the semantics defined as in Figure 3 (for example, arbitrary initial models and positive539

announcements), and we discuss some validities of our logic.540

5.1. Difference from PAL541

We discuss the difference between the semantics of our logic and those of PAL. In PAL,542

every time an announcement is made, the Kripke model is updated by removing possible543

worlds where the announcement is not true (see Definition 2.3). This amounts to using the544

new information to delete epistemic alternatives that are no longer considered possible:545

since announcements are true, a world where an announcement is not true is not a546

possible world. In our case, epistemic alternatives cannot be deleted at the time of the547

announcement, since announcements are not received immediately by the agents, and in548

general agents can even have an unbounded number of pending announcements to read.549

Instead, this pruning is performed directly in the semantics of the knowledge operator,550

by eliminating all possible states that are not consistent: the pruning is not performed at551

the moment of the announcement, but is delayed until a knowledge operator is evaluated.552

Thus, the update operation in PAL and the consistency check in our logic play the553

same role. This is also reflected in the circularity problem, which stems from a mutual554

dependence between the definition of the semantics and, in the case of PAL, that of the555

update, and in the case of our logic, that of consistency.556

We also note that if there are at least two agents, our logic is not a conservative extension557

of PAL. An intuitive way of seeing this is that in PAL, an announcement immediately558

becomes common knowledge, while in our setting asynchrony makes common knowledge559

unachievable. One may be tempted to define a translation tr from PAL to ABL, where560

all cases of the inductive definition are trivial, except that of the announcement operator561

which is562

— tr(〈ψ〉
PAL
ϕ) := 〈tr(ψ)〉 ©a1

· · · ©an tr(ϕ), where Ag = {a1, . . . , an}.563
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In the single-agent case, the translation tr yields a conservative extension of PAL, but it564

is not the case when there are at least two agents. One may think that ‘after the synchronous565

public announcement of ψ, ϕ holds’ is the same thing as ‘after the asynchronous broadcast566

of ψ and its reception by all agents, ϕ holds.’ But we show that this is not the case.567

In PAL, if p is announced, then p immediately becomes common knowledge, which we568

recall, means that all agents know p, they all know that they all know p, they all know569

that they all know that they all know p, and so on. On the other hand, in asynchronous570

systems common knowledge cannot be reached (Halpern and Moses 1990; Moses and571

Tuttle 1988), and our logic illustrates this phenomenon. Even finite approximations of572

common knowledge fail to hold in our logic. For instance, while [p]PALKaKbp is a validity573

of PAL, its translation [p] ©a ©bKaKbp is not valid.574

Proposition 5.1. There exist M, an announcement protocol A and a consistent state575

S ∈ M ⊗ A such that M ⊗ A, S �|= [p] ©a ©bKaKbp.576

Proof. The idea is the following: after announcing p, and after all agents have received577

the message p, a does not know whether agent b has received p or not. Therefore, a does578

not know that b knows p. Let us consider the following initial model M:579

w : p u : ¬p
a, b

a, b a, b

The actual world is w. Since p holds in w, it can be announced. Let A = {{p}}. We580

prove that M ⊗ A, (w, ε, 0) �|= [p] ©a ©bKaKbp. To see this, observe that after p has been581

announced and received by agent a and agent b (i.e., after evaluation of the first three582

operators of the formula), we reach state S = (w, [p], a �→ 1
b �→ 1 ). But in M⊗A, we have (we583

only represent a part of M ⊗ A, which is infinite):584

u
a :
b :

p

w
a :
b :

p

u
a :
b : no

mess
ag

esa b

Indeed in state S = (w, [p], a �→ 1
b �→ 1 ) agent a considers it possible that agent b did not585

receive announcement p, and thus she considers state S ′ = (w, [p], a �→ 1
b �→ 0 ) possible. In S ′,586

because b received no announcement, and in the initial model we have w →b u, agent587

b considers it possible that the actual world is u and nothing has been announced, i.e.588

she considers state S ′′ = (u, ε, 0) possible. Because p does not hold in S ′′, we have that589

S �|= KaKbp, which concludes the proof.590

5.2. Validities591

We say that a formula ϕ is valid if for every initial model M and every announcement592

protocol A in the classes considered, and for every consistent state S ∈ M ⊗ A, we have593

M ⊗ A, S |= ϕ. We write |= ϕ to express that ϕ is valid. In the following proposition,594

we establish some validities that provide insights into our framework and show how our595
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definitions correctly capture some natural properties that intuitively should hold in the596

asynchronous framework we consider.597

Proposition 5.2. For every ϕ ∈ ABL and propositional formula ψ, we have that:598

1. |= ©a ©b ϕ ↔ ©b ©a ϕ599

2. |= ©a� → (©aϕ ↔ ¬ ©a ¬ϕ)600

3. |= ¬ ©a � → [ψ] ©a Kaψ601

4. |= ¬ ©a � → [ψ] ©a Ka(¬ ©b � → Kbψ)602

Proof. We prove the first validity and the other three are left to the reader.603

Suppose that we have M ⊗ A, (w, σ, c) |= ©a ©b ϕ. By Figure 3, this means that604

c(1) < |σ| and M ⊗ A, (w, σ, c+a) |= ©bϕ, and the latter implies that c+a(b) < |σ| and605

M ⊗ A, (w, σ,
(
c+a

)+b
) |= ϕ. Now, because

(
c+a

)+b
=

(
c+b

)+a
, we obtain that M ⊗606

A, (w, σ, c+b) |= ©aϕ, and therefore M ⊗ A, (w, σ, c) |= ©b ©a ϕ. The proof for the other607

direction is symmetric.608

Let us comment on these validities. The first one says that it is possible to permute the609

order of agents that receive next announcements in their respective queues. The second610

one says that if an agent has an announcement to read, then reading it is a deterministic611

operation. The third one says that if an agent has no pending announcement and some612

propositional formula is announced, then after reading his next pending announcement,613

the agent will know that formula. Intuitively, this is because the truth value of a614

propositional formula does not change, and the agents know this. The last validity615

illustrates the fact that in our framework, the behaviour of the public channel is common616

knowledge. Indeed it says that if, in a situation where agent a has read all the announced617

messages, a propositional formula ψ is announced and agent a reads it, then agent a618

knows that if agent b has read all the announced messages (and in particular the last one,619

which is ψ), then agent b also knows ψ. In some sense, it means that initially agent a620

knows that agent b will receive the same messages as herself. In the last two validities,621

we restrict to propositional formulas in order to avoid Moore’s paradox (van Ditmarsch622

et al. 2007).623

We also establish the following proposition, which says that if all the ©a operators624

in a formula ϕ are under the scope of a knowledge operator, then its truth value is625

left unchanged by the announcement of any formula ψ. Indeed, the knowledge operator626

considers all possibilities for the content of the agent’s channel, so that the possibility that627

ψ is in the channel is considered, whether ψ was actually announced or not.628

In the following, in addition to the assumption that models and announcement protocols629

are restricted to classes for which the semantics is defined, we consider announcement630

protocols in which each announcement can be made infinitely many times. We call such631

protocols free protocols.632

Proposition 5.3. Let ϕ be a formula in ABL, in which every ©a is under the scope of633

some Kb, and let A∞ be a free protocol. For every initial model M and consistent state634

S = (w, σ, c) ∈ M ⊗ A∞, for every ψ ∈ A∞, we have M ⊗ A∞, S |= 〈ψ〉ϕ ↔ ψ ∧ ϕ.635
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This result follows immediately from the following lemma:636

Lemma 5.1. Let ϕ be a formula in ABL, in which every ©a is under the scope of some637

Kb, and let A∞ be a free protocol. For every initial model M and for every consistent638

state (w, σ, c) ∈ M ⊗ A∞, for every ψ ∈ A∞ such that (w, σ::ψ, c) is consistent, we have639

M ⊗ A∞, (w, σ::ψ, c) |= ϕ iff M ⊗ A∞, (w, σ, c) |= ϕ.640

Proof. By induction on ϕ. The Boolean cases are trivial.641

Case ϕ = Kaϕ
′: Since (w, σ, c) is a state, c(a) � |σ|. It is then easy to check that642

{S | (w, σ::ψ, c)RaS} = {S | (w, σ, c)RaS}, and the result follows.643

Case ϕ = 〈ψ′〉ϕ′: If ψ′ /∈ A∞, the formula ϕ trivially does not hold in both states.644

Otherwise, because ψ′ has infinite multiplicity in A∞, σ::ψ′ ∈ Seq(A∞). We therefore have645

(w, σ::ψ, c) |= 〈ψ′〉ϕ′ iff (w, σ::ψ, c) |= ψ′ and (w, σ::ψ::ψ′, c) |= ϕ′.646

Assume that (w, σ::ψ, c) |= 〈ψ′〉ϕ′, we prove that (w, σ, c) |= 〈ψ′〉ϕ′. We have that647

(w, σ::ψ, c) |= ψ′ (hence (w, σ::ψ::ψ′, c) is consistent) and (w, σ::ψ::ψ′, c) |= ϕ′. Because648

ψ′ is a subformula of ϕ, each ©a in it is in the scope of some Kb; we can thus apply649

the induction hypothesis for (w, σ::ψ, c) |= ψ′, obtaining that (w, σ, c) |= ψ′. By induction650

hypothesis on (w, σ::ψ::ψ′, c) |= ϕ′, we get first that (w, σ::ψ, c) |= ϕ′, then (w, σ, c) |= ϕ′651

and finally (w, σ::ψ′, c) |= ϕ′ (observe that (w, σ::ψ′, c) is consistent since (w, σ, c) |= ψ′).652

We have proved that (w, σ, c) |= 〈ψ′〉ϕ′.653

The other direction is treated the same way.654

Finally, the case ϕ = ©aϕ
′ is not possible as ©a is not under the scope of any Kb.655

6. Model checking656

Here, we address the model checking problem when A is a finite multiset, that is, when657

the support set of A is finite and the multiplicity of each element is an integer. More658

precisely, we consider the following decision problem:659

— input: an initial pointed model (M, w), a finite multiset of formulas A (where660

multiplicities are written in unary), a formula ϕ0;661

— output: yes if M ⊗ A, (w, ε, 0) |= ϕ0, no otherwise.662

In practice, model checking is used to check a scenario described by A and ϕ0 from a663

given initial situation (M, w).664

6.1. Propositional announcements665

In this section, we suppose that formulas in A are propositional. Note that in this case666

(which is a particular case of existential announcements) the circularity problem does667

not exist, as consistency of a state (w, σ, c) can be trivially checked by verifying that all668

propositional formulas in σ hold in world w of the initial model, according to the classic669

semantics of propositional logic.670

We consider the model checking problem for ABL where inputs (M, w,A, ϕ0) are such671

that A only contains propositional formulas. We call this problem the model checking672

problem for propositional protocols.673
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function mc(M,A, w, σ, c, ϕ)
match ϕ do

case p: return p ∈ V (w);
case : return checkconsistency(M,A, w, σ, c () ∗ )
case ¬ψ: return not mc(M,A, w, σ, c, ψ);
case (ψ1 ∧ ψ2): return mc(M,A, w, σ, c, ψ1) and mc(M,A, w, σ, c, ψ2);
case Kaψ :

for (u, σ , c ) such that w →a u, σ ∈ Seq(A) and c is a cut on σ do
if σ [1..c(a)] = σ[1..c (a)] and mc(M,A, u, σ , c , ) then

if not mc(M,A, u, σ , c , ψ) then
return false

return true
case ψ χ :

if σ::ψ ∈ Seq(A) and mc(M,A, w, σ, c, ψ) then
return mc(M,A, w, σ::ψ, c, χ);

else
return false;

case aψ: return c(a) < |σ| and mc(M,A, w, σ, c+a, ψ)

Fig. 5. Model checking algorithm.

Theorem 6.1. The model checking problem for propositional protocols is in Pspace .674

Proof. Figure 5 presents an algorithm that takes a pointed model (M, w), a finite675

multiset A, a sequence σ ∈ Seq(A), a cut c on σ and a formula ϕ as an input. To check676

the consistency of a state (w, σ, c), we call checkconsistency(M,A, w, σ, c), which verifies677

that every (propositional) formula ψ occurring in σ evaluates to true with the valuation678

Π(w).679

It is easily proven by induction that, for all ψ, the following property P (ϕ) holds:680

M,A, (w, σ, c) |= ϕ iff mc(M,A, w, σ, c, ϕ) returns true.681

This establishes the correctness of the algorithm. We now analyze its complexity.682

First, observe that because A is finite and each element has finite multiplicity, we have683

that Seq(A) only contains sequences of length linear in |A| (recall that multiplicities are684

written in unary). It is therefore easy to see that the consistency check (∗�) is done in685

polynomial time in the size of the input and thus requires a polynomial amount of space.686

Now, the number of nested calls of mc is bounded by the size of the formula to check,687

and each call requires a polynomial amount of memory for storing local variables, so that688

the algorithm runs in polynomial space.689

690

Theorem 6.2. The model-checking problem for propositional protocols is Pspace -hard.691

Proof. See Appendix C.692

6.2. Finite tree initial model693

In this section, we restrict the set of inputs M,A, w, ϕ0 of the model checking problem to694

those where the initial pointed models (M, w) are finite trees rooted in w.695
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Theorem 6.3. The model-checking problem when we restrict initial models to finite trees696

is in Pspace .697

Proof. We consider the algorithm of Figure 5 again but now the consistency checking698

(∗�) consists of calling the following procedure:699

function checkconsistency(M,A, w, σ, c)
if c = 0

return true

else
for c′ < c do

if mc(M,A, w, σ, c′,�) then

return true

return mc(M,A, w, σ′, c,�) and mc(M,A, w, σ′, c, ψ) where σ = σ′::ψ

700

Soundness and completeness are proven by induction on inputs using the order ≺701

defined in Section 4.1.702

Concerning the complexity, the argument given in the proof of Theorem 6.1 no longer703

holds. In order to bound the number of nested calls of mc, we have to remark that from704

a call of mc to a sub-call of mc:705

1. either we change the current world w in the initial model for a successor u in the finite706

tree;707

2. or the quantity |σ| + |ϕ| +
∑

a∈Ag c(a) is strictly decreasing, where |ϕ| is the length of708

ϕ and if σ = [ϕ1, . . . , ϕk] then |σ| =
∑k

i=1 |ϕi|.709

Now, the number of times (1) occurs is bounded by the depth depth(M, w) of the finite710

tree M, w. As each ϕ is either a subformula of the input formula ϕ0 or a subformula of a711

formula in A, |ϕ| � |ϕ0| + |A| where |A| :=
∑

ψ∈A |ψ|, and where each single formula ψ is712

counted as many times as it occurs in the multiset A. Furthermore, |σ| � |A| and c(a) � |A|.713

Thus, the quantity |σ| + |ϕ| +
∑

a∈Ag c(a) is bounded by (|Ag | +2)|A| + |ϕ0|. Therefore, the714

number of nested calls to mc is bounded by depth(M, w) × ((|Ag | + 2)|A| + |ϕ0|). So the715

algorithm requires a polynomial amount of memory in the size of the input (recall that716

the multiplicity of A is encoded in unary).717

6.3. Existential announcements718

In this subsection, we design an exponential-time algorithm for the model checking719

problem in the case of existential announcements.720

Given an input M,A, w, ϕ0, the algorithm first computes the least fixed point Γ∗ of the721

function f defined in Section 4.2. Because the number of possible sequences in Seq(A) is722

exponential in |A|, the set B of pairs (S, ϕ), where S ∈ M ⊗ A and ϕ ∈ A ∪ {�} is of723

size exponential in the size of the input, and therefore computing the fixed point requires724

exponential time in the size of the input. This gives us the semantics of consistency for725

states of M ⊗ A.726



Reasoning about knowledge and messages in asynchronous multi-agent systems 23

Then, to evaluate ϕ0, we use the procedure mc of Figure 5, where line (∗�), which727

checks the consistency of a state (w, σ, c), is replaced by checking whether (w, σ, c,�) ∈ Γ∗.728

The algorithm mc also requires exponential time. To sum up:729

Theorem 6.4. The model-checking problem for existential announcements is in Exptime.730

7. Satisfiability for propositional announcements731

In this section, we address the satisfiability problem when A is a finite multiset of732

propositional formulas, that is, when the support set of A is finite, the multiplicity of733

each element is an integer and formulas in A are propositional. More precisely, we say734

that a formula ϕ0 is A-satisfiable if there exists an initial pointed model (M, w) such that735

M ⊗ A, (w, ε, 0) |= ϕ0. We consider the following decision problem:736

— input: a finite multiset of propositional formulas A (where multiplicities are written737

in unary), a formula ϕ0;738

— output: yes if ϕ0 is A-satisfiable, no otherwise.739

In practice, a typical application of the satisfiability problem would be to check that a740

class of systems described by a formula ϕ satisfies a property ψ. To do so, one checks741

whether ϕ ∧ ¬ψ is satisfiable. If it is not, then indeed all ϕ-systems satisfy ψ. If it is742

satisfiable, then the algorithm we present here (like all tableau methods) produces a743

counter-example, i.e., a model (M, w) such that M ⊗ A, (w, ε, 0) |= ϕ ∧ ¬ψ, or in other744

words, a ϕ-system that does not satisfy ψ.745

7.1. Tableau method description746

Our tableau method manipulates terms that we call tableau terms, which are of the747

following kind:748

— (w σ c ϕ): w is a world symbol that represents a world of the model M being749

constructed, σ is a sequence of formulas in Seq(A), c is a cut for σ and ϕ is a750

sub-formula of ϕ0 that should be true in M ⊗ A, (w, σ, c).751

— (w →a u): w and u are two world symbols such that w →a u in the model M being752

constructed.753

— ⊥: Denotes an inconsistency.754

A tableau rule is represented by a numerator N above a line and a finite list of755

denominators D1, . . . ,Dk below this line, separated by vertical bars, representing non-756

deterministic choice:757
N

D1 | . . . | Dk758

The numerator and the denominators are finite sets of tableau terms.759

A tableau for input (A, ϕ0) is a finite tree with a set of tableau terms at each node,760

whose root is761

Γ0 = {(w0 ε 0 ϕ0)}.762
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A rule with numerator N is applicable to a node carrying a set Γ if Γ contains an instance763

of N for which the rule has not yet been applied. If no rule is applicable, Γ is said to be764

saturated. We call a node n an end node if the set of tableau terms Γ it carries is saturated,765

or if ⊥∈ Γ. The tableau is extended the following way:766

1. Choose a leaf node n carrying Γ, where n is not an end node, and choose a rule767

applicable to n.768

2. For each denominator Di of the rule, create one successor node for n carrying the union769

of Γ with an appropriate instanciation of Di.770

A branch in a tableau is a path from the root to an end node. A branch is closed if771

its end node contains ⊥, otherwise it is open. A tableau is closed if all its branches are772

closed, otherwise it is open. A pair (A, ϕ0) is said to be consistent if no tableau for (A, ϕ0)773

is closed.774

The tableau rules are described in Figure 6, in which we write (σ, c) ∼a (σ′, c′) for775

σ|c(a) = σ′|c′(a).776

Remark 7.1. Rule ch for choosing valuations is necessary for checking consistency of777

states in rules Kaϕ and �. For this reason, rule ch is always applied in priority before778

rules Kaϕ and �. In a node carrying Γ and saturated for rule ch, if w is a world symbol779

in Γ, we say that σ is true in w if the valuation ν, defined by ν(p) = 1 if (w ε 0 p) ∈ Γ780

and ν(p) = 0 if (w ε 0 ¬p) ∈ Γ, satisfies every formula in σ (recall that in this section781

announcements are propositional).782

7.2. Tableau method soundness and completeness783

In this section, we prove that the tableau method is sound and complete. Note that we784

will establish that every tableau is finite in the complexity analysis of the tableau method785

(see Theorem 7.1).786

Proposition 7.1. If (A, ϕ0) is consistent, then ϕ0 is A-satisfiable.787

Proof. Suppose that (A, ϕ0) is consistent, and consider a tableau t for (A, ϕ0). By788

assumption, this tableau is open, which means that it has an open branch. Consider one789

such open branch, and let Γ be the set of tableau terms carried by its end node. We define790

the model M = (W, {→a}a∈Ag ,Π), where791

— W = {w | (w σ c ϕ) ∈ Γ for some σ, c and ϕ},792

— →a = {(w, u) | (w →a u) ∈ Γ} and793

— for each w ∈ W , Π(w) = {p | (w ε 0 p) ∈ Γ}.794

We prove that for all (w σ c ϕ) ∈ Γ, it holds that M ⊗ A, (w, σ, c) |= ϕ. Because795

(w0 ε 0 ϕ0) is in Γ0 ⊆ Γ, it follows that ϕ0 is A-satisfiable.796

If ϕ = p, by saturation of rule p we have (w ε 0 p) ∈ Γ, thus p ∈ Π(w) by construction797

of M, and M ⊗ A, (w, σ, c) |= p.798

If ϕ = ¬p, by saturation of rule ¬p we have (w ε 0 ¬p) ∈ Γ. We cannot have799

(w ε 0 p) ∈ Γ, otherwise the branch would be closed by saturation of rule ⊥. Therefore800

p /∈ Π(w), and M ⊗ A, (w, σ, c) |= ¬p.801
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(w σ c ϕ)
(w 0 p) | (w 0 ¬p) ch for all atomic propositions p appearing in ϕ0 and A

(w σ c (ϕ ∧ ψ))
(w σ c ϕ) (w σ c ψ)

∧ (w σ c ¬(ϕ ∧ ψ))
(w σ c ¬ϕ) | (w σ c ¬ψ)

¬∧

(w σ c p)
(w 0 p)

←p
(w σ c ¬p)
(w 0 ¬p)

←¬p
(w σ c ¬¬ϕ)

(w σ c ϕ)
¬¬

where p ∈ AP

(w σ c a ϕ)
(w σ c+a ϕ) a if c(a) < |σ|

(w σ c a ϕ)
⊥ a if c(a) = |σ|

(w σ c a ϕ)
(w σ c+a ¬ϕ) a if c(a) < |σ|

(w σ c ψ ϕ)
(w σ c ψ)(w σ::ψ c ϕ)

ψ
if σ::ψ ∈ Seq(A)

(w σ c ψ ϕ)
⊥ ψ

if σ::ψ Seq(A)

(w σ c ψ ϕ)
(w σ c ¬ψ) | (w σ c ψ)(w σ :: ψ c ¬ϕ)

ψ
if σ::ψ ∈ Seq(A)

(w σ c Kaϕ)(w →a u)
(u σ c ϕ)

Kaϕ
for all (σ , c ) ∼a (σ, c) and σ true in u (see Remark 3)

(w σ c ¬Kaϕ)
(u σ1 c1 ¬ϕ)(w →a u) | · · · | (u σn cn ¬ϕ)(w →a u)

¬Kaϕ where (σi, ci) ∼a (σ, c)
and u is fresh

(w σ c ϕ)
⊥ if σ is not true in w

(w 0 p)(w 0 ¬p)
⊥ ⊥ for p ∈ AP

Fig. 6. Tableau rules.

For boolean connectives, the result follows by saturation of the appropriate tableau802

rule, plus application of the induction hypothesis.803

If ϕ = ©aϕ
′, we have that c(a) < |σ|, otherwise Γ would contain ⊥ by saturation of804

rule ©a and the branch would be closed. Therefore, again by saturation of rule ©a, Γ805

contains (w σ c+a ϕ′). By induction hypothesis, we get that M⊗A, (w, σ, c+a) |= ϕ′, and806

thus M ⊗ A, (w, σ, c) |= ©aϕ
′.807

If ϕ = ¬ ©a ϕ
′ we apply similar reasoning, except for the case c(a) = |σ| in which ϕ808

trivially holds.809
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If ϕ = 〈ψ〉ϕ′, then σ::ψ ∈ Seq(A), otherwise the branch would be closed. It follows by810

saturation of rule 〈ψ〉 that (w σ c ψ) and (w σ::ψ c ϕ′) are in Γ, and we conclude by811

applying the induction hypothesis.812

If ϕ = ¬〈ψ〉ϕ′, in case σ::ψ is not in Seq(A), ϕ trivially holds. Otherwise, by saturation813

of rule ¬〈ψ〉, either (w σ c ¬ψ) is in Γ, or both (w σ c ψ) and (w σ::ψ c ¬ϕ′) are in814

Γ. In both cases, we conclude by induction hypothesis.815

If ϕ = Kaϕ
′, let (u, σ′, c′) be such that (w, σ, c)Ra(u, σ

′, c′) and M ⊗ A, (u, σ′, c′) |= �,816

i.e. σ′ is true in u (see Remark 7.1). We have that w →a u, so by construction of817

M, (w →a u) ∈ Γ. Also, since (w, σ, c)Ra(u, σ
′, c′) we have that (σ, c) ∼a (σ′, c′). By818

saturation of rule Kaϕ we thus have that (u σ′ c′ ϕ′) ∈ Γ, and by induction hypothesis819

M ⊗ A, (u, σ′, c′) |= ϕ′, which concludes.820

If ϕ = ¬Kaϕ
′, by saturation of rule ¬Kaϕ there exist (σ′, c′) ∼a (σ, c) and a world symbol821

u such that Γ contains (u σ′ c′ ¬ϕ) and (w →a u). It follows that (w, σ, c) →a (u, σ′, c′).822

We also have that M ⊗ A, (u, σ′, c′) |= � (or in other words, σ′ is true in u), otherwise the823

branch would be closed by rule �. Finally, by induction hypothesis, M⊗A, (u, σ′, c′) |= ¬ϕ′,824

and thus M ⊗ A, (w, σ, c) |= ¬Kaϕ
′.825

Proposition 7.2. If ϕ0 is A-satisfiable, then (A, ϕ0) is consistent.826

Proof. Suppose that there is a pointed model (M0, w0) such that M0 ⊗A, (w0, ε, 0) |= ϕ0.827

We must prove that every tableau for (A, ϕ0) has an open branch.828

We let WΓ denote the set of world symbols appearing in a set of tableau terms Γ. Such829

a set Γ is said to be interpretable if, first, it does not contain ⊥ and, second, there is an830

initial model M = (W, {→a }a∈Ag ,Π) and a mapping f : WΓ → W such that:831

— for each (w →a u) ∈ Γ, f(w) →a f(u) and832

— for each (w σ c ϕ) ∈ Γ, M ⊗ A, (f(w), σ, c) |= � and M ⊗ A, (f(w), σ, c) |= ϕ.833

We write M, f |= Γ if these two conditions are met.834

Observe that Γ0 = {(w0 ε 0 ϕ0)} does not contain ⊥, and by assumption there is835

a pointed model (M0, w0) such that M0 ⊗ A, (w0, ε, 0) |= ϕ0. So M0, [w0 �→ w0] |= Γ0,836

and Γ0 is interpretable. We now prove that when a tableau rule is applied in a node837

that carries an interpretable set of tableau terms and is not an end node, then one of its838

successors carries an interpretable set. This implies that every tableau for (A, ϕ0) has a839

branch whose end node carries an interpretable set; in particular, this set does not contain840

⊥, so the branch is open, which concludes.841

In the following, Γ is the interpretable set of tableau terms in which the rule is applied,842

and M = (W, {→a }a∈Ag ,Π) and f : WΓ → W are such that M, f |= Γ.843

We do not treat the case of rules for propositional logic as it is straightforward.844

Rule ch for atomic proposition p, on numerator {(w σ c ϕ)}: If p ∈ Π(f(w)), then845

M ⊗ A, (f(w), ε, 0) |= p, and thus M, f |= Γ ∪ {(w ε 0 p)}; otherwise M, f |= Γ ∪846

{(w ε 0 ¬p)}. So one of the successors is interpretable.847

Rule ©aϕ on numerator {(w σ c ©a ϕ)}: by assumption, M⊗A, (f(w), σ, c) |= ©aϕ.848

Thus, according to the semantics, we necessarily have that c(a) < |σ|. So the only849

successor in the tableau carries the set Γ ∪ {(w σ c+a ϕ)}. Since (w σ c ©a ϕ) ∈ Γ850

and M, f |= Γ, M ⊗ A, (f(w), σ, c) |= �, and thus also M ⊗ A, (f(w), σ, c+a) |= �. Besides,851
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because M ⊗ A, (f(w), σ, c) |= ©aϕ, we have that M ⊗ A, (f(w), σ, c+a) |= ϕ. It follows852

that M, f |= Γ ∪ {(w σ c+a ϕ)}, and the successor is interpretable.853

Rule ¬ ©a ϕ on numerator {(w σ c ¬ ©a ϕ)}: the application of this rule requires854

that c(a) < |σ| hold. So the fact that M ⊗ A, (f(w), σ, c) |= ¬ ©a ϕ holds implies855

M ⊗ A, (f(w), σ, c+a) |= ¬ϕ. The consistency aspect is treated like for rule ©aϕ, and we856

obtain that M, f |= Γ ∪ {(w σ c+a ¬ϕ)}, hence the successor is interpretable.857

Rule 〈ψ〉ϕ on numerator {(w σ c 〈ψ〉ϕ)}: We have that M ⊗ A, (f(w), σ, c) |= 〈ψ〉ϕ,858
so σ::ψ ∈ Seq(A), which implies that it is the first version of the rule that is applied. We859

also have that M ⊗ A, (f(w), σ, c) |= ψ and M ⊗ A, (f(w), σ::ψ, c) |= ϕ. From the former860

and the fact that M, f |= Γ � (w σ c 〈ψ〉ϕ), we obtain that M ⊗ A, (f(w), σ::ψ, c) |= �.861

It follows that M, f |= Γ ∪ {(w σ c ψ), (w σ::ψ c ϕ)}, and thus the only possible862

successor is interpretable.863

Rule ¬〈ψ〉ϕ on numerator {(w σ c ¬〈ψ〉ϕ)}: First, because {(w σ c ¬〈ψ〉ϕ)} ∈864
Γ, we have M ⊗ A, (f(w), σ, c) |= �. Also, the application of this rule requires that865

σ::ψ ∈ Seq(A). So the fact that M ⊗ A, (f(w), σ, c) |= ¬〈ψ〉ϕ holds implies that either866

M⊗A, (f(w), σ, c) |= ¬ψ or M⊗A, (f(w), σ::ψ, c) |= ¬ϕ. If M⊗A, (f(w), σ, c) |= ¬ψ, we867

obtain that M, f |= Γ ∪ {(w σ c ¬ψ)}, and the first successor is interpretable. Otherwise868
we have both M⊗A, (f(w), σ::ψ, c) |= ¬ϕ and M⊗A, (f(w), σ, c) |= ψ. The latter implies869

that M ⊗ A, (f(w), σ::ψ, c) |= �; we obtain that M, f |= Γ ∪ {(w σ::ψ c ¬ϕ)}, and the870

second successor is interpretable.871

Rule Kaϕ on numerator {(w σ c Kaϕ), (w →a u)}, for some (σ′, c′) ∼a (σ, c) and σ′ true872

in u: First, since rule ch has the priority over rule Kaϕ, we know that Γ is saturated for873

rule ch. Also, since (w →a u) ∈ Γ and tableau terms of this form can only be introduced874

by rule ¬Kaϕ together with a tableau term of the form (u σ′′ c′′ ϕ′), then there is one875

such tableau term in Γ. By saturation of rule ch, it follows that for each p appearing in876

ϕ0 and A, either (u ε 0 p) or (u ε 0 ¬p) is in Γ. This defines a valuation ν for u877

that, by assumption, makes σ′ true (see Remark 7.1). Because M, f |= Γ, we have that878

Π(f(u)) agrees with ν on all atomic propositions in A. Since by assumption ν satisfies879

all formulas in σ′, so does Π(f(u)), and therefore M ⊗ A, (f(u), σ′, c′) |= �. Now, since880

M, f |= Γ and (w →a u) ∈ Γ, we have that f(w) →a f(u), and because (w σ c Kaϕ) ∈ Γ,881

it holds that M ⊗ A, (f(w), σ, c) |= Kaϕ. Since f(w) →a f(u) and (σ, c) ∼a (σ′, c′), we have882

that (f(w), σ, c)Ra(f(u), σ′, c′). As we have seen that M ⊗ A, (f(u), σ′, c′) |= �, we finally883

have that M ⊗ A, (f(u), σ′, c′) |= ϕ, thus M, f |= Γ ∪ {(u σ′ c′ ϕ)}, and the successor is884

interpretable.885

Rule ¬Kaϕ on numerator {(w σ c ¬Kaϕ)}: since M ⊗ A, (f(w), σ, c) |= ¬Kaϕ,886

there exist u ∈ W , σ′ and c′ such that (f(w), σ, c)Ra(u, σ
′, c′), M ⊗ A, (u, σ′, c′) |= � and887

M ⊗ A, (u, σ′, c′) |= ¬ϕ. Recall that (f(w), σ, c)Ra(u, σ
′, c′) means that f(w) →a u and888

(σ, c) ∼a (σ′, c′). Clearly, M, f[u �→ u] |= {(u σ′ c′ ¬ϕ)(w →a u)}, and because u is fresh,889

f[u �→ u] coincides with f on all world symbols appearing in Γ, so that M, f[u �→ u] |= Γ.890

Finally, the denominator corresponding to σ′, c′ is interpretable (there are only finitely891

many possible σ′ and c′, see proof of Theorem 7.1).892

Rule � on numerator {(w σ c }): because Γ is interpretable, this rule cannot893

be applied. Indeed, assume it is applied. Because rule ch is applied in priority, Γ is894

saturated for rule ch. With reasoning similar to that followed for rule Kaϕ, we obtain895
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that the valuation ν defined by Γ for w coincides with Π(f(w)) on all atomic propositions896

appearing in ϕ0 and A, and thus they agree on all formulas in σ. Yet on the one hand,897

since (w σ c ϕ) ∈ Γ and M, f |= Γ, we have that M ⊗ A, (f(w), σ, c) |= � and thus898

Π(f(w)) satisfies all formulas in σ. On the other hand, because the rule � is applied, ν899

does not satisfy all formulas in σ, and we have a contradiction.900

Rule ⊥ on numerator {(w ε 0 p), (w ε 0 ¬p)}: because M, f |= Γ this cannot901

happen, as otherwise we would have both p ∈ Π(f(w)) and p /∈ Π(f(w)).902

Theorem 7.1. The satisfiability problem for finite propositional protocols is in903

NExptime .904

Proof. Let A be a propositional and finite protocol and ϕ0 be the formula to check. The905

algorithm to check whether ϕ0 is A-satisfiable consists of non-deterministically applying906

tableau rules of Figure 6 from the initial tableau {(w ε 0 ϕ0)}.907

Each world symbol w except w0 is created by rule ¬Ka with a formula ϕw, and the908

number of times this rule is applied to terms with w as world symbol is linear in ϕw. These909

world symbols can be ordered in a tree structure (a world symbol created by applying910

rule ¬Ka in a tableau term with world symbol w is a child of w), and the modal depth of911

ϕw formulas is strictly decreasing in the tree. So the number of created world symbols w912

is exponential in the size of ϕ0.913

In addition, recall that the number of possible sequences of announcements σ is914

exponential in the size of A, and the number of possible cuts c is |A||Ag |. Therefore, the915

number of different tableau terms (w σ c ψ) is exponential in |ϕ0| + |A|.916

At each step, the algorithm is executing a rule that adds at least one term. As the917

number of terms is exponential, the number of rule applications is exponential, and thus918

the running time of the (non-deterministic) algorithm is exponential. So the satisfiability919

problem when the protocol is finite and propositional is in NExptime .920

We now establish the matching lower bound.921

Theorem 7.2. The satisfiability problem for finite propositional protocols with at least two922

agents is NExptime -hard.923

Proof. See Appendix D.924

8. Related work925

We review several research areas related to different aspects of the present work.926

8.1. Existing logics for asynchrony927

As far as we know, there has not been much work on the relationship between knowledge,928

announcements and asynchrony. In (Dégremont et al. 2011), asynchrony in DEL is studied,929

with the notion of asynchrony being that an agent cannot tell whether an event has930

occurred if her epistemic state is unchanged. This notion of asynchrony is different from931

the one we consider in this work: indeed in Dégremont et al. (2011), different agents can932
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have a different idea of how many events have occurred so far, because some events might933

be completely unnoticed by some agents. So in one setting asynchrony is due to events934

being completely unobserved, while in the other (the one considered in this work) it is due935

to a delay between the occurrence of an event (the announcement) and its observation936

(the reception).937

A logic dealing with knowledge and asynchrony is also developed in (Panangaden and938

Taylor 1992), but in this setting, messages do not have logical content: for example, the939

logic does not allow for announcements about knowledge or about the effect of other940

announcements. (Fagin et al. 1992) is concerned with knowledge in multi-agent, dynamic941

systems which may be asynchronous, but does not explicitly model communication, and942

in particular the effects of asynchronous sending and receiving of true announcements,943

which is the focus of our work.944

Recently, van Ditmarsch developed a logic of asynchronous announcements in (van945

Ditmarsch 2017). The major difference between our framework and that one is our third946

basic principle, that agents are able to imagine all possible pending messages. In van947

Ditmarsch’s work, agents in fact do not consider any pending or future announcements948

possible; they only consider a message possible after they have received it. So in our work,949

an agent a has three sources of uncertainty: first, uncertainty about the state arising from950

the underlying Kripke model; second ‘past uncertainty,’ that is, uncertainty about which951

of the messages that a has received have already been received by other agents; and952

third, ‘future uncertainty,’ uncertainty about what messages are pending in the channel953

but unread by a, or which messages may be broadcast in the future. In van Ditmarsch’s954

work, agents only have the first two sources of uncertainty: uncertainty arising from the955

underlying Kripke model, and ‘past uncertainty.’ This means that agents may not consider956

the current state possible, and may even have false knowledge. For example, if agents a957

and b initially do not know true proposition p, and then p is broadcast, in van Ditmarsch’s958

framework, if a has received broadcast p and b has not, b considers it impossible that a959

knows p, even though a does indeed know p. Symbolically, Kap ∧ Kb¬Kap. In our logic960

this is not the case: even when b has not received the broadcast of p, b considers it961

possible that p has been broadcast and received by a, so the formula Kap ∧Kb¬Kap can962

never hold in our models. In general, Kaϕ −→ ϕ in our logic, while this is not the case in963

van Ditmarsch’s logic.964

8.2. Semi-private announcements and dynamic epistemic logic965

On first glance, asynchronous broadcast logic has some similarities with semi-private966

announcement logic, (Baltag and Moss 2004; Baltag et al. 1998; Gerbrandy and Groeneveld967

1997; ?). Logics with semi-private announcements follow the same basic idea as PAL, but968

rather than announcements being received by the entire group of agents, each message969

is announced to a subset of agents, while the rest of the agents know the message was970

announced to that group, but do not know what the content of the message was. In the971

general setting, group A receives message m and updates their knowledge accordingly,972

while the agents not in group A know that A received either m or its negation, ¬m, and973

update their knowledge accordingly. The identity of the group receiving each message is974
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common knowledge for everyone. On the surface, this logic has some similarities with975

asynchronous broadcast logic: at any time, a certain group of agents has received each976

message, while others have not. However, like other variants of PAL, logics of semi-977

private announcements are synchronous: a message is sent and received simultaneously,978

and thus common knowledge is achieved immediately by the group of agents receiving979

the message. Furthermore, even the group of agents who do not receive the message980

have synchronous information, since they immediately know that the other agents have981

received some message. Overall, in this setting, the agents have less uncertainty about982

one another’s knowledge than in the asynchronous setting. In fact, the issues of semi-983

private messages and asynchrony are orthogonal; one could imagine an asynchronous984

logic of semi-private announcements, where each member of group A eventually receives985

announcement m, and the rest of the agents eventually receive the information that group986

A has been asynchronously sent either m or ¬m.987

8.3. Arbitrary public announcement logic988

Arbitrary public announcement logic (APAL) (Balbiani et al. 2007) has some similarities989

to our approach. In this logic, one can ask whether some formula holds after any990

possible announcement; this is not possible in our logic, but because agents can imagine991

pending messages, our knowledge operator considers any possible future sequence of992

announcements that follows the protocol, which is a related idea. Interestingly, the993

satisfiability problem for APAL is undecidable, but decidability can be achieved by994

considering a constraint similar to our restriction to existential announcements (French995

and van Ditmarsch 2008; van Ditmarsch et al. submitted).996

8.4. Distributed systems997

The systems we consider are closely related to the notion of total order broadcast in998

distributed systems (Raynal 2013, p. 154):999

1. if a message is received, then it means that it has been broadcast;1000
2. no message is received twice;1001
3. if an agent received ϕ before ϕ′, they all receive ϕ before ϕ′;1002
4. ϕ causally precedes ϕ′ implies that no agent receives ϕ′ before ϕ;1003
5. if a message is broadcast, all agents will eventually receive it.1004

The first point holds in our system since a message (a formula) is only received if it is1005

in the queue, which is the list of broadcast messages. The second point holds because a1006

message is received when an agent’s cut is increased to include that message from the1007

queue, which only occurs once for each message. The third point holds because we have1008

FIFO channels, and thus agents all receive messages in the same order, the order in which1009

they are announced. The fourth point follows from the fact that in our systems we only1010

consider a state (w, σ::ψ, c) consistent if (w, σ, c) |= ψ, and because messages are received1011

in order. The fifth point is not directly modelled in our systems since we only consider1012

finite histories, but it is a kind of liveness constraint that we will probably be led to1013

consider when we extend the logic with temporal operators (see next section).1014
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More recently, (Griesmayer and Lomuscio 2013) studies the model checking of dis-1015

tributed systems with respect to epistemic specifications. Although this work is in a1016

synchronous setting, it is quite close to our approach in spirit, and shows that epistemic1017

issues in distributed systems have practical implications, and a logical approach to these1018

concerns can be fruitful.1019

Finally, we note that our definition of asynchronous models M ⊗ A, especially the1020

notion of cuts, is in the spirit of Lamport (1978).1021

9. Future work1022

This work is a first attempt to develop an epistemic logic for reasoning about asynchronous1023

announcements. In the future, we would like to overcome the circularity problem, and1024

define the semantics for the most general case (removing the finite tree and existential1025

conditions). Using coinduction to define the set of consistent states may be one approach1026

to this problem. Once we have defined the semantics for the general case, if possible,1027

we hope to provide a complete axiomatization and a general model-checking algorithm.1028

We also plan to implement the model-checking algorithms. Actually, we believe that the1029

model checking of our logic could be reduced to recently proposed succinct languages1030

for DEL (Charrier and Schwarzentruber 2015, 2017). Therefore, we could use symbolic1031

techniques as presented in (van Benthem et al. 2015).1032

Second, we would like to model more general situations of asynchronous communica-1033

tion. We plan to consider the case where messages are not read in FIFO order, but are1034

received and read in arbitrary order. We also plan to model the origin of the messages,1035

allowing formulas such as ‘After agent a broadcasts ϕ, ψ holds.’ In our current setting,1036

when the external broadcaster makes a new announcement, the only effect is to queue it1037

in the channel without affecting anyone’s epistemic state. However, in the case where the1038

agents themselves make the announcements, agent a making an announcement should1039

impact her knowledge: after the announcement she should know, for instance, that the1040

channel is not empty. She should also know that after another agent checks their channel,1041

that agent will know that ψ has been announced.1042

Third, it would be interesting to add temporal operators to our language, in order to1043

express properties like ‘After p is announced and agent a receives it, eventually she will1044

know that agent b knows p’ (assuming that agents are forced to read announcements1045

eventually).1046

Finally, we would like to model not only asynchronous broadcasts on a public channel1047

but also private asynchronous communications between agents in the system. In essence,1048

this amounts to defining a complete asynchronous version of DEL (van Ditmarsch et al.1049

2007).1050
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Dégremont, C., Löwe, B. and Witzel, A. (2011). The synchronicity of dynamic epistemic logic. In:1091
Proceedings of the TARK ’11.1092

Fagin, R., Halpern, J., Moses, Y. and Vardi, M. (2004). Reasoning About Knowledge, The MIT Press.1093

Fagin, R., Halpern, J.Y. and Vardi, M.Y. (1992). What can machines know?: On the properties of1094
knowledge in distributed systems. Journal of ACM 39 (2) 328–376.1095

French, T. and van Ditmarsch, H. P. (2008). Undecidability for arbitrary public announcement logic.1096
In: Proceedings of the AiML ’08.1097

Gasquet, O., Goranko, V. and Schwarzentruber, F. (2015). Big brother logic: Visual-epistemic1098
reasoning in stationary multi-agent systems. Autonomous Agents and Multi-Agent Systems 301099
1–33. https://doi.org/10.1007/s10458-015-9306-41100



Reasoning about knowledge and messages in asynchronous multi-agent systems 33

Gerbrandy, J. and Groeneveld, W. (1997). Reasoning about information change. Journal of Logic,1101
Language and Information 6 (2) 147–169.1102

Griesmayer, A. and Lomuscio, A. (2013). Model checking distributed systems against temporal-1103
epistemic specifications. In: Formal Techniques for Distributed Systems, Springer 130–145.1104

Halpern, J. Y. and Moses, Y. (1990). Knowledge and common knowledge in a distributed1105
environment. Journal of the ACM 37 (3) 549–587.1106

Hintikka, J. (1962). Knowledge and Belief: An Introduction to the Logic of the Two Notions, Vol. 4,1107
Cornell University Press Ithaca.1108

Jones, B.D. (1999). Bounded rationality. Annual Review of Political Science 2 297–321.1109
Knight, S., Maubert, B. and Schwarzentruber, F. (2015). Asynchronous announcements in a public1110

channel. In: Proceedings of the ICTAC ’15.1111
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Appendix A.1150

Here, we prove that, in the example of Section 3.5, we indeed have that1151

(w, ε, 0) |= 〈p〉〈¬KCp〉 ©B ©B(KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp)

1. (w, ε, 0) |= 〈p〉〈¬KCp〉 ©B ©B(KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp) iff (w, ε, 0) |= p, which1152

is clearly true, and (w, p, 0) |= 〈¬KCp〉 ©B ©B(KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp).1153

2. (w, p, 0) |= 〈¬KCp〉 ©B ©B(KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp) iff (w, p, 0) |= ¬KCp and1154

(w, p ::¬KCp, 0) |= ©B ©B (KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp).1155

(a) (w, p, 0) |= ¬KCp iff (w, p, 0) �|= KCp.1156

(b) (w, p, 0) �|= KCp iff there exists S ′ s.t. (w, p, 0)RCS
′, S ′ |= � and S ′ �|= p. We notice1157

that (v, ε, 0) meets the requirements for S ′, so we conclude that (w, p, 0) |= ¬KCp.1158

3. (w, p :: ¬KCp, 0) |= ©B ©B (KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp) iff (w, p :: ¬KCp, B �→1
C �→0) |=1159

©B(KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp).1160

4. (w, p :: ¬KCp, B �→1
C �→0) |= ©B(KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp) iff (w, p :: ¬KCp, B �→2

C �→0) |=1161

(KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp).1162

5. (w, p :: ¬KCp, B �→2
C �→0) |= (KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp) iff (w, p :: ¬KCp, B �→2

C �→0) |= KB¬q1163

and (w, p ::¬KCp, B �→2
C �→0) |= ¬KBKCp and (w, p ::¬KCp, B �→2

C �→0) |= ¬KB¬KCp.1164

6. (w, p :: ¬KCp, B �→2
C �→0) |= KB¬q iff for all S ′ s.t. (w, p :: ¬KCp, B �→2

C �→0)RBS
′, if S ′ |= � then1165

S ′ |= ¬q. We see that if (w, p :: ¬KCp, B �→2
C �→0)RB(w, σ, c) then w = t, because if the1166

initial state were s, ¬KCp would never be announceable. So indeed S ′ |= ¬q, and1167

(w, p ::¬KCp, B �→2
C �→0) |= KB¬q.1168

7. (w, p ::¬KCp, B �→2
C �→0) |= ¬KBKCp iff (w, p ::¬KCp, B �→2

C �→0) �|= KBKCp.1169

(a) (w, p :: ¬KCp, B �→2
C �→0) �|= KBKCp iff ∃S ′ s.t. (w, p :: ¬KCp, B �→2

C �→0)RBS
′ and S ′ |= � and1170

S ′ �|= KCp.1171

(b) S ′ �|= KCp iff ∃S ′′ s.t. S ′RCS
′′ and S ′′ |= � and S ′′ �|= p. We can choose S ′ = (w, p ::1172

¬KCp, B �→2
C �→0) and S ′′ = u, ε, 0 and we have that (w, p :: ¬KCp, B �→2

C �→0)RBS
′, S ′ |= �,1173

S ′RCS
′′, S ′′ |= � and S ′′ �|= p.1174

8. (w, p ::¬KCp, B �→2
C �→0) |= ¬KB¬KCp iff (w, p ::¬KCp, B �→2

C �→0) �|= KB¬KCp.1175

9. (w, p :: ¬KCp, B �→2
C �→0) �|= KB¬KCp iff ∃S ′ s.t. (w, p :: ¬KCp, B �→2

C �→0)RBS
′ and S ′ |= � and1176

S ′ �|= ¬KCp, i.e. S ′ |= KCp.1177

10. Thus, (w, p :: ¬KCp, B �→2
C �→0) �|= KB¬KCp iff ∃S ′ s.t. (w, p :: ¬KCp, B �→2

C �→0)RBS
′ and ∀S ′′ if1178

S ′RCS
′′ and S ′′ |= �, then S ′′ |= p. We can choose S ′ = (w, p :: ¬KCp, B �→2

C �→1) and1179

then we see that for any consistent S ′′, if S ′RS ′′ then S ′′ |= p. This shows that1180

(w, p ::¬KCp, B �→2
C �→0) |= ¬KB¬KCp.1181

Appendix B.1182

We consider the notion of (non-)Zeno behaviours, from the field of timed and hybrid1183

systems. We describe how, modulo the adoption of a form of asynchrony weaker than the1184
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one considered in this work, this notion of non-Zeno behaviour could allow us to solve1185

the circularity problem for the semantics of the full language, for arbitrary announcements1186

and initial models.1187

In timed and hybrid systems, a behaviour of a system is a Zeno behaviour if countably1188

infinitely many discrete events occur in a finite time (Corradini et al. 2003; Zhang et al.1189

2001). This is of course impossible in real systems, but such behaviours can occur in1190

models of systems due to abstraction, and many works either study how to detect such1191

behaviours, eliminate them, or directly consider only non-Zeno models, i.e., models that1192

do not present Zeno behaviours.1193

Similarly, let us here assume that our systems are non-Zeno: only a finite number of1194

discrete events (announcements/reception of formulas) occur in a finite time interval. In1195

fact, we make the stronger assumption that the number of messages sent during one1196

unit of time is bounded. Without loss of generality, we suppose that the number of1197

messages sent during one unit of time is at most one (otherwise, change the time unit).1198

We also suppose that reading a formula takes one unit of time. These assumptions are1199

somewhat idealistic, since the time necessary to send or read a message may be influenced1200

by many factors, such as the length of the message. However, it may be achievable in1201

some circumstances, for example by waiting after sending or receiving a message, in order1202

to use a uniform amount of time.1203

Note that in the rest of the paper, we never mentioned time in our systems. Here, we1204

need to for the notion of non-Zeno systems to make sense. We thus assume a global1205

clock, and in addition, we make the rather strong assumption that all agents have access1206

to this clock, and that this is common knowledge.1207

Fagin et al. (1992, p. 333) wrote:1208

Is the system synchronous? That is, is there a ‘global clock’ that every process can ‘see,’ so that1209
every process ‘knows the time’?1210

With the assumption that agents have access to a global clock, our systems are not1211

asynchronous according to this definition. However, we argue that this definition does1212

not apply here, and that even with the global clock assumption our framework remains1213

asynchronous in spirit. The first reason is that communication remains asynchronous: the1214

delay between sending of an announcement and reception by each agent is unbounded.1215

The second reason is that even though agents have access to a global clock and thus1216

know the time, they cannot talk about it and synchronize. However, knowing the time1217

and the fact that at most one announcement is made per time unit allows agents to1218

refine their pre-accessibility relation by removing all possible states that contain too many1219

announcements. This is enough to solve the problem of circular definition, as we detail1220

now.1221

First, we introduce the time of the global clock in the states of the models, so1222

that formulas are now evaluated on states of the form (w, σ, c, t), where (w, σ, c) is1223

as before and t is the time represented as a positive integer. Note that because we1224

assumed that sending of an announcement takes one time unit, we always have that1225

|σ| � t.1226



S. Knight, B. Maubert and F. Schwarzentruber 36

We define the satisfaction relation (w, σ, c, t) |= ϕ by induction as follows:1227

(w, σ, c, t) |= p if p ∈ Π(w)

(w, σ, c, t) |= (ϕ1 ∧ ϕ2) if (w, σ, c, t) |= ϕ1 and (w, σ, c, t) |= ϕ2

(w, σ, c, t) |= ¬ϕ if (w, σ, c, t) �|= ϕ

(w, σ, c, t) |= Kaϕ if for all S ′ s.t. (w, σ, c)Ra(w
′, σ′, c′), |σ′| � t

and (w′, σ′, c′, t) |= �, (w′, σ′, c′, t) |= ϕ

(w, σ, c, t) |= 〈ψ〉ϕ if σ::ψ ∈ Seq(A), (w, σ, c, t) |= ψ and (w, σ::ψ, c, t+1) |= ϕ

(w, σ, c, t) |= ©aϕ if c(a) < |σ| and (w, σ, c+a, t+ 1) |= ϕ

where c+a(b) =

{
c(b) if b �= a

c(b) + 1 if b = a

(w, ε, 0, t) |= �
(w, σ, c, t) |= � if either there is c′ < c such that (w, σ, c′, t) |= �

or σ = σ′::ψ and there is t′ < t such that

(w, σ′, c) ∈ S , (w, σ′, c, t′) |= �
and (w, σ′, c, t′) |= ψ

The definition is by induction on the lexicographical order on (t, |ϕ|). Observe that in1228

the last clause, where (w, ε, 0, t) |= � requires (w, σ′, c, t′) |= ψ to be defined, we have t′ < t.1229

Also, in the clause for the knowledge operator, we restrict the pre-accessibility relation1230

to those states that do not contain more messages than what can have been announced1231

since the beginning. These two observations suffice to see that the induction is well-1232

founded.1233

So in a sense, our strong non-Zeno assumption together with the common knowledge1234

of a global clock tames the effect of the agents’ power to imagine pending messages.1235

We already described in Section 3.4, how removing this assumption on agents’ power to1236

imagine solves the circularity problem. In this section, we have shown that it is enough to1237

forbid them to imagine too much.1238

Finally, we show with an example that even with common knowledge of a global clock1239

our framework remains asynchronous.1240

Example B.1. In synchronous public announcement logic, common knowledge§ of formula1241

p is achieved when p is announced. For example, in a two-agent system the following1242

formula is always true: 〈p〉
PAL
Ca,bp. In our systems, message sending and reception are1243

separate, and there is no common knowledge operator, but if systems with common1244

knowledge of a global clock were equivalent to synchronous systems, we would expect1245

〈p〉 ©a ©b(KaKbp ∧ KbKap) to hold always, since Ca,bp −→ KaKbp ∧ KbKap. However,1246

it is easy to see that this does not always hold. Consider for instance a system with1247

two states, u and v, where p holds at u and not at v, and u and v are equivalent for1248

agents a and b. It is straightforward to see that (u, ε, 0, 0) |= ¬〈p〉 ©a ©b(KaKbp∧KbKap).1249

Furthermore, it can be shown that for any sequence of formulas ϕ1, . . . , ϕk , there exists1250

§ In an S5 system, common knowledge of p is the formalization of ‘everybody knows p, everybody knows that

everybody knows p, and so on.’ In particular, C{a,b}p = p ∧Kap ∧Kbp ∧KaKbp ∧KbKap ∧ ...
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n such that 〈ϕ1〉 . . . 〈ϕk〉(©a©b)
k(¬(KaKb)

np ∧ ¬(KbKa)
np), which strongly suggests that1251

common knowledge is not attainable in these systems.1252

Appendix C.1253

Theorem C.2. The model checking problem for propositional protocols is Pspace -hard.1254

Proof. We give a polynomial-time reduction from the quantified boolean formula (QBF)1255

satisfiability problem (Sipser 1997) to the model checking problem for propositional1256

protocols.1257

Reduction definition. Let ∃p1∀p2 . . . ∀p2nχ(p1, . . . , p2n) be a quantified boolean formula where1258

n is an integer. We define an instance (M, w0,A, ϕ0) of the model checking problem for1259

propositional protocols.1260

First, we consider fresh atomic propositions p�
i and p⊥

i for i ∈ {1, . . . , 2n}, whose intuitive1261

meanings are respectively ‘pi is true’ and ‘pi is false’.1262

1. We define the model M = (W, {→a}a∈Ag ,Π) such that:1263

— W = {wp�
1
, . . . , wp�

2n
, wp⊥

1
, . . . , wp⊥

2n
};1264

— for all a ∈ Ag , →a= W ×W ;1265

— Π(wα) = {α}.1266

2. The world w0 is wp⊥
1

(but it could be any other world in W ).1267

3. The announcement protocol A is {¬p�
1 , . . . ,¬p�

2n,¬p⊥
1 , . . . ,¬p⊥

2n}.1268

Now, we define the following abbreviations:1269

-isdefa(pi) := (K̂ap
�
i ∧Ka¬p⊥

i ) ∨ (K̂ap
⊥
i ∧Ka¬p�

i ), to be read ‘pi is defined’;1270

-istruea(pi) := (K̂ap
�
i ), to be read ‘pi is true.’1271

4. The formula ϕ0 is ψ1, where the sequence (ψ�)�:=1..2n+1 is defined by induction:1272

— Base case: ψ2n+1 := χ(istruea(p1), . . . , istruea(p2n));1273

— Inductive case: for all � ∈ {1, . . . , 2n},1274

– ψ� := K̂a(
�∧
j=1

isdefb(pj)∧
2n∧

j=�+1

¬isdefb(pj) ∧ ψ�+1) if � is odd;1275

– ψ� := Kb((
�∧
j=1

isdefa(pj)∧
2n∧

j=�+1

¬isdefa(pj))→ψ�+1) if � is even.1276

We claim that ∃p1∀p2 . . . ∀p2nχ(p1, . . . , p2n) is true if, and only if M ⊗ A, (w0, ε, 0) |= ψ1.1277

Reduction correctness We prove by recurrence on � the following property P (�), for all1278

� ∈ {1, . . . , 2n+ 1}:1279
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For all valuations ν, for all w ∈ W such that (w, σν,�, cν,�) is consistent,

ν |=QBF Q�p� . . . ∀p2nχ(p1, . . . , p2n) iff M ⊗ A, (w, σν,�, cν,�) |= ψ�

where

—Q� = ∀ if � is even and Q� = ∃ if � is odd;

— σν,� is any sequence σ of Seq(A) such that the prefix σ|� is

[¬p¬ν(p1)
1 , . . . ,¬p¬ν(p�−1)

�−1 ];

— cν,1 = 0;

— if � > 1, cν,� = a �→ �− 2
b �→ �− 1 if � is even and cν,� = a �→ �− 1

b �→ �− 2 if � is odd.

1280

The following picture shows a branch of states reached in the asynchronous model

M ⊗ A when we evaluate formula ψ1:

w1 0

w2, [¬p?
1],

a 0
b 1

w3, [¬p?
1;¬p?

2; ],
a 2
b 1

...

w2n, [¬p?
1;¬p?

2; . . . ;¬p?
2n−1],

a 2n − 2
b 2n − 1

w2n+1, [¬p?
1;¬p?

2; . . . ;¬p?
2n−1¬p?

2n], a 2n
b 2n − 1

ψ1

ψ2

ψ3

ψ2n

ψ2n+1

a

b

a

a

b

where ? stands for either � or ⊥.1281
P (2n + 1) One can check that for all i, ν |= pi iff w, σν,2n+1, cν,2n+1 |= istruea(pi). Using1282

this, one can prove the base case by induction on χ:1283

ν |=QBF χ(p1, . . . , p2n) iff w, σν,2n+1, cν,2n+1 |= χ(istruea(p1), . . . , istruea(p2n)).1284

P ( + 1) ⇒ P ( ) Suppose that P (� + 1) holds and let us prove that P (�) holds. We1285

consider the case when � is odd (the case when � is even is similar). Let ν be a valuation1286

and w a world such that (w, σν,�, cν,�) is consistent.1287

ν |=QBF ∃p� . . . ∀p2nχ(p1, . . . , p2n)1288

iff there exists v ∈ {0, 1} s.t. ν[p� := v] |=QBF ∀p�+1 . . . ∀p2nχ(p1, . . . , p2n)1289

iff there exists v ∈ {0, 1} s.t. for all u ∈ W , if (u, σν[p�:=v],�+1, cν[p�:=v],�+1) is consistent

then M ⊗ A, (u, σν[p�:=v],�+1, cν[p�:=v],�+1) |= ψ�+1 (by P (�+ 1))
1290
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binary
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b-tree

(x1, y1, x2, y2), 1t1 , 2t2 (3, 1, 0, 2), 1 , 2
(b)

Fig. D1. A 4 × 4 tiling (k = 4) and an idea of the initial Kripke model.

iff there exists v ∈ {0, 1} and a world u ∈ W s.t. (u, σν[p�:=v],�+1, cν[p�:=v],�+1) is

consistent and M ⊗ A, (u, σν[p�:=v],�+1, cν[p�:=v],�+1) |= ψ�+1

(because the choice of the world does not matter as long as it satisfies the

announcements in σν[p�:=v],�+1, and there always are at least 2n such worlds.)

1291

iff M ⊗ A, (w, σν,�, cν,�) |= ψ�

(because
�∧
j=1

isdefb(pj)) ∧
2n∧

j=�+1

¬isdefb(pj) in ψ� restricts the states that agent a

considers possible to those in which agent b has received either p�
� or p⊥

� .)

1292

Conclusion By P (1), ∃p1∀p2 . . . ∀p2nχ(p1, . . . , p2n) is true iff M ⊗ A, wp⊥
1
, ε, 0 |= ψ1.1293

Appendix D.1294

Theorem D.2. The satisfiability problem when the protocol is finite and propositional and1295

if the number of agents is greater than 2 is NExptime -hard.1296

Proof. The proof follows the same idea as the proof of NExptime -hardness of the1297

satisfiability problem in dynamic epistemic logic (Aucher and Schwarzentruber 2013):1298

we prove that the satisfiability problem when the protocol is finite and propositional is1299

NExptime -hard by reducing a NExptime -hard tiling problem (van Emde Boas 1997)1300

to it. Let C be a countable and infinite set of colors. A tile type t is a 4-tuple of colors,1301

denoted t = (left(t), right(t), up(t), down(t)) ∈ C4. We consider the following tiling problem:1302

Input: a finite set T of tile types, t0 ∈ T and a natural number k written in its binary1303

form.1304

Output: yes iff there exists a function f from {0, . . . , k − 1}2 to T satisfying:1305

(t0) f(0, 0) = t0;1306

(v) for all x ∈ {0, . . . , k − 1} and y ∈ {0, . . . , k − 2}: up(f(x, y)) = down(f(x, y + 1));1307

(h) for all x ∈ {0, . . . , k − 2} and y ∈ {0, . . . , k − 1}: right(f(x, y)) = left(f(x+ 1, y)).1308

In other words, the problem is to decide whether we can tile a k × k grid with the tile1309

types of T , t0 being placed onto (0, 0) (Figure D1a shows a 4 × 4 tiling).1310

Let us consider an instance (T , t0, k) of the tiling problem, and without loss of generality,1311

assume that k = 2n. We define the instance of our satisfiability problem tr(T , t0, k) = 〈A, ϕ〉,1312

where A = {B0, . . . ,B4n−1, b0, . . . , b4n−1}, where each Bi and bi is an atomic proposition, and1313
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∧
j<4n

(Bj ∧ bj) (D1)

K̂a

∧
�<4n

K�
b

(∧
j��

(Bj∧bj) ∧ K̂b(B�∧¬b�) ∧ K̂b(¬B�∧b�) ∧Kb((B�∧¬b�) ∨ (b�∧¬B�))∧∧
i<�

((Bi → KbBi) ∧ (¬Bi → Kb¬Bi) ∧ (bi → Kbbi) ∧ (¬bi → Kb¬bi))

)
(D2)

KaK
4n
b

(∨
t∈T

1t ∧
∨
t∈T

2t ∧
∧

{(1t → ¬1t′ ) ∧ (2t → ¬2t′ ) | t, t′ ∈ T , t �= t′}
)

(D3)

KaK
4n
b

(
(x1 = x2) ∧ (y1 = y2) →

∧
t∈T

(1t ↔ 2t)

)
(D4)

Ka(

2n∧
i=1

Ki
b(KbBi ∨Kbbi) →

∨
t∈T

K4n
b 1t) (D5)

Ka(

4n∧
i=2n+1

Ki
b(KbBi ∨Kbbi) →

∨
t∈T

K4n
b 2t) (D6)

KaK
4n
b (((x1 = 0) ∧ (y1 = 0)) → t0) (D7)

KaK
4n
b

(
(x1=x2) ∧ (y2=y1+1) →

∧
t∈T

(
1t →

∨
t′∈T ,down(t′)=up(t)

2t′

))
(D8)

KaK
4n
b

(
(x2=x1+1) ∧ (y1=y2) →

∧
t∈T

(
1t →

∨
t′∈T ,left(t′)=right(t)

2t′

))
(D9)

Fig. D2. Clauses in ϕ.

ϕ is the conjunction of formulas of Figure D2. Observe that this reduction is computable1314

in polynomial time in the size of (T , t0, k). We prove that (T , t0, k) is a positive instance1315

of the tiling problem iff ϕ is A-satisfiable.1316

General idea Formula ϕ enforces an encoding of two identical 2n × 2n-tilings into a single1317

tree (see Figure D1b). Each leaf of the tree represents both a position (x1, y1) in the first1318

tiling and a position (x2, y2) in the second one. Encoding two copies allows us to compare1319

a tile with the ones around it locally, in leaves coding for adjacent positions, and thus1320

without having to compare different leaves of the tree. This greatly simplifies the task of1321

verifying whether a tree represents a valid tiling.1322

The tile types of the first tiling are represented by atomic propositions 1t and the tile1323

types of the second tiling are represented by atomic propositions 2t′ , where t and t′ range1324

over T . They hold at a leaf of the tree whose coordinates correspond to (x1, y1) and1325

(x2, y2) when the tile type of the first tiling at coordinate (x1, y1) is t and the tile type of1326

the second tiling at coordinate (x2, y2) is t′.1327

We enforce the consistency of the binary tree: for instance, all (x1, y1, ∗, ∗)-leaves should1328

be tagged with the same proposition 1t. To this aim, we need to select all (x1, y1, ∗, ∗)-1329
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leaves; this is performed by an ‘arbitrary’ announcement of coordinates in the first tiling.1330

This announcement is imagined by agent a, reason why the tree starts in an a-child of the1331

initial world w (the same technique applies for selecting (∗, ∗, x2, y2)-leaves).1332

Encoding coordinates. The coordinates (x1, y1) and (x2, y2) of the two tilings are represen-1333

ted by a valuation over atomic propositions B0, . . . ,B4n−1, b0, . . . , b4n−1. More precisely, the1334

set X1 = {B0, . . . ,Bn−1, b0, . . . , bn−1} contains the atomic propositions encoding the binary1335

representation of the integer x1 as follows:1336

— Bi means that the ith bit of x1 is 1; bi means that the ith bit of x1 is 0;1337

— if Bi and bi are both true it means that the ith bit is not set yet;1338

— valuations where Bi and bi are both false are never considered.1339

Similarly, Y1 = {Bn, . . . ,B2n−1, bn, . . . , b2n−1}, X2 = {B2n, . . . ,B3n−1, b2n, . . . , b3n−1} and1340

Y2 = {B3n, . . . ,B4n−1, b3n, . . . , b4n−1} contain the atomic propositions encoding binary1341

representations of integers y1, x2 and y2, respectively. For instance, for n = 4, the1342

coordinates (x1, y1) = (4, 3) and (x2, y2) = (12, 2) are represented at a leaf of the tree by1343

the valuation (we recall that in binary notation, 4 is represented by 0100, 3 is represented1344

by 0011, 12 is represented by 1100 and 2 is represented by 0010):1345
1346

¬B0, b0 , ¬b1,B1 , ¬B2, b2 , ¬B3, b3︸ ︷︷ ︸
4

¬B4, b4 , ¬B5, b5 , ¬b6,B6 , ¬b7,B7︸ ︷︷ ︸
3

¬b8,B8 , ¬b9,B9 , ¬B10, b10 , ¬B11, b11︸ ︷︷ ︸
12

¬B12, b12 , ¬B13, b13 , ¬b14,B14 , ¬B15, b15︸ ︷︷ ︸
2

1347

In order to ensure constraints (v) and (h) in the definition of a tiling, we need to1348

compare tiles that are adjacent in a tiling. Boolean formulas encode the properties x1=x2,1349

x2=x1+1, y1=y2 or y2=y1+1. For instance:1350

1351

(x1=x2) �
∧
i<n

(Bi↔Bi+2n)∧(bi↔bi+2n)

(x2=x1+1) �
∨
i<n

(∧
j<i

(Bj↔Bj+2n)∧(bj↔bj+2n)∧bi ∧ Bi+2n∧
∧
i<j<n

(Bj+2n∧bj)

)

Announcements with A, we can announce bit values of coordinates in the first or second1352

tiling and Formula D1 ensures that all formulas in A are true and hence can be successfully1353

announced.1354

Tree structure Formula D2 ensures that there exists an a-successor u such that the1355

epistemic model pointed at u is bisimilar up to modal depth 4n to a binary tree (with1356

b-relation between nodes) whose leaves’ valuations represent all possible pairs of positions1357

(x1, y1, x2, y2) ∈ {0, . . . , 2n − 1}4. Subformula
∧
j>�(Bj ∧ bj) means that at level �, the j-bits1358

for j > � are not set yet. Informally, a leaf corresponds to a pair of one cell in the1359
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first tiling and one cell in the second tiling. In Formula D2, modality K̂a imposes the1360

existence of a new world which is the root of the tree (the root is not the initial world1361

directly because we use agent a to imagine possible announcements). This modality K̂a1362

also considers states in which b has received announcements; but as we require the state1363

imagined by agent a to be related to states that verify B� ∧ ¬b� and states that verify1364

¬B� ∧b� for all �, we rule out the possibility that agent b has received any announcement.1365

Encoding two (unconstrained) tilings Formulas D3 encodes that, at each leaf of the tree,1366

there is exactly one tile type for the first tiling and exactly one tile type for the second1367

tiling. Formula D4 encodes the fact that when these two pairs of coordinates coincide,1368

that is when x1=x2 and y1=y2, then the tile type of the first tiling and the tile type of the1369

second tiling are identical.1370

It may be the case that in the tree, two different leaves with the same valuation have1371

different tile types. Therefore, we also have to constrain the tree so that the leaves denoting1372

the same position in the first tiling (resp. second tiling) contain the same tile type for the1373

first tiling (resp. second tiling). This is expressed by formulas D5 and D6.1374

In Formula D5, modality Ka universally picks a sequence of announcements. The guard1375 ∧2n
i=1K

i
b(KbBi ∨ Kbbi) ensures that all bits of (x1, y1) have been announced: at each step1376

i � 2n either Bi or bi has been announced and read by b (checked by the fact that either1377

b knows Bi or b knows bi). Maybe more has been announced: for instance B2n+1. In1378

particular, b considers sequences of announcements where only coordinates (x1, y1) have1379

been announced (and no more). It selects the branches where valuations on the branch1380

respect the announcement:1381

— either bits are not yet defined (and then it respects the announcements);1382

— or a bit of (x1, y1) is set and it should respect the announcement.1383

All leaves in selected branches correspond to the announced value of (x1, y1). Then, the1384

formula
∨
t∈T K

4n
b 1t checks that these leaves are of the same tile type t. Likewise with1385

Formula D6 for the second tiling.1386

So, with formulas D3–D6, we encode in the tree two identical (unconstrained) tilings1387

in a single tree. It remains to enforce that this tiling is valid.1388

Encoding constraints (t0), (v) and (h) They are expressed respectively by formulas D7-D9.1389

As we said at the beginning of the proof, the latter two constraints motivate the encoding1390

of two tilings. Comparing adjacent positions would not be possible with our epistemic1391

language if the tree encoded a single tiling.1392

One can then check that there exists a tiling for the instance (T , t0, k) of the tiling1393

problem iff formula ϕ is A-satisfiable.1394


