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Recent improvements on DLP

December-January, Joux: Create many relations from one, by
composing with linear transforms. 1175 bits, then 1425 bits.

February-March , Joux and Granger independently:
sieve+linear algebra in polynomial time. Constant
characteristic. 1971 bits (Granger), then 4080 (Joux).
L(1/4+o(1)) descent for Joux using GB. Prime exponents
possible by embedding.
April , Caramel: GF (2809) using FFS.
April-May , 6120 bits (Granger) and 6186 bits (Joux) using
L(1/4) variants.
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The new result

Main result
Let K be a finite field of the form Fqk . A discrete logarithm in K
can be computed in heuristic time

max(q, k)O(log k).

Cases:

K = F2n , with prime n. Complexity is nO(log n). Much better
than L2n(1/4+ o(1)) ≈ n 4√n.
K = FQ, Q = qk , q ≈ k. Complexity is (logQ)O(log log Q), i.e.
LQ(o(1)).
K = Fqk , with q ≈ Lqk (α). Complexity is Lqk (α+ o(1)), i.e.
better than FFS for α < 1/3.
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Setting

Same as for Joux’s L(1/4) algorithm.

K = Fq2k , with k ≈ q.
repeat
Take h0 and h1 in Fq2 [x ], of small degree (2 should be ok).

until h1(X )Xq − h0(X ) has an irreducible factor of degree k
Rem. If k > q, then embed K in a larger field (hence the max in
the complexity formula).
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One step of descent

Proposition (under heuristic results)

Let P(X ) ∈ Fq2 of degree D < k. In time polynomial in D and q,
we can express logP as a linear combination

∑
ei logPi , where

degPi ≤ D/2, and the number of Pi is in O(q2D).

The main result follows easily:

Analyze the size of the descent tree.
The leaves are polynomials of degree 1. We know from
previous work that their log can be computed in polynomial
time in q.
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The descent tree

Each node of the descent tree corresponds to one application of
the Proposition, hence its arity is in q2D.

level degPi breadth of tree
0 k 1
1 k/2 q2k
2 k/4 q2k · q2 k

2
3 k/8 q2k · q2 k

2 · q
2 k

4...
...

...
log k 1 ≤ q2 log kk log k

Total number of nodes = qO(log k).
Each node yields a cost that is polynomial in q, hence the result.
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One step of descent: how?

Start from the field equation:

Xq − X =
∏

(α:β)∈P1(Fq)

(βX − α),

Substitute aP+b
cP+d to X , for m =

(
a b
c d

)
∈ PGL(2,Fq2).

Idea: LHS is small and RHS is smooth.
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Right hand side

(aP + b)q(cP + d)− (aP + b)(cP + d)q

=
∏

(α:β)∈P1(Fq)

β(aP + b)− α(cP + d)

=
∏

(α:β)∈P1(Fq)

(βa − αc)P + (βb − αd)

= λ
∏

(α:β)∈P1(Fq)

P −m−1 · (α : β).

Right-hand side is smooth:
All factors are in

{
P(X )− γ | γ ∈ Fq2

}
.
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Left hand side

(aP + b)q(cP + d)− (aP + b)(cP + d)q =

Left-hand side is small:
Let the q-power come inside the formulae, and use
Xq ≡ h0(X )/h1(X ).
Hence, modulo denominator cleaning, it is a polynomial of degree
O(degP).
Probability that LHS splits in polys of degree ≤ 1

2 degP is
constant.
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One step of descent: how?

Now, we let the matrix m =

(
a b
c d

)
vary.

The RHS is the same as for m = Id if m is in PGL(Fq).
We must pick m among the cosets

Pq = PGL2(Fq2)/PGL2(Fq).

For any q, the order of PGL(Fq) = q3 − q, so

#Pq = q3 + q.

Conclusion: Have θ(q3) relations; need q2 to eliminate the
right-hand sides. More than enough! (but heuristic)
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Aanlysis

The essential heuristics of the analysis are:

Usual «behave-like-random» assumption for LHS smoothness;
Question of whether the matrix has full rank.

The matrix H(P) made of the selected RHS is extracted from a
bigger H of size (q3 + q)× q2.

We can prove that H has full rank.
Experiments indicate that with overwhelming probability,
random subsets of q2 rows have full rank.
Probably some finite geometry under the hood.
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Will it blend?
Numerical expermients

The heuristic seems to be ok on a few examples: we get
enough relations to eliminate RHS and keep only P(X ) as a
combination of the LHS.
Need more to be sure.

Cross-over? Right now, not clear whether it has any practical
interest.

The arity O(q2D) at each step is large !
Have to compare with what can be achieved with a groebner
tree of height 2.

But the simplicity and the complexity of this algorithm is
interesting!

Stay tuned!
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