Bhattacharyya clustering with applications to mixture simplifications
ICPR 2010, Istanbul, Turkey

Frank Nielsen1,2 Sylvain Boltz1 Olivier Schwander1,3

111École Polytechnique, France
2Sony Computer Science Laboratories, Japan
3ÉNS Cachan, France

August, 24 2010
Mean
Definition
Burbea-Rao divergences
Burbea-Rao centroid

Exponential Family
Definition
Bhattacharyya distance
Closed-form formula

Application
Statistical mixtures
Mixture simplification
Introduction

Bhattacharyya distance

- Widely used to compare probability density functions
- Good statistical properties, related to Fisher information
- Measures the overlap between two distributions

Bhattacharyya coefficient

\[B_c(p, q) = \int \sqrt{p(x)q(x)} \, dx \leq 1 \]

Bhattacharyya distance

\[B(p, q) = -\log B_c(p, q) \geq 0 \]
Contributions

Drawbacks
- Few closed-form formula are known
- Centroid estimation only for univariate Gaussian, without guarantees

Results
- Bhattacharyya between exponential families, using Burbea-Rao divergences
- Efficient scheme for centroid
- Application to simplification of Gaussian mixtures
What is a mean?

Euclidean geometry

- Given a set of n points $\{p_i\}$,
- the center of mass (a.k.a. center of gravity) is

$$c = \frac{1}{n} \sum_{i} p_i$$

Unique minimizer of average squared Euclidean distance

$$c = \arg \min_p \sum_{i} \|p - p_i\|^2$$

Definitions

- By axiomatization
- By optimization
Axiomatization

Axioms for a mean function $M(x_1, x_2)$

- Reflexivity: $M(x, x) = x$
- Symmetry: $M(x_1, x_2) = M(x_2, x_1)$
- Continuity: $M(\cdot, \cdot)$ continuous
- Strict monotonicity: $M(x_1, x_2) < M(x'_1, x_2)$ for $x_1 < x'_1$
- Anonymity:
 \[
 M(M(x_{11}, x_{12}), M(x_{21}, x_{22})) = M(M(x_{11}, x_{21}), M(x_{12}, x_{22}))
 \]

Yields to a unique family

\[
M(x_1, x_2) = f^{-1} \left(\frac{f(x_1) + f(x_2)}{2} \right)
\]

with f continuous, strictly monotonous and increasing function
Examples and f-representation

Some f-means

- Arithmetic mean: $\frac{x_1 + x_2}{2}$ with $f(x) = x$
- Geometric mean: $\sqrt{x_1 x_2}$ with $f(x) = \log x$
- Harmonic mean: $\frac{2}{\frac{1}{x_1} + \frac{1}{x_2}}$ with $f(x) = \frac{1}{x}$

Arithmetic mean on the f-representation

- $y = f(x)$
- $f(\bar{x}) = \frac{1}{n} \sum_i f(x_i)$
- $\bar{y} = \frac{1}{n} \sum_i y_i$
Optimization

Problem

\[
\min_x \sum_i \omega_i d(x, p_i) = \min_x L(x; (\{x_i\}, \{\omega_i\}), d)
\]

Entropic mean (Ben-Tal et al., 1989)

- \(d(p, q) = I_f(p, q) = pf\left(\frac{q}{p}\right)\) (Csiszar \(f\)-divergence)
- \(f\) is a strictly convex differentiable function with \(f(1) = 0\) and \(f'(1) = 0\)

Some entropic means

- Arithmetic mean: \(f(x) = -\log x + x - 1\)
- Geometric mean: \(f(x) = x \log x - x + 1\)
- Harmonic mean: \(f(x) = (x - 1)^2\)
Bregman means

Bregman divergence

- $B_F(p, q) = F(p) - F(q) + \langle p - q \mid \nabla F(q) \rangle$
- F is a strictly convex and differentiable function

Convex problem

- unique minimizer
- $c = \nabla F^{-1} (\sum_i \omega_i \nabla F(x_i))$

Since B_F is not symmetrical, there is another centroid

- Left-sided one: $\min_x \sum_i \omega_i B_F(x, p_i)$
- Right-sided one: $\min_x \sum_i \omega_i B_F(p_i, x)$
Burbea-Rao divergence

Based on Jensen inequality for a convex function F

$$BR_F(p, q) = \frac{F(p) + F(q)}{2} - F\left(\frac{p + q}{2}\right) \geq 0$$

Special case: Jensen-Shannon divergence

- $JS(p, q) = KL(p, \frac{p+q}{2}) + KL(q, \frac{p+q}{2})$
- $JS(p, q) = H\left(\frac{p+q}{2}\right) - \frac{H(p) + H(q)}{2} \geq 0$
- $H(x) = -F(x) = -x \log x$ (Shannon entropy)
Symmetrizing Bregman divergences

Jeffreys-Bregman divergence

\[S_F(p, q) = \frac{1}{2} (B_F(p, q) + B_F(q, p)) \]
\[= \frac{1}{2} \langle p - q | \nabla F(p) - \nabla F(q) \rangle \]

Jensen-Bregman divergence

\[J_F(p, q) = \frac{1}{2} \left(B_F(p, \frac{p + q}{2}) + B_F(q, \frac{p + q}{2}) \right) \]
\[= \frac{F(p) + F(q)}{2} - F \left(\frac{p + q}{2} \right) \]
\[= BR_F(p, q) \]
Burbea-Rao centroid

Optimization problem

\[c = \arg \min_x \sum_i \omega_i BR_F(x, p_i) = \arg \min L(x) \]

\[L(x) \equiv \frac{1}{2} F(x) - \sum_i \omega_i F\left(\frac{c + p_i}{2}\right) \]

ConCave Convex Procedure (CCCP, NIPS2001)

- iterative scheme
- \[\nabla L_{\text{convex}}(x^{(k+1)}) = \nabla L_{\text{concave}}(x^{(k)}) \]
- converges to a local minimum
ConCave Convex Procedure

Possible decomposition for function with bounded Hessian
Iterative algorithm for Burbea-Rao centroids

Initialization
\(x^{(0)} \): center of mass (Bregman right-sided centroid), or symmetrized KL divergence

Iteration

\[
\nabla F(x^{(k+1)}) = \sum_i \omega_i \nabla F \left(\frac{x^{(t)} + p_i}{2} \right)
\]

Centroid

\[
\[x^{(t+1)} = \nabla F^{-1} \left(\sum_i \omega_i \nabla F \left(\frac{x^{(t)} + p_i}{2} \right) \right)
\]
Exponential family

Definition

\[p(x; \lambda) = p_F(x; \theta) = \exp (\langle t(x) | \theta \rangle - F(\theta) + k(x)) \]

- \(\lambda \) source parameter
- \(\theta \) natural parameter
- \(F(\theta) \) log-normalizer
- \(k(x) \) carrier measure
Example

Poisson distribution

\[p(x; \lambda) = \frac{\lambda^x}{x!} \exp(-\lambda) \]

- \(t(x) = x \)
- \(\theta = \log \lambda \)
- \(F(\theta) = \exp(\theta) \)
Multivariate normal distribution

Gaussian

\[
p(x; \mu, \Sigma) = \frac{1}{2\pi^{\frac{d}{2}} \sqrt{\det \Sigma}} \exp \left(-\frac{(x - \mu)^T \Sigma^{-1} (x - \mu)}{2} \right)
\]

Exponential family

- \(\theta = (\theta_1, \theta_2) = (\Sigma^{-1} \mu, \frac{1}{2} \Sigma^{-1}) \)
- \(F(\theta) = \frac{1}{4} \text{tr} (\theta_1^{-1} \theta_2 \theta_2^T) - \frac{1}{2} \log \det \theta_1 + \frac{d}{2} \log \pi \)
- \(t(x) = (x, -x^T x) \)
- \(k(x) = 0 \)

Composite vector-matrix inner product

\[
\langle \theta, \theta' \rangle = \theta_1^T \theta_1' + \text{tr}(\theta_2^T \theta_2')
\]
Bhattacharyya distance

Bhattacharyya coefficient

- Amount of overlap between distributions
- \(B_c(p, q) = \int \sqrt{p(x)q(x)} \, dx \)

Bhattacharyya distance

- \(B(p, q) = -\log B_c(p, q) \)

Metrization

- Hellinger-Matusita metric
- \(H(p, q) = \sqrt{1 - B(p, q)} \)
- Gives the same Voronoi diagram
Closed-form formula

\[B_c(p, q) = \int \sqrt{p(x)q(x)} \, dx \]
\[= \int \exp \left(\langle t(x), \frac{\theta_p + \theta_q}{2} \rangle - \frac{F(\theta_p + \theta_q)}{2} + k(x) \right) \, dx \]
\[= \exp \left(F \left(\frac{\theta_p + \theta_q}{2} \right) - \frac{F(\theta_p) + F(\theta_q)}{2} \right) > 0 \]

\[B(p, q) = -\log B_c(p, q) = BR_F(\theta_p, \theta_q) \geq 0 \]

Equivalence

- Bhattacharyya between two members of the same EF
- Burbea-Rao between natural parameters using log-normalizer
Examples

<table>
<thead>
<tr>
<th>Exponential family</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multinomial</td>
<td>$-\ln \sum_{i=1}^{d} \sqrt{p_i q_i}$</td>
</tr>
<tr>
<td>Poisson</td>
<td>$\frac{1}{2} \left(\sqrt{\mu_p} - \sqrt{\mu_q} \right)^2$</td>
</tr>
<tr>
<td>Gaussian</td>
<td>$\frac{1}{4} \frac{(\mu_p - \mu_q)^2}{\sigma_p^2 + \sigma_q^2} + \frac{1}{2} \ln \frac{\sigma_p^2 + \sigma_q^2}{2 \sigma_p \sigma_q}$</td>
</tr>
<tr>
<td>Multivariate Gaussian</td>
<td>$\frac{1}{8} (\mu_p - \mu_q)^t \left(\frac{\Sigma_p + \Sigma_q}{2} \right)^{-1} (\mu_p - \mu_q) + \frac{1}{2} \ln \frac{\det \frac{\Sigma_p + \Sigma_q}{2}}{\det \Sigma_p \det \Sigma_q}$</td>
</tr>
</tbody>
</table>
Gaussian Mixture Models

Mixture

- $\Pr(X = x) = \sum_i \omega_i \Pr(X = x | \mu_i, \Sigma_i)$
- each $\Pr(X = x | \mu_i, \Sigma_i)$ is a multivariate normal distribution

Soft Clustering

Expectation-Maximization algorithm, equivalent to soft Bregman clustering
Statistical images

http://www.informationgeometry.org/MEF/

RGBxy representation: 5D point set
Mixture simplification

Initialization

- Mixture of Gaussians, with Bregman soft clustering (≡ EM)

Simplification

- k-means using Bhattacharyya distance and centroids

Different k

- Hierarchical clustering
Hierarchical clustering

(a) source

(b) $k = 48$

(c) $k = 16$
Conclusion

Results

- Symmetrizing Bregman yields Burbea-Rao divergences
- Bhattacharyya between exponential families yields Burbea-Rao
- Closed-form formula for Bhattacharyya between EF
- Efficient scheme for BR centroid using CCCP

Applications

- Simplification of Gaussian Mixture Models
- Hierarchical Clustering
References

www.informationgeometry.org