
Numerical Abstract Domain using Support
Function

Yassamine Seladji? and Olivier Bouissou??

CEA Saclay Nano-INNOV Institut CARNOT
91 191 Gif sur Yvette CEDEX, France

Abstract. In this paper, we present a new abstract domain that uses
support functions to represent convex sets. Then, using a predefined set
of directions, we can use efficient method to compute the fixpoint of linear
programs. We show on a simple example the efficiency of our method.

1 Introduction

Abstract interpretation based static analysis [1, 2] of numerical programs aims at
computing invariants of the values that variables can take during any execution
of the program. Most numerical domains can efficiently represent convex sets
using a polyhedral representation [3, 7, 4, 8]. Another popular representation of
convex sets is the use of support functions [6]. In particular, support functions
have been successfully used in the field of hybrid systems analysis [5] to represent
sets of values. In this article, we present some ongoing work that shows that
it is possible to use support functions to define a new abstract domain that is
simpler than the polyhedra domain and allows for efficient computation of linear
operations. This domain is similar to the template abstract domain [8] in that
it depends on a fixed set of directions ∆ ⊆ Rn (where n is the space dimension)
and bounds the convex sets in each direction d ∈ ∆. However, as it benefits from
the algorithms on support functions, the linear operations are very efficient and
do not depend on linear programming solvers.

In the following, we first give some basics results on support functions, and
then present our domain and how to compute on it. We consider that we handle
sets in Rn (where n is the number of variables of our program). Our domain
depends on a set of directions ∆ ⊆ Rn which we assume to be finite.

Notations We put R∞ = R ∪ {−∞,+∞}. Given two vectors v, w ∈ Rn, let
〈v, w〉 ∈ R be the scalar product of u and w

2 Support function

In this section, we recall the definition of the support function and some useful
properties. In convex analysis, support function is commonly used as a repre-

? yassamine.seladji@cea.fr
?? olivier.bouissou@cea.fr



sentation of convex sets S ⊆ Rn. The support function δS of S is defined by

δS(d) = sup{〈x, d〉 : x ∈ S},∀d ∈ Rn.

Using this definition, S can be represented by intersection of half spaces as given
in Equation 1.

S =
⋂
d∈Rn

{x ∈ Rn|〈x, d〉 ≤ δS(d)}. (1)

From the computational point of view, it’s hard to use Equation 1 as an
exact representation of S. To deal with that, we can define a polyhedron that
over-approximates S as given in Proposition 1.

Property 1 Let S be a convex set, and ∆ ⊆ Rn be a set of directions. We put
P =

⋂
d∈∆{x ∈ Rn|〈x, d〉 ≤ δS(d)}. Then S ⊆ P .

Support function of an arbitrary convex set can be computed efficiently using
operations of Property 2. For a given matrix M ∈ Rn×Rm (where m ∈ N and n
is the space dimension), MS denotes the transformation of the convex set S by
M , such that MS = {Mx|x ∈ S}. Let S, S′ ⊆ Rn, S⊕S′ denotes the Minkowski
sum: S ⊕ S′ = {x+ x′ | x ∈ S, x′ ∈ S′}.

Property 2 Let S be a convex set. We have:

– ∀M ∈ Rn ×Rm, δMS(d) = δS(MT d).
– ∀λ ≥ 0, δλS(d) = λδS(d).
– ∀S′ ⊆ Rn, δS∪S′(d) = max(δS(d), δS(d)).
– ∀S′ ⊆ Rn, δS∩S′(d) ≤ min(δS(d), δS(d)).
– ∀S′ ⊆ Rn, δS⊕S′(d) = δS(d) + δS(d).

In Property 2, S ∪ S′ is the convex hull of S and S′. Note that, all relations
are exact, except for the computation of the support function of the intersection
of two convex sets for which we only have an over-approximation relation.

In the next section, we shall see how the properties presented in this section
allow us to define the Restricted Polyhedra Abstract Domain.

3 Abstract Domain

In this section, we formalize our abstract domain using support function. For
that we fix the set ∆ = {d1, . . . , dl} as a set of l directions. We define the domain

P
]
∆ in Definition 1.

Definition 1 Let ∆ ⊆ R
n be a set of l directions. Let P]∆ be our abstract

domain such that: P]∆ = ∆→ R∞, the set of functions from ∆ to R∞.

For each Ω ∈ P]∆, we write Ω(d) the value of Ω in direction d ∈ ∆. So an

abstract value of P]∆ is a mapping from ∆ to R∞, such that the concretization
function γ∆ is given in Definition 2



Definition 2 Let ∆ ⊆ R
n be a set of l directions, and P]∆ be our abstract

domain. The concretization function of P]∆ is noted γ∆, such that:

∀Ω ∈ P]∆, γ∆(Ω) =
⋂
d∈∆

{x ∈ Rn | 〈x, d〉 ≤ Ω(d)}

Definition 2 shows that the concretization of an abstract element of P]∆ is a
polyhedron. This polyhedron is represented by the intersection of l half-spaces,
where each one is characterized by its normal vector d ∈ ∆ and a coefficient
Ω(d)c. We define the inclusion operation v as follow:

(∀Ω1, Ω2 ∈ P]∆), Ω1 v Ω2 ⇐⇒ γ∆(Ω1) ⊆ γ∆(Ω2),

where ⊆ is the inclusion defined for the Polyhedra Abstract Domain. Using this
definition, we have that (P]∆,v) forms a complete lattice, such that:

– ⊥ = λd.−∞.
– > = λd.+∞.
– (∀Ω1, Ω2 ∈ P]∆), (Ω1 tΩ2)(d) = max(Ω1(d), Ω2(d)).

– (∀Ω1, Ω2 ∈ P]∆), (Ω1 uΩ2)(d) v min(Ω1(d), Ω2(d)).

Note that in our lattice, the operation of intersection is not exact because we are
not sure that Ω1 and Ω2 are in a normal form. The abstraction function α∆ of
P
]
∆ is a function which transforms a given polyhedron into a set of coefficients.

For that we use the support function.

Definition 3 Let ∆ ⊆ R
n be a set of l directions, and P]∆ be our abstract

domain. The abstraction function of P]∆ is defined by

α∆(P) =

⊥ if P = ∅
> if P = Rn

λd.δP(d) otherwise

For a given polyhedron P, the result of α∆ is the support function of P applied
on each element of ∆. In the case where P is unbounded in a direction d, we put
δP(d) = +∞. The support function of P, for each d ∈ ∆, can be obtained using
two methods:

– if P is represented by a linear system, we use linear programming to find
sup〈d, x〉 under the linear system of P,

– if P is represented by a set of generators, δP(d) = max{〈g, d〉 | g ∈ P}.

Note that ∀Ω ∈ P]∆, if Ω = α∆(P), then γ∆(Ω) ⊆ P, and the generators of
the polyhedron P touch the faces of γ∆(Ω). This is stated in Proposition 3.

Property 3 Let P be a polyhedron and Ω ∈ P]∆ such that Ω = α∆(P). We
have that, P ⊆ γ∆(Ω) where this over approximation is tight as the generators
of P touch the faces of γ∆(Ω).



Example 1 In this example, we put ∆ ⊆ R2 such that:
∆ = {(−3, 5), (1, 3), (−1, 0), (0,−1)}. For the abstract element Ω1 = {3, 4, 3, 2},
the result of its concretization is given in Figure 1(left). The right of the Figure 1
is the result of γ∆(Ω2), with Ω2 = {3, 3,+∞, 2}. In this case, for c2 = +∞ in
Ω2, the resulted polyhedron is unbounded in the direction d2 = (−1, 0).

x

y

x

y

Fig. 1: The geometrical representation of γ∆(Ω1) (left) and γ∆(Ω2) (right).

4 Fixpoint computation

In this section, we show how to manipulate abstract elements of Section 3 to
analyze numerical programs. For that, we define techniques that allow us to use
support functions to compute the fixpoint of programs to analyze. We show that
these results have a good accuracy. We assume that all programs we analyze
are of the form X ′ = AX + b, where A ∈ Rn × Rn and b ∈ Rn. Let P0 be
the polyhedron that represents the initial condition of the program, and F ]

its semantic function. We put Ω0 = α∆(P0). For the simple case of programs
without loops, the fixpoint, noted Ω, is obtained by computing the support
function of the polyhedron P in directions d ∈ ∆, where P = F ](P0). We have
that F ](P0) = AP0 ⊕ b. Using Property 2 we have:
∀d ∈ ∆, δP(d) = δF ](P0)(d)

= δAP0⊕b(d)
= δAP0

(d) + δb(d)
= δP0(AT d) + 〈b, d〉 .

So we define Ω as

∀d ∈ ∆, Ω(d) = δP0
(AT d) + 〈b, d〉.

Note that Ω = α∆(P), while P ⊆ γ∆(Ω). Proposition 3 ensures that the gener-
ators of P touch the faces of γ∆(Ω). The precision of γ∆(Ω) depends strongly
on the choice of ∆. We assume that P0 is bounded, so we represent it by its
generators, such that: P0 = {g1, . . . , gj}. We can define δP0

(d) for all d ∈ ∆ by
δP0

(d) = sup{〈d, vi〉|vi ∈ P0}. In this case, the computation of δP0
(d) is done

without using linear programming. So, this technique is efficient.



Now, we extends our class of programs to programs with loops. For that, we
distinguish two kinds of loops: loops with guard and loops without guard.

Loops without guard. Here, we consider the case of programs with loops, where
the loop is not conditioned by a guard. To compute the abstract element Ωi of
each iteration, we use support function to ensure that Ωi = α∆(Pi), where Pi
is the result of the ith Kleene iteration using the Polyhedra Abstract Domain.
This means that Ωi is the best abstraction, in P]∆, for Pi. The computation of
Ωi uses the support function of P0 as given in Equation 2.

∀d ∈ ∆, Ωi(d) = max
(
δP0(d), δP0(ATjd) +

j∑
k=1

〈b, AT (k−1)d〉, j = 1, . . . , i
)

(2)

Property 4 shows that for all d ∈ ∆,Ωi(d) = δPi(d). Thus, we have that Ωi =

α∆(Pi). So Ωi is the best abstraction of Pi in P]∆.

Property 4 Let Pi be the ith iteration in the polyhedra abstract domain, then

δPi(d) = max
(
δP0

(d), δP0
(ATjd) +

j∑
k=1

〈b, AT (k−1)d〉, j = 1, . . . , i
)
.

Proof. We show that the Property 4 is true for i = 1.
(∀d ∈ ∆), δP1

(d) = δP0∪F ](P0)(d)
= max(δP0(d), δAP0⊕b(d))
= max(δP0(d), δAP0(d) + δb(d))
= max(δP0

(d), δP0
(AT d) + 〈b, d〉) .

We assume that the Property 4 is true for rank i, and we prove that it’s true for
rank i+ 1.
δPi+1

(d) = δPi∪F ](Pi)(d)
= max(δPi(d), δAPi⊕b(d))
= max(δPi(d), δPi(A

T d) + 〈b, d〉)
We have that :
δPi(A

T d) + 〈b, d〉 = max(δP0(AT d) + 〈b, d〉, . . . , δP0(ATid) +
∑i−1
k=1〈b, ATkd〉+ 〈b, d〉,

δP0
(AT (i+1)d) +

∑i
k=1〈b, ATkd〉+ 〈b, d〉)

= max(δP0
(AT d) + 〈b, d〉, . . . , δP0

(ATid) +
∑i
k=1〈b, AT (k−1)d〉,

δP0(AT (i+1)d) +
∑i+1
k=1〈b, AT (k−1)d〉)

Note that,
max(δP0

(AT d) + 〈b, d〉, . . . , δP0
(ATid) +

∑i
k=1〈b, AT (k−1)d〉) ≤ δPi(d).

So
δPi+1

(d) = max(δPi(d), δP0
(AT (i+1)d) +

∑i+1
k=1〈b, AT (k−1)d〉)

= max(δP0(d), δP0(ATjd) +
∑j
k=1〈b, AT (k−1)d〉, j = 1, . . . , i+ 1).

Thus,(∀d ∈ ∆,∀i ≥ 1),

δPi(d) = max(δP0(d), δP0(ATjd) +

j∑
k=1

〈b, AT (k−1)d〉, j = 1, . . . , i).

�



Algorithm 1 Kleene Algorithm using support function.

Input: ∆ ⊂ Rn, set of l directions
Input: P0, The initial polyhedron
Input: A ∈ Rn ×Rm, b ∈ Rm

1: d = ∆
2: Ω = ⊥
3: repeat
4: Ω′ = Ω
5: for all i = 0, . . . , (l − 1) do
6: Θ[i] = Θ[i] + 〈b, d[i]〉
7: d[i] = AT d[i]
8: Υ [i] = δP0(d[i]) +Θ[i]
9: Ω[i] = max(Ω[i], Υ [i])

10: end for
11: until Ω v Ω′

Using Equation 2, we define an efficient algorithm to compute the fixpoint. In
Algorithm 1, the computation of the abstract element Ωi depends on the compu-
tation of δP0

and Θki for each d′k. We assume that P0 is a bounded polyhedron,
which is represented by its generators. To compute δP0

in each direction, we put
P0 = {v1, . . . , vj}. So, we have that δP0

(d) = sup{〈d, vi〉 : vi ∈ P0}. Indeed,
we know that P0 represents the polyhedron of the initial condition of the pro-
gram to analyze, so its representation is quite simple. In particular, the number
of its vertices is usually small. This means that the computation of δP0

does
not require LP solvers, what changes in each iteration is the set of directions in
which we compute δP0

. Thus, Algorithm 1 has a polynomial complexity, and in
addition its results is as accurate as possible.

Loops with guard : Generally in programs with loops, the loops have a condition.
To treat this case, we assume that the condition of the loop is represented by a
guard of the form 〈X, c〉 ≤ l, such that c ∈ Rn and l ∈ R. Let H be the half
space, such that: H = {x ∈ Rn|〈x, c〉 ≤ l}. In this case, the abstract semantic
function is defined by: F ](P) = (AP ⊕ b) ∩ H, with P a polyhedron. We put
P
′ = P0∪F ](P0). So (∀d ∈ ∆), δP′(d) = max(δP0

(d), δF ](P0)(d)). We have that:

δF ](P0)(d) = δ(AP0⊕b)∩H(d)
≤ min(δP0

(AT d) + 〈b, d〉, δH(d))

Thus, δP′(d) ≤ max(δP0
(d),min(δP0

(AT d) + 〈b, d〉, δH(d))). We can generalize
this to δPi(d), such that Pi is the polyhedron obtained in the ith iteration. This
generalization needs to distinguish two cases: the first case is where d = λc with
(λ ≥ 0), and the second is where d 6= λc. We separate these cases because:

δH(d) =

{
l if d = λc, (λ ≥ 0)
+∞ otherwise

.

In this case, for a better precision we add the normal vector of H to ∆. we put
∆1 = {c} ∪ {d ∈ ∆|d = λc, λ ≥ 0}, and ∆2 = ∆ \∆1. Note that, ∆ is defined



such that its elements are not two per two parallel. So, the cardinality of ∆1 does
not exceed 2. For the fixpoint computation, we separate the case where d ∈ ∆1

from when d ∈ ∆2. Let us detail the computation of Ωi(d) for both cases.

– For d ∈ ∆2, we have Ωi(d) defined as in Equation 2. Let us show that. We
have that, Ωi(d) = δPi(d) with:
δPi(d) = δPi−1∪F ](Pi−1)(d)

= max(δPi−1
(d), δ(APi−1⊕b)∩H(d))

≤ max(δPi−1
(d),min(δPi−1

(AT d) + 〈b, d〉, δH(d))
= max(∆γ∆(Ωi−1)(d), δγ∆(Ωi−1)(A

T d) + 〈b, d〉(δH(d) = +∞)

= max(δP0(d), δP0(ATjd) +
∑j
k=1〈b, AT (k−1)d〉, j = 1, . . . , i).

So, in this case, the effect of the guard doesn’t appear.
– For d ∈ ∆2, we putΩi(d) = max(∆γ∆(Ωi−1)(d),min(δγ∆(Ωi−1)(A

T d)+〈b, d〉, l),
which is an over approximation of δPi(d), such that :
δPi(d) = δPi−1∪F ](Pi−1)(d)

= max(δPi−1
(d), δ(APi−1⊕b)∩H(d))

≤ max(δPi−1
(d),min(δPi−1

(AT d) + 〈b, d〉, δH(d))
≤ max(∆γ∆(Ωi−1)(d),min(δγ∆(Ωi−1)(A

T d) + 〈b, d〉, l)
≤ Ωi(d)

To compute Ωi(d), we have to determine δγ∆(Ωi−1)(d) and δγ∆(Ωi−1)(A
T d),

which are obtained using linear programming. This choice doesn’t affect a lot
the efficiency of our method, because it’s applied at most for two directions
in ∆ ∪ {c}. Here, α∆(Pi) v Ωi such that the generators of Pi touch all the
faces of γ∆(Ωi), except for those whose normal vector belongs to ∆1.

5 Experimentation

To show the efficiency of our abstract domain we did some preliminary test. We
implemented Algorithm 1 using the R language, and we tested it on a simple
program given in the left of Figure 2. The experimentation is done on 2.4GHz
Intel Core2 Duo laptop, with 8Gb of RAM. The set of directions ∆ is chosen
in a random way. The result of the analysis is illustrated in the right part of
Figure 2, which is obtained after only 0.046 second. This result is obtained
using ∆ = {(9, 2); (1, 6); (−7, 7); (8, 7); (−3,−7); (3, 2); (−8, 7); (4, 1)} , where the
filled polyhedrons represent the result obtained in each Kleene iteration using
polyhedra abstract domain, in an increasing way from the dark to the light.
And the result of Algorithm 1 is given by the transparent(dotted) polyhedron.
The time execution of this analysis is of 0.046 second, which is a good trade of
between precision and time execution.

6 Conclusion

We showed a new abstract domain that uses support functions to represent
convex sets. Depending on the chosen set of directions, our domain P]∆ holds an
over-approximation of the support functions of the set in each direction. Clearly,



begin

x = -2.0; y = 1.0;

xn = yn= 0.0;

while (0<=10) do

xn = 0.5 *x - y - 2.5;

yn = 0.9 *y + 10;

x = xn; y = yn;

done;

end

Fig. 2: The result of our experimentation. The program to analyze in left and
the geometrical interpretation of the result in right.

both the definition and the order defined in our domain are the same as for
the template abstract domain. However, the linear affectations are very different
as we can always rely on the support function of the initial polyhedron which
is easily computed. Using this technique, we showed that our domain is very
precise: for a loop, the ith iterate is the best abstraction in P]∆ of the ith iterate
one would have computed using the polyhedra domain.

As already stated, the precision of our domain is theoretically good and must
now be tested on various numerical programs. We are currently working on an
implementation of this domain to compare it with the results of [8].

References

1. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth ACM Symposium on Principles of Programming Languages
(POPL’77), pages 238–252. ACM Press, 1977.

2. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation, 2(4):511–547, 1992.

3. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among vari-
ables of a program. In Conference Record of the Fifth ACM Symposium on Principles
of Programming Languages (POPL’78), pages 84–97. ACM Press, 1978.

4. Eric Goubault and Sylvie Putot. Perturbed affine arithmetic for invariant compu-
tation in numerical program analysis. CoRR, abs/0807.2961, 2008.

5. Colas Le Guernic and Antoine Girard. Reachability analysis of hybrid systems using
support functions. In CAV, pages 540–554, 2009.

6. Jean-Baptiste Hiriart-Urrut and Claude Lemaréchal. Fundamentals of Convex Anal-
ysis. Springer, 2004.

7. A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation,
19(1):31–100, 2006.

8. S. Sankaranarayanan, H. Sipma, and Z. Manna. Scalable analysis of linear systems
using mathematical programming. In VMCAI. Springer, 2005.


