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Introduction In [3] and [4] we presented an ATL-
style epistemic logic for agents with arbitrary equiv-
alence relations on histories, called euATL. In the
current abstract, we review this logic and discuss its
applications to problems concerning bounded mem-
ory agents. euATL is unique and relevant for prob-
lems in resource-bounded agents because it makes it
possible to model and reason about systems where
agents each have different, arbitrary equivalence rela-
tions on histories, and can be aware of their own past
actions. While partial information strategic logics
with memoryless agents, or with perfect recall agents,
have already been studied in several papers, such as
[1, 2] among others, in our systems we can model
a situation, for example, where a subset of agents
have bounded, finite memory (they only remember
the last n states) and another subset of agents has
unbounded memory. Since we allow arbitrary equiv-
alence relations on histories including actions, we can
also reason about situations where an agent loses all
its information after entering a certain state, or loses
some information from its memory when it chooses
to take a certain action, or even remembers half of
the previous states, etc. Thus, euATL is a practical
logic for discussing situations where agents’ memory
is bounded, even in complex ways.

The logic euATL is defined on the models epistemic
concurrent game structures, 〈Q,Π, Σ,B,∼, π, Av, δ〉,
where Q is a set of states, Π propositions, Σ agents
with |Σ| = n, B actions, ∼ an equivalence relation
for each agent, π a valuation function, Av : Q × Σ
−→ P(B) defines the actions available to each agent
in each state, and δ : Q×B −→ P(Q) is the transition
function. So, the systems consist of agents and states,
an equivalence relation on states for each agent, and
at each state, every agent chooses an available ac-
tion and the next state is chosen by the combination
of these actions. We also require determinacy : when
each agent chooses one available action, the combina-
tion gives exactly one possible next state. A history is
a finite alternating sequence of states and n-tuples of
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actions q0.b
∗
1.q1...qk−1.b

∗
k.qk such that in each n-tuple

b∗i , each agent takes an available action, and qi is the
outcome given by the δ function of taking actions b∗i
in state qi−1.

We assume that besides the agents’ equivalence re-
lations on states, the systems are also equipped with
equivalence relations on histories for each agent. If
h1 and h2 are equivalent for agent i, we denote this
as h1 ≈i h2. By allowing agents to have arbitrary
equivalence relations on the states, we make possible
several interesting situations in our systems: we can
model a perfect recall agent by allowing him to dis-
tinguish any pair of histories that have at least one
pair of states that he can distinguish, or differ in the
actions he took, and we can model memoryless agents
by basing their equivalence relation only on the last
state in the history, and similarly we can model fi-
nite memory agents, or even agents who always for-
get a certain state, etc. Also, by including actions
in histories, we allow agents to remember, or forget,
their own actions, rather than only remembering the
past states. Finally, we define strategies for agents as
usual: a strategy for agent i is a function fi : Hist
−→ B that assigns the agent an available action for
each possible history, and respects the agent’s equiv-
alence relation: if h1 ≈i h2 then fi(h1) = fi(h2).

Now we can discuss euATL. The syntax is

φ ::= p | ¬φ | φ∨φ | Kiφ | CAφ | 〈〈A〉〉©φ | 〈〈A〉〉2φ | 〈〈A〉〉φUφ

where p ∈ Π, i ∈ Σ, and A ⊆ Σ. Booleans, knowledge
and common knowledge are interpreted as usual. The
operator 〈〈A〉〉©φ means “the agents in group A have
a strategy to make φ true at the next state, based on
their knowledge.” Thus, the strategy for each agent
must succeed not only at the current history but at
all other histories that the agent considers possible
as well; otherwise the agent would not know that it
would be effective to choose this strategy. So, the se-
mantics for this operator is L, h |= 〈〈Γ〉〉a©φ iff there
exists a group strategy FΓ for Γ such that ∀h′ ≈∗Γ h,
∀λ ∈ out(h′, FΓ), λ[0, |h′|+1] |= φ. Similarly, 〈〈A〉〉�φ
means that A has a strategy to make φ true always.
〈〈A〉〉φ1Uφ2 means A has a strategy to keep φ1 true
until φ2 is true.

1



Applications First we consider a very simple ex-
ample of a system with one memoryless agent and
one perfect recall agent. a1 is memoryless, makes no
observations at all and at each time-step only decides
whether to flip a switch or not. This switch controls
the lights. a2 has perfect recall and has a card which
is red on one side and green on the other. At each
time-step he can turn over the card or not. If the
lights are on, he can see which side of the card is up,
and if they are off he cannot see the color of the card.
The propositions are l for lights on, r for card red and
g for card green. The actions are s for a1 flipping the
switch, t for a2 turning over the card, and n for do
nothing. In the diagram, the actions are shown as
pairs with the first action for a1 and the second for
a2. The agents’ equivalence relations are shown by
the labelled squiggly lines and are transitive.
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Suppose the system starts in q2, with the lights off
and the card red. Neither of the agents knows what
state the system is in: a1 does not observe anything
and a2 does not know whether the card is red or
green. We would like to check whether the following
formulas are true at q2. 〈〈{a2}〉〉 © g: can a2 make g
true at the next state? 〈〈{a2}〉〉 © 〈〈{a2}〉〉 © g: can
a2 make g true after two steps? 〈〈{a1, a2}〉〉 © g: can
a1 and a2 together make g true at the next state?
And 〈〈{a1, a2}〉〉 © 〈〈{a1, a2}〉〉 © g: can both agents
together bring about g after two steps? 〈〈{a2}〉〉 © g
is not true because a2 does not know whether g is
true now so he knows no strategy to make it true at
the next step. Similarly, 〈〈{a2}〉〉 © 〈〈{a2}〉〉 © g is
not true. Also, 〈〈{a1, a2}〉〉 © g is not true because
neither agent knows the current color of the card so
together they cannot make it green at the next step.
Finally, 〈〈{a1, a2}〉〉 © 〈〈{a1, a2}〉〉 © g is true. a1 can
use the strategy of flipping the lightswitch no matter
what the current history is (since he is memoryless he
must behave the same in all histories) and then at the
next step, a2 will learn that the card is red and do the
strategy of turning it over. Note that these strategies
succeed from all states either agent considers possi-
ble, as required. This example demonstrates that it

is interesting to be able to combine agents with dif-
ferent levels of memory ability in one system. Even
though a2 has perfect recall, he is able to accomplish
more with cooperation of the memoryless agent a1.

Although this example is extremely simple, it is
easy to imagine other scenarios where it would be
practical to model agents with different memory abil-
ities in one system. For example, in a system where
there are some friendly agents with bounded memory,
and other adversarial agents with unknown memory
abilities, we could model the friendly agents as lim-
ited memory agents, and the adversarial agents as
perfect recall agents in order to represent the worst
case scenario, which would be practical for verify-
ing security properties in a system. Also, allowing
arbitrary equivalence relations on histories gives a
great deal of flexibility in modelling agents with their
memory bounded in interesting ways: e.g. we can
model an agent whose memory fills up after he has
seen n states, so he only remembers the first n states
and gains no new information after this, or we could
model a system where agents’ actions affect their
memory, such as an agent who forgets everything af-
ter performing a certain action, or even an agent who
forgets the first or last state after performing some
action. Thus, our systems allow us a great deal of
flexibility in modelling agents with bounded abilities.

Future Work In the future, we hope to add expres-
sions about agents’ memory abilities into the logic,
rather than having them be fixed properties of the un-
derlying systems. Ideally, we would be able to have
formulas expressing complex statements such as “if
at least one of a1 or a2 have perfect recall, then the
coalition {a1, a2} can achieve the goal, but if both
a1 and a2 are memoryless, then the coalition cannot
achieve the goal.”
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