Pairs of isogenous Jacobians of hyperelliptic curves of arbitrary genus

Couples de Jacobiennes isogènes de courbes hyperelliptiques de genre arbitraire

J.-F. Mestre
Translated from the original preprint arXiv:0902.3470 (2009) by Benjamin Smith

This version was compiled on October 4, 2011

1 Introduction

Let C be a genus g curve, J_{C} its Jacobian, and H a Weil-isotropic rank- g subgroup of $J_{C}[2]$; the quotient abelian variety $A=J_{C} / H$ is principally polarized, but for $g \geq 4$ is generally not a Jacobian. A fortiori, if C is hyperelliptic and $g \geq 3$, then A is generally not the Jacobian of a hyperelliptic curve.

It does not seem well-known that, for large enough g, there exists at least one pair of hyperelliptic curves C, C^{\prime} of genus g whose Jacobians are ($2, \ldots, 2$)-isogenous. We note nevertheless that B. Smith has obtained some families ${ }^{1}$ with 3 (resp. 2, resp. 1) parameters of such pairs of curves of genus $6,12,14$ (resp. 3, 6, 7, resp. 5, 10, 15).

We show here that for all $g \geq 2$, there exists a ($g+1$)-parameter family of pairs of hyperelliptic curves $\left(C, C^{\prime}\right)$ whose Jacobians are connected by an isogeny with kernel isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{g}$. More precisely,

Theorem. Let g be a positive integer, and let $K=\mathbb{Q}\left(a_{1}, \ldots, a_{g}, v\right)$ where a_{1}, \ldots, a_{g}, v are indeterminates. There exists a 2-2 correspondence between the curves C and C^{\prime} defined by

$$
C: y^{2}=(x-v)(v x-1)\left(x^{2}-a_{1}\right) \cdots\left(x^{2}-a_{g}\right)
$$

and

$$
C^{\prime}: y^{2}=(x-v)\left(v x-(-1)^{g}\right)\left(x^{2}-b_{1}\right) \cdots\left(x^{2}-b_{g}\right),
$$

where $b_{i}=\left(a_{i} v^{2}-1\right) /\left(a_{i}-v^{2}\right)$ for $1 \leq i \leq g$, inducing $a(2, \ldots, 2)$-isogeny between their Jacobians.
The Jacobian of C is absolutely simple; further, when we specialize the a_{i} and v at elements of \mathbb{C}, the image of the curves C in the moduli space of hyperelliptic curves of genus g over \mathbb{C} has dimension $g+1$.

Remark 1. When g is even, this allows us to obtain a $(g / 2+1)$-dimensional family of hyperelliptic curves whose Jacobians have endomorphism rings containing $\mathbb{Z}[\sqrt{2}]$: if v and a_{i} (with $1 \leq i \leq g / 2$) are arbitrary, then we take $a_{g / 2+i}=\left(a_{i} v^{2}-1\right) /\left(a_{i}-v^{2}\right)$ for $1 \leq i \leq g / 2$.
Remark 2. In the case $g=2$, we recover the Richelot correspondence (see, for example, [1], [2], and [3]).

[^0]
2 Proof

We maintain the notation of the theorem. We write $p_{0}(x)=q_{0}(x)=(x-v)(v x-1)$ and $p_{i}(x)=x^{2}-a_{i}$ and $q_{i}(x)=x^{2}-b_{i}$ for $1 \leq i \leq g$; if we set

$$
S(x, z)=x^{2} z^{2}-v^{2}\left(x^{2}+z^{2}\right)+1
$$

where z is an indeterminate, then we have the identities

$$
p_{2}(v) p_{1}(x) q_{2}(z)-p_{1}(v) p_{2}(x) q_{1}(z)+\left(a_{1}-a_{2}\right) S(x, z)=0
$$

and

$$
\left(1-v^{2}\right) S(x, z)=2 p_{0}(x) q_{0}(z)-\left(v^{2}+1\right)(1-x v-z v+x z)^{2}
$$

whence

$$
p_{2}(v) p_{1}(x) q_{2}(z) \equiv p_{1}(v) p_{2}(x) q_{1}(z) \quad(\bmod S)
$$

and

$$
2 p_{0}(x) q_{0}(z) \equiv\left(v^{2}+1\right)(1-x v-z v+x z)^{2} \quad(\bmod S) .
$$

2.1 The case where g is even

First, suppose that g is even: then for $1 \leq i \leq g$, the equation above yields

$$
p_{2 i}(\nu) p_{2 i-1}(x) q_{2 i}(z) \equiv p_{2 i-1}(\nu) p_{2 i}(x) q_{2 i-1}(z) \quad(\bmod S) \quad \text { for } 1 \leq i \leq g / 2
$$

It follows, writing

$$
M(x, z)=p_{2}(v) p_{4}(v) \cdots p_{g}(v) p_{1}(x) q_{2}(z) p_{3}(x) q_{4}(z) \cdots p_{g-1}(x) q_{g}(z)
$$

that

$$
\prod_{i=1}^{g} p_{i}(\nu) p_{i}(x) \prod_{i=1}^{g} q_{i}(z) \equiv M(x, z)^{2} \quad(\bmod S)
$$

If C is the curve defined by

$$
C: y^{2}=A \prod_{i=0}^{g} p_{i}(x) \quad \text { where } A=2\left(v^{2}+1\right) \prod_{i=1}^{g} p_{i}(v)
$$

and C^{\prime} the curve defined by

$$
C^{\prime}: t^{2}=\prod_{i=0}^{g} q_{i}(z)
$$

then we have a correspondence Γ on $C \times C^{\prime}$ defined by

$$
\Gamma:\left\{\begin{array}{l}
S(x, z)=0, \\
y t=M(x, z)\left(v^{2}+1\right)(1-x v-z v+x z) .
\end{array}\right.
$$

By construction, the classes of the divisors $\left(\sqrt{a_{i}}, 0\right)-\left(-\sqrt{a_{i}}, 0\right)$ are in the kernel of the homomorphism $J_{C} \rightarrow J_{C^{\prime}}$ induced by Γ, which therefore contains the subgroup of order 2^{g} of $J_{C}[2]$ generated by these classes. The theorem for even g then follows from the following proposition:

Proposition. Let $\Gamma^{\prime} \subset C^{\prime} \times C$ be the transpose of Γ; then $\Gamma \circ \Gamma$ acts on $\operatorname{Pic}^{0}(C)$ by $D \mapsto 2 D$.
We prove without difficulty, using the defining equations for Γ, that the image of a point $P=(X, Y)$ of C under $\Gamma^{\prime} \circ \Gamma$ is the divisor $2 P+P_{1}+w\left(P_{1}\right)$, where P_{1} is a point of C with $x\left(P_{1}\right)=-X$ and w is the hyperelliptic involution of C; the action on degree-0 divisor classes is therefore multiplication by 2.

2.2 The case where g is odd

To prove the theorem for odd g it is enough to specialize $a_{g} \rightarrow 0$ in the construction above. The curves C and C^{\prime} are then of genus $g-1$; an easy calculation gives the defining equation for C^{\prime} in the theorem.

2.3 Dimension in the moduli space

1) The case $g=2$. The generic hyperelliptic curve of genus 2 is in the form of C above: indeed, if P_{1}, \ldots, P_{6} are six generic points on the projective line, then there exists a unique involution u such that $u\left(P_{1}\right)=P_{2}$ and $u\left(P_{3}\right)=P_{4}$; there then exists a unique involution w, commuting with u, such that $w\left(P_{5}\right)=P_{6}$. Choosing coordinates such that u maps $x \mapsto-x$, the involution w has the form $x \mapsto t / x$, which we can bring into the form $x \mapsto 1 / x$ by a homothety.
2) The case $g \geq 3$. Two hyperelliptic curves are isomorphic if and only if there exists a homography mapping the Weierstrass points of one onto those of the other. It therefore suffices to prove that if v, x_{1}, \ldots, x_{g} are generic points of \mathbb{P}^{1}, and if $h: x \mapsto(a x+b) /(c x+d)$ is a homography such that the set $A=\left\{h(v), h(1 / v), h\left(x_{1}\right), \ldots, h\left(x_{g}\right), h\left(-x_{1}\right), \ldots, h\left(-x_{g}\right)\right\}$ is in the form $\left\{w, 1 / w, y_{1}, \ldots, y_{g},-y_{1}, \ldots,-y_{g}\right\}$, then h is of the form $x \mapsto \pm x$ or $x \mapsto \pm 1 / x$.

Let $B=h^{-1}\left(\left\{y_{1},-y_{1}, y_{2},-y_{2}, y_{3},-y_{3}\right\}\right)$; then B is (globally) fixed by the involution $h^{-1} u h$, where u is the involution $x \mapsto-x$. However, if a_{1}, \ldots, a_{6} are six distinct field elements, then there exists an involution permuting $a_{2 i-1}$ and $a_{2 i}$ for $1 \leq i \leq 3$ if and only if

$$
\begin{aligned}
& a_{6} a_{5} a_{3}+a_{6} a_{5} a_{4}+a_{6} a_{2} a_{1}+a_{5} a_{2} a_{1}+a_{1} a_{4} a_{3}+a_{2} a_{4} a_{3} \\
= & a_{6} a_{5} a_{1}+a_{6} a_{5} a_{2}+a_{6} a_{4} a_{3}+a_{5} a_{4} a_{3}+a_{2} a_{1} a_{3}+a_{2} a_{1} a_{4}
\end{aligned}
$$

It follows that each element of B is algebraically dependent on the others; hence, if b is an element of B in the form $\pm x_{i}$ then $\left\{x_{i},-x_{i}\right\} \subset B$, and if b is equal to v or $1 / v$ then $\{\nu, 1 / \nu\} \subset B$. Up to a permutation of $\{1, \ldots, g\}$, the set B must have the form $B_{1}=\left\{x_{1},-x_{1}, x_{2},-x_{2}, v, 1 / v\right\}$ or $B_{2}=\left\{x_{1},-x_{1}, x_{2},-x_{2}, x_{3},-x_{3}\right\}$.

As shown above, six generic points of \mathbb{P}^{1} can be written (in a suitable coordinate system) in the form $\left\{x_{1},-x_{1}, x_{2},-x_{2}, v, 1 / v\right\}$; hence, generically there is no involution fixing B_{1}, so B is of the form B_{2} and $h(\{\nu, 1 / v\})=\{w, 1 / w\}$. But the generic genus 2 curve with automorphism group $\mathbb{Z} / 2 \mathbb{Z})^{2}$ is in the form $y^{2}=\left(x^{2}-x_{1}^{2}\right)\left(x^{2}-x_{2}^{2}\right)\left(x^{3}-x_{3}^{2}\right)$, its automorphism group formed by the four elements $(x, y) \mapsto(\pm x, \pm y)$. Generically, the only involution fixing B_{2} is $x \mapsto-x$; it follows that $h^{-1} u h\left(x_{i}\right)=u\left(x_{i}\right)$ for $1 \leq i \leq 3$; hence $h^{-1} u h=u$, and h is a homography commuting with u, and therefore of the form $x \mapsto a x$ or $x \mapsto a / x$. Since h maps $\{v, 1 / v\}$ onto $\{w, 1 / w\}$ we have $a^{2}=1$, and the result follows.

2.4 Simplicity of J_{C}

For $g=2$, the curve C is the generic curve of genus 2 , so its Jacobian is absolutely simple.
For $g=3$ we specialize the indeterminates, taking for example $v=2, a_{1}=1, a_{2}=3, a_{3}=4$; the characteristic polynomial of Frobenius for the reduction modulo 13 is

$$
y^{6}+2 y^{5}+3 y^{4}+44 y^{3}+39 y^{2}+228 y+2197
$$

Its roots are $-\left(1+2 i \cos \frac{5 \pi}{7}\right)\left(1+2 i \cos \frac{3 \pi}{7}\right)\left(1+2 i \cos \frac{\pi}{7}\right)$ and its conjugates, with $i=\sqrt{-1}$; they generate the field $\mathbb{Q}\left(i, 2 \cos \frac{2 \pi}{7}\right)$, whose roots of unity are those of the field $L=\mathbb{Q}(i)$. If the Jacobian were not absolutely simple then there would exist an integer n such that y^{n} is in L, and then y^{n} would be equal (up to a root of unity) to $(3 \pm 2 i)^{n}$; therefore, up to a root of unity, y would be an element of L.

For $g \geq 4$, we work recursively on g : Specializing $x_{g} \rightarrow 0$, we find the curve of genus $g-1$ associated with $v, x_{1}, \ldots, x_{g-1}$; so if J_{C} is not simple then it must be isogenous to $D \times E$, where D is absolutely simple of dimension $g-1$.

If we specialize v at $\sqrt{-1}$, the curve C admits an automorphism $(x, y) \mapsto(-x, y)$, and is a double covering of the two curves defined by $y^{2}=(x+1)\left(x-x_{1}^{2}\right) \cdots\left(x-x_{g}^{2}\right)$ and $y^{2}=x(x+1)\left(x-x_{1}^{2}\right) \cdots\left(x-x_{g}^{2}\right)$, which have genus $g / 2$ if g is even and genus $(g-1) / 2$ and $(g+1) / 2$ otherwise; so J_{C} is isogenous to the product of their Jacobians, which are generically absolutely simple. This contradicts the fact that J_{C} is isogenous to $D \times E$; it follows that, when $g \geq 4$, the Jacobian J_{C} is absolutely simple.

References

[1] J.-B. Bost and J. F. Mestre. Moyenne arithmético-géometrique et périodes de courbes de genre 1 et 2. Gaz. Math. Soc. France 38 (1988), 36-64
[2] F. Richelot. Essai sur une méthode générale pour déterminer la valeur des intégrales ultraelliptiques, fondée sur des transformations remarquables de ces transcendantes. C. R. Acad. Sci. Paris 2 (1836), 622-627
[3] F. Richelot. De transformatione integralium Abelianorum primiordinis commentatio. J. Reine Angew. Math. 16 (1837), 221-341.

[^0]: ${ }^{1}$ This work has now appeared. See B. Smith, Families of Explicit Isogenies of Hyperelliptic Jacobians, in Arithmetic, Geometry, Cryptography and Coding Theory 2009, Contemp. Math. 521 (2009), 121-144 (also http://hal.inria.fr/inria-00420605). Specifically, it defines three-dimensional hyperelliptic families for $g=6,12,14$; two-dimensional families for $g=3,6,7,10,20,30$; and one-dimensional families for $g=5,10,15$. The kernels of the isogenies are not all of the form $(\mathbb{Z} / 2 \mathbb{Z})^{g}$. A related construction, yielding non-hyperelliptic families in arbitrarily high genus, has also appeared: see B. Smith, Families of explicitly isogenous Jacobians of variable-separated curves, LMS J. Comput. Math. 14 (2011), 179-199 (also http://hal.inria.fr/inria-00516038).

