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Abstract

Static analysis by abstract interpretation aims at automatically proving properties of computer
programs. Basically, an over-approximation of program semantics, defined as the least fixpoint of a
system of semantic equations, must be computed. To enforce the convergence of this computation,
widening operator is used but it may lead to coarse results. We propose a new method to accelerate
the computation of this fixpoint by using standard techniques of numerical analysis. Our goal is
to automatically and dynamically adapt the widening operator in order to maintain precision.
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1 Introduction

In the field of static analysis of embedded numerical programs, abstract in-
terpretation [?,?] is widely used to compute over-approximations of the set
of behaviors of programs. This set is usually defined as the least fixpoint of a
monotone map on an abstract domain given by the (abstract) semantics of the
program. Using Tarski’s theorem [?], this fixpoint is computed as the limit of
the iterates of an abstract function starting from the least element. These iter-
ates build a sequence of abstract elements that (order theoretically) converges
towards the least fixpoint. Since this sequence may converge slowly (or only
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after infinitely many steps), the theory of abstract interpretation introduces
the concept of widening [?].

A widening operator is a two-argument function ∇ which tries to pre-
dict the limit of the iterates based on the relative position of two consecutive
iterates. For example, the standard widening operator on the interval ab-
stract domain consists in comparing the limits of the intervals and setting the
unstable ones to ∞ (or −∞). A widening operator often makes large over-
approximation because it must make the sequence of iterates converge in a
finite time. Over-approximation may be reduced afterward using a narrowing
operator but the precision of the final approximation still strongly depends
on the precision of ∇. Various techniques have been proposed to improve it.
Delayed widening makes use of ∇ after n iteration steps only (where n is a
user-defined integer), thus letting the first loop iterates execute before trying
to predict the limit. The delay parameter n usually has to be defined a priori.
Another approach is to use a widening with thresholds [?]: the upper bound of
the interval (for example) is not directly set to∞, but is successively increased
using a set of thresholds that are candidates for the value of the fixpoint upper
bound. In practice, these techniques are necessary to obtain precise fixpoint
approximations for industrial-sized embedded programs. However, they suffer
from their lack of automatization: thresholds must be chosen a priori and are
defined by the user. Some methods try to automatically discover thresholds
from the program [?,?]: whenever an inequality (e.g. the condition of a loop)
is found, a threshold (or landmark in [?]) is added, its value depending on
the constants appearing in the inequality. So the thresholds are based on a
syntactic criterion; in our work we define thresholds using the dynamics of the
program variables. As a consequence, the use of a static analyzer is difficult
as these (non-trivial) parameters are often hard to find.

In this article, we present some ongoing work which shows that it is pos-
sible to use sequence transformation techniques in order to automatically and
efficiently derive an approximation to the limit of Kleene iterates. This ap-
proximation may not be safe (i.e. may not contain the actual limit), but we
show how to use it in the sense of abstract interpretation. Sequence trans-
formation techniques (also known as convergence acceleration methods) are
widely studied in the field of numerical analysis [?]. They transform a con-
verging sequence (xn)n∈N of real numbers into a new sequence (yn)n∈N which
converges faster to the same limit (see Section 3.2). In some cases (depending
on the method), the acceleration is such that (yn)n∈N is ultimately constant.
Some recent work [?] applied these techniques in the case of sequences of
vectors of real numbers: vector sequence transformations introduce relations
between elements of the vector and perform better than scalar ones. Our main
contribution is to show that we can use these methods in order to improve
the fixpoint computation in static analysis: we define dynamic thresholds for
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widening that are very close to the actual fixpoint. This increased precision
is obtained because sequence transformations use all iterates and quantitative
information (i.e. relative to the distance between elements) to predict the
limit. They thus exploit more information than the widening and make a bet-
ter prediction. In this work, we focus on the interval domain, but we believe
that this work may be applied to any abstract domain, especially the ones with
a pre-defined shape (octagons [?], templates [?], etc.) =¿ Insister sur le fait
qu’on utilise le domaine numérique des intervalles pour expliquer notre tech-
nique, puis nous l’appliquerons en utilisant le domaine abstrait numérique des
octogones. Let us remark that our techniques are well-suited for accelerating
the invariant generation of numerical programs with floating-point variables
and that we do not address the case of integer variables as in [?,?].

This article is organized as follows. In Section 2, we explain on a simple
example how acceleration methods may be used to speed-up the fixpoint com-
putation. In Section 3, we recall the theoretical basis of this work and present
our main theoretical contribution in Section 4. Section 5 presents some early
experiments on various floating-point programs that show the interest of our
approach, while Sections 6 and 7 discuss related works and perspectives.

Notations. In the rest of this article, (xn) will denote a sequence of real
numbers (i.e. (xn) ∈ R

N), while (xn) denotes a sequence of vector of real

numbers (i.e. (xn) ∈
(

R
p
)N

for some p ∈ N). The symbol Xn will be used to
represent abstract iterates, i.e. Xn ∈ A for some abstract lattice A.

2 An introductive example

Étaler un peu plus cette partie car je trouve que les informations sont con-
densées In this section, we explain, using a simple example, how sequence
acceleration techniques can be used in the context of static analysis. In short,
our method works as follows: let (Xn) be a sequence of intervals computed by
the Kleene iteration and that is chosen to be widened (see [?] for details on
how to choose the widening points). From (Xn) we extract a vector sequence
(xn): at stage k, xk is a vector that contains the infimum and supremum of
each variable of the program. As Kleene iteration converges towards the least
fixpoint of the abstract transfer function, the sequence (xn) converges towards
a limit x which is the vector containing the infimum and the supremum of
this fixpoint. We then compute an accelerated sequence (yn) that converges
towards x faster than (xn). Once this sequence has reached its limit (or is
sufficiently close to it), we use x as a threshold for a widening on (xn) and
thus obtain, in a few steps, the least fixpoint. In the rest of this section, we
detail these steps.
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1 while (1 ) {
2 xn1 = −0.4375 ∗ x1+ 0.0625 ∗ x2 + 0.2652 ∗ x3 + 0.1 ∗ u1 ;
3 xn2 = 0.0625 ∗ x1 + 0.4375 ∗ x2 + 0.2652 ∗ x3 + 0.1 ∗ u2 ;
4 xn3 = −0.2652 ∗ x1 + 0.2652 ∗ x2 + 0.375 ∗ x3 + 0.1 ∗ u3 ;
5 x1 = xn1 ; x2 = xn2 ; x3 = xn3 ;
6 }

Fig. 1. A simple linear program.

The program. We consider a linear program which iterates the function
F (X) = A · X + B · U where A, B and U are constant matrices and X
is the vector of variables (see Figure 1). Initially, we have x1 ∈ [1, 2], x2 ∈
[1, 4], x3 ∈ [1, 20], u1 ∈ [1, 6], u2 ∈ [1, 4] and u3 ∈ [1, 2]. Using an interval
analysis, we showed that this program converges in 55 iterations (without
widening) and obtained the invariant [−5.1975, 8.8733] for x1 at line 2.

Extracting the sequence. From this program, we can define a vector se-
quence of size 6, xn =

(

x1
n, x

1
n, x

2
n, x

2
n, x

3
n, x

3
n

)

, which represents the evolution
of the supremum and the infimum of each variable x1, x2 and x3 at line 2.
For example, the sequence (x1

n) is recursively defined by:

x1
n+1 = max

(

x1
n , −0.4375 ∗ x1

n + 0.0625 ∗ x2
n + 0.2652 ∗ x3

n + 0.1 ∗ u1

)

. (1)

Note that we are not interested in the formal definition of these sequences (as
given by Equation (1)), but only in their numerical values that are extracted
from Kleene iterates. Each sequence (xi

n) (resp. (x
i
n)) is increasing (resp. de-

creasing) and the sequence (xn) converges towards a vector x containing
the infima and the suprema of the fixpoint (see Figure 2, dotted lines).

Accelerating the sequence. We then used the vector ε-algorithm [?] to
build a new sequence that converges faster towards x. This method works
as follows (a more formal definition will be given in Section 3.2): it computes
a series of sequences (εkn) for k = 1, 2, . . . such that each sequence (εkn) for
k even converges towards s and the diagonal (dn) = (ε2n0 ) also converges
towards s. This diagonal sequence is the result of the ε-algorithm and it
is called the accelerated sequence. It converges faster than the original se-
quence: in only 8 iterates (which require 16 iterates of the original sequence,
as will be explained later), it reached the fixpoint and stayed constant (see
Figure 2, bold lines).

Using the accelerated sequence. When the accelerated sequence reaches
the limit (or is sufficiently close to it), we modify the Kleene iteration and
directly jump to the limit. Formally, if the limit is (x1, x1, x2, x2, x3, x3) and
if the current Kleene iterate is Xp, we construct the abstract element X
whose bounds are x1, x1, . . . and set Xp+1 = Xp ∪ X and re-start Kleene
iteration from Xp+1. In this way, we remain sound (Xp ⊆ Xp+1) and we are
very close to the fixpoint, as X ⊆ Xp+1. In this example, Kleene iteration
stopped after 2 steps and reached the same fixpoint as the one obtained
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5 10 15 20 25 30

Infimum of x1.

Accelerated sequence.

Kleene iteration

5 10 15 20 25 30

Supremum of x1.

Accelerated sequence.

Kleene iteration

Fig. 2. Sequences extracted from the program of Figure 1 and their accelerated version.

5 10 15 20 25

Modified iteration.

Kleene iteration.

Accelerated sequence.

Fig. 3. Infimum value of x1. We only display the iterates 5 to 25. At the 15th iteration, the
accelerated value is used as a widening with thresholds, and the iteration stops after 18 steps.

without widening and acceleration. Figure 3 shows the original Kleene
iteration and the modified one, for the infimum of variable x1. Let us recall
that the Kleene iteration needed 55 steps to converge, where the modified
iteration stops after 18 steps.

3 Theoretical frameworks

In this section, we briefly recall the basics of abstract interpretation, with an
emphasis on the widening operator. Next, we present the theory of sequence
transformations in more details.

3.1 Overview of abstract interpretation theory

Abstract interpretation is a general method to compute over-approximations
of program semantics defined by a monotone semantic function F . The two
key ideas are:

• Safe abstractions of sets of states based on, in the more general framework
[?, Sect. 7], concretization functions. More precisely let 〈C,⊑C〉 be the
lattice of concrete states and let 〈A,⊑A〉 be the lattice of abstract states.
The concretization function is a monotonic map γ : A → C. We consider
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x ∈ A as a safe abstraction of y ∈ C if y ⊑C γ(x).
Moreover, the abstract monotone semantic function F ♯ is a safe abstraction
of F iff ∀x ∈ A, F (γ(x)) ⊑C γ(F ♯(x)). Expliquer cette partie en donnant et
utilisant l’algorithme de Kleene, afin de pouvoir dire par la suite que notre
technique améliore le calcul du point fixe sans trop changer l’algorithme de
kleene.

• An effective computation method using a widening operator when abstract
semantics are based on infinite height lattices. The abstract program se-
mantics is a set of states X of a lattice 〈A,⊑A〉 such that X = F ♯(X). The
solution X is iteratively constructed by Xi+1 = Xi ⊔ F ♯(Xi), starting from
X0 = ⊥. The value ⊥ and the operation ⊔ denote the smallest element and
the join operation of A respectively. The sequence (Xn) defines an increas-
ing chain of elements of A. This chain may be infinite, so to enforce the
convergence of this sequence, we substitute the operator ⊔ by a widening
operator ∇, see Definition 3.1, that is an over-approximation of ⊔.

Definition 3.1 (Widening operator [?]) Let 〈A,⊑A〉 be a lattice. The map
∇ : A × A → A is a widening operator iff i) ∀v1, v2 ∈ A, v1 ⊔ v2 ⊑A v1∇v2.
ii) For each increasing chain v0 ⊑A · · · ⊑A vn ⊑A · · · of A, the increasing
chain defined by s0 = v0 and sn = sn−1∇vn is stationary: ∃n0, ∀n1, n2, (n2 >
n1 > n0) ⇒ sn1

= sn2
.

The widening operator plays an important role in static analysis because
it allows to consider infinite state spaces where the ascending chain condition
is not satisfied. Many abstract domains are thus associated with a widening
operator; for the interval domain, for example, it is usually defined by:

[a, b]∇[c, d] =

[{

a if a ≤ c

−∞ otherwise
,

{

b if b ≥ d

+∞ otherwise

]

.

Note that we only consider two consecutive elements to extrapolate the poten-
tial fixpoint. The main drawback with this widening is that it may generate
too coarse results by quickly going to infinity. A solution of this is to add
intermediate steps among a finite set T ; that is the idea behind the widening
with thresholds ∇T . For the interval domain, it is defined [?] by: Je pense
qu’il ne faut pas mettre le même ensemble T pour les bornes sup et inf. Que
pensez-vous?

[a, b]∇T [c, d] =

[{

a if a ≤ c

max{t ∈ T : t ≤ c} otherwise
,

{

b if b ≥ d

min{t ∈ T : t ≥ d} otherwise

]

.

While widening with thresholds gives better results, we are facing with the
problem to define a priori the set T . Finding relevant values for T is a difficult
task for which only syntactic-based techniques exist [?,?].

3.2 Acceleration of convergence

We give an overview of the techniques of acceleration of convergence in nu-
merical analysis (for more details, we refer to [?]). The goal of convergence
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acceleration techniques, also named sequence transformations, is to increase
the rate of convergence of a sequence. Formally, let

(

D, d
)

be a metric space,
i.e. a set D with a distance d : D → R

+ (D will be R or Rp for some p ∈ N).
The set of sequences over D (denoted DN) is the set of functions between N

and D. A sequence (xn) ∈ DN converges to ℓ iff we have limn→∞ d(xn, ℓ) = 0.
A sequence transformation is a function T : DN → DN (T designs a par-
ticular acceleration method) such that whenever (xn) converges to ℓ then

(yn) = T (xn) also converges to ℓ and limn→∞

d(yn,ℓ)
d(xn,ℓ)

= 0. This means that (yn)

is asymptotically closer to ℓ than (xn). An important notion for a sequence
transformation T is its kernel KT which is the set of sequences (xn) for which
T (xn) is ultimately constant. We now present some acceleration methods that
we used in our experimentation.

3.2.1 The Aitken ∆2-method

It is probably the most famous sequence transformation. Given a sequence
(xn) ∈ R

N, the accelerated sequence (yn) is defined by: ∀n ∈ N, yn = xn −
xn+1−xn

xn+2−2xn+1+xn
. It should be noted that in order to compute yn for some n ∈ N,

three values of (xn) are required: xn, xn+1 and xn+2. The kernel K∆2 of this
method is the set of all sequences of the form xn = s+ a.λn where s, a and λ
are real constants such that a 6= 0 and λ 6= 1 (see [?]). The Aitken ∆2-method
is an efficient method for accelerating sequences, but it highly suffers from
numerical instabilities when xn, xn+1 and xn+2 are close to each other.

3.2.2 The ε-algorithm

It is often cited as the best general purpose sequence transformation for slowly
converging sequences [?]. From a converging sequence (xn) ∈ R

N with limit ℓ,
the ε-algorithm builds the following sequences:

(ε−1
n ) : ∀n ∈ N, ε

−1
n = 0, (2)

(ε0n) : ∀n ∈ N, ε
0
n = xn, (3)

(εkn) : ∀k ≥ 1, ∀n ∈ N, ε
k+1
n = ε

k−1
n+1 +

(

ε
k

n+1 − ε
k

n

)

−1
(4)

For a fixed k, the sequence ((εkn)n∈N) is called the k-th column, and its con-
struction can be graphically represented as on Figure 4. The even columns
(ε2kn ) (in gray on Figure 4) converge faster to ℓ. The even diagonals ((ε2kn )k∈N)
also converges faster to ℓ. In particular, the first diagonal (circled in Figure 4)
converges very quickly to ℓ, and it is the accelerated sequence. Let us remark
that in order to compute the p-th element of that sequence, (2p− 1) elements
of (xn) are required, as stated by Proposition 3.2.

Proposition 3.2 Let ((SI)n) be a sequence and let ((SA)n) = (ε2n0 ) its accel-
erated version given by the ε-algorithm. Then the p-th element of ((SA)n) is
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defined by 2p− 1 elements of ((SI)n).

Proof. We call G(n, k) the number of elements from ((SI)n) required to
compute the element εkn of indices n and k in the ε-algorithm. By con-

struction, we have: ∀k ≥ 1, ∀n ∈ N, εk+1
n = εk−1

n+1 +
(

εkn+1 − εkn
)

−1
so

G(n, k + 1) = max
(

G(n + 1, k − 1), G(n + 1, k), G(n, k)
)

. Note that the
function G is increasing in n and k, so G(n, k + 1) = G(n + 1, k). Thus,

we define the function G by: G(n, k) =

{

n+ 1 if k = 0
G(n+ 1, k − 1) otherwise

. Moreover

following the ε-algorithm, we know that (SA)p, the element of index p in

((SA)n), i.e. the (p+1)-th element, is ε2p0 . We easily prove by recurrence that
∀p ∈ N, G(0, 2p) = 2p+ 1.

G(0, 2p) = G(1, 2p− 1)

= G(1 + 2p− 1, 0) (By recurrence on: G(n,k)=G(n+k,0))

= G(2p, 0) = 2p+ 1

So, to have the element (SA)p, we need (2p + 1) elements from ((SI)n). We
know that the element (SA)p is the (p+1)-th element of ((SA)n). So, to obtain
p elements of ((SA)n), 2p− 1 elements of ((SI)n) are required. 2

x0

0 ε10

x1 ε20

0 ε11 ε30

x2 ε21
. . .

...
...

. . .

Arrows depict dependencies: the ele-
ment at the beginning of the arrow is
required to compute the element at the
end. For example, the second element
of the accelerated sequence is:

ε
2
0 = ε

0
1 +

1

ε11 − ε10

= x1 +
1

ε−1
2 + 1

ε0
2
−ε0

1

− ε−1
1 + 1

ε0
1
−ε0

0

= x1 +
1

1
x2−x1

− 1
x1−x0

Fig. 4. The ε-table

3.2.3 Acceleration of vector sequences

Many acceleration methods were designed to handle scalar sequences of real
numbers. For almost each of these methods, extensions have been proposed
to handle vector sequences (see [?] for a review of them). The simplest, yet
one of the most powerful, of these methods is the vector ε-algorithm (VEA).
Note that, in this article, we only consider VEA for the acceleration method
of vector sequences. Given a vector sequence (xn), the VEA computes a
series of vector sequences (εkn) using Equations (2)-(4) where the arithmetic
operations + and − are computed component-wise and the inverse of a vector
v is computed as v−1 = v/(v · v), with / being the component-wise division
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and · the scalar product. The VEA differs from a component-wise application
of the (scalar) ε-algorithm as it introduces relations between the components
of the vector: the scalar product v · v computes a global information on
the vector v which is propagated to all components. Our experiments show
that this algorithm works better than a component-wise application of the
ε-algorithm. The kernel Kε of the VEA contains all sequences of the form
xn+1 = Axn +B, where A is a constant matrix and B a constant vector [?].

4 Accelerated Kleene iteration

In this section, we combine acceleration methods with the abstract fixpoint
computation. Our goal is to be as non-intrusive as possible in the classical
iterative scheme. In this way, our method can be implemented with minor
adaptations in current static analyzers.

4.1 Methodology

As seen in Section 3.1, the Kleene iteration for finding the least fixpoint is
based on abstract values from some abstract lattice A. In order to use ac-
celeration techniques on the abstract iterates, we need to extract a vector of
real numbers from the abstract elements Xn ∈ A. We obtain a sequence of
real vectors that we can accelerate, and we quickly reach its limit. We then
construct an abstract element X that corresponds to this limit and use it as
a candidate for the least fixpoint. This process of transforming an abstract
value into a real vector and back is formalized by the notion of extraction and
combination functions that are given in Definition 4.1.

Definition 4.1 [Extraction and combination.] Let 〈A,⊑A〉 be an abstract
domain, and let p ∈ N. The functions ΛA : A → R

p and ΥA : Rp → A are
called extraction and combination function, respectively, iff for each sequence
Xn ∈ AN that order theoretically converges, i.e. ⊔n∈NXn = X for some X ∈ A,

then the sequence ΛA(Xn) ∈
(

R
p
)N

converges for the usual metric on R
p, i.e.

limn→∞ ΛA(Xn) = S, and X ⊑A ΥA(S).

Intuitively, these functions transpose the convergence of the sequence of
iterates into the theory of real sequences, in such a way that the real sequence
does not lose any information. Note that the order on R

p induced by the
usual metric is unrelated with the order ⊑A on A, so the notion of extrac-
tion and combination is different from the notion of Galois connection used
to compare abstract domains. Dire que les deux fonctions d’extraction et de
combinaison sont fortement lies aux domaines abstraits utilisés, ils doivent
être définit séparèment pour chaque domaine et ainsi ils doivent vérifier les
deux propriétés afin de garantir la non perte d’information.
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Proposition1
Proposition2
Les expliqués prièvement.
Donner les deux exemples pour les domaines des intervalles et octogones.
1- Domaine des intervalles: Définition + Les fonctions extraction et combi-
naison + les preuves.
2- Domaine des octogones: Définition + Les fonctions extraction et combinai-
son + les preuves
For the interval domain I = I

v, where v is the number of variables of the
program and I is the set of floating-point intervals, the extraction and the
combination functions are defined in Equation (5).

ΛI :

{

I → R
2v

(i1, . . . , iv) 7→
(

i1, i1, . . . , iv, iv
)

ΥI :

{

R
2v → I

(x1, x2, . . . , x2v−1, x2v) 7→
(

[x1, x2], . . . , [x2v−1, x2v]
)

(5)

For other domains, these functions must be designed specifically. For ex-
ample, we believe that such functions can be easily defined for the octagon
abstract domain [?]: the function Λ associates a vector containing all its coeffi-
cients with a difference bound matrix. Special care should be taken in the case
of infinite coefficients. More generally, we believe that for domains with a pre-
defined shape, the functions Λ and Υ can be easily defined. Note that if there
is a Galois connection (αI , γI) between a domain A and the interval domain
I, the extraction and combination functions can be defined as ΛA = ΛI ◦ αI

and ΥA = γI ◦ΥI . We use this method in the last experiment in Section 5.2.

4.2 Accelerated abstract fixpoint computation

We describe the insertion of acceleration methods in the Kleene iteration pro-
cess in Algorithm 1. We compute in parallel the sequence (Xn) coming from
the Kleene’s iteration and the accelerated sequence (yn) computed from an
accelerated method. Once the sequence (yn) seems to converge, that is, the
distance between two consecutive elements of (yn) is smaller than a given
value δ, we combine the two sequences. That is we compute the upper bound
of the two elements of the current iteration. Note that the monotonicity
of the computed sequence (Xn) is still guaranteed. Expliquer avec plus de
détails l’algorithme et dire qu’on ne change pas l’algo initial mais on ajoute
des améliorations.

The use of acceleration methods may be seen as an automatic delayed
application of the widening with thresholds. Let us remark that we are not
guaranteed to terminate in finitely many iterations: we know that asymptoti-
cally, the sequence yi from Algorithm 1 gets closer and closer to the fixpoint,
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Algorithm 1 Accelerated abstract fixpoint computation
1: repeat
2: Xi := Xi−1 ⊔ F (Xi−1)
3: yi := Accelerate (ΛA(X0), . . . ,ΛA(Xi))
4: if ||yi − yi−1|| ≤ δ then
5: Xi := Xi ⊔ ΥA(yi)
6: end if
7: until Xi ⊑ Xi−1

but we are not guaranteed that it reaches it. To guarantee termination of the
fixpoint computation, we have to use more “radical” widening thresholds, for
example after n applications of the accelerated method. So this method can-
not be a substitute for widening, but it improves it by reducing the number
of parameters (delay and thresholds) that a user must define.

5 Experimentation

To illustrate our acceleration methods, we used a simple static analyzer 3

working on the interval abstract domain that handles C programs without
pointers. Furthermore, we associated to the analyzer our OCaml library of
acceleration methods that transform an input sequence (given as a sequence
of values) into its accelerated version. The obtained results are presented in
the following sections. Note that we tested all these examples on the Interproc
analyzer 4 . In each case, with standard parameters, the widening removed any
constraints on the interesting variables. We only could obtain precise results
by replacing the widening by a join, i.e. computing the standard Kleene
iteration without widening.

5.1 Butterworth order 1

To test the acceleration method, we use a first-order Butterworth filter (see
Figure 5, left). This filter is designed to have a frequency response which is as
flat as mathematically possible in the band-pass and is often used in embedded
systems to treat the input signals for a better stability of the program.

The static analysis of this program using the interval abstract domain de-
fines 10 sequences, two for each variable (x1, xn1, y, u, i). These sequences
converge toward the smallest fixpoint after a lot of iterations, our acceleration
methods allow us to obtain the same fixpoint faster. In this example, we accel-
erate just the upper bound sequences because the lower ones are constant for

3 This analyzer is based on Newspeak, http://penjili.org/newspeak.html.
4 http://pop-art.inrialpes.fr/interproc/interprocweb.cgi. The SIMPLE programs corre-
sponding to these examples can be found at www.lix.polytechnique.fr/˜bouissou/NSAD10.
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x1 = 0 ; y = 0 ; xn1 = 1 ;
for ( i =0; i <200; i++) {

/∗ ! npk u between 1 and 2 ∗/
xn1 = 0.90480∗ x1 + 0.95240∗u ;
y = 0.09524∗ x1 + 0.04762∗u ;
x1 = xn1 ;

}

50 100 150 200

Fig. 5. The Butterworth program (left) and the sequence of supremum of variable x1 (right).

50 100 150 175

20.0082

20.0084

20.0086

20 40 60

Fig. 6. Accelerated sequences (in bold) compared with the original Kleene sequence (dotted).
Left is the sequence obtained with Aitken (zooming on the numerical problems), right with the
ε-algorithm (zooming on the first iterates).

all the variables. We next present the result obtained with different methods
on the variable x1 only, results obtained with other variables are very alike.

The Aitken ∆2-method. In Figure 5, right, with Kleene iteration and
without widening, this program converges in 156 iterations, and we get the
invariant [0, 20.0084] for x1. With the Aitken ∆2-method, we obtain only in 3
iterations a value very close to 20.0084, but problems of numerical instabilities
prevent the stabilization of the program. However the values of the accelerated
sequence stay in the interval [20.0082, 20.0086] between the third and the last
iteration (see Figure 6, left), which is a good estimate of the convergent point.

The ε-algorithm. In Figure 6, right, we notice a important improvement in
the computation of the fixpoint, thanks to the ε-algorithm. With this method,
the fixpoint of the variable x1 is approximated with a precision of 10−6 after
exactly 8 iterations, while Kleene iteration needed 156 steps. Note that to
obtain 8 elements of the accelerated sequence we need 15 elements from the
initial one. We obtain the same results with the vector ε-algorithm.

5.2 Butterworth order 2

An order 2 Butterworth filter is given by the following recurrence equation,
where xn is a two-dimensional vector, xn = (x1, x2)

T :
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xn+1 =

(

0.9858 −0.009929

0.00929 1

)

· xn + u ·

(

0.9929

0.004965

)

, yn+1 =

(

4.965e−5

0.01

)

· xn + 2.482e−5 · u

On this program, the results obtained using the interval abstract domain
are not stable. To address this problem we have used Fluctuat [?], a static
analyzer using a specific abstract domain based on affine arithmetic, a more
accurate extension of interval arithmetic. It returns the upper and lower
bounds of each variable. We applied the vector ε-algorithm on this example
with 3 different values of δ (see Algorithm 1): this gives Figure 7. For example,
for the variable x1 and δ = 10−3, the over-approximation of the fixpoint is
reached after 26 iterations (6 iterations before re-injection and 20 iterations
after). Note that we obtain the same fixpoint as with Kleene iteration. We
notice that the performance of the Algorithm 1 does not strongly depend on
δ. Until now, we use the acceleration just once (unlike in Algorithm 1), a
full implementation of it will probably reduce the number of iterations even
more.

6 Related work

Most of the work in abstract interpretation based static analysis concerned
the definition of new abstract domains (or improvements of existing ones),
and the abstract fixpoint computation remained less studied. Initial work
from Cousot and Cousot [?] discussed various methods to define widening
operators. Bourdoncle [?] presented different iteration strategies that helps
to reduce the over-approximation introduced by widening. These methods are
complementary to our technique: as explained in Section 4, acceleration should
be done at the same control point as the one chosen for widening, and does
not replace standard widening as the termination of the fixpoint computation
is not guaranteed. However, acceleration methods greatly improve widening
by dynamically and automatically finding good thresholds.

Gopan and Reps in their guided static analysis framework [?,?] also used
the idea of computing in parallel the main iterates and a guide that shows
where the iterates are going. In their work, the precision of the fixpoint
computation is increased by computing a pilot value that explores the state

Variable Kleene
Vector ε-algorithm (Before + After)

δ = 10−3 δ = 10−4 δ = 10−5

x1 70 7 (6 + 1) 9 (8 + 1) 22 (16 + 6)

x2 83 26 (6 + 20) 23 (8 + 15) 17 (16 + 1)

y 83 26 (6 + 20) 23 (8 + 15) 19 (16 + 3)

Before: number of iterations to

reach the condition on δ. After:

the remaining number of Kleene

iterations to reach the invariant

using the accelerated result.

Fig. 7. Numbers of iterations needed to reach an invariant.
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space using a restricted version of the iteration function. Once this pilot has
stabilized, it is used to accelerate the main iterates; in a sense, this pilot value
is very similar to the value yi of Algorithm 1, but we do not modify the
iteration function as done in [?].

Maybe the work that is the closest to ours is the use of acceleration tech-
niques in model checking [?], that have recently been applied to abstract in-
terpretation [?,?]. In this framework, the term acceleration is used to describe
techniques that try to predict the effect of a loop on an abstract state: the
whole loop is then replaced with just one transition that safely and precisely
approximates it. These techniques perform very well for sufficiently simple
loops working on integer variables, and gives exact results for such cases.
Again, this method is complementary to our usage of acceleration: it stati-
cally modifies the iteration function by replacing simple loops with just one
transition, while our method dynamically predicts the limit of the iterates.
We believe that our method is more general, as it can be applied to many
kinds of loops and is not restricted to a specific abstract domain (changing
the abstract domain only requires changing the ΛA and ΥA functions).

Note also that the computation of symbolic loop invariants such that [?]
produce precise results. Nevertheless, they have to limit the constructions of
analyzed programs unlike our approach.

7 Conclusion

We presented a technique to accelerate abstract fixpoint computations using
numerical acceleration methods. This technique consists in building numeri-
cal sequences by extracting, at every iteration, supremum and infimum from
every variable of the program. To the obtained sequences we apply the various
convergence acceleration methods, which allows us to get significantly closer
or to reach the fixpoint more quickly than the Kleene iteration. To make sure
that the fixpoint returned by the accelerated method is indeed the fixpoint
of the abstract semantics, we re-inject it in the static analyzer. This guaran-
tees us the fast stop of the analyzer with a good over-approximation of the
fixpoint. The experiments made on a certain number of examples (linear pro-
grams) show a good acceleration of the fixpoint computation especially when
we use the ε-algorithm, where the number of iterations is divided by four.
Let us note that we have assumed in this article that the sequences of iter-
ates and the corresponding vector sequences converge towards a finite limit.
In case of diverging sequences, traditional widening can be used as sequence
transformation will not perform as well as for converging ones.

For now, we made the experimentation using two separate programs: one
that computes the Kleene iterates, and one that accelerates the sequences.
The Algorithm 1 is thus still not fully implemented, its automatization is
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the object of our current work. Since the use the interval abstract domain
allows us to cover just a small set of programs, our future work will also
consist in extending this technique to relational domains such as octagons
and polyhedra. Moreover, we presented examples made of a simple loop that
iterates a linear transformation, we will test our techniques on more realistic
programs. Early experiments show that acceleration behaves well on loops
iterating a non-linear function. It will be more difficult to treat loops that
are less regular, e.g. loops with if statements, as the extracted sequences are
less regular. However we believe that our technique can be mixed with guided
static analysis [?] to achieve a precise and efficient result in these cases.
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