A quasi-polynomial DL algorithm in small characteristic

R. Barbulescu, P. Gaudry, A. Joux and E. Thomé

http://hal.inria.fr/hal-00835446/

June 20, 2013

• December-January, Joux: Create many relations from one, by composing with linear transforms. 1175 bits, then 1425 bits.

- December-January, Joux: Create many relations from one, by composing with linear transforms. 1175 bits, then 1425 bits.
- February-March , Joux and Granger independently: sieve+linear algebra in polynomial time. Constant characteristic. 1971 bits (Granger), then 4080 (Joux). L(1/4+o(1)) descent for Joux using GB. Prime exponents possible by embedding.

- December-January, Joux: Create many relations from one, by composing with linear transforms. 1175 bits, then 1425 bits.
- February-March , Joux and Granger independently: sieve+linear algebra in polynomial time. Constant characteristic. 1971 bits (Granger), then 4080 (Joux). L(1/4+o(1)) descent for Joux using GB. Prime exponents possible by embedding.
- April , Caramel: $GF(2^{809})$ using FFS.

- December-January, Joux: Create many relations from one, by composing with linear transforms. 1175 bits, then 1425 bits.
- February-March , Joux and Granger independently: sieve+linear algebra in polynomial time. Constant characteristic. 1971 bits (Granger), then 4080 (Joux). L(1/4+o(1)) descent for Joux using GB. Prime exponents possible by embedding.
- April, Caramel: $GF(2^{809})$ using FFS.
- April-May, 6120 bits (Granger) and 6186 bits (Joux) using L(1/4) variants.

Main result

Let K be a finite field of the form \mathbb{F}_{q^k} . A discrete logarithm in K can be computed in heuristic time $\max(q, k)^{O(\log k)}$.

Cases:

Main result

Let K be a finite field of the form \mathbb{F}_{q^k} . A discrete logarithm in K can be computed in heuristic time $\max(q, k)^{O(\log k)}$.

Cases:

• $K = \mathbb{F}_{2^n}$, with prime *n*. Complexity is $n^{O(\log n)}$. Much better than $L_{2^n}(1/4 + o(1)) \approx n^{\sqrt[4]{n}}$.

Main result

Let K be a finite field of the form \mathbb{F}_{q^k} . A discrete logarithm in K can be computed in heuristic time $\max(q, k)^{O(\log k)}$.

Cases:

- $K = \mathbb{F}_{2^n}$, with prime *n*. Complexity is $n^{O(\log n)}$. Much better than $L_{2^n}(1/4 + o(1)) \approx n^{\sqrt[4]{n}}$.
- $K = \mathbb{F}_Q$, $Q = q^k$, $q \approx k$. Complexity is $(\log Q)^{O(\log \log Q)}$, i.e. $L_Q(o(1))$.

Main result

Let K be a finite field of the form \mathbb{F}_{q^k} . A discrete logarithm in K can be computed in heuristic time $\max(q, k)^{O(\log k)}$.

Cases:

- $K = \mathbb{F}_{2^n}$, with prime *n*. Complexity is $n^{O(\log n)}$. Much better than $L_{2^n}(1/4 + o(1)) \approx n^{\sqrt[4]{n}}$.
- $K = \mathbb{F}_Q$, $Q = q^k$, $q \approx k$. Complexity is $(\log Q)^{O(\log \log Q)}$, i.e. $L_Q(o(1))$.
- $K = \mathbb{F}_{q^k}$, with $q \approx L_{q^k}(\alpha)$. Complexity is $L_{q^k}(\alpha + o(1))$, i.e. better than FFS for $\alpha < 1/3$.

Setting

Same as for Joux's L(1/4) algorithm.

$$K=\mathbb{F}_{q^{2k}}$$
, with $kpprox q$.

repeat

Take h_0 and h_1 in $\mathbb{F}_{q^2}[x]$, of small degree (2 should be ok). **until** $h_1(X)X^q - h_0(X)$ has an irreducible factor of degree k

Rem. If k > q, then embed K in a larger field (hence the max in the complexity formula).

One step of descent

Proposition (under heuristic results)

Let $P(X) \in \mathbb{F}_{q^2}$ of degree D < k. In time polynomial in D and q, we can express log P as a linear combination $\sum e_i \log P_i$, where deg $P_i \leq D/2$, and the number of P_i is in $O(q^2D)$.

The main result follows easily:

- Analyze the size of the descent tree.
- The leaves are polynomials of degree 1. We know from previous work that their log can be computed in polynomial time in *q*.

Each node of the descent tree corresponds to one application of the Proposition, hence its arity is in q^2D .

level	$\deg P_i$	breadth of tree
0	k	1
1	k/2	q ² k
2	k/4	$q^2k \cdot q^2\frac{k}{2}$
3	k/8	$q^2k\cdot q^2rac{k}{2}\cdot q^2rac{k}{4}$
÷	÷	
log <i>k</i>	1	$\leq q^{2\log k} k^{\log k}$

Total number of nodes $= q^{O(\log k)}$.

Each node yields a cost that is polynomial in q, hence the result.

Start from the field equation:

$$X^q - X = \prod_{(\alpha:\beta)\in\mathbb{P}^1(\mathbb{F}_q)} (\beta X - \alpha),$$

Substitute
$$\frac{aP+b}{cP+d}$$
 to X, for $m = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathsf{PGL}(2, \mathbb{F}_{q^2}).$

Idea: LHS is small and RHS is smooth.

$$(aP+b)^{q}(cP+d) - (aP+b)(cP+d)^{q}$$

$$= \prod_{(\alpha:\beta)\in\mathbb{P}^{1}(\mathbb{F}_{q})} \beta(aP+b) - \alpha(cP+d)$$

$$= \prod_{(\alpha:\beta)\in\mathbb{P}^{1}(\mathbb{F}_{q})} (\beta a - \alpha c)P + (\beta b - \alpha d)$$

$$= \lambda \prod_{(\alpha:\beta)\in\mathbb{P}^{1}(\mathbb{F}_{q})} P - m^{-1} \cdot (\alpha:\beta).$$

Right-hand side is smooth:

All factors are in
$$\{P(X) - \gamma \mid \gamma \in \mathbb{F}_{q^2}\}.$$

$$(aP+b)^q(cP+d) - (aP+b)(cP+d)^q =$$

Left-hand side is small:

Let the q-power come inside the formulae, and use $X^q \equiv h_0(X)/h_1(X).$

Hence, modulo denominator cleaning, it is a polynomial of degree $O(\deg P)$.

Probability that LHS splits in polys of degree $\leq \frac{1}{2} \deg P$ is constant.

Now, we let the matrix $m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ vary. The RHS is the same as for m = Id if m is in $PGL(\mathbb{F}_q)$. We must pick m among the cosets

$$\mathcal{P}_q = PGL_2(\mathbb{F}_{q^2})/PGL_2(\mathbb{F}_q).$$

For any \mathfrak{q} , the order of $PGL(\mathbb{F}_{\mathfrak{q}}) = \mathfrak{q}^3 - \mathfrak{q}$, so

$$\#\mathcal{P}_q=q^3+q.$$

Conclusion: Have $\theta(q^3)$ relations; need q^2 to eliminate the right-hand sides. More than enough! (but heuristic)

The essential heuristics of the analysis are:

- Usual «behave-like-random» assumption for LHS smoothness;
- Question of whether the matrix has full rank.

The matrix H(P) made of the selected RHS is extracted from a bigger \mathcal{H} of size $(q^3 + q) \times q^2$.

- We can prove that $\mathcal H$ has full rank.
- Experiments indicate that with overwhelming probability, random subsets of q² rows have full rank.
- Probably some finite geometry under the hood.

Numerical expermients

- The heuristic seems to be ok on a few examples: we get enough relations to eliminate RHS and keep only P(X) as a combination of the LHS.
- Need more to be sure.

Cross-over? Right now, not clear whether it has any practical interest.

- The arity $O(q^2D)$ at each step is large !
- Have to compare with what can be achieved with a groebner tree of height 2.

But the simplicity and the complexity of this algorithm is interesting!

Stay tuned!

http://hal.inria.fr/hal-00835446/