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Plan

I Learning with errors

I Computational problems in lattices

I Public key encryption and homomorphic encryption from LWE

I Hazards and challenges

I Public key signatures

Please ask questions at any time.
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Learning with Errors (LWE)

Oded Regev (2005)

I Let q be an odd prime and n,m ∈ N. [Example: n = 320,
m = 2000, q = 4093.]

I Let s ∈ Zn
q be secret (column vector).

I Suppose one is given an m × n matrix A chosen uniformly at
random with entries in Zq and a length m vector

b ≡ As + e (mod q)

where the vector e has entries chosen independently from a
“discrete normal distribution” on Z with mean 0 and standard
deviation σ = αq for some 0 < α < 1 (e.g., σ = 3).

I The LWE problem is to find the vector s.

I Decisional-LWE: Distinguish pairs (A, b) as above from
uniformly chosen pairs (A, b).
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Discrete Gaussians

I The Gaussian distribution (= normal distribution) on R with
mean 0 and variance σ2 has probability density function

f (x) = 1
σ
√

2π
e−x2/(2σ2).

I To define the discrete Gaussian on Z compute

M = 1 + 2
∞∑

k=1

e−k2/(2σ2)

and define the distribution on Z by

Pr(x) = 1
M e−x2/(2σ2) for x ∈ Z.

I Sampling closely from this distribution in practice is
non-trivial!
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Remarks on Learning with Errors

I LWE: Given A and b ≡ As + e (mod q) to find s.

I If e = 0 then easy.

I The solution s is not uniquely determined, but one value s is
significantly more likely than the others if m is large enough.
In other words, for a vector s ′ 6= s, b − As ′ (mod q) is not
likely to look like a vector sampled from the discrete Gaussian
distribution.
Hence LWE is well-defined as a maximum likelihood problem.

I There is a reduction from LWE to Decisional-LWE.
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Lattices

I Let b1, . . . , bn be linearly independent vectors in Rn.

I The set L = {
∑n

i=1 xibi : xi ∈ Z} is a (full rank) lattice. Call
its elements points or vectors.

I Alternative definition: A discrete subgroup of Rn.

I Everyone working with lattices should declare whether their
vectors are rows or columns. Today I am using columns.

I The basis matrix is the n × n matrix B whose columns are
the vectors b1, . . . , bn.

I A lattice has many different bases.
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Computational Problems (Informally)

I Shortest vector problem (SVP): Given a basis matrix B for a
lattice L find a non-zero vector v ∈ L such that ‖v‖ is
minimal.
The norm here is usually the standard Euclidean norm in Rn,
but it can be any norm such as the `1 norm or `∞ norm.

I Closest vector problem (CVP): Given a basis matrix B for a
full rank lattice L ⊆ Rn and an element t ∈ Rn find v ∈ L
such that ‖v − t‖ is minimal.
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Reducing LWE to CVP

I LWE: Given A and b ∈ Zm where b ≡ As + e (mod q), find s.

I Let L = {v ∈ Zm : v ≡ As (mod q) for s ∈ Zn}.
I To solve LWE we want to find a lattice point y ≡ As (mod q)

close to b. Once we have computed y ∈ L ⊂ Zm one can
easily compute s ∈ Zn with y ≡ As (mod q).

I Usually, the desired solution s corresponds to the closest
lattice point in the Euclidean norm.

I Hence, solve LWE by lattice basis reduction on L followed by
Babai nearest plane algorithm or enumeration or randomised
variant (see Lindner-Peikert 2011, Liu-Nguyen 2013).

I Optimal to choose m ≈
√

n log(q)/ log(δ).
(δ = Hermite factor.)

I Hence typically require m > n > 300 for security.
[Vadim commented that n could be smaller if q is very large.]
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SIS problem (Ajtai)

I Let A ∈ Zm×n
q and let s ∈ Zm

q be a short vector.

Let b ≡ AT s (mod q).
The (inhomogeneous) SIS problem is: Given (AT , b) to find s.

I One can solve SIS by solving CVP: Find any vector y ∈ Zm

such that AT y ≡ b (mod q) and then solve the CVP instance
(L, y) where

L = {v ∈ Zm : AT v ≡ 0 (mod q)}.

I If v is close to y then s = y − v is a short vector such that

AT s ≡ b (mod q).
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LWE = SIS

I An LWE instance b = As + e (mod q), where s is chosen from
the error distribution, becomes an (n + m)×m SIS instance

(A|Im)( s
e ) ≡ b (mod q).

I Conversely, given SIS instance b ≡ AT s (mod q) we can
compute column-HNF ATU = (A′|In) to have

b ≡ ATU(U−1s) ≡ (A′|In)(
y

z ) ≡ A′y + z (mod q).

I Micciancio-Mol: (m, n)-SIS ≤ (m − n, n)-LWE,
(m,m − n)-SIS ≤ (m, n)-LWE

I Subtlety: with LWE an attacker can discard rows if it makes
the problem easier, but for SIS one needs to be more careful.
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Variants of LWE

I We may assume s is sampled from the error distribution.

I Can consider fixed number m of LWE samples, or an arbitrary
number.

I Binary-LWE: s ∈ {0, 1}n and e from error distribution.

I Can choose parameters so that the solution is not well-defined.
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Binary-LWE

I b ≡ As + e (mod q) where s ∈ {0, 1}n and e is from a
discrete Gaussian.

I There are recent hardness results on binary-LWE by
Micciancio-Peikert and Brakerski-Langlois-Peikert-
-Regev-Stehlé:
If certain problems in n/ log(n)-dimensional lattices are hard,
then binary LWE is hard for s ∈ {0, 1}n.

I Direct reduction of LWE to CVP does not exploit size of s.

I Instead, reduce LWE to SIS, then reduce SIS to CVP.

I Challenge: Fully understand binary-LWE.
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Public Key Cryptography from LWE (Regev encryption)

I Private key: s (column vector).

I Public key: A, b = As + e (mod q), q odd prime.
I To encrypt M ∈ {0, 1}:

I Choose u ∈ {0, 1}m (row vector).
I Set c1 = uA (mod q), c2 = u b + M(q − 1)/2 (mod q).

I To decrypt: Compute v = c2 − c1 s (mod q) reduced to the
interval {−(q − 1)/2, . . . ,−1, 0, 1, . . . , (q − 1)/2}.
If |v | < q/4 then output 0, else output 1.

I To break the cryptosystem one could try to compute s or u.
Note that c1 can be viewed as multiple modular subset-sum
instances on the same secret u.

Steven Galbraith Lattices and cryptography



Public Key Cryptography from LWE (Regev encryption)

I Regev shows that the IND-CPA security of the encryption
scheme follows from the decisional-LWE assumption.

I There are variants of the scheme that can be applied in the
setting of ring-LWE (essentially re-animating the corpse of
NTRU).

I Various techniques to improve bandwidth so that a ciphertext
encrypts more than one bit (e.g., Lindner-Peikert 2011).
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Homomorphic encryption from LWE

I Regev encryption is homomorphic for addition: Given two
ciphertexts

ci ,1 = uiA (mod q), ci ,2 = ui b+Mi (q−1)/2 (mod q)

for i ∈ {1, 2} then

c1,1 + c2,1 = (u1 + u2)A (mod q)

and

c1,2 + c2,2 = (u1 + u2)b + (M1 + M2)(q − 1)/2 (mod q)

give an encryption of M1 + M2 (mod 2).

I Brakerski-Vaikuntanathan showed that a natural “tensor
product” operation on ciphertexts (c1,1, c1,2) and (c2,1, c2,2),
followed by a “key switching” operation provides an
encryption of M1M2 (mod 2).
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The official line: Paradise gained

We have a very simple cryptosystem with extremely strong (even
worst-case) security guarantees depending on long-studied and
hard computational problems.

It provides powerful functionality, e.g., homomorphic encryption.

The basic operations are simply vector operations, so everything is
easy to implement.
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Don’t believe the hype!

I These computational problems aren’t as well-studied, and
sometimes not as hard, as they seem.

I Parameter selection can be non-trivial.

I Worst-case security is not a feature, it’s a bug.

I Serious issues about security of these schemes in practical
systems.

I The cryptosystems may be hard to implement.
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Hazards
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Goldilocks problems

I LWE is an example of a “Goldilocks problem”.
[This was pictured nicely in Vadim’s talk with the “tent”
graph.]

I If the standard deviation σ is too small compared with q then
the CVP instance is not as hard as we’d like.

I If the standard deviation σ is too large compared with q then
the problem is not well-defined and it is not necessarily hard to
find a vector s such that b − As (mod q) has smallish norm.
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Worst-case security is not a feature, its a bug

I All computational problems have easy instances.
I For example:

I Factoring smooth numbers is easy.
I CVP is easy if the closest lattice point is inside the

parallelepiped centered on the target vector.

I It can be non-trivial to distinguish an easy instance from a
hard one.

I Hence, basing security on worst-case instances is a necessity
that is a long-standing issue in crypto .

I Compare with RSA: We already choose RSA moduli to be
products of two random primes of similar bitlength, since that
is heuristically the worst-case instance.

I Our job would be easier if we had computational problems
with no easy instances.

I But I agree that it is nice that lattice-based crypto can handle
this issue rigorously.
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Security under adaptive attacks

I Recall the Regev decryption algorithm: Compute
v = c2 − c1 s (mod q) reduced to the interval
{−(q − 1)/2, . . . ,−1, 0, 1, . . . , (q − 1)/2}.
If |v | < q/4 then output 0, else output 1.

I Given a decryption oracle one can call it on
(c1, c2) = ((1, 0, . . . , 0), r) and hence learn most significant bit
of (r + s1) (mod q).
It is easy to see that one can determine the private key
after polynomially many such queries.

I Such attacks can be completely realistic (recall
Bleichenbacher’s success on attacking standardised variants of
RSA).

I There are similar trivial attacks on Gentry/Smart-Vercauteren
(Loftus-May-Smart-Vercauteren) and approximate GCD.
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Security under adaptive attacks

I Similarly, every fully homomorphic encryption scheme requires
certain encryptions of secret values (for example, for the “key
switching” technique mentioned earlier).

I Hence, given a decryption oracle, one can determine the
private key for every fully homomorphic encryption scheme.

I A good challenge is to obtain IND-CCA1 homomorphic
encryption schemes.
Loftus-May-Smart-Vercauteren have done this for the
Smart-Vercauteren scheme.

I Note that Micciancio and Peikert (EUROCRYPT 2012) have
given IND-CCA1 secure encryption from LWE. But it is not
homomorphic.
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Hard to implement

I Many lattice cryptosystems require samples from discrete
Gaussians.

I Computing from such distributions, even just on Z, is
non-trivial.

I Three basic approaches: rejection sampling, precomputing
cumulative probability table (inversion method), or Knuth-Yao
method.

I Each has drawbacks: some require enormous precomputed
tables, some require floating-point arithmetic, some require
many more random bits as input than one would expect.

I Two challenges are to improve sampling algorithms, and to
remove/relax the requirements for Gaussians in the protocols.
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Comparison with pairing based cryptography

[Here I recall the previous provocative statements and discuss them
in the context of pairings.]

I These computational problems aren’t as well-studied, and
sometimes not as hard, as they seem.

I Parameter selection can be non-trivial.

I Worst-case security is not a feature, its a bug.

I Serious issues about security of these schemes in practice.

I The cryptosystems are hard to implement.
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Public key signatures

There are two general approaches to obtain public key signatures:

I Hash and sign.
I Requires a trapdoor one-way function f : D → R.

One hashes message to H(m) ∈ R and the signature is
f −1(H(m)) ∈ D.

I The public key is a description of f and the private key is the
trapdoor.

I Proposed for lattices by GGH, NTRU, GPV, etc.

I Zero-knowledge proofs.
I Requires a one-way function f : D → R.
I The public key is f (d) for some d ∈ D.

The signature is a proof of knowledge of d , using the message
m and a hash function as a source of randomness in the
protocol (Fiat-Shamir heuristic).

I Proposed for lattices by various authors, but really got properly
started with Lyubashevsky at Asiacrypt 2009.
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Public key signatures

I Lyubashevsky has a sequence of papers with co-authors giving
good lattice-based public key signature schemes.

I Public key is an LWE instance (A, b = As + e (mod q)) with
s short, where A is m × n and m� n.

I Take a three-move proof of knowledge of (s, e) and apply the
Fiat-Shamir transform.

I Basic idea: Choose short vectors y
1
, y

2
, compute

b′ = Ay
1

+ y
2

(mod q), receive challenge c , compute
z1 = y

1
+ sc , z2 = y

2
+ ec .

Verifier checks that z1 and z2 are short, computes

Az1 + z2 − bc = Ay
1

+ y
2

+ (As + e)c − (As + e)c = b′.
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Schnorr signatures/identification protocol

I Signer/prover has public key h = ga, where g has order r .

I The prover chooses a random integer 0 ≤ k < r , computes
s0 = gk and sends s0 to the verifier.

I The verifier sends a “challenge” 1 ≤ s1 < r to the prover.

I The prover returns s2 = k + as1 mod r .

I The verifier then checks that g s2 = s0h
s1 .

I It is easy to see that anyone can produce triples (s0, s1, s2)
that satisfy the verification equation, without knowing the
private key.
Hence the protocol is “honest verifier zero knowledge”.
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Lyubashevsky’s proof technique

I Use rejection sampling so that the output distribution of
signatures is independent of the private key.

I Essentially, for the equation z1 = y
1

+ sc we choose the
vector y

1
so that its entries are chosen from a much larger set

than the possible values of sc .

I Unfortunately, this has major implications for signature size.
One also needs to repeat the signing algorithm several times.

I Two main choices for the entries of y
1
: Discrete Gaussian or

uniform.

I Since sc tends to behave like a Gaussian, one would think
that Gaussians are better for y

1
.
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Lyubashevsky public key signatures

I Vadim’s Eurocrypt 2012 paper gives full details for SIS and
LWE, and detailed security proof using the above ideas.
For a security level of around 100-128 bits he gives signatures
of around 16500 bits based on Ring-LWE (n = 512).

I The schemes can be implemented using uniform distributions
instead of discrete Gaussians.

I Güneysu, Lyubashevsky and Pöppelmann (CHES 2012) give a
very practical signature scheme implementable on smartcards.
For 100-bit (based on non-standard assumptions) security
level the signatures are around 9000 bits.

I At CRYPTO 2013 Vadim (with Ducas, Durmus and LePoint),
use a “bi-modal trick” and other innovations (and based on
non-standard assumptions). Gives signatures of around
5000-5500 bits.

I Getting close to the 2000-3000 bits for RSA signatures at that
security level.

Steven Galbraith Lattices and cryptography



New results on public key signatures from LWE (joint with
Shi Bai)

I Lyubashevsky proves knowledge of a solution (s, e) to an LWE
instance (A, b). Note that s has length n and e has length m,
where m� n.

I Our idea is to prove knowledge only of s.

I Public key: A,T = AS + E (mod q) where A and T are
m × n and S and E are n × n.

I We use the fact that if c is a length n vector with very short
entries {−1, 0, 1} and low weight then Ec is short.

I Let d ∈ N and v ∈ Zm. Define bved to be a length m vector
whose i-th entry is v i/2d .

I Choose d such that bEced = 0 with high probability.
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New signatures

I Public key: A,T = AS + E (mod q).
I Signature (proof of S):

I Choose y length n short entries.
I c = H(bAy (mod q)ed ,message) = length n, entries
{−1, 0, 1}, low weight.

I Set z = y + Sc .
I Do rejection sampling so that distribution of outputs (z , c) is

independent of S .
I Return (z , c).

I Verify: Check that z has short enough entries and then check
that

H(bAz − Tced ,message) = c.

I The point:

Az − Tc = A(y + Sc)− (AS + E )c = Ay − Ec.
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New signatures

I We obtain 13000 bit signatures (at 128-bit security level)
based on standard LWE (no rings needed!) for parameters
for which hardness of LWE is guaranteed by reductions to
worst-case instances of standard lattice problems.

I Parameters: (n,m, q, σ) = (584, 1166,≈ 236, 48).

I For these parameters we use uniform distributions during the
signing protocol.

Steven Galbraith Lattices and cryptography



New signatures

I The main problem is that we need q to be very large
compared with σ.
Recall: (n,m, q, σ) = (584, 1166,≈ 236, 48).

I Let L be the lattice L = {v ∈ Zm : v ≡ As (mod q)}.
The volume of L is qn.

I By the Gaussian heuristic, the shortest non-zero vector in L
has Euclidean norm close to√

m/(2πe) det(L)1/m =
√

m/(2πe)qn/m ≈ 2235145.

I However, the error vector has length approximately√
mσ ≈ 1640.

I This corresponds to Hermite factor 1.00635m.
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Thank You
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