Revisiting discrete logarithms in medium/small characteristic

Antoine Joux UVSQ and CryptoExperts

June 20th, 2013

Discrete logarithms

- Given a multiplicative group G with generator g
- Computing discrete logarithms is inversing $n \to g^n$
- Hard in general and used as a hard problem in cryptography
- Algorithmic viewpoint
 - Generic algorithms (for any G)
 - Specific algorithms (make use of group representation)

Generic algorithms: Pohlig-Hellman

• Given a multiplicative group G with generator g

• Given
$$|G| = \prod_{i=1}^{k} p_i^{\mathbf{e}_i}$$

• To compute dlogs in G, it suffices to compute dlogs in:

$$G_i = \langle g^{|G|/p_i} \rangle$$
 (Group of order p_i)

Generic algorithms: |G| = p

• There exist algorithms with complexity $O(\sqrt{p})$ to solve:

$$y = g''$$

• Baby-step giant-step (let $R = \lceil \sqrt{p} \rceil$):

• Create list
$$y, y/g, \cdots, y/g^{R-1}$$

- Create list $1, h, h^2, \cdots, h^{R-1}$, where $h = g^R$
- Find collision
- Can be improved to memoryless algorithms using cycle finding techniques

Classical groups for Dlog in Cryptography

- Integers modulo p
- More general finite fields \mathbb{F}_{p^k}
- Elliptic curves over finite fields

Index calculus algorithms

- Relation generation phase
 - Generates many sparse equations
 - Modulo group order for discrete log (Modulo 2 for factoring)
- Linear algebra phase
 - Large sparse system
 - Numbers of unknowns in range up to dozens of millions
 - Number of equations potentially very large
 - Need to use large computers to solve such systems
- Individual logarithm phase

Complexity of Index calculus algorithms

• Write:

$$L_Q(eta,c) = \exp((c+o(1))(\log Q)^eta(\log\log Q)^{1-eta}).$$

- Complexity of dlogs with index calculus algorithms
 - Number field sieve (p large):

$$L_{\rho}\left(1/3,\left(\frac{64}{9}\right)^{1/3}\right)$$

• Number field sieve (p medium to large, $Q = p^k$):

$$L_Q\left(1/3, \left(\frac{128}{9}\right)^{1/3}\right)$$

• Function field sieve (p small to medium, $Q = p^k$):

$$L_Q\left(1/3,\left(\frac{32}{9}\right)^{1/3}\right),$$

the constant is reduced for some specific balance of p and k

Discrete Logarithms in the Medium prime case [JL06]

- Finite field of the form \mathbb{F}_{p^k}
- Choose two univariate polynomials f_1 and f_2
 - with degrees d_1 and d_2 and $d_1d_2 \ge k$.
 - Such that $x f_1(f_2(x))$ has:
 - an irreducible factor of degree k (modulo p).
- This defines the finite field by the relations:

•
$$x = f_1(y)$$
 and $y = f_2(x)$

Discrete Logarithms in the Medium prime case [JL06]

• Optimal for
$$p = L_{p^k}(1/3)$$

- Choose smoothness basis $x \alpha$ and $y \alpha$
- Consider elements:

$$xy + ay + bx + c = x f_2(x) + af_2(x) + bx + c$$

= $y f_1(y) + ay + bf_1(y) + c$

- When both sides split \Rightarrow Relation
- Heuristic cost of finding relation (sieving):

$$(d_1+1)!(d_2+1)!$$

• Individual log. descent negligible compared to initial phase

Nice special case - Kummer extensions

- Assume k|p-1, then \mathbb{F}_{p^k} can be defined by $x^k t$
- If $k = d_1 d_2 1$, let $y = x^{d_1}$ and $tx = y^{d_2}$
- Reduces size of smoothness basis by k
 - Indeed:

$$(X + \alpha)^{p} = X^{p} + \alpha = t^{(p-1)/k} X + \alpha = \mu (X + \alpha/\mu), (Y + \alpha)^{p} = \mu^{d_{1}} (Y + \alpha/\mu^{d_{1}}).$$

where μ is a *k*-th root of unity in \mathbb{F}_p .

• Can be generalized to $k = d_1d_2 + 1$ using $y = x^{d_1}$ and $x = t/y^{d_2}$

Linear change of variables [J13]

• Further restrict to $y = x^{d_1}$

• Then:

$$xy + ay + bx + c = x^{d_1+1} + ax^{d_1} + bx + c$$

• Perform change of variable: x = aX, we get:

$$a^{d_1+1}(X^{d_1+1}+X^{d_1}+b\cdot a^{-d_1}(X+c/(ab))).$$

- Change of variable does not affect splitting property
- One good left-hand side ⇒ p good left-hand sides
- Amortized cost of relation reduced to

$$\left(rac{(d_1+1)!}{p-1}+1
ight)\cdot (d_2+1)!$$

Case of Kummer extensions

• Assume
$$k|p-1$$
, i.e. \mathbb{F}_{p^k} can be defined by $x^k - t$
• If $k = d_1d_2 - 1$, let $y = x^{d_1}$ and $tx = y^{d_2}$
• $x^{d_1+1} + ax^{d_1} + bx + c \Rightarrow a^{d_1+1}(X^{d_1+1} + X^{d_1} + b \cdot a^{-d_1}(X + c/(ab)))$.
• $(y^{d_2+1} + by^{d_2})/t + ay + c \Rightarrow b^{d_2+1}((Y^{d_2+1} + Y^{d_2})/t + a \cdot b^{-d_2}(Y + c/(ab)))$.

• In both cases $\lambda = c/(ab)$ is shared by the two sides

Kummer extensions - Reassembling two sides

Assume that:

- $X^{d_1+1} + X^{d_1} + \theta_X(X + \lambda)$ splits and • $(Y^{d_2+1} + Y^{d_2})/t + \theta_Y(Y + \lambda)$ splits.
- Find a and b such that $\theta_X = b \cdot a^{-d_1}$ and $\theta_Y = a \cdot b^{-d_2}$?
- This implies $\theta_X^{d_2} \theta_Y = a^{-d_1d_2+1} = a^{-k}$.
 - Possible iff $\theta_X^{d_2} \theta_Y$ is a k-th power
 - Gives k (conjugate) solutions !
 - From a recover b and c
 - Roots obtained by change of variable

Impact in the medium prime case

- In theory, reduces constant in complexity of function field sieve.
 - Regardless of Kummer extension or not
 - Individual descent unchanged from [JL06]
- In practice, Kummer extensions very useful for records:
 - First 1175-bit field $\mathbb{F}_{p^{47}}$ with p close to 2^{25}
 - Then 1425-bit field $\mathbb{F}_{p^{57}}$ with p close to 2^{25}
 - Previous finite field record was 923 bits

•
$$47 = 6 \cdot 8 - 1$$

• $57 = 7 \cdot 8 + 1$

Small characteristic – Setting [J13b]

- Assume p = 2 to simplify exposition
- Define finite field by a relation:

$$x^{2^\ell}=\frac{h_0(x)}{h_1(x)},$$

gives degree $k = \deg(I(x))$ extension, where I(x) is a divisor of $h_1(x)x^{2^{\ell}} - h_0(x)$.

• We have a systematic relation:

$$x^{2^{\ell}}-x = \prod_{\alpha \in \mathbb{F}_{2^{\ell}}} (x-\alpha).$$

Small characteristic – Basic idea [J13b]

• Use more general change of variable: $x = \frac{aX+b}{cX+d}$, we get:

$$(cX+d) \cdot (aX+b)^{2^{\ell}} - (aX+b) \cdot (cX+d)^{2^{\ell}} = (cX+d) \cdot \prod_{\alpha \in \mathbb{F}_{2^{\ell}}} ((a-\alpha c)X + (b-\alpha d))$$

• Moreover, after expanding the left-hand size, we find:

$$(ca^q-ac^q)X^{q+1}+(da^q-bc^q)X^q+(cb^q-ad^q)X+(db^q-bd^q),$$

where $q = 2^{\ell}$. It becomes a low degree polynomial after multiplying by h_1 and replacing $h_1(X) X^q$.

• As a consequence, multiplicative relations are very easy to find

Small characteristic – Resulting Complexity [J13b]

- Logarithms of smoothness basis in polynomials time
 - Because base field is very small compared to extension field
- Hard part is individual logarithms
 - Usual descent algorithm not good enough
 - Need to be completed by new descent algorithm (based on resolution of bilinear systems of Equations)
 - Resulting complexity is:

$$L(1/4 + o(1)).$$

- Practical application:
 - $\bullet\,$ New records in $\mathbb{F}_{2^{4080}}$ and $\mathbb{F}_{2^{6168}}$ recently announced

Descent phase

- In practice, bootstrap using continued fractions
- Classical descent (for high to mid degrees):
 - Consider F(X, Y) of low degree in X and Y; let $r \approx \ell/2$
 - We have:

$$(F(X, X^{2^{r}}))^{2^{\ell-r}} = F^{*}\left(X^{2^{\ell-r}}, \frac{h_{0}(X)}{h_{1}(X)}\right)$$

- To apply descent to f, find F such that $f|F(X, X^{2^r})$
- New descent (for mid to low degrees):
 - Find k_1 and k_2 such that $f|k_1^*\left(\frac{h_0(X)}{h_1(X)}\right)k_2(X) - k_1(X)k_2^*\left(\frac{h_0(X)}{h_1(X)}\right)$
 - · Gives relation between above polynomial and

$$k_1(X) k_2(X) \prod_{\mu \in \mathbb{F}^*_{2^\ell}} (k_1(X) - \mu k_2(X))$$

Descent phase — Complexity

- One step of classical descent from D to μD
- D linear conditions, i.e. D monomials of degree \sqrt{D} in each of X and Y.
- Degrees on sides of equation:
 - Left side: $2^r \sqrt{D} D \approx \sqrt{Dq}$
 - Right side $(2^{\ell-r} + \max(\deg h_0, \deg h_1)\sqrt{D} \approx \sqrt{Dq})$
 - Smoothness probability has $\log -\rho \log \rho$ with:

$$\rho = \frac{2\sqrt{Dq}}{\mu D}$$

• If
$$D \ge \sqrt{q \log q}$$
, prob is better than $L(1/4)$

Descent phase — Complexity

- One step of new descent from D to D-d
- Bilinear system with (D d) + d vars
- Complexity of bilinear system is exponential in small number of vars:
 - We choose $d = O(q^{1/4} \log^{1/2} q)$
 - Thus top level dominates and complexity is

$$\exp(O(q^{1/4}\log^{3/2}(q))).$$

Descent phase — Breaking news

- New descent phase with Barbulescu, Gaudry, Thomé
- Without Gröbner bases
- Improved complexity:

 $\exp(O(\log q \log k)).$

• Sub-exponential but not practical (yet)

Conclusion

Questions ?