Laplacian matrix of a graph

Basic results
Algebraic connectivity
Resistance distance matrix

Sukanta Pati
pati@iitg.ernet.in

IIT Guwahati, INDIA.

aTalk prepared for the Indo-French workshop, 2011.
Which one has better connectivity?
Connectivity of the sunflowers

- Imagine rotating them (around their centers).
Connectivity of the sunflowers

- Imagine rotating them (around their centers).
Connectivity of the sunflowers

- Imagine rotating them (around their centers).
Connectivity of the sunflowers

- Imagine rotating them (around their centers).
- Imagine rotating them (around their centers).
Connectivity of the sunflowers

- Imagine rotating them (around their centers).

- Which one will ‘break’ first?
• Simple graphs only: no loops, no parallel edges.
• Simple graphs only: no loops, no parallel edges.

• Let G be a simple graph on vertices $1, 2, \ldots, n$.
• Simple graphs only: no loops, no parallel edges.

• Let G be a simple graph on vertices $1, 2, \ldots, n$.

• Adjacency matrix A of G:
• Simple graphs only: no loops, no parallel edges.

• Let G be a simple graph on vertices $1, 2, \ldots, n$.

• Adjacency matrix A of G: $a_{ij} = \begin{cases} 1 \end{cases}$
• Simple graphs only: no loops, no parallel edges.

• Let G be a simple graph on vertices $1, 2, \ldots, n$.

• Adjacency matrix A of G: $a_{ij} = \begin{cases} 1 & \text{if } i \sim j \text{ (i is adjacent to } j) \\ \end{cases}$
The Laplacian matrix

- Simple graphs only: no loops, no parallel edges.

- Let G be a simple graph on vertices $1, 2, \ldots, n$.

- Adjacency matrix A of G: $a_{ij} = \begin{cases} 1 & \text{if } i \sim j \text{ (i is adjacent to j)} \\ 0 & \text{otherwise} \end{cases}$
• Simple graphs only: no loops, no parallel edges.

• Let G be a simple graph on vertices $1, 2, \ldots, n$.

• Adjacency matrix A of G: $a_{ij} = \begin{cases} 1 & \text{if } i \sim j \ (i \text{ is adjacent to } j) \\ 0 & \text{otherwise} \end{cases}$
• Simple graphs only: no loops, no parallel edges.

• Let G be a simple graph on vertices $1, 2, \ldots, n$.

• Adjacency matrix A of G: $a_{ij} = \begin{cases} 1 & \text{if } i \sim j \ (i \text{ is adjacent to } j) \\ 0 & \text{otherwise.} \end{cases}$

• Laplacian matrix L of G:
The Laplacian matrix

- Simple graphs only: no loops, no parallel edges.

- Let G be a simple graph on vertices $1, 2, \ldots, n$.

- Adjacency matrix A of G: $a_{ij} = \begin{cases} 1 & \text{if } i \sim j \text{ (i is adjacent to j)} \\ 0 & \text{otherwise.} \end{cases}$

- Laplacian matrix L of G: $L = D - A$,

 where D is the diagonal degree matrix.
The Laplacian matrix

- Simple graphs only: no loops, no parallel edges.
- Let G be a simple graph on vertices $1, 2, \ldots, n$.

- Adjacency matrix A of G: $a_{ij} = \begin{cases} 1 & \text{if } i \sim j \ (i \text{ is adjacent to } j) \\ 0 & \text{otherwise.} \end{cases}$

- Laplacian matrix L of G: $L = D - A$,

 where D is the diagonal degree matrix.

- Take H;
• Simple graphs only: no loops, no parallel edges.

• Let G be a simple graph on vertices $1, 2, \ldots, n$.

• Adjacency matrix A of G: $a_{ij} = \begin{cases} 1 & \text{if } i \sim j \ (i \text{ is adjacent to } j) \\ 0 & \text{otherwise.} \end{cases}$

• Laplacian matrix L of G: $L = D - A$,
 where D is the diagonal degree matrix.

• Take H; $A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$.
• Simple graphs only: no loops, no parallel edges.

• Let G be a simple graph on vertices $1, 2, \ldots, n$.

• Adjacency matrix A of G: $a_{ij} = \begin{cases} 1 & \text{if } i \sim j \ (i \text{ is adjacent to } j) \\ 0 & \text{otherwise.} \end{cases}$

• Laplacian matrix L of G: $L = D - A$,

where D is the diagonal degree matrix.

• Take H; $A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$; $L = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 2 & 0 & -1 \\ 0 & -1 & 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & -1 & -1 & 2 \end{bmatrix}$
• Simple graphs only: no loops, no parallel edges.

• Let G be a simple graph on vertices $1, 2, \ldots, n$.

• Adjacency matrix A of G:

 \[a_{ij} = \begin{cases}
 1 & \text{if } i \sim j \text{ (} i \text{ is adjacent to } j \text{)} \\
 0 & \text{otherwise.}
 \end{cases} \]

• Laplacian matrix L of G:
 \[L = D - A, \]
 where D is the diagonal degree matrix.

• Take H;
 \[
 A = \begin{bmatrix}
 0 & 1 & 0 & 0 & 0 & 0 \\
 1 & 0 & 1 & 0 & 1 & 0 \\
 0 & 1 & 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 & 1 \\
 0 & 1 & 0 & 0 & 0 & 1 \\
 0 & 0 & 0 & 1 & 1 & 0
 \end{bmatrix} \quad \text{and} \quad
 L = \begin{bmatrix}
 1 & -1 & 0 & 0 & 0 & 0 \\
 -1 & 3 & -1 & 0 & -1 & 0 \\
 0 & -1 & 2 & -1 & 0 & 0 \\
 0 & 0 & -1 & 2 & 0 & -1 \\
 0 & -1 & 0 & 0 & 2 & -1 \\
 0 & 0 & 0 & -1 & -1 & 2
 \end{bmatrix} \]
Simple graphs only: no loops, no parallel edges.

Let G be a simple graph on vertices $1, 2, \ldots, n$.

Adjacency matrix A of G: $a_{ij} = \begin{cases} 1 & \text{if } i \sim j \text{ (i is adjacent to j)} \\ 0 & \text{otherwise.} \end{cases}$

Laplacian matrix L of G: $L = D - A$, where D is the diagonal degree matrix.

Take H; $A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$; $L = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 2 & 0 & -1 \\ 0 & -1 & 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & -1 & -1 & 2 \end{bmatrix}$
• Simple graphs only: no loops, no parallel edges.

• Let G be a simple graph on vertices $1, 2, \ldots, n$.

• Adjacency matrix A of G: $a_{ij} = \begin{cases} 1 & \text{if } i \sim j \text{ (i is adjacent to j)} \\ 0 & \text{otherwise.} \end{cases}$

• Laplacian matrix L of G: $L = D - A$,

where D is the diagonal degree matrix.

• Take H; $A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$, \[L = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 2 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & -1 & -1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 2 \end{bmatrix} \]
- Simple graphs only: no loops, no parallel edges.

- Let \(G \) be a simple graph on vertices \(1, 2, \ldots, n \).

- Adjacency matrix \(A \) of \(G \): \(a_{ij} = \begin{cases} 1 & \text{if } i \sim j \quad (i \text{ is adjacent to } j) \\ 0 & \text{otherwise.} \end{cases} \)

- Laplacian matrix \(L \) of \(G \): \(L = D - A \),

where \(D \) is the diagonal degree matrix.

- Take \(H \); \(A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix} \); \(L = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 2 & 0 & -1 \\ 0 & -1 & 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & -1 & -1 & 2 \end{bmatrix} \)
• Simple graphs only: no loops, no parallel edges.

• Let G be a simple graph on vertices $1, 2, \ldots, n$.

• Adjacency matrix A of G: $a_{ij} = \begin{cases} 1 & \text{if } i \sim j \ (i \text{ is adjacent to } j) \\ 0 & \text{otherwise.} \end{cases}$

• Laplacian matrix L of G: $L = D - A$, where D is the diagonal degree matrix.

• Take H; $A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$; $L = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 2 & 0 & -1 \\ 0 & -1 & 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & -1 & -1 & 2 \end{bmatrix}$
• Laplacian matrix is also known as Kirchhoff matrix.

• Take H; $A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$; $L = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 2 & 0 & -1 \\ 0 & -1 & 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & -1 & -1 & 2 \end{bmatrix}$
• Laplacian matrix is also known as Kirchhoff matrix.

• G. Kirchhoff; Ann. Phys. Chem; 1847.

• Take H; $A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$; $L = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 2 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & -1 & -1 & 2 & 0 \end{bmatrix}$
• Laplacian matrix is also known as Kirchhoff matrix.

\[L = \begin{bmatrix}
1 & -1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 3 & -1 & 0 & -1 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & -1 & 2 & 0 & -1 \\
0 & -1 & 0 & 0 & 2 & -1 \\
0 & 0 & 0 & -1 & -1 & 2 \\
\end{bmatrix} \]
• Laplacian matrix is also known as Kirchhoff matrix.

• G. Kirchhoff; Ann. Phys. Chem; 1847. Delete ith row and jth column of L. Call it $L(i|j)$.

\[L = \begin{bmatrix}
1 & -1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 3 & -1 & 0 & -1 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & -1 & 2 & 0 & -1 \\
0 & -1 & 0 & 0 & 2 & -1 \\
0 & 0 & 0 & -1 & -1 & 2
\end{bmatrix} \]
• Laplacian matrix is also known as Kirchhoff matrix.

• G. Kirchhoff; Ann. Phys. Chem; 1847. Delete ith row and jth column of L. Call it $L(i|j)$.

\[
L(1|6) = \begin{bmatrix}
-1 & -1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 3 & -1 & 0 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 & 2 & -1 & 0 \\
0 & 0 & 0 & -1 & -1 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]
• Laplacian matrix is also known as Kirchhoff matrix.

• G. Kirchhoff; Ann. Phys. Chem; 1847. Delete ith row and jth column of L. Call it $L(i|j)$. Then $(-1)^{i+j}|L(i|j)| = \text{number of spanning trees in } G.$

\[
L(1|6) = \begin{bmatrix}
1 & -1 & 0 & 0 & 0 & 0 \\
-1 & 3 & -1 & 0 & -1 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & -1 & 2 & 0 & -1 \\
0 & -1 & 0 & 0 & 2 & -1 \\
0 & 0 & 0 & -1 & -1 & 2
\end{bmatrix}
\]
• Laplacian matrix is also known as Kirchhoff matrix.

• G. Kirchhoff; Ann. Phys. Chem; 1847. Delete \(i\)th row and \(j\)th column of \(L\). Call it \(L(i|j)\). Then

\[
(-1)^{i+j} |L(i|j)| = \text{number of spanning trees in } G.
\]

\[
L(1|6) = \begin{bmatrix}
1 & -1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 3 & -1 & 0 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 & 2 & -1 & 0 \\
0 & 0 & 0 & -1 & -1 & 2 & 0
\end{bmatrix}
\]
Known properties of Laplacian matrix
• Give any orientations to the edges.
• Give any orientations to the edges.
• Give any orientations to the edges.
• Give any orientations to the edges. Label the edges.
Known properties of Laplacian matrix

- Give any orientations to the edges. Label the edges.
- Give any orientations to the edges. Label the edges.
- The vertex edge incidence matrix Q:
- Give any orientations to the edges. Label the edges.

- The vertex edge incidence matrix Q:

$$ q_{ij} = \begin{cases}
1 & \text{if } e_j \text{ starts from } i \\
-1 & \text{if } e_j \text{ ends at } i \\
0 & \text{otherwise.}
\end{cases} $$
• Give any orientations to the edges. Label the edges.

• The vertex edge incidence matrix \(Q \):

\[
q_{ij} = \begin{cases}
1 & \text{if } e_j \text{ starts from } i \\
-1 & \text{if } e_j \text{ ends at } i \\
0 & \text{otherwise.}
\end{cases}
\]

• For this graph we have \(Q = \)
- Give any orientations to the edges. Label the edges.

- The vertex edge incidence matrix Q:
 \[
 q_{ij} = \begin{cases}
 1 & \text{if } e_j \text{ starts from } i \\
 -1 & \text{if } e_j \text{ ends at } i \\
 0 & \text{otherwise.}
 \end{cases}
 \]

- For this graph we have $Q = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
- Give any orientations to the edges. Label the edges.

- The vertex edge incidence matrix Q:

\[
q_{ij} = \begin{cases}
1 & \text{if } e_j \text{ starts from } i \\
-1 & \text{if } e_j \text{ ends at } i \\
0 & \text{otherwise.}
\end{cases}
\]

- For this graph we have $Q = \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \\ 0 & 0 \end{bmatrix}$
• Give any orientations to the edges. Label the edges.

• The vertex edge incidence matrix Q:

$$ q_{ij} = \begin{cases} 1 & \text{if } e_j \text{ starts from } i \\ -1 & \text{if } e_j \text{ ends at } i \\ 0 & \text{otherwise.} \end{cases} $$

• For this graph we have $Q =$

$$
\begin{bmatrix}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & -1 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
$$
• Give any orientations to the edges. Label the edges.

• The vertex edge incidence matrix Q:

$$q_{ij} = \begin{cases}
1 & \text{if } e_j \text{ starts from } i \\
-1 & \text{if } e_j \text{ ends at } i \\
0 & \text{otherwise}.
\end{cases}$$

• For this graph we have $Q =$

$$\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & -1 & 0 & 0 & -1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & -1 & -1 & 0 & 0
\end{bmatrix}$$
• Give any orientations to the edges. Label the edges.

• The vertex edge incidence matrix Q:

\[
q_{ij} = \begin{cases}
1 & \text{if } e_j \text{ starts from } i \\
-1 & \text{if } e_j \text{ ends at } i \\
0 & \text{otherwise.}
\end{cases}
\]

• For this graph we have $Q =$

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & -1 & 0 & 0 & -1 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & -1 & -1 & 0
\end{bmatrix}
\]

• $L = QQ^t$.
• Give any orientations to the edges. Label the edges.

• The vertex edge incidence matrix Q:

$$q_{ij} = \begin{cases}
1 & \text{if } e_j \text{ starts from } i \\
-1 & \text{if } e_j \text{ ends at } i \\
0 & \text{otherwise.}
\end{cases}$$

• For this graph we have Q =

$$Q = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & -1 & 0 & 0 & -1 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & -1 & -1 & 0
\end{bmatrix}$$

• $L = QQ^t$. Does not depend on the orientations.
• Give any orientations to the edges. Label the edges.

The vertex edge incidence matrix Q:

$$q_{ij} = \begin{cases}
1 & \text{if } e_j \text{ starts from } i \\
-1 & \text{if } e_j \text{ ends at } i \\
0 & \text{otherwise.}
\end{cases}$$

For this graph we have $Q = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & -1 & 0 & 0 & -1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & -1 & -1 & 0 & 0
\end{bmatrix}$

$L = QQ^t$. Does not depend on the orientations.

So L is positive semidefinite:
• Give any orientations to the edges. Label the edges.

The vertex edge incidence matrix Q:

$$q_{ij} = \begin{cases} 1 & \text{if } e_j \text{ starts from } i \\ -1 & \text{if } e_j \text{ ends at } i \\ 0 & \text{otherwise.} \end{cases}$$

For this graph we have $Q = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & -1 & -1 & 0 \end{bmatrix}$

$L = QQ^t$. Does not depend on the orientations.

• So L is positive semidefinite: Hermitian, eigenvalues ≥ 0.
• Give any orientations to the edges. Label the edges.

• The vertex edge incidence matrix Q:

 $q_{ij} = \begin{cases}
 1 & \text{if } e_j \text{ starts from } i \\
 -1 & \text{if } e_j \text{ ends at } i \\
 0 & \text{otherwise.}
\end{cases}$

• For this graph we have $Q = \begin{bmatrix}
 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
 -1 & 1 & 0 & 0 & 0 & 0 & 0 \\
 0 & -1 & -1 & 0 & 0 & -1 & \\
 0 & 0 & 1 & 1 & 0 & 0 & \\
 0 & 0 & 0 & 0 & 1 & 1 & \\
 0 & 0 & 0 & -1 & -1 & 0 & \\
\end{bmatrix}$

• $L = QQ^t$. Does not depend on the orientations.

 • So L is positive semidefinite: Hermitian, eigenvalues ≥ 0.

• Also $x^t L(G^t)x = \sum_{i \sim j} (x_i - x_j)^2$.

Laplacian matrix of a graph – p.4/28
Known properties of Laplacian matrix
• It is also an M-matrix:
Known properties of Laplacian matrix

- It is also an M-matrix: $L = \alpha I - B$, where $B = [b_{ij} \geq 0]$, $\alpha > \rho(B)$.
Known properties of Laplacian matrix

- It is also an M-matrix: $L = \alpha I - B$, where $B = [b_{ij} \geq 0]$, $\alpha > \rho (B)$.

- Smallest eigenvalue $\lambda_1 (L)$ is 0;
Known properties of Laplacian matrix

- It is also an M-matrix: $L = \alpha I - B$, where $B = [b_{ij} \geq 0], \alpha > \rho(B)$.
- Smallest eigenvalue $\lambda_1(L)$ is 0; an eigenvector $\mathbf{1} = [1, \ldots, 1]^T$.
Known properties of Laplacian matrix

- It is also an M-matrix: $L = \alpha I - B$, where $B = [b_{ij} \geq 0]$, $\alpha > \rho(B)$.
- Smallest eigenvalue $\lambda_1(L)$ is 0; an eigenvector $\mathbb{1} = [1, \ldots, 1]^T$.
- Fiedler, 73. Second smallest eigenvalue $\mu = \lambda_2(L) > 0$ iff G is connected.
Known properties of Laplacian matrix

- It is also an M-matrix: $L = \alpha I - B$, where $B = [b_{ij} \geq 0]$, $\alpha > \rho(B)$.
- Smallest eigenvalue $\lambda_1(L)$ is 0; an eigenvector $\mathbf{1} = [1, \ldots, 1]^T$.
- Fiedler, 73. Second smallest eigenvalue $\mu = \lambda_2(L) > 0$ iff G is connected.
- Call: μ the algebraic connectivity;
Known properties of Laplacian matrix

- It is also an M-matrix: $L = \alpha I - B$, where $B = [b_{ij} \geq 0]$, $\alpha > \rho(B)$.
- Smallest eigenvalue $\lambda_1(L)$ is 0; an eigenvector $\mathbf{1} = [1, \ldots, 1]^T$.
- Fiedler, 73. Second smallest eigenvalue $\mu = \lambda_2(L) > 0$ iff G is connected.
- Call: μ the algebraic connectivity; an eigenvector for μ a Fiedler vector.
Known properties of Laplacian matrix

- It is also an M-matrix: $L = \alpha I - B$, where $B = [b_{ij} \geq 0]$, $\alpha > \rho(B)$.
- Smallest eigenvalue $\lambda_1(L)$ is 0; an eigenvector $\mathbf{1} = [1, \ldots, 1]^T$.
- Fiedler, 73. Second smallest eigenvalue $\mu = \lambda_2(L) > 0$ iff G is connected.
- Call: μ the algebraic connectivity; an eigenvector for μ a Fiedler vector.

\[S_n, n \geq 3 \]

\[\mu = 1 \]
Known properties of Laplacian matrix

- It is also an M-matrix: $L = \alpha I - B$, where $B = [b_{ij} \geq 0]$, $\alpha > \rho(B)$.
- Smallest eigenvalue $\lambda_1(L)$ is 0; an eigenvector $\mathbf{1} = [1, \ldots, 1]^T$.
- Fiedler, 73. Second smallest eigenvalue $\mu = \lambda_2(L) > 0$ iff G is connected.
- Call: μ the algebraic connectivity; an eigenvector for μ a Fiedler vector.

\begin{align*}
\text{For } S_n, n \geq 3 & \quad \mu = 1 \\
\text{For } C_n, n \geq 4 & \quad 0 < \mu \leq 2
\end{align*}
Known properties of Laplacian matrix

- It is also an M-matrix: $L = \alpha I - B$, where $B = [b_{ij} \geq 0]$, $\alpha > \rho(B)$.
- Smallest eigenvalue $\lambda_1(L)$ is 0; an eigenvector $\mathbf{1} = [1, \ldots, 1]^T$.
- Fiedler, 73. Second smallest eigenvalue $\mu = \lambda_2(L) > 0$ iff G is connected.
- Call: μ the algebraic connectivity; an eigenvector for μ a Fiedler vector.

\[S_n, n \geq 3 \quad \begin{array}{c} \mu = 1 \\ \text{C}_n, n \geq 4 \end{array} \quad \begin{array}{c} 0 < \mu \leq 2 \\ \text{K}_n, n \geq 3 \end{array} \]
Known properties of Laplacian matrix

- It is also an M-matrix: $L = \alpha I - B$, where $B = [b_{ij} \geq 0], \alpha > \rho(B)$.
- Smallest eigenvalue $\lambda_1(L)$ is 0; an eigenvector $\mathbb{1} = [1, \ldots, 1]^T$.
- Fiedler, 73. Second smallest eigenvalue $\mu = \lambda_2(L) > 0$ iff G is connected.
- Call: μ the algebraic connectivity; an eigenvector for μ a Fiedler vector.

\begin{align*}
\text{Fidler, 73.} & \quad \mu = 1 \\ & \text{for } S_n, n \geq 3 \\
\text{Fidler, 73.} & \quad 0 < \mu \leq 2 \\ & \text{for } C_n, n \geq 4 \\
\text{Fidler, 73.} & \quad \mu = n \\ & \text{for } K_n, n \geq 3 \\
\text{Fidler, 73.} & \quad 0 < \mu \leq 1 \\ & \text{for } T_n, n \geq 3
\end{align*}
Fiedler vector
• Fiedler, 73. Take G connected and a Fiedler vector of Y. Then
• Fiedler, 73. Take G connected and a Fiedler vector of Y. Then
 • the subgraph induced by $\{v \mid Y(v) \geq 0\}$ is connected;
Fiedler, 73. Take G connected and a Fiedler vector of Y. Then

- the subgraph induced by $\{v | Y(v) \geq 0\}$ is connected;
- the subgraph induced by $\{v | Y(v) \leq 0\}$ is connected.
• Fiedler, 73. Take G connected and a Fiedler vector of Y. Then

 • the subgraph induced by $\{v | Y(v) \geq 0\}$ is connected;

 • the subgraph induced by $\{v | Y(v) \leq 0\}$ is connected.
• Fiedler, 73. Take G connected and a Fiedler vector of Y. Then

 • the subgraph induced by $\{v | Y(v) \geq 0\}$ is connected;

 • the subgraph induced by $\{v | Y(v) \leq 0\}$ is connected.
• Take G connected and a Fiedler vector of Y.

• Take G connected and a Fiedler vector of Y. Vertex v is a characteristic vertex if $Y(v) = 0$ and
• Take G connected and a Fiedler vector of Y. Vertex v is a characteristic vertex if $Y(v) = 0$ and $Y(w) \neq 0$ for some $w \sim v$ i.e. $vw \in G$.
• Take G connected and a Fiedler vector of Y. Vertex v is a characteristic vertex if $Y(v) = 0$ and $Y(w) \neq 0$ for some $w \sim v$ i.e. $vw \in G$.

• An edge uv is a characteristic edge if $Y(v)Y(u) < 0$.

Laplacian matrix of a graph – p.7/28
• Take G connected and a Fiedler vector of Y. Vertex v is a characteristic vertex if $Y(v) = 0$ and $Y(w) \neq 0$ for some $w \sim v$ i.e. $vw \in G$.

• An edge uv is a characteristic edge if $Y(v)Y(u) < 0$.

• Characteristic set $C(G, Y)$: all characteristic vertices and edges.
• Take G connected and a Fiedler vector of Y. Vertex v is a characteristic vertex if $Y(v) = 0$ and $Y(w) \neq 0$ for some $w \sim v$ i.e. $vw \in G$.

• An edge uv is a characteristic edge if $Y(v)Y(u) < 0$.

• Characteristic set $\mathcal{C}(G,Y)$: all characteristic vertices and edges.

• Case B: It is possible that $\mathcal{C}(G,Y)$ is a singleton vertex.
Characteristic vertex, edge and set

- Take G connected and a Fiedler vector of Y. Vertex v is a characteristic vertex if $Y(v) = 0$ and $Y(w) \neq 0$ for some $w \sim v$ i.e. $vw \in G$.

- An edge uv is a characteristic edge if $Y(v)Y(u) < 0$.

- Characteristic set $C(G, Y)$: all characteristic vertices and edges.

- Case B: It is possible that $C(G, Y)$ is a singleton vertex.

- Case A: If $C(G, Y)$ is not a single vertex, then there is a unique block which contains $C(G, Y)$.
• Take G connected and a Fiedler vector of Y. Vertex v is a characteristic vertex if $Y(v) = 0$ and $Y(w) \neq 0$ for some $w \sim v$ i.e. $vw \in G$.

• An edge uv is a characteristic edge if $Y(v)Y(u) < 0$.

• Characteristic set $C(G, Y)$: all characteristic vertices and edges.

• Case B: It is possible that $C(G, Y)$ is a singleton vertex.

• Case A: If $C(G, Y)$ is not a single vertex, then there is a unique block which contains $C(G, Y)$. This is the characteristic block (ch.block).
Characteristic vertex, edge and set

• Take G connected and a Fiedler vector of Y. Vertex v is a characteristic vertex if $Y(v) = 0$ and $Y(w) \neq 0$ for some $w \sim v$ i.e. $vw \in G$.

• An edge uv is a characteristic edge if $Y(v)Y(u) < 0$.

• Characteristic set $C(G, Y)$: all characteristic vertices and edges.

• Case B: It is possible that $C(G, Y)$ is a singleton vertex.

• Case A: If $C(G, Y)$ is not a single vertex, then there is a unique block which contains $C(G, Y)$. This is the characteristic block (ch.block).
• Take G connected and a Fiedler vector of Y. Vertex v is a characteristic vertex if $Y(v) = 0$ and $Y(w) \neq 0$ for some $w \sim v$ i.e. $vw \in G$.

• An edge uv is a characteristic edge if $Y(v)Y(u) < 0$.

• Characteristic set $\mathcal{C}(G, Y)$: all characteristic vertices and edges.

• Case B: It is possible that $\mathcal{C}(G, Y)$ is a singleton vertex.

• Case A: If $\mathcal{C}(G, Y)$ is not a single vertex, then there is a unique block which contains $\mathcal{C}(G, Y)$. This is the characteristic block (ch.block).
• Take G connected and a Fiedler vector of Y. Vertex v is a characteristic vertex if $Y(v) = 0$ and $Y(w) \neq 0$ for some $w \sim v$ i.e. $vw \in G$.

• An edge uv is a characteristic edge if $Y(v)Y(u) < 0$.

• Characteristic set $C(G, Y)$: all characteristic vertices and edges.

• Case B: It is possible that $C(G, Y)$ is a singleton vertex.

• Case A: If $C(G, Y)$ is not a single vertex, then there is a unique block which contains $C(G, Y)$. This is the characteristic block (ch.block).
Characteristic vertex, edge and set

- Take G connected and a Fiedler vector of Y. Vertex v is a characteristic vertex if $Y(v) = 0$ and $Y(w) \neq 0$ for some $w \sim v$ i.e. $vw \in G$.
- An edge uv is a characteristic edge if $Y(v)Y(u) < 0$.
- Characteristic set $C(G, Y)$: all characteristic vertices and edges.
- Case B: It is possible that $C(G, Y)$ is a singleton vertex.
- Case A: If $C(G, Y)$ is not a single vertex, then there is a unique block which contains $C(G, Y)$. This is the characteristic block (ch.block).

Characteristic vertex

Characteristic edge

Laplacian matrix of a graph – p.7/28
• Take G connected and a Fiedler vector of Y. Vertex v is a characteristic vertex if $Y(v) = 0$ and $Y(w) \neq 0$ for some $w \sim v$ i.e. $vw \in G$.

• An edge uv is a characteristic edge if $Y(v)Y(u) < 0$.

• Characteristic set $C(G, Y)$: all characteristic vertices and edges.

• Case B: It is possible that $C(G, Y)$ is a singleton vertex.

• Case A: If $C(G, Y)$ is not a single vertex, then there is a unique block which contains $C(G, Y)$. This is the characteristic block (ch.block).
• Take G connected and a Fiedler vector of Y. Vertex v is a **characteristic vertex** if $Y(v) = 0$ and $Y(w) \neq 0$ for some $w \sim v$ i.e. $vw \in G$.

• An edge uv is a **characteristic edge** if $Y(v)Y(u) < 0$.

• Characteristic set $C(G, Y)$: all characteristic vertices and edges.

• Case B: It is possible that $C(G, Y)$ is a singleton vertex.

• Case A: If $C(G, Y)$ is not a single vertex, then there is a unique block which contains $C(G, Y)$. This is the **characteristic block** (ch.block).

CASE A
• Take G connected and a Fiedler vector of Y. Vertex v is a **characteristic vertex** if $Y(v) = 0$ and $Y(w) \neq 0$ for some $w \sim v$ i.e. $vw \in G$.

• An edge uv is a **characteristic edge** if $Y(v)Y(u) < 0$.

• **Characteristic set** $\mathcal{C}(G, Y)$: all characteristic vertices and edges.

• **Case B**: It is possible that $\mathcal{C}(G, Y)$ is a singleton vertex.

• **Case A**: If $\mathcal{C}(G, Y)$ is not a single vertex, then there is a unique block which contains $\mathcal{C}(G, Y)$. This is the **characteristic block** (ch.block).

CASE B
Characteristic vertex, edge and set

• Take G connected and a Fiedler vector of Y. Vertex v is a characteristic vertex if $Y(v) = 0$ and $Y(w) \neq 0$ for some $w \sim v$ i.e. $vw \in G$.

• An edge uv is a characteristic edge if $Y(v)Y(u) < 0$.

• Characteristic set $\mathcal{C}(G, Y)$: all characteristic vertices and edges.

• Case B: It is possible that $\mathcal{C}(G, Y)$ is a singleton vertex.

• Case A: If $\mathcal{C}(G, Y)$ is not a single vertex, then there is a unique block which contains $\mathcal{C}(G, Y)$. This is the characteristic block (ch.block).

• Known. Let G be a connected graph.
Characteristic vertex, edge and set

- Take G connected and a Fiedler vector of Y. Vertex v is a characteristic vertex if $Y(v) = 0$ and $Y(w) \neq 0$ for some $w \sim v$ i.e. $vw \in G$.
- An edge uv is a characteristic edge if $Y(v)Y(u) < 0$.
- Characteristic set $\mathcal{C}(G, Y)$: all characteristic vertices and edges.
- Case B: It is possible that $\mathcal{C}(G, Y)$ is a singleton vertex.
- Case A: If $\mathcal{C}(G, Y)$ is not a single vertex, then there is a unique block which contains $\mathcal{C}(G, Y)$. This is the characteristic block (ch.block).

Known. Let G be a connected graph. Assume that Case B happens and v is a characteristic vertex w.r.t one Fiedler vector.
• Take G connected and a Fiedler vector of Y. Vertex v is a characteristic vertex if $Y(v) = 0$ and $Y(w) \neq 0$ for some $w \sim v$ i.e. $vw \in G$.

• An edge uv is a characteristic edge if $Y(v)Y(u) < 0$.

• Characteristic set $C(G, Y)$: all characteristic vertices and edges.

• Case B: It is possible that $C(G, Y)$ is a singleton vertex.

• Case A: If $C(G, Y)$ is not a single vertex, then there is a unique block which contains $C(G, Y)$. This is the characteristic block (ch.block).

Known. Let G be a connected graph. Assume that Case B happens and v is a characteristic vertex w.r.t one Fiedler vector. Then Case B happens for each Fiedler vector and v remains the characteristic vertex.
Characteristic vertex, edge and set

- Take G connected and a Fiedler vector of Y. Vertex v is a **characteristic vertex** if $Y(v) = 0$ and $Y(w) \neq 0$ for some $w \sim v$ i.e. $vw \in G$.

- An edge uv is a **characteristic edge** if $Y(v)Y(u) < 0$.

- Characteristic set $\mathcal{C}(G, Y)$: all characteristic vertices and edges.

- **Case B**: It is possible that $\mathcal{C}(G, Y)$ is a singleton vertex.

- **Case A**: If $\mathcal{C}(G, Y)$ is not a single vertex, then there is a unique block which contains $\mathcal{C}(G, Y)$. This is the **characteristic block** (ch.block).

- **known**. Let G be a connected graph.
Take G connected and a Fiedler vector of Y. Vertex v is a characteristic vertex if $Y(v) = 0$ and $Y(w) \neq 0$ for some $w \sim v$ i.e. $vw \in G$.

An edge uv is a characteristic edge if $Y(v)Y(u) < 0$.

Characteristic set $C(G,Y)$: all characteristic vertices and edges.

Case B: It is possible that $C(G,Y)$ is a singleton vertex.

Case A: If $C(G,Y)$ is not a single vertex, then there is a unique block which contains $C(G,Y)$. This is the characteristic block (ch.block).

known. Let G be a connected graph. Assume that Case A happens and B is a characteristic block w.r.t one Fiedler vector.
• Take G connected and a Fiedler vector of Y. Vertex v is a characteristic vertex if $Y(v) = 0$ and $Y(w) \neq 0$ for some $w \sim v$ i.e. $vw \in G$.

• An edge uv is a characteristic edge if $Y(v)Y(u) < 0$.

• Characteristic set $C(G, Y)$: all characteristic vertices and edges.

• Case B: It is possible that $C(G, Y)$ is a singleton vertex.

• Case A: If $C(G, Y)$ is not a single vertex, then there is a unique block which contains $C(G, Y)$. This is the characteristic block (ch.block).

known. Let G be a connected graph. Assume that Case A happens and B is a characteristic block w.r.t one Fiedler vector. Then Case A happens for each Fiedler vector and B remains the characteristic block.
• Take G connected and a Fiedler vector of Y. Vertex v is a characteristic vertex if $Y(v) = 0$ and $Y(w) \neq 0$ for some $w \sim v$ i.e. $vw \in G$.

• An edge uv is a characteristic edge if $Y(v)Y(u) < 0$.

• Characteristic set $\mathcal{C}(G, Y)$: all characteristic vertices and edges.

• Case B: It is possible that $\mathcal{C}(G, Y)$ is a singleton vertex.

• Case A: If $\mathcal{C}(G, Y)$ is not a single vertex, then there is a unique block which contains $\mathcal{C}(G, Y)$. This is the characteristic block (ch.block).

known. Let G be a connected graph and Y a Fiedler vector.
Take G connected and a Fiedler vector of Y. Vertex v is a characteristic vertex if $Y(v) = 0$ and $Y(w) \neq 0$ for some $w \sim v$ i.e. $vw \in G$.

- An edge uv is a characteristic edge if $Y(v)Y(u) < 0$.

- Characteristic set $\mathcal{C}(G, Y)$: all characteristic vertices and edges.

- Case B: It is possible that $\mathcal{C}(G, Y)$ is a singleton vertex.

- Case A: If $\mathcal{C}(G, Y)$ is not a single vertex, then there is a unique block which contains $\mathcal{C}(G, Y)$. This is the characteristic block (ch.block).

- known. Let G be a connected graph and Y a Fiedler vector. Assume that f_1, f_2 are two characteristic elements.
• Take G connected and a Fiedler vector of Y. Vertex v is a characteristic vertex if $Y(v) = 0$ and $Y(w) \neq 0$ for some $w \sim v$ i.e. $vw \in G$.

• An edge uv is a characteristic edge if $Y(v)Y(u) < 0$.

• Characteristic set $\mathcal{C}(G, Y)$: all characteristic vertices and edges.

• Case B: It is possible that $\mathcal{C}(G, Y)$ is a singleton vertex.

• Case A: If $\mathcal{C}(G, Y)$ is not a single vertex, then there is a unique block which contains $\mathcal{C}(G, Y)$. This is the characteristic block (ch.block).

Known. Let G be a connected graph and Y a Fiedler vector. Assume that f_1, f_2 are two characteristic elements. Then there is a simple cycle which contains these two elements and no other characteristic elements.
Fiedler’s Monotonicity theorem: for trees
Fiedler’s Monotonicity theorem: for trees

- A tree can either have a characteristic vertex or a characteristic edge.
Fiedler’s Monotonicity theorem: for trees

- A tree can either have a characteristic vertex or a characteristic edge.
 - Merris, 87. If a tree has a characteristic vertex w.r.t one Fiedler vector,
A tree can either have a characteristic vertex or a characteristic edge.

Merris, 87. If a tree has a characteristic vertex w.r.t one Fiedler vector, then the same vertex is a characteristic vertex for each Fiedler vector.
Fiedler’s Monotonicity theorem: for trees

- A tree can either have a characteristic vertex or a characteristic edge.
 - Merris, 87. If a tree has a characteristic vertex w.r.t one Fiedler vector, then the same vertex is a characteristic vertex for each Fiedler vector.
- If a tree has a characteristic edge then μ is simple. Fiedler 75.
Fiedler’s Monotonicity theorem: for trees

- A tree can either have a characteristic vertex or a characteristic edge.
 - Merris, 87. If a tree has a characteristic vertex w.r.t one Fiedler vector, then the same vertex is a characteristic vertex for each Fiedler vector.
- If a tree has a characteristic edge then μ is simple. Fiedler 75.

- Fiedler, 75; Kirkland, Neumann, Shader, 96. T a tree, Y a Fiedler vector.
Fiedler’s Monotonicity theorem: for trees

- A tree can either have a characteristic vertex or a characteristic edge.
 - Merris, 1987. If a tree has a characteristic vertex w.r.t one Fiedler vector, then the same vertex is a characteristic vertex for each Fiedler vector.
 - If a tree has a characteristic edge then μ is simple. Fiedler 75.

- Fiedler, 1975; Kirkland, Neumann, Shader, 1996. Let T be a tree, Y a Fiedler vector. Let k be a characteristic vertex.
Fiedler’s Monotonicity theorem: for trees

- A tree can either have a characteristic vertex or a characteristic edge.
 - Merris, 87. If a tree has a characteristic vertex w.r.t one Fiedler vector, then the same vertex is a characteristic vertex for each Fiedler vector.
 - If a tree has a characteristic edge then μ is simple. Fiedler 75.

- Fiedler, 75; Kirkland, Neumann, Shader, 96. T a tree, Y a Fiedler vector. Let k be a characteristic vertex. Let P be a path that starts from k. Then
Fiedler’s Monotonicity theorem: for trees

- A tree can either have a characteristic vertex or a characteristic edge.
 - Merris, 87. If a tree has a characteristic vertex w.r.t one Fiedler vector, then the same vertex is a characteristic vertex for each Fiedler vector.
 - If a tree has a characteristic edge then μ is simple. Fiedler 75.

- Fiedler, 75; Kirkland, Neumann, Shader, 96. Let T be a tree, Y a Fiedler vector. Let k be a characteristic vertex. Let P be a path that starts from k. Then
 - Either $Y(v_i) > 0$, increase and concave down along P.

A tree can either have a characteristic vertex or a characteristic edge.

- **Merris, 87.** If a tree has a characteristic vertex w.r.t one Fiedler vector, then the same vertex is a characteristic vertex for each Fiedler vector.

- If a tree has a characteristic edge then μ is simple. **Fiedler 75.**

Fiedler, 75; Kirkland, Neumann, Shader, 96. T a tree, Y a Fiedler vector. Let k be a characteristic vertex. Let P be a path that starts from k. Then

- Either $Y(v_i) > 0$, increase and concave down along P.
- Or $Y(v_i) < 0$, decrease and concave up along P.
Fiedler’s Monotonicity theorem: for trees

- A tree can either have a characteristic vertex or a characteristic edge.
 - Merris, 87. If a tree has a characteristic vertex w.r.t one Fiedler vector, then the same vertex is a characteristic vertex for each Fiedler vector.
 - If a tree has a characteristic edge then μ is simple. Fiedler 75.

- Fiedler, 75; Kirkland, Neumann, Shader, 96. T a tree, Y a Fiedler vector. Let k be a characteristic vertex. Let P be a path that starts from k. Then
 - Either $Y(v_i) > 0$, increase and concave down along P.
 - Or $Y(v_i) < 0$, decrease and concave up along P.
 - Or $Y(v_i) = 0$, along P.

Laplacian matrix of a graph – p.8/28
Fiedler’s Monotonicity theorem: for trees

• Fiedler, 75; Kirkland, Neumann, Shader, 96. \(T \) a tree, \(Y \) a Fiedler vector. Let \(k \) be a characteristic vertex. Let \(P \) be a path that starts from \(k \). Then

- Either \(Y(v_i) > 0 \), increase and concave down along \(P \).
- Or \(Y(v_i) < 0 \), decrease and concave up along \(P \).
- Or \(Y(v_i) = 0 \), along \(P \).
Fiedler’s Monotonicity theorem: for trees

- Fiedler, 75; Kirkland, Neumann, Shader, 96. Let T be a tree, Y a Fiedler vector. Let k be a characteristic vertex. Let P be a path that starts from k. Then
 - Either $Y(v_i) > 0$, increase and concave down along P.
 - Or $Y(v_i) < 0$, decrease and concave up along P.
 - Or $Y(v_i) = 0$, along P.

Fiedler’s Monotonicity theorem: for trees

Fiedler, 75; Kirkland, Neumann, Shader, 96. \(T \) a tree, \(Y \) a Fiedler vector. Let \(k \) be a characteristic vertex. Let \(P \) be a path that starts from \(k \). Then

- Either \(Y(v_i) > 0 \), increase and concave down along \(P \).
- Or \(Y(v_i) < 0 \), decrease and concave up along \(P \).
- Or \(Y(v_i) = 0 \), along \(P \).
Fiedler’s Monotonicity theorem: for trees

- Fiedler, 75; Kirkland, Neumann, Shader, 96. Let T be a tree, Y a Fiedler vector. Let k be a characteristic vertex. Let P be a path that starts from k. Then
 - Either $Y(v_i) > 0$, increase and concave down along P.
 - Or $Y(v_i) < 0$, decrease and concave up along P.
 - Or $Y(v_i) = 0$, along P.

Laplacian matrix of a graph – p. 8/28
Fiedler’s Monotonicity theorem: for trees

Fiedler, 75; Kirkland, Neumann, Shader, 96. Let T be a tree, Y a Fiedler vector. Let k be a characteristic vertex. Let P be a path that starts from k. Then

- Either $Y(v_i) > 0$, increase and concave down along P.
- Or $Y(v_i) < 0$, decrease and concave up along P.
- Or $Y(v_i) = 0$, along P.

![Laplacian matrix of a graph](image-url)
Fiedler's Monotonicity theorem: for trees

- Fiedler, 75; Kirkland, Neumann, Shader, 96. Let T be a tree, Y a Fiedler vector. Let k be a characteristic vertex. Let P be a path that starts from k. Then
 - Either $Y(v_i) > 0$, increase and concave down along P.
 - Or $Y(v_i) < 0$, decrease and concave up along P.
 - Or $Y(v_i) = 0$, along P.
Fiedler’s Monotonicity theorem: for trees

- Fiedler, 75; Kirkland, Neumann, Shader, 96. Let T be a tree, Y a Fiedler vector. Let k be a characteristic vertex. Let P be a path that starts from k. Then
 - Either $Y(v_i) > 0$, increase and concave down along P.
 - Or $Y(v_i) < 0$, decrease and concave up along P.
 - Or $Y(v_i) = 0$, along P.

Laplacian matrix of a graph – p.8/28
Fiedler’s Monotonicity theorem: for trees

Fiedler, 75; Kirkland, Neumann, Shader, 96. Let \(T \) be a tree, \(Y \) a Fiedler vector. Let \(k \) be a characteristic vertex. Let \(P \) be a path that starts from \(k \). Then

- Either \(Y(v_i) > 0 \), increase and concave down along \(P \).
- Or \(Y(v_i) < 0 \), decrease and concave up along \(P \).
- Or \(Y(v_i) = 0 \), along \(P \).
Fiedler's Monotonicity theorem: for trees

- Fiedler, 75; Kirkland, Neumann, Shader, 96. \(T \) a tree, \(Y \) a Fiedler vector. Let \(k \) be a characteristic vertex. Let \(P \) be a path that starts from \(k \). Then
 - Either \(Y(v_i) > 0 \), increase and concave down along \(P \).
 - Or \(Y(v_i) < 0 \), decrease and concave up along \(P \).
 - Or \(Y(v_i) = 0 \), along \(P \).
Fiedler’s Monotonicity theorem: for trees

• Fiedler, 75; Kirkland, Neumann, Shader, 96. Let T be a tree, Y a Fiedler vector. Let k be a characteristic vertex. Let P be a path that starts from k. Then

 • Either $Y(v_i) > 0$, increase and concave down along P.
 • Or $Y(v_i) < 0$, decrease and concave up along P.
 • Or $Y(v_i) = 0$, along P.

Laplacian matrix of a graph – p.8/28
Fiedler's Monotonicity theorem: for trees

- Fiedler, 75; Kirkland, Neumann, Shader, 96. \(T \) a tree, \(Y \) a Fiedler vector. Let \(k \) be a characteristic vertex. Let \(P \) be a path that starts from \(k \). Then
 - Either \(Y(v_i) > 0 \), increase and concave down along \(P \).
 - Or \(Y(v_i) < 0 \), decrease and concave up along \(P \).
 - Or \(Y(v_i) = 0 \), along \(P \).
Fiedler’s Monotonicity theorem: for trees

- Fiedler, 75; Kirkland, Neumann, Shader, 96. Let T be a tree, Y a Fiedler vector. Let k be a characteristic vertex. Let P be a path that starts from k. Then
 - Either $Y(v_i) > 0$, increase and concave down along P.
 - Or $Y(v_i) < 0$, decrease and concave up along P.
 - Or $Y(v_i) = 0$, along P.

- A similar statement holds when we have a characteristic edge, only that there are no 0 vertices.

Laplacian matrix of a graph – p.8/28
Fiedler’s Monotonicity theorem: for trees

- Fiedler, 75; Kirkland, Neumann, Shader, 96. T a tree, Y a Fiedler vector. Let k be a characteristic vertex. Let P be a path that starts from k. Then
 - Either $Y(v_i) > 0$, increase and concave down along P.
 - Or $Y(v_i) < 0$, decrease and concave up along P.
 - Or $Y(v_i) = 0$, along P.

These results are used to give a powerful graph partitioning algorithm. Pothen, Simon, Liou; SIAMAX, 1990.
• Take two copies of the same graph.
• Take two copies of the same graph.

\[\mu \simeq 0.14 \]
• Take two copies of the same graph.

\[\mu \simeq 0.14 \]

• Let us move a branch in the second picture.
• Take two copies of the same graph.

\[\mu \simeq 0.14 \]

• Let us move a branch in the second picture.
• Take two copies of the same graph.

\[\mu \simeq 0.14 \]

• Let us move a branch in the second picture.
• Take two copies of the same graph.

\[\mu \simeq 0.14 \]

\[\mu \simeq 0.12 \]

• Let us move a branch in the second picture.
• Take two copies of the same graph.

\[\mu \simeq 0.14 \]

\[\mu \simeq 0.12 \]

• Let us move a branch in the second picture. Connectivity of the network decreases if we move branches away from the characteristic set.
• Take two copies of the same graph.

\[
\mu \approx 0.14
\]

\[
\mu \approx 0.12
\]

• Let us move a branch in the second picture. Connectivity of the network decreases if we move branches away from the characteristic set.

• Delete the vertex k from the LHS tree.
• Take two copies of the same graph.

\[\mu \approx .12 \]

• Let us move a branch in the second picture. Connectivity of the network decreases if we move branches away from the characteristic set.

• Delete the vertex \(k \) from the LHS tree. We have three branches.
• Take two copies of the same graph.

\[\mu \approx .12 \]

• Let us move a branch in the second picture. Connectivity of the network decreases if we move branches away from the characteristic set.

• Delete the vertex k from the LHS tree. We have three branches. The resp. principal submatrices of L are
• Take two copies of the same graph.

\[B_1 \]

\[\mu \approx 0.12 \]

• Let us move a branch in the second picture. Connectivity of the network decreases if we move branches away from the characteristic set.

• Delete the vertex \(k \) from the LHS tree. We have three branches. The resp. principal submatrices of \(L \) are

\[
B_1 = \begin{bmatrix}
3 & -1 & 0 & -1 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
-1 & 0 & 0 & 2 & -1 \\
0 & 0 & 0 & -1 & 1
\end{bmatrix}
\]
• Take two copies of the same graph.

\[
\begin{align*}
B_1 & : \begin{bmatrix}
3 & -1 & 0 & -1 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
-1 & 0 & 0 & 2 & -1 \\
0 & 0 & 0 & -1 & 1
\end{bmatrix} \\
B_2 & : \begin{bmatrix}
3 & -1 & 0 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{bmatrix}
\end{align*}
\]

• Let us move a branch in the second picture. Connectivity of the network decreases if we move branches away from the characteristic set.

• Delete the vertex \(k \) from the LHS tree. We have three branches. The resp. principal submatrices of \(L \) are

\[
\begin{align*}
\mu & \simeq .12
\end{align*}
\]
• Take two copies of the same graph.

\[
\begin{array}{c}
\begin{array}{c}
B_1 \\
B_2 \\
B_3
\end{array}
\end{array}
\]

\[
\mu \approx 0.12
\]

• Let us move a branch in the second picture. Connectivity of the network decreases if we move branches away from the characteristic set.

• Delete the vertex \(k \) from the LHS tree. We have three branches. The resp. principal submatrices of \(L \) are

\[
B_1 : \begin{bmatrix}
3 & -1 & 0 & -1 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
-1 & 0 & 0 & 2 & -1 \\
0 & 0 & 0 & 0 & -1 \\
1
\end{bmatrix}
\]

\[
B_2 : \begin{bmatrix}
3 & -1 & -1 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{bmatrix}
\]

\[
B_3 : \begin{bmatrix}
2 & -1 & 0 & 0 \\
-1 & 3 & -1 & -1 \\
0 & -1 & 1 & 0 \\
0 & -1 & 0 & 1
\end{bmatrix}
\]
• Take two copies of the same graph.

![Graph Diagram]

\[\mu \simeq 0.12 \]

• Let us move a branch in the second picture. Connectivity of the network decreases if we move branches away from the characteristic set.

• Delete the vertex \(k \) from the LHS tree. We have three branches. The resp. principal submatrices of \(L \) are

\[
B_1 : \begin{bmatrix} 3 & -1 & 0 & -1 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ -1 & 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix} \quad B_2 : \begin{bmatrix} 3 & -1 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \quad B_3 : \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 3 & -1 & -1 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}
\]

Laplacian matrix of a graph – p.9/28
• Take two copies of the same graph.

\[
\begin{align*}
B_1 & \quad B_2 \\
B_3 & \quad B_4
\end{align*}
\]

\[\mu \simeq .12\]

• Let us move a branch in the second picture. Connectivity of the network decreases if we move branches away from the characteristic set.

• Delete the vertex \(k \) from the LHS tree. We have three branches. The resp. principal submatrices of \(L \) are

\[
B_1 : \begin{bmatrix}
3 & -1 & 0 & -1 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
-1 & 0 & 0 & 2 & -1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
B_2 : \begin{bmatrix}
3 & -1 & -1 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{bmatrix}
\]

\[
B_3 : \begin{bmatrix}
3 & -1 & 0 & 0 \\
-1 & 3 & -1 & -1 \\
0 & -1 & 1 & 0 \\
0 & -1 & 0 & 1
\end{bmatrix}
\]

\[\lambda_1 = \mu\quad \lambda_1 > \mu\quad \lambda_1 = \mu\]

Laplacian matrix of a graph – p.9/28
• Take two copies of the same graph.

• Let look at the tree on the RHS.
• Take two copies of the same graph.

\[
\begin{array}{c}
B_1 \\
B_2 \\
B_3
\end{array}
\]

\[
\mu \simeq 0.12
\]

• Let look at the tree on the RHS. Look at the branches at \(k \) and the smallest eigenvalues of the resp principal submatrices of \(L \).
• Take two copies of the same graph.

• Let look at the tree on the RHS. Look at the branches at k and the smallest eigenvalues of the resp principal submatrices of L.

$\lambda_1 \simeq 0.27$

$\lambda_1 \simeq 0.14$

$\mu \simeq 0.12$
• Take two copies of the same graph.

![Graph Diagram]

• Let look at the tree on the RHS. Look at the branches at k and the smallest eigenvalues of the resp principal submatrices of L.

• Connectivity (from k) is least on this branch.
• Take two copies of the same graph.

$\mu \simeq .12$

• Let look at the tree on the RHS. Look at the branches at k and the smallest eigenvalues of the resp principal submatrices of L.

• Now look at the branches at l and the smallest eigenvalues of the resp principal submatrices of L.
• Take two copies of the same graph.

\[B_1 \]
\[B_2 \]
\[B_3 \]

\[\lambda_1 \simeq 0.17 \]
\[\mu \simeq 0.12 \]

• Let look at the tree on the RHS. Look at the branches at \(k \) and the smallest eigenvalues of the resp principal submatrices of \(L \).

• Now look at the branches at \(l \) and the smallest eigenvalues of the resp principal submatrices of \(L \).
• Take two copies of the same graph.

\[\lambda_1 \approx 0.17 \]
\[\mu \approx 0.12 \]

• Let look at the tree on the RHS. Look at the branches at \(k \) and the smallest eigenvalues of the resp principal submatrices of \(L \).

• Now look at the branches at \(l \) and the smallest eigenvalues of the resp principal submatrices of \(L \).

• Connectivity (from \(l \)) is least on this branch.
- Take two copies of the same graph.

- Let look at the tree on the RHS. Look at the branches at k and the smallest eigenvalues of the resp principal submatrices of L.

- Now look at the branches at l and the smallest eigenvalues of the resp principal submatrices of L.

- That is why the red edge is the characteristic edge for the RHS tree.
• Take two copies of the same graph.

\[B_1 \quad \mu \simeq .12 \]

\[B_2 \]

\[B_3 \]

• Let look at the tree on the RHS. Look at the branches at \(k \) and the smallest eigenvalues of the resp principal submatrices of \(L \).

• Now look at the branches at \(l \) and the smallest eigenvalues of the resp principal submatrices of \(L \).

• That is why the red edge is the characteristic edge for the RHS tree. We probably should place the headquarter somewhere on this edge.
\lambda_1\ of\ the\ perturbed\ Laplacian
• We are taking a connected graph.
We are taking a connected graph. Taking its Laplacian matrix.
• We are taking a connected graph. Taking its Laplacian matrix. Adding $+1$ to the ith diagonal entry, intending it to be a root.
\(\lambda_1 \) of the perturbed Laplacian

- We are taking a connected graph. Taking its Laplacian matrix. Adding \(+1\) to the \(i\)th diagonal entry, intending it to be a root.

- Then the smallest eigenvalue \(\lambda_1 \) of this perturbed Laplacian is an index of the connectivity.
• We are taking a connected graph. Taking its Laplacian matrix. Adding $+1$ to the ith diagonal entry, intending it to be a root.

• Then the smallest eigenvalue λ_1 of this perturbed Laplacian is an index of the connectivity.

• Adding more roots increases the index.
\(\lambda_1 \) of the perturbed Laplacian

- We are taking a connected graph. Taking its Laplacian matrix. Adding \(+1\) to the \(i\)th diagonal entry, intending it to be a root.

- Then the smallest eigenvalue \(\lambda_1 \) of this **perturbed Laplacian** is an index of the connectivity.

- Adding more roots increases the index.

- Adding new edges increases the index.
\(\lambda_1 \) of the perturbed Laplacian

- We are taking a connected graph. Taking its Laplacian matrix. Adding \(+1\) to the \(i\)th diagonal entry, intending it to be a root.

- Then the smallest eigenvalue \(\lambda_1 \) of this perturbed Laplacian is an index of the connectivity.

- Adding more roots increases the index.

- Adding new edges increases the index.

- Moving a branch away from the roots will decrease the index.
We are taking a connected graph. Taking its Laplacian matrix. Adding $+1$ to the ith diagonal entry, intending it to be a root.

Then the smallest eigenvalue λ_1 of this perturbed Laplacian is an index of the connectivity.

Adding more roots increases the index.

Adding new edges increases the index.

Moving a branch away from the roots will decrease the index.

For a background on Laplacian refer to R. Merris, LAA, 96.
We are taking a connected graph. Taking its Laplacian matrix. Adding $+1$ to the ith diagonal entry, intending it to be a root.

Then the smallest eigenvalue λ_1 of this *perturbed Laplacian* is an index of the connectivity.

- Adding more roots increases the index.
- Adding new edges increases the index.
- Moving a branch away from the roots will decrease the index.

For a background on Laplacian refer to [R. Merris, LAA, 96](#).

The characteristic set identifies a ‘middle’ of the graph.
More on perturbed Laplacian
Let G be connected, D be any diagonal matrix.
• Let G be connected, D be any diagonal matrix. We define $\bar{P} := D - A(G)$.
• Let G be connected, D be any diagonal matrix. We define $\bar{D} := D - A(G)$.

• When $D = \text{diagonal degree matrix}$, $\bar{D} = L$ and when $D = 0$, $\bar{D} = -A$.
• Let G be connected, D be any diagonal matrix. We define $\overset{\rightarrow}{\mathcal{P}} := D - A(G)$.

• When $D = \text{diagonal degree matrix}$, $\overset{\rightarrow}{\mathcal{P}} = L$ and when $D = 0$, $\overset{\rightarrow}{\mathcal{P}} = -A$.

• For a connected graph $\lambda_1(\overset{\rightarrow}{\mathcal{P}})$ is simple.
• Let G be connected, D be any diagonal matrix. We define $\tilde{P} := D - A(G)$.

• When $D = \text{diagonal degree matrix}$ $\tilde{P} = L$ and when $D = 0$, $\tilde{P} = -A$.

• For a connected graph $\lambda_1(\tilde{P})$ is simple. A corresponding eigenvector Z is entrywise positive.
More on perturbed Laplacian

- Let G be connected, D be any diagonal matrix. We define $\overline{P} := D - A(G)$.
 - When D = diagonal degree matrix $\overline{P} = L$ and when $D = 0$, $\overline{P} = -A$.
 - For a connected graph $\lambda_1(\overline{P})$ is simple. A corresponding eigenvector Z is entrywise positive.
 - Let Y be a Fiedler vector (eigenvector for $\lambda_2(\overline{P})$).
• Let G be connected, D be any diagonal matrix. We define $\tilde{P} := D - A(G)$.

• When $D =$ diagonal degree matrix $\tilde{P} = L$ and when $D = 0$, $\tilde{P} = -A$.

• For a connected graph $\lambda_1(\tilde{P})$ is simple. A corresponding eigenvector Z is entrywise positive.

• Let Y be a Fiedler vector (eigenvector for $\lambda_2(\tilde{P})$). Then the subgraph induced by $\{v : Y(v) \geq 0\}$ is connected and the subgraph induced by $\{v : Y(v) \leq 0\}$ is connected.
• Let G be connected, D be any diagonal matrix. We define $\mathcal{P} := D - A(G)$.

• When $D = \text{diagonal degree matrix}$ $\mathcal{P} = L$ and when $D = 0$, $\mathcal{P} = -A$.

• For a connected graph $\lambda_1(\mathcal{P})$ is simple. A corresponding eigenvector Z is entrywise positive.

• Let Y be a Fiedler vector (eigenvector for $\lambda_2(\mathcal{P})$). Then the subgraph induced by $\{v : Y(v) \geq 0\}$ is connected and the subgraph induced by $\{v : Y(v) \leq 0\}$ is connected.

• The vector $\frac{Y}{Z} := \left[\frac{Y(1)}{Z(1)} \cdots \frac{Y(n)}{Z(n)} \right]$ has the monotonicity property.
More on perturbed Laplacian

- Let G be connected, D be any diagonal matrix. We define $\bar{D} := D - A(G)$.
 - When $D = \text{diagonal degree matrix}$, $\bar{D} = L$ and when $D = 0$, $\bar{D} = -A$.
 - For a connected graph $\lambda_1(\bar{D})$ is simple. A corresponding eigenvector Z is entrywise positive.
 - Let Y be a Fiedler vector (eigenvector for $\lambda_2(\bar{D}))$. Then the subgraph induced by $\{v : Y(v) \geq 0\}$ is connected and the subgraph induced by $\{v : Y(v) \leq 0\}$ is connected.
 - The vector $\frac{Y}{Z} := \begin{bmatrix} Y(1) \\ Z(1) \\ \vdots \\ Y(n) \\ Z(n) \end{bmatrix}$ has the monotonicity property.
 - We can define characteristic set.
More on perturbed Laplacian

- Let G be connected, D be any diagonal matrix. We define $\overline{D} := D - A(G)$.
 - When $D =$ diagonal degree matrix $\overline{D} = L$ and when $D = 0$, $\overline{D} = -A$.
 - For a connected graph $\lambda_1(\overline{D})$ is simple. A corresponding eigenvector Z is entrywise positive.
 - Let Y be a Fiedler vector (eigenvector for $\lambda_2(\overline{D})$). Then the subgraph induced by $\{v : Y(v) \geq 0\}$ is connected and the subgraph induced by $\{v : Y(v) \leq 0\}$ is connected.
 - The vector $\frac{Y}{Z} := \left[\frac{Y(1)}{Z(1)} \cdots \frac{Y(n)}{Z(n)} \right]$ has the monotonicity property.
 - We can define characteristic set.
 - The characteristic set is either a single vertex or in a unique block.
More on perturbed Laplacian

- Let G be connected, D be any diagonal matrix. We define $\hat{P} := D - A(G)$.
 - When $D =$ diagonal degree matrix $\hat{P} = L$ and when $D = 0$, $\hat{P} = -A$.
 - For a connected graph $\lambda_1(\hat{P})$ is simple. A corresponding eigenvector Z is entrywise positive.
 - Let Y be a Fiedler vector (eigenvector for $\lambda_2(\hat{P})$). Then the subgraph induced by $\{v : Y(v) \geq 0\}$ is connected and the subgraph induced by $\{v : Y(v) \leq 0\}$ is connected.
 - The vector $\frac{Y}{Z} := \left[\frac{Y(1)}{Z(1)} \cdots \frac{Y(n)}{Z(n)} \right]$ has the monotonicity property.
 - We can define characteristic set.
 - The characteristic set is either a single vertex or in a unique block.
 - For more results refer to Bapat, Kirkland, Pati, LAMA 2001.
Relation with resistance distance
• Consider two graphs.
• Consider two graphs.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{example.png}
\caption{Graphs with different edge weights.}
\label{fig:example}
\end{figure}
• Consider two graphs.

![Graph 1](image1)

![Graph 2](image2)

• The distance between \(a \) and \(b \) in both the graphs are the same,
• Consider two graphs.

• The distance between a and b in both the graphs are the same, though these two vertices are better connected in the LHS graph.
• Consider two graphs.

- The distance between a and b in both the graphs are the same, though these two vertices are better connected in the LHS graph. It is reasonable that the distance between a and b should be lesser in the LHS graph.
Consider two graphs.

![Graph illustration](image)

- The distance between a and b in both the graphs are the same, though these two vertices are better connected in the LHS graph. It is reasonable that the distance between a and b should be lesser in the LHS graph.

- ‘Resistance distance’ captures it more appropriately.
• Consider two graphs.

- The distance between a and b in both the graphs are the same, though these two vertices are better connected in the LHS graph. **It is reasonable that the distance between a and b should be lesser in the LHS graph.**

- ‘Resistance distance’ captures it more appropriately.

- For a tree ‘classical distance’ and resistance distance coincide.
• Consider two graphs.

\[\begin{array}{cc}
\text{a=1} & \text{b=5} \\
\end{array} \quad \begin{array}{cc}
\text{a=1} & \text{b=3} \\
\end{array} \]

• \(G \) be connected with vertices 1, \ldots, \(n \).
• Consider two graphs.

\[a=1 \quad b=5 \quad a=1 \quad b=3 \]

• \(G \) be connected with vertices 1, \ldots, \(n \). Take \(M = L^+ \), the Moore-Penrose inverse of \(L \).
• Consider two graphs.

\[a=1 \quad b=5 \]

\[a=1 \quad b=3 \]

• \(G \) be connected with vertices 1, \ldots, \(n \). Take \(M = L^+ \), the Moore-Penrose inverse of \(L \). \(LML = L \), \(MLM = M \); \(ML \) and \(LM \) are symmetric.

Known: \(M \) is positive semidefinite.
Consider two graphs.

$\begin{align*}
&\text{a=1} \quad \text{b=5} \\
&\text{a=1} \quad \text{b=3}
\end{align*}$

G be connected with vertices $1, \ldots, n$. Take $M = L^+$, the Moore-Penrose inverse of L.

Define $r(i, j) = m_{ii} + m_{jj} - 2m_{ij}$.

Relation with resistance distance
• Consider two graphs.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{graph.png}
\caption{Graphs with vertices labeled.}
\end{figure}

• G be connected with vertices $1, \ldots, n$. Take $M = L^+$, the Moore-Penrose inverse of L.

Define $r(i, j) = m_{ii} + m_{jj} - 2m_{ij}$.

• The resistance matrices for the above graphs:
• Consider two graphs.

![Graphs](image)

• G be connected with vertices $1, \ldots, n$. Take $M = L^+$, the Moore-Penrose inverse of L.

Define $r(i, j) = m_{ii} + m_{jj} - 2m_{ij}$.

• The resistance matrices for the above graphs:

$$
\begin{bmatrix}
0 & \frac{2}{3} & \frac{2}{3} & \frac{2}{3} & \frac{2}{3} \\
\frac{2}{3} & 0 & 1 & 1 & \frac{2}{3} \\
\frac{2}{3} & 1 & 0 & 1 & \frac{2}{3} \\
\frac{2}{3} & 1 & 1 & 0 & \frac{2}{3} \\
\frac{3}{3} & \frac{2}{3} & \frac{2}{3} & \frac{2}{3} & 0
\end{bmatrix}
$$

and

$$
\begin{bmatrix}
0 & 1 & 2 \\
1 & 0 & 1 \\
2 & 1 & 0
\end{bmatrix}
$$
Relation with resistance distance
known. \(r(i, j) \leq d(i, j); \)
Relation with resistance distance

- known. \(r(i, j) \leq d(i, j) \); equality holds iff there is a unique \(i-j \)-path.
known. $r(i, j) \leq d(i, j)$; equality holds iff there is a unique i-j-path.

- (triangle inequality) $r(i, j) + r(j, k) \geq r(i, k)$.
• known. \(r(i, j) \leq d(i, j) \); equality holds iff there is a unique \(i-j \)-path.

 • (triangle inequality) \(r(i, j) + r(j, k) \geq r(i, k) \).

• \(G \): connected.
• known. \(r(i, j) \leq d(i, j) \); equality holds iff there is a unique \(i-j \)-path.

 - (triangle inequality) \(r(i, j) + r(j, k) \geq r(i, k) \).

• \(G \): connected. Put \(X = (L + \frac{J}{n})^{-1} \), where \(J = \mathbb{1}\mathbb{1}^t \).
• known. \(r(i, j) \leq d(i, j) \); equality holds iff there is a unique \(i-j \)-path.

• (triangle inequality) \(r(i, j) + r(j, k) \geq r(i, k) \).

• \(G \): connected. Put \(X = (L + \frac{J}{n})^{-1} \), where \(J = \mathbb{1}\mathbb{1}^t \). Then \(L^+ = X - \frac{J}{n} \).
Relation with resistance distance

- known. \(r(i, j) \leq d(i, j) \); equality holds iff there is a unique \(i-j \)-path.
 - (triangle inequality) \(r(i, j) + r(j, k) \geq r(i, k) \).
- \(G \): connected. Put \(X = (L + \frac{J}{n})^{-1} \), where \(J = \mathbb{1} \mathbb{1}^t \). Then \(L^+ = X - \frac{J}{n} \).
- Put \(\tilde{X} = \text{diag}(x_{11}, \ldots, x_{nn}) \).
Relation with resistance distance

- known. \(r(i, j) \leq d(i, j) \); equality holds iff there is a unique \(i-j \)-path.
 - (triangle inequality) \(r(i, j) + r(j, k) \geq r(i, k) \).
- \(G \): connected. Put \(X = (L + \frac{J}{n})^{-1} \), where \(J = \mathbb{1}_n^t \). Then \(L^+ = X - \frac{J}{n} \).
- Put \(\tilde{X} = \text{DIAG}(x_{11}, \ldots, x_{nn}) \). Then \(R = \tilde{X}J + J\tilde{X} - 2X \).
Relation with resistance distance

- known. \(r(i, j) \leq d(i, j) \); equality holds iff there is a unique \(i-j \)-path.

 - (triangle inequality) \(r(i, j) + r(j, k) \geq r(i, k) \).

 - \(G \): connected. Put \(X = (L + \frac{J}{n})^{-1} \), where \(J = \text{1}\text{1}^t \). Then \(L^+ = X - \frac{J}{n} \).

 - Put \(\tilde{X} = \text{DIAG}(x_{11}, \ldots, x_{nn}) \). Then \(R = \tilde{X} J + J \tilde{X} - 2X \).

 - Put \(\tau_i = 2 - \sum_{j \sim i} r(i, j) \).
known. $r(i, j) \leq d(i, j)$; equality holds iff there is a unique i-j-path.

- (triangle inequality) $r(i, j) + r(j, k) \geq r(i, k)$.
- G: connected. Put $X = (L + \frac{J}{n})^{-1}$, where $J = 11^t$. Then $L^+ = X - \frac{J}{n}$.
- Put $\tilde{X} = \text{DIAG}(x_{11}, \ldots, x_{nn})$. Then $R = \tilde{X}J + J\tilde{X} - 2X$.
- Put $\tau_i = 2 - \sum_{j \sim i} r(i, j)$. Then $\tau = L\tilde{X}1 + \frac{2}{n}1$.

Relation with resistance distance
• known. \(r(i, j) \leq d(i, j) \); equality holds iff there is a unique \(i-j \)-path.

 - (triangle inequality) \(r(i, j) + r(j, k) \geq r(i, k) \).

• \(G \): connected. Put \(X = (L + \frac{1}{n}J)^{-1} \), where \(J = \mathbb{1} \mathbb{1}^t \). Then \(L^+ = X - \frac{1}{n}J \).

• Put \(\tilde{X} = \text{DIAG}(x_{11}, \ldots, x_{nn}) \). Then \(R = \tilde{X} J + J \tilde{X} - 2X \).

• Put \(\tau_i = 2 - \sum_{j \sim i} r(i, j) \). Then \(\tau = L \tilde{X} \mathbb{1} + \frac{2}{n} \mathbb{1} \).

• \(\sum_i \sum_{j \sim i} r(i, j) = 2(n - 1) \).
• known. \(r(i, j) \leq d(i, j) \); equality holds iff there is a unique \(i-j \)-path.

 • (triangle inequality) \(r(i, j) + r(j, k) \geq r(i, k) \).

 • \(G \): connected. Put \(X = (L + \frac{J}{n})^{-1} \), where \(J = \mathbb{1}\mathbb{1}^t \). Then \(L^+ = X - \frac{J}{n} \).

 • Put \(\tilde{X} = \text{DIAG}(x_{11}, \ldots, x_{nn}) \). Then \(R = \tilde{X}J + J\tilde{X} - 2X \).

 • Put \(\tau_i = 2 - \sum_{j \sim i} r(i, j) \). Then \(\tau = L\tilde{X}\mathbb{1} + \frac{2}{n} \mathbb{1} \).

 • \(\sum_{i} \sum_{j \sim i} r(i, j) = 2(n - 1) \). So \(\mathbb{1}^t \tau = 2 \).
known. \(r(i, j) \leq d(i, j) \); equality holds iff there is a unique \(i-j \)-path.

- (triangle inequality) \(r(i, j) + r(j, k) \geq r(i, k) \).
- \(G \): connected. Put \(X = (L + \frac{J}{n})^{-1} \), where \(J = \mathbb{1}\mathbb{1}^t \). Then \(L^+ = X - \frac{J}{n} \).
- Put \(\tilde{X} = \text{DIAG}(x_{11}, \ldots, x_{nn}) \). Then \(R = \tilde{X}J + J\tilde{X} - 2X \).
- Put \(\tau_i = 2 - \sum_{j \sim i} r(i, j) \). Then \(\tau = L\tilde{X}\mathbb{1} + \frac{2}{n}\mathbb{1} \).
- \(\sum_i \sum_{j \sim i} r(i, j) = 2(n - 1) \). So \(\mathbb{1}^t\tau = 2 \).
- \(R^{-1} = -\frac{1}{2}L + \frac{1}{\tau^tR\tau} \tau \tau^t \). Generalizes inverse of distance matrix (tree).
Relation with resistance distance

- known. \(r(i, j) \leq d(i, j) \); equality holds iff there is a unique \(i-j \)-path.
 - (triangle inequality) \(r(i, j) + r(j, k) \geq r(i, k) \).
- \(G \): connected. Put \(X = (L + \frac{J}{n})^{-1} \), where \(J = \mathbb{I} \mathbb{I}^t \). Then \(L^+ = X - \frac{J}{n} \).
- Put \(\tilde{X} = \text{DIAG}(x_{11}, \ldots, x_{nn}) \). Then \(R = \tilde{X} J + J \tilde{X} - 2X \).
- Put \(\tau_i = 2 - \sum_{j \sim i} r(i, j) \). Then \(\tau = L \tilde{X} \mathbb{I} + \frac{2}{n} \mathbb{I} \).
- \(\sum_i \sum_{j \sim i} r(i, j) = 2(n - 1) \). So \(\mathbb{I}^t \tau = 2 \).
- \(R^{-1} = -\frac{1}{2} L + \frac{1}{\tau^t R \tau} \tau \tau^t \). Generalizes inverse of distance matrix (tree).
- \(G \): connected, \(\lambda_i := \lambda_i(L) \).
Relation with resistance distance

- known. $r(i, j) \leq d(i, j)$; equality holds iff there is a unique i-j-path.

- (triangle inequality) $r(i, j) + r(j, k) \geq r(i, k)$.

- G: connected. Put $X = (L + J/n)^{-1}$, where $J = \mathbb{1}\mathbb{1}^t$. Then $L^+ = X - J/n$.

- Put $\tilde{X} = \text{DIAG}(x_{11}, \ldots, x_{nn})$. Then $R = \tilde{X}J + J\tilde{X} - 2X$.

- Put $\tau_i = 2 - \sum_{j \sim i} r(i, j)$. Then $\tau = L\tilde{X}\mathbb{1} + \frac{2}{n}\mathbb{1}$.

- $\sum_i \sum_{j \sim i} r(i, j) = 2(n - 1)$. So $\mathbb{1}^t \tau = 2$.

- $R^{-1} = -\frac{1}{2}L + \frac{1}{\tau^t R \tau} \tau \tau^t$. Generalizes inverse of distance matrix (tree).

- G: connected, $\lambda_i := \lambda_i(L)$. Then $\sum_i \sum_{j} r(i, j) = 2 \sum_{i=2}^{n} \frac{1}{\lambda_i}$.

Laplacian matrix of a graph – p.13/28
Relation with resistance distance

• known. \(r(i, j) \leq d(i, j) \); equality holds iff there is a unique \(i-j \)-path.

 • (triangle inequality) \(r(i, j) + r(j, k) \geq r(i, k) \).

• \(G \): connected. Put \(X = (L + \frac{J}{n})^{-1} \), where \(J = \mathbb{1}\mathbb{1}^t \). Then \(L^+ = X - \frac{J}{n} \).

• Put \(\tilde{X} = \text{DIAG}(x_{11}, \ldots, x_{nn}) \). Then \(R = \tilde{X}J + J\tilde{X} - 2X \).

• Put \(\tau_i = 2 - \sum_{j \sim i} r(i, j) \). Then \(\tau = L\tilde{X}\mathbb{1} + \frac{2}{n} \mathbb{1} \).

• \(\sum_{i} \sum_{j \sim i} r(i, j) = 2(n - 1) \). So \(\mathbb{1}^t\tau = 2 \).

• \(R^{-1} = -\frac{1}{2}L + \frac{1}{\tau^tR\tau}\tau\tau^t \). Generalizes inverse of distance matrix (tree).

• \(G \): connected, \(\lambda_i := \lambda_i(L) \). Then \(\sum_i \sum_j r(i, j) = 2 \sum_{i=2}^{n} \frac{1}{\lambda_i} \).

• \(R \) of a connected \(G \) has exactly one positive eigenvalue.
• **known.** $r(i, j) \leq d(i, j)$; equality holds iff there is a unique i-j-path.

 • (triangle inequality) $r(i, j) + r(j, k) \geq r(i, k)$.

• G: connected. Put $X = (L + \frac{J}{n})^{-1}$, where $J = \mathbb{I}\mathbb{I}^t$. Then $L^+ = X - \frac{J}{n}$.

• Put $\tilde{X} = \text{DIAG}(x_{11}, \ldots, x_{nn})$. Then $R = \tilde{X}J + J\tilde{X} - 2X$.

• Put $\tau_i = 2 - \sum_{j \sim i} r(i, j)$. Then $\tau = L\tilde{X}\mathbb{I} + \frac{2}{n}\mathbb{I}$.

• $\sum_i \sum_{j \sim i} r(i, j) = 2(n - 1)$. So $\mathbb{I}^t\tau = 2$.

• $R^{-1} = -\frac{1}{2}L + \frac{1}{\tau^tR\tau}\tau\tau^t$. Generalizes inverse of distance matrix (tree).

• G: connected, $\lambda_i := \lambda_i(L)$. Then $\sum_i \sum_j r(i, j) = 2\sum_{i=2}^{n} \frac{1}{\lambda_i}$.

• R of a connected G has exactly one positive eigenvalue.

• G be connected and $i \sim j$; $k(G) =$ number of spanning trees; $k'(G) =$ number of spanning trees containing ij.
Relation with resistance distance

- **known.** $r(i, j) \leq d(i, j)$; equality holds iff there is a unique i-j-path.
 - (triangle inequality) $r(i, j) + r(j, k) \geq r(i, k)$.
 - G: connected. Put $X = (L + \frac{J}{n})^{-1}$, where $J = \mathbb{1}\mathbb{1}^t$. Then $L^+ = X - \frac{J}{n}$.
 - Put $\tilde{X} = \text{DIAG}(x_{11}, \ldots, x_{nn})$. Then $R = \tilde{X}J + J\tilde{X} - 2X$.
 - Put $\tau_i = 2 - \sum_{j \sim i} r(i, j)$. Then $\tau = L\tilde{X}\mathbb{1} + \frac{2}{n}\mathbb{1}$.
 - $\sum_{i} \sum_{j \sim i} r(i, j) = 2(n - 1)$. So $\mathbb{1}^t\tau = 2$.
 - $R^{-1} = -\frac{1}{2}L + \frac{1}{\tau^tR\tau}\tau\tau^t$. Generalizes inverse of distance matrix (tree).
 - G: connected, $\lambda_i := \lambda_i(L)$. Then $\sum_{i} \sum_{j} r(i, j) = 2 \sum_{i=2}^{n} \frac{1}{\lambda_i}$.
 - R of a connected G has exactly one positive eigenvalue.
 - G be connected and $i \sim j$; $k(G) =$ number of spanning trees; $k'(G) =$ number of spanning trees containing ij. Then $r(i, j) = \frac{k'(G)}{k(G)}$.

Laplacian matrix of a graph – p.13/28
known. $r(i, j) \leq d(i, j)$; equality holds iff there is a unique i-j-path.

- (triangle inequality) $r(i, j) + r(j, k) \geq r(i, k)$.

- G: connected. Put $X = (L + J/n)^{-1}$, where $J = \mathbb{1}\mathbb{1}^t$. Then $L^+ = X - J/n$.

- Put $\tilde{X} = \text{DIAG}(x_{11}, \ldots, x_{nn})$. Then $R = \tilde{X}J + J\tilde{X} - 2X$.

- Put $\tau_i = 2 - \sum_{j \sim i} r(i, j)$. Then $\tau = L\tilde{X}\mathbb{1} + \frac{2}{n}\mathbb{1}$.

- $\sum_i \sum_{j \sim i} r(i, j) = 2(n - 1)$. So $\mathbb{1}^t\tau = 2$.

- $R^{-1} = -\frac{1}{2}L + \frac{1}{\tau^tR\tau}\tau\tau^t$. Generalizes inverse of distance matrix (tree).

- G: connected, $\lambda_i := \lambda_i(L)$. Then $\sum_i \sum_j r(i, j) = 2 \sum_{i=2}^n \frac{1}{\lambda_i}$.

- R of a connected G has exactly one positive eigenvalue.

- G be connected and $i \sim j$; $k(G) = \text{number of spanning trees}$; $k'(G) = \text{number of spanning trees containing } ij$. Then $r(i, j) = \frac{k'(G)}{k(G)}$.

- For more refer to Book-‘Graphs and Matrices’- Bapat.
Thank You

\[\lambda_2(L(G)) \] is a measure of the stability and the robustness of the network dynamic system” –

Y. Kim and M. Mesbahi,

2005 American control conference.
Fiedler’s Monotonicity theorem

- Call a path pure if it has at most two points of articulation of each block.
Fiedler’s Monotonicity theorem

- Call a path pure if it has at most two points of articulation of each block.
- Fiedler, 75. \(G \) connected, \(Y \) a Fiedler vector. Assume Case A. Then
Call a path pure if it has at most two points of articulation of each block.

Fiedler, 75. \(G \) connected, \(Y \) a Fiedler vector. Assume Case A. Then

- Only the ch. block \(C \) has both positive and negative vertices (w.r.t \(Y \)).
Call a path pure if it has at most two points of articulation of each block.

Fiedler, 75. \(G \) connected, \(Y \) a Fiedler vector. Assume Case A. Then

- Only the ch. block \(C \) has both positive and negative vertices (w.r.t \(Y \)).
- Let \(k \in C \).
• Call a path **pure** if it has at most two points of articulation of each block.

• **Fiedler,75.** G connected, Y a Fiedler vector. Assume Case A. Then
 • Only the ch.block C has both positive and negative vertices (w.r.t Y).
 • Let $k \in C$. Take a pure path P starting at k and leaving C.
Fiedler’s Monotonicity theorem

• Call a path pure if it has at most two points of articulation of each block.

• Fiedler, 75. G connected, Y a Fiedler vector. Assume Case A. Then
 • Only the ch.block C has both positive and negative vertices (w.r.t Y).
 • Let $k \in C$. Take a pure path P starting at k and leaving C.
 • Then the values at points of articulation along P increase, or decrease, or remain zero according to whether $Y(k) > 0$, $Y(k) < 0$ or $Y(k) = 0$;
Fiedler’s Monotonicity theorem

- Call a path **pure** if it has at most two points of articulation of each block.

- Fiedler, 75. G connected, Y a Fiedler vector. Assume Case A. Then
 - Only the ch. block C has both positive and negative vertices (w.r.t Y).
 - Let $k \in C$. Take a pure path P starting at k and leaving C.
 - Then the values at points of articulation along P increase, or decrease, or remain zero according to whether $Y(k) > 0$, $Y(k) < 0$ or $Y(k) = 0$; in the last case all vertices in P have valuation zero.
Fiedler’s Monotonicity theorem

- Call a path **pure** if it has at most two points of articulation of each block.

- Fiedler, 75. G connected, Y a Fiedler vector. Assume Case A. Then
 - Only the ch.block C has both positive and negative vertices (w.r.t Y).
 - Let $k \in C$. Take a pure path P starting at k and leaving C.
 - Then the values at points of articulation along P increase, or decrease, or remain zero according to whether $Y(k) > 0$, $Y(k) < 0$ or $Y(k) = 0$; in the last case all vertices in P have valuation zero.
Fiedler's Monotonicity theorem

- Call a path **pure** if it has at most two points of articulation of each block.
- **Fiedler,75.** \(G \) connected, \(Y \) a Fiedler vector. Assume Case A. Then
 - Only the ch.block \(C \) has both positive and negative vertices (w.r.t \(Y \)).
 - Let \(k \in C \). Take a pure path \(P \) starting at \(k \) and leaving \(C \).
 - Then the values at points of articulation along \(P \) increase, or decrease, or remain zero according to whether \(Y(k) > 0 \), \(Y(k) < 0 \) or \(Y(k) = 0 \); in the last case all vertices in \(P \) have valuation zero.
Fiedler’s Monotonicity theorem

- Call a path **pure** if it has at most two points of articulation of each block.

- **Fiedler,75.** \(G \) connected, \(Y \) a Fiedler vector. Assume Case A. Then
 - Only the ch.block \(C \) has both positive and negative vertices (w.r.t \(Y \)).
 - Let \(k \in C \). Take a pure path \(P \) starting at \(k \) and leaving \(C \).
 - Then the values at points of articulation along \(P \) increase, or decrease, or remain zero according to whether \(Y(k) > 0 \), \(Y(k) < 0 \) or \(Y(k) = 0 \); in the last case all vertices in \(P \) have valuation zero.
• Call a path pure if it has at most two points of articulation of each block.

• Fiedler, 75. G connected, Y a Fiedler vector. Assume Case A. Then
 • Only the ch. block C has both positive and negative vertices (w.r.t Y).
 • Let $k \in C$. Take a pure path P starting at k and leaving C.
 • Then the values at points of articulation along P increase, or decrease, or remain zero according to whether $Y(k) > 0$, $Y(k) < 0$ or $Y(k) = 0$; in the last case all vertices in P have valuation zero.
• Call a path pure if it has at most two points of articulation of each block.

• **Fiedler, 75.** G connected, Y a Fiedler vector. Assume Case A. Then

 • Only the ch.block C has both positive and negative vertices (w.r.t Y).

 • Let $k \in C$. Take a pure path P starting at k and leaving C.

 • Then the values at points of articulation along P increase, or decrease, or remain zero according to whether $Y(k) > 0$, $Y(k) < 0$ or $Y(k) = 0$; in the last case all vertices in P have valuation zero.
Fiedler’s Monotonicity theorem

- Call a path pure if it has at most two points of articulation of each block.

- Fiedler, 75. \(G \) connected, \(Y \) a Fiedler vector. Assume Case A. Then
 - Only the ch.block \(C \) has both positive and negative vertices (w.r.t \(Y \)).
 - Let \(k \in C \). Take a pure path \(P \) starting at \(k \) and leaving \(C \).
 - Then the values at points of articulation along \(P \) increase, or decrease, or remain zero according to whether \(Y(k) > 0 \), \(Y(k) < 0 \) or \(Y(k) = 0 \); in the last case all vertices in \(P \) have valuation zero.
Call a path pure if it has at most two points of articulation of each block.

Fiedler, 75. G connected, Y a Fiedler vector. Assume Case A. Then

- Only the ch.block C has both positive and negative vertices (w.r.t Y).
- Let $k \in C$. Take a pure path P starting at k and leaving C.
- Then the values at points of articulation along P increase, or decrease, or remain zero according to whether $Y(k) > 0$, $Y(k) < 0$ or $Y(k) = 0$; in the last case all vertices in P have valuation zero.

A similar statement holds for Case B.
Call a path pure if it has at most two points of articulation of each block.

Fiedler, 75. G connected, Y a Fiedler vector. Assume Case A. Then

- Only the ch.block C has both positive and negative vertices (w.r.t Y).
- Let $k \in C$. Take a pure path P starting at k and leaving C.
- Then the values at points of articulation along P increase, or decrease, or remain zero according to whether $Y(k) > 0$, $Y(k) < 0$ or $Y(k) = 0$; in the last case all vertices in P have valuation zero.

A similar statement holds for Case B.

Q. Can we have monotonicity along the path instead of monotonicity along the point of articulations on the path?
A little more
• No. Not for each \(z-u \)-path. Here \(z \) is the characteristic vertex.
No. Not for each z-v-path. Here z is the characteristic vertex.
• No. Not for each z-v-path. Here z is the characteristic vertex.

• However, there is a z-v-path.
• No. Not for each \(z-v \)-path. Here \(z \) is the characteristic vertex.

\[\text{A branch at } v \text{ is a connected component of } G - v. \]
• No. Not for each \(z-v \)-path. Here \(z \) is the characteristic vertex.

• However, there is a \(z-v \)-path.

• A branch at \(v \) is a connected component of \(G - v \).

• Lemma. \(G \) be connected, \(Y \) be a Fiedler vector, Case A be true, \(C \) be the ch.block, and \(k \) be a vertex in \(C \) with \(Y(k) > 0 \).
• No. Not for each z-v-path. Here z is the characteristic vertex.

• However, there is a z-v-path.

• A branch at v is a connected component of $G - v$.

• Lemma. G be connected, Y be a Fiedler vector, Case A be true, C be the ch.block, and k be a vertex in C with $Y(k) > 0$. Let B be a branch at k not containing a vertex of C.

Laplacian matrix of a graph – p.16/28
• No. Not for each z-v-path. Here z is the characteristic vertex.

• However, there is a z-v-path.

• A branch at v is a connected component of $G - v$.

• Lemma. G be connected, Y be a Fiedler vector, Case A be true, C be the ch.block, and k be a vertex in C with $Y(k) > 0$. Let B be a branch at k not containing a vertex of C. Let u be a vertex in B.

Laplacian matrix of a graph – p.16/28
• No. Not for each z-v-path. Here z is the characteristic vertex.

• However, there is a z-v-path.

• A branch at v is a connected component of $G - v$.

Lemma. G be connected, Y be a Fiedler vector, Case A be true, C be the ch.block, and k be a vertex in C with $Y(k) > 0$. Let B be a branch at k not containing a vertex of C. Let u be a vertex in B. Then there is a path $P = [k, v_1, \ldots, v_s = u]$ s.t. $Y(k) < Y(v_1) < \cdots < Y(u)$, where $v_i \in B$.
A little more: in general
• **Theorem.** G be connected, Y be a Fiedler vector, Case A be true, C' be the ch.block.
Theorem. G be connected, Y be a Fiedler vector, Case A be true, C be the ch. block. Then there is a spanning subgraph H of G.
• **Theorem.** \(G \) be connected, \(Y \) be a Fiedler vector, Case A be true, \(C \) be the ch.block. Then there is a spanning subgraph \(H \) of \(G \), which does not contain a cycle outside \(C \).
Theorem. G be connected, Y be a Fiedler vector, Case A be true, C be the ch.block. Then there is a spanning subgraph H of G, which does not contain a cycle outside C such that every path P which starts from a vertex k of C and does not contain any other vertex of C has the following property:
• **Theorem.** Let G be connected, Y be a Fiedler vector, Case A be true, C be the ch.block. Then there is a spanning subgraph H of G, which does not contain a cycle outside C such that every path P which starts from a vertex k of C and does not contain any other vertex of C has the following property:

• If $Y(k) > 0$, then the valuation along P is strictly increasing.
Theorem. \(G \) be connected, \(Y \) be a Fiedler vector, Case A be true, \(C \) be the ch.block. Then there is a spanning subgraph \(H \) of \(G \), which does not contain a cycle outside \(C \) such that every path \(P \) which starts from a vertex \(k \) of \(C \) and does not contain any other vertex of \(C \) has the following property:

- If \(Y(k) > 0 \), then the valuation along \(P \) is strictly increasing.
- If \(Y(k) < 0 \), then the valuation along \(P \) is strictly decreasing.
Theorem. \(G \) be connected, \(Y \) be a Fiedler vector, Case A be true, \(C \) be the ch.block. Then there is a spanning subgraph \(H \) of \(G \), which does not contain a cycle outside \(C \) such that every path \(P \) which starts from a vertex \(k \) of \(C \) and does not contain any other vertex of \(C \) has the following property:

- If \(Y(k) > 0 \), then the valuation along \(P \) is strictly increasing.
- If \(Y(k) < 0 \), then the valuation along \(P \) is strictly decreasing.
- If \(Y(k) = 0 \), then the valuation along \(P \) is identically zero.
Theorem. \(G \) be connected, \(Y \) be a Fiedler vector, Case A be true, \(C \) be the ch.block. Then there is a spanning subgraph \(H \) of \(G \), which does not contain a cycle outside \(C \) such that every path \(P \) which starts from a vertex \(k \) of \(C \) and does not contain any other vertex of \(C \) has the following property:

- If \(Y(k) > 0 \), then the valuation along \(P \) is strictly increasing.
- If \(Y(k) < 0 \), then the valuation along \(P \) is strictly decreasing.
- If \(Y(k) = 0 \), then the valuation along \(P \) is identically zero.
• **Theorem.** \(G \) be connected, \(Y \) be a Fiedler vector, Case A be true, \(C \) be the ch.block. Then there is a spanning subgraph \(H \) of \(G \), which does not contain a cycle outside \(C \) such that every path \(P \) which starts from a vertex \(k \) of \(C \) and does not contain any other vertex of \(C \) has the following property:

- If \(Y(k) > 0 \), then the valuation along \(P \) is strictly increasing.
- If \(Y(k) < 0 \), then the valuation along \(P \) is strictly decreasing.
- If \(Y(k) = 0 \), then the valuation along \(P \) is identically zero.
A little more: in general

Laplacian matrix of a graph

Laplacian matrix of a graph – p.18/28
A little more: in general

- A similar statement holds for Case B. (spanning tree)
A similar statement holds for Case B. (spanning tree)

- We may have more choices for the spanning subgraph in both cases.
• A similar statement holds for Case B. (spanning tree)

 • We may have more choices for the spanning subgraph in both cases.

 • There are graph classes for which we have essentially one choice.
• A similar statement holds for Case B. (spanning tree)
 • We may have more choices for the spanning subgraph in both cases.
 • There are graph classes for which we have essentially one choice.
A similar statement holds for Case B. (spanning tree)

- We may have more choices for the spanning subgraph in both cases.
- There are graph classes for which we have essentially one choice.
A little more: in general

- A similar statement holds for Case B. (spanning tree)
 - We may have more choices for the spanning subgraph in both cases.
 - There are graph classes for which we have essentially one choice.
• A similar statement holds for Case B. (spanning tree)
 • We may have more choices for the spanning subgraph in both cases.
 • There are graph classes for which we have essentially one choice.

• About this graph:
A similar statement holds for Case B. (spanning tree)

- We may have more choices for the spanning subgraph in both cases.
- There are graph classes for which we have essentially one choice.

About this graph:

- Blocks are ‘path bundles’ (internally vertex disjoint paths of same length with common end points).
A little more: in general

- A similar statement holds for Case B. (spanning tree)
 - We may have more choices for the spanning subgraph in both cases.
 - There are graph classes for which we have essentially one choice.

- About this graph:
 - Blocks are ‘path bundles’ (internally vertex disjoint paths of same length with common end points).
 - ‘Restricted blocks’ (each block has at most two points of articulations).
Minimizing algebraic connectivity of graphs with restricted blocks
Consider a connected graph with restricted blocks. The ‘block structure’ of such a graph is a tree.
Consider a connected graph with restricted blocks. The ‘block structure’ of such a graph is a tree.
Consider a connected graph with restricted blocks. The ‘block structure’ of such a graph is a tree.

- View it: take a tree, replace each edge by a ‘suitable’ restricted block.
• Consider a connected graph with restricted blocks. The ‘block structure’ of such a graph is a tree.

• View it: take a tree, replace each edge by a ‘suitable’ restricted block.

• Let G be connected, B a branch at v and
Consider a connected graph with restricted blocks. The ‘block structure’ of such a graph is a tree.

- View it: take a tree, replace each edge by a ‘suitable’ restricted block.
- Let G be connected, B a branch at v and $\hat{L}(B)$ the corresponding principal submatrix of $L(G)$.
Consider a connected graph with restricted blocks. The ‘block structure’ of such a graph is a tree.

- View it: take a tree, replace each edge by a ‘suitable’ restricted block.
- Let G be connected, B a branch at v and $\hat{L}(B)$ the corresponding principal submatrix of $L(G)$. Note: the bottleneck matrix $B[B] = \hat{L}(B)^{-1}$ is entrywise positive.
Consider a connected graph with restricted blocks. The ‘block structure’ of such a graph is a tree.

- View it: take a tree, replace each edge by a ‘suitable’ restricted block.

- Let G be connected, B a branch at v and $\hat{L}(B)$ the corresponding principal submatrix of $L(G)$. Note: the bottleneck matrix $B[B] = \hat{L}(B)^{-1}$ is entrywise positive. A branch B at v for which the spectral radius $\rho(B[B]) \geq \frac{1}{\mu}$ is a Perron branch (component).
Known results involving Perron branch
Known results involving Perron branch

- Fallat & Kirkland, 98. \(G \) be connected. Then at each point of articulation \(v \) there is at least one Perron branch (component).
Known results involving Perron branch

- Fallat & Kirkland, 98. \(G \) be connected. Then at each point of articulation \(v \), there is at least one Perron branch (component).
- If there are more than one Perron components at \(v \), then Case B holds.
Known results involving Perron branch

- **Fallat & Kirkland, 98.** Let G be connected. Then at each point of articulation v there is at least one Perron branch (component).

- If there are more than one Perron components at v, then Case B holds and v is the characteristic vertex for each Fiedler vector.
Known results involving Perron branch

- Fallat & Kirkland, 98. \(G \) be connected. Then at each point of articulation \(v \) there is at least one Perron branch (component).

- If there are more than one Perron components at \(v \), then Case B holds and \(v \) is the characteristic vertex for each Fiedler vector.

- [Replacement lemma] Fallat & Kirkland, 98. \(G \) be connected, \(v \) be a point of articulation with branches \(C_1, \ldots, C_k \) at \(v \).
Known results involving Perron branch

• Fallat & Kirkland, 98. G be connected. Then at each point of articulation v there is at least one Perron branch (component).

• If there are more than one Perron components at v, then Case B holds and v is the characteristic vertex for each Fiedler vector.

• [Replacement lemma] Fallat & Kirkland, 98. G be connected, v be a point of articulation with branches C_1, \ldots, C_k at v. Assume that $C = \bigcup_{i=1}^{j} C_i$ misses vertices of some Perron branch at v.
Known results involving Perron branch

- **Fallat & Kirkland, 98.** Let G be connected. Then at each point of articulation v there is at least one Perron branch (component).
 - If there are more than one Perron components at v, then Case B holds and v is the characteristic vertex for each Fiedler vector.

- **[Replacement lemma]Fallat & Kirkland, 98.** Let G be connected, v be a point of articulation with branches C_1, \ldots, C_k at v. Assume that $C = \bigcup_{i=1}^{j} C_i$ misses vertices of some Perron branch at v. Form \tilde{G} by replacing C with a single connected component \tilde{C} at v.

Laplacian matrix of a graph – p.20/28
Known results involving Perron branch

• Fallat & Kirkland, 98. Let G be connected. Then at each point of articulation v there is at least one Perron branch (component).

• If there are more than one Perron components at v, then Case B holds and v is the characteristic vertex for each Fiedler vector.

• [Replacement lemma] Fallat & Kirkland, 98. Let G be connected, v be a point of articulation with branches C_1, \ldots, C_k at v. Assume that $C = \bigcup_{i=1}^{j} C_i$ misses vertices of some Perron branch at v. Form \tilde{G} by replacing C with a single connected component \tilde{C} at v. If $B[\tilde{C}] \geq B[C]$, then $\mu(\tilde{G}) \leq \mu(G)$.
• Fallat & Kirkland, 98. \(G \) be connected. Then at each point of articulation \(v \) there is at least one Perron branch (component).

• If there are more than one Perron components at \(v \), then Case B holds and \(v \) is the characteristic vertex for each Fiedler vector.

• [Replacement lemma] Fallat & Kirkland, 98. \(G \) be connected, \(v \) be a point of articulation with branches \(C_1, \ldots, C_k \) at \(v \). Assume that \(C = \bigcup_{i=1}^{j} C_i \) misses vertices of some Perron branch at \(v \). Form \(\tilde{G} \) by replacing \(C \) with a single connected component \(\tilde{C} \) at \(v \). If \(B[\tilde{C}] \geq B[C] \), then \(\mu(\tilde{G}) \leq \mu(G) \).

• In above, if \(B[\tilde{C}] \leq B[C] \), then \(\mu(\tilde{G}) \geq \mu(G) \).
Known results involving Perron branch

- Fallat, Kirkland & Pati, 02. Let G be the cycle $[1, 2, \ldots, g, 1]$.
Fallat, Kirkland & Pati, 02. Let G be the cycle $[1, 2, \ldots, g, 1]$. Then the Laplacian matrix of a graph is given by

$$B[G - g]_{ij} = \frac{i(g - j)}{g} \text{ if } i \leq j.$$
Known results involving Perron branch

- Fallat, Kirkland & Pati, 02. Let G be the cycle $[1, 2, \ldots, g, 1]$. Then the Laplacian matrix of a graph G is

$$B[G - g]_{ij} = \frac{i(g - j)}{g} \text{ if } i \leq j.$$
Known results involving Perron branch

- Fallat, Kirkland & Pati, 02. Let G be the cycle $[1, 2, \ldots, g, 1]$. Then the

$$B[G-g]_{ij} = \frac{i(g-j)}{g} \text{ if } i \leq j.$$

![Graph](image)

$$B[G - 5] = \begin{bmatrix}
\frac{4}{5} & \frac{3}{5} & \frac{2}{5} & \frac{1}{5} \\
\frac{3}{5} & \frac{6}{5} & \frac{4}{5} & \frac{2}{5} \\
\frac{2}{5} & \frac{4}{5} & \frac{6}{5} & \frac{3}{5} \\
\frac{1}{5} & \frac{2}{5} & \frac{3}{5} & \frac{4}{5}
\end{bmatrix}$$
Known results involving Perron branch

- Fallat, Kirkland & Pati, 02. Let G be the cycle $[1, 2, \ldots, g, 1]$. Then the

$$B[G - g]_{ij} = \frac{i(g - j)}{g} \text{ if } i \leq j.$$

![Diagram of a cycle graph](image)

$$B[G - 5] = \begin{bmatrix}
4 & 3 & 2 & 1 \\
3 & 5 & 5 & 5 \\
2 & 4 & 6 & 3 \\
\frac{1}{5} & \frac{2}{5} & \frac{3}{5} & \frac{4}{5}
\end{bmatrix}$$
Known results involving Perron branch

- Fallat, Kirkland & Pati, 02. Let G be the cycle $[1, 2, \ldots, g, 1]$. Then the Laplacian matrix of a graph

\[
B[G - g]_{ij} = \frac{i(g - j)}{g} \text{ if } i \leq j.
\]

\[
B[G - 5] = \begin{bmatrix}
4 & 3 & 2 & 1 \\
3 & 6 & 4 & 5 \\
2 & 4 & 6 & 3 \\
1 & 2 & 3 & 4 \\
\end{bmatrix}
\]
• Fallat, Kirkland & Pati, 02. Let G be the cycle $[1, 2, \ldots, g, 1]$. Then the

$$B[G - g]_{ij} = \frac{i(g - j)}{g} \text{ if } i \leq j.$$
Known results involving Perron branch

- Fallat, Kirkland & Pati, 02. Let G be the cycle $[1, 2, \ldots, g, 1]$. Then the Laplacian matrix of a graph G is

$$B[G - g]_{ij} = \frac{i(g - j)}{g}$$

if $i \leq j$.

\[B[G - 5] = \begin{bmatrix}
4 & 3 & 2 & 1 \\
\frac{3}{5} & \frac{6}{5} & \frac{4}{5} & \frac{2}{5} \\
\frac{2}{5} & \frac{4}{5} & \frac{6}{5} & \frac{3}{5} \\
\frac{1}{5} & \frac{2}{5} & \frac{3}{5} & \frac{4}{5}
\end{bmatrix} \]

\[
\begin{array}{c}
\frac{2}{5} \\
\frac{3}{5} \\
\frac{4}{5}
\end{array}
\]

\[\text{girth} \]

G
Known results involving Perron branch
 Lemma[*FK98]. G, H be connected on vertices $\{1, \ldots, n\}$ and $\{n, n + 1, \ldots, k\}$, respectively. Put $\delta = B[G - 1]_{nn}$. Then

$$B[G \cup H - 1] = \begin{bmatrix}
B[G - 1] & B[G - 1](; n) \mathbb{1}^T \\
\mathbb{1}B[G - 1](n, :) & \delta J + B[H - n]
\end{bmatrix}.$$
Known results involving Perron branch

- **Lemma[*FK98]**. Let G, H be connected on vertices $\{1, \ldots, n\}$ and $\{n, n+1, \ldots, k\}$, respectively. Put $\delta = B[G - 1]_{nn}$. Then

$$B[G \cup H - 1] = \begin{bmatrix} B[G - 1] & B[G - 1](:, n)1^T \\ 1B[G - 1](n,:) & \delta J + B[H - n] \end{bmatrix}.$$
Lemma[*FK98]. Let G, H be connected on vertices $\{1, \ldots, n\}$ and $\{n, n+1, \ldots, k\}$, respectively. Put $\delta = B[G - 1]_{nn}$. Then

\[
B[G \cup H - 1] = \begin{bmatrix}
B[G - 1] & B[G - 1](:, n) \mathbf{1}^T \\
\mathbf{1} B[G - 1](n, :) & \delta J + B[H - n]
\end{bmatrix}.
\]

\[
B[F - 0] = \begin{bmatrix}
\begin{array}{cccc|cccc}
4 & 3 & 2 & 1 & 3 & 3 & 3 & 3 \\
5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
3 & 6 & 4 & 2 & 6 & 6 & 6 & 6 \\
5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
2 & 4 & 6 & 3 & 4 & 4 & 4 & 4 \\
5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
1 & 2 & 3 & 4 & 2 & 2 & 2 & 2 \\
5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
\end{array}
\end{bmatrix}.
\]

Laplacian matrix of a graph – p.22/28.
A crucial result
A crucial result

- $A \ll B$ means: B dominates A entrywise; strict at some entry.
• $A \ll B$ means: B dominates A entrywise; strict at some entry.

• Lemma [shifting]. G_0, G_1, G_2, F be connected, on vertices $\{1, \ldots, n\}$, $\{n, n + 1, \ldots, k\}$, $\{k, k + 1, \ldots, r\}$, and $\{n, r + 1, \ldots, s\}$, respectively. Let F^* be obtained from F by renaming n to k. Then

$$M = B[G_0 \cup G_1 \cup G_2 \cup F - 1] \ll N = B[G_0 \cup G_1 \cup G_2 \cup F^* - 1].$$
• \(A \ll B \) means: \(B \) dominates \(A \) entrywise; strict at some entry.

• Lemma [shifting]. \(G_0, G_1, G_2, F \) be connected, on vertices \(\{1, \ldots, n\}, \{n, n+1, \ldots, k\}, \{k, k+1, \ldots, r\}, \) and \(\{n, r+1, \ldots, s\} \), respectively. Let \(F^* \) be obtained from \(F \) by renaming \(n \) to \(k \). Then

\[
M = B[G_0 \cup G_1 \cup G_2 \cup F - 1] \ll N = B[G_0 \cup G_1 \cup G_2 \cup F^* - 1].
\]
A crucial result

- \(A \ll B \) means: \(B \) dominates \(A \) entrywise; strict at some entry.

Lemma [shifting]. \(G_0, G_1, G_2, F \) be connected, on vertices \(\{1, \ldots, n\} \), \(\{n, n+1, \ldots, k\} \), \(\{k, k+1, \ldots, r\} \), and \(\{n, r+1, \ldots, s\} \), respectively. Let \(F^* \) be obtained from \(F \) by renaming \(n \) to \(k \). Then

\[
M = B[G_0 \cup G_1 \cup G_2 \cup F - 1] \ll N = B[G_0 \cup G_1 \cup G_2 \cup F^* - 1].
\]

- Put \(G = G_0 \cup G_1 \cup G_2 \). Take \(w \in F - n \). Then
• $A \ll B$ means: B dominates A entrywise; strict at some entry.

• Lemma [shifting]. Let G_0, G_1, G_2, F be connected, on vertices $\{1, \ldots, n\}$, $\{n, n+1, \ldots, k\}$, $\{k, k+1, \ldots, r\}$, and $\{n, r+1, \ldots, s\}$, respectively. Let F^* be obtained from F by renaming n to k. Then

$$M = B[G_0 \cup G_1 \cup G_2 \cup F - 1] \ll N = B[G_0 \cup G_1 \cup G_2 \cup F^* - 1].$$

• Put $G = G_0 \cup G_1 \cup G_2$. Take $w \in F - n$. Then

$$m_{ww} =$$

Laplacian matrix of a graph – p.23/28
A crucial result

- \(A \ll B \) means: \(B \) dominates \(A \) entrywise; strict at some entry.

- **Lemma [shifting].** \(G_0, G_1, G_2, F \) be connected, on vertices \(\{1, \ldots, n\}, \{n, n+1, \ldots, k\}, \{k, k+1, \ldots, r\}, \) and \(\{n, r+1, \ldots, s\} \), respectively. Let \(F^* \) be obtained from \(F \) by renaming \(n \) to \(k \). Then

\[
M = B[G_0 \cup G_1 \cup G_2 \cup F - 1] \ll N = B[G_0 \cup G_1 \cup G_2 \cup F^* - 1].
\]

\[\begin{array}{c}
1 & \quad G_0 & \quad \quad n & \quad G_1 & \quad k & \quad G_2 \\
& F & \quad \quad w & \quad \quad u \\
\end{array} \]

- Put \(G = G_0 \cup G_1 \cup G_2 \). Take \(w \in F - n \). Then

\[
m_{ww} = B[G - 1]_{nn} + B[F - n]_{ww}
\]
A crucial result

- $A \ll B$ means: B dominates A entrywise; strict at some entry.

- **Lemma [shifting].** G_0, G_1, G_2, F be connected, on vertices $\{1, \ldots, n\}$, $\{n, n+1, \ldots, k\}$, $\{k, k+1, \ldots, r\}$, and $\{n, r+1, \ldots, s\}$, respectively. Let F^* be obtained from F by renaming n to k. Then

$$M = B[G_0 \cup G_1 \cup G_2 \cup F - 1] \ll N = B[G_0 \cup G_1 \cup G_2 \cup F^* - 1].$$

- Put $G = G_0 \cup G_1 \cup G_2$. Take $w \in F - n$. Then

$$m_{uw} = B[G - 1]_{nn} + B[F - n]_{uw} \leq B[G - 1]_{kk} + B[F^* - k]_{uw} = n_{uw}.$$
• $A \ll B$ means: B dominates A entrywise; strict at some entry.

• Lemma [shifting]. Let G_0, G_1, G_2, F be connected, on vertices $\{1, \ldots, n\}$, $\{n, n + 1, \ldots, k\}$, $\{k, k + 1, \ldots, r\}$, and $\{n, r + 1, \ldots, s\}$, respectively. Let F^* be obtained from F by renaming n to k. Then

$$M = B[G_0 \cup G_1 \cup G_2 \cup F - 1] \ll N = B[G_0 \cup G_1 \cup G_2 \cup F^* - 1].$$

• For $w \in G_0 - 1$, we have
• $A \ll B$ means: B dominates A entrywise; strict at some entry.

• Lemma [shifting]. G_0, G_1, G_2, F be connected, on vertices $\{1, \ldots, n\}$, $\{n, n+1, \ldots, k\}$, $\{k, k+1, \ldots, r\}$, and $\{n, r+1, \ldots, s\}$, respectively. Let F^* be obtained from F by renaming n to k. Then $M = B[G_0 \cup G_1 \cup G_2 \cup F - 1] \ll N = B[G_0 \cup G_1 \cup G_2 \cup F^* - 1]$.

• For $w \in G_0 - 1$, we have $m_{wu} = m_{wn}$
- \(A \ll B \) means: \(B \) dominates \(A \) entrywise; strict at some entry.

- **Lemma [shifting].** \(G_0, G_1, G_2, F \) be connected, on vertices \(\{1, \ldots, n\}, \{n, n+1, \ldots, k\}, \{k, k+1, \ldots, r\}, \) and \(\{n, r+1, \ldots, s\} \), respectively. Let \(F^* \) be obtained from \(F \) by renaming \(n \) to \(k \). Then

\[
M = B[G_0 \cup G_1 \cup G_2 \cup F - 1] \ll N = B[G_0 \cup G_1 \cup G_2 \cup F^* - 1].
\]

- For \(w \in G_0 - 1 \), we have
 \[
m_{wu} = m_{wn} = n_{wk}
\]
A crucial result

• $A \ll B$ means: B dominates A entrywise; strict at some entry.

• Lemma [shifting]. Let G_0, G_1, G_2, F be connected, on vertices $\{1, \ldots, n\}$, $\{n, n + 1, \ldots, k\}$, $\{k, k + 1, \ldots, r\}$, and $\{n, r + 1, \ldots, s\}$, respectively. Let F^* be obtained from F by renaming n to k. Then

$$M = B[G_0 \cup G_1 \cup G_2 \cup F - 1] \ll N = B[G_0 \cup G_1 \cup G_2 \cup F^* - 1].$$

For $w \in G_0 - 1$, we have $m_{wu} = m_{wn} = n_{wk} = n_{wu}$.
• $A \ll B$ means: B dominates A entrywise; strict at some entry.

• **Lemma [shifting].** G_0, G_1, G_2, F be connected, on vertices $\{1, \ldots, n\}$, $\{n, n + 1, \ldots, k\}$, $\{k, k + 1, \ldots, r\}$, and $\{n, r + 1, \ldots, s\}$, respectively. Let F^* be obtained from F by renaming n to k. Then $M = B[G_0 \cup G_1 \cup G_2 \cup F - 1] \ll N = B[G_0 \cup G_1 \cup G_2 \cup F^* - 1]$.

• For $w \in G_1 \cup G_2$, we have m_{wu}
• \(A \ll B \) means: \(B \) dominates \(A \) entrywise; strict at some entry.

• **Lemma [shifting].** \(G_0, G_1, G_2, F \) be connected, on vertices \(\{1, \ldots, n\}, \{n, n+1, \ldots, k\}, \{k, k+1, \ldots, r\}, \) and \(\{n, r+1, \ldots, s\} \), respectively. Let \(F^* \) be obtained from \(F \) by renaming \(n \) to \(k \). Then

\[
M = B[G_0 \cup G_1 \cup G_2 \cup F - 1] \ll N = B[G_0 \cup G_1 \cup G_2 \cup F^* - 1].
\]

- For \(w \in G_1 \cup G_2 \), we have \(m_{wu} = m_{nn} \)
A crucial result

- \(A \ll B \) means: \(B \) dominates \(A \) entrywise; strict at some entry.

- **Lemma [shifting].** Let \(G_0, G_1, G_2, F \) be connected, on vertices \(\{1, \ldots, n\} \), \(\{n, n+1, \ldots, k\} \), \(\{k, k+1, \ldots, r\} \), and \(\{n, r+1, \ldots, s\} \), respectively. Let \(F^* \) be obtained from \(F \) by renaming \(n \) to \(k \). Then

\[
M = B[G_0 \cup G_1 \cup G_2 \cup F - 1] \ll N = B[G_0 \cup G_1 \cup G_2 \cup F^* - 1].
\]

- For \(w \in G_1 \cup G_2 \), we have \(m_{wu} = m_{nn} < m_{wk} \).
A crucial result

- \(A \ll B \) means: \(B \) dominates \(A \) entrywise; strict at some entry.

- **Lemma [shifting].** \(G_0, G_1, G_2, F \) be connected, on vertices \(\{1, \ldots, n\} \), \(\{n, n + 1, \ldots, k\} \), \(\{k, k + 1, \ldots, r\} \), and \(\{n, r + 1, \ldots, s\} \), respectively. Let \(F^* \) be obtained from \(F \) by renaming \(n \) to \(k \). Then

\[
M = B[G_0 \cup G_1 \cup G_2 \cup F - 1] \ll N = B[G_0 \cup G_1 \cup G_2 \cup F^* - 1].
\]

- For \(w \in G_1 \cup G_2 \), we have \(m_{wu} = m_{nn} < m_{wk} = n_{wk} = n_{wu} \).
A crucial result

- $A \ll B$ means: B dominates A entrywise; strict at some entry.

-Lemma [shifting]. G_0, G_1, G_2, F be connected, on vertices $\{1, \ldots, n\}$, $\{n, n+1, \ldots, k\}, \{k, k+1, \ldots, r\}$, and $\{n, r+1, \ldots, s\}$, respectively. Let F^* be obtained from F by renaming n to k. Then

$$M = B[G_0 \cup G_1 \cup G_2 \cup F - 1] \ll N = B[G_0 \cup G_1 \cup G_2 \cup F^* - 1].$$

- Above statement is also valid when we move the branch from 1 to n or from k to a point r of G_2.
Minimizing μ in graphs with restricted blocks
Theorem. Let G be connected with blocks having at most two points of articulations.
Theorem. Let G be connected with blocks having at most two points of articulations. Then there is a graph H such that
Theorem. Let G be connected with blocks having at most two points of articulations. Then there is a graph H such that

(i) blocks of H are precisely that of G,
Minimizing μ in graphs with restricted blocks

• **Theorem.** Let G be connected with blocks having at most two points of articulations. Then there is a graph H such that

(i) blocks of H are precisely that of G,

(ii) the block structure of H is a path,
Theorem. Let G be connected with blocks having at most two points of articulations. Then there is a graph H such that

(i) blocks of H are precisely that of G,

(ii) the block structure of H is a path,

(iii) and $\mu(H) \leq \mu(G)$.

Minimizing μ in graphs with restricted blocks
Minimizing μ in graphs with restricted blocks

- **Theorem.** Let G be connected with blocks having at most two points of articulations. Then there is a graph H such that

 (i) blocks of H are precisely that of G,

 (ii) the block structure of H is a path,

 (iii) and $\mu(H) \leq \mu(G)$.

- **Proof sketch:**

Laplacian matrix of a graph – p.24/28
Theorem. Let G be connected with blocks having at most two points of articulations. Then there is a graph H such that

(i) blocks of H are precisely that of G,

(ii) the block structure of H is a path,

(iii) and $\mu(H) \leq \mu(G)$.

Proof sketch: Assume Case A.
Minimizing μ in graphs with restricted blocks

- **Theorem.** Let G be connected with blocks having at most two points of articulations. Then there is a graph H such that

 (i) blocks of H are precisely that of G,

 (ii) the block structure of H is a path,

 (iii) and $\mu(H) \leq \mu(G)$.

- **Proof sketch:** Assume Case A. Consider the ch.block.
• **Theorem.** Let G be connected with blocks having at most two points of articulations. Then there is a graph H such that
(i) blocks of H are precisely that of G,
(ii) the block structure of H is a path,
(iii) and $\mu(H) \leq \mu(G)$.

• **Proof sketch:** Assume Case A. Consider the ch.block. Take a point of articulation u.

Laplacian matrix of a graph – p.24/28
Theorem. Let G be connected with blocks having at most two points of articulations. Then there is a graph H such that

(i) blocks of H are precisely that of G,
(ii) the block structure of H is a path,
(iii) and $\mu(H) \leq \mu(G)$.

Proof sketch: Assume Case A. Consider the ch.block. Take a point of articulation u. Consider the (union of) non-Perron branches C at u.

Laplacian matrix of a graph – p.24/28
Theorem. Let G be connected with blocks having at most two points of articulations. Then there is a graph H such that

(i) blocks of H are precisely that of G,

(ii) the block structure of H is a path,

(iii) and $\mu(H) \leq \mu(G)$.

Proof sketch: Assume Case A. Consider the ch.block. Take a point of articulation u. Consider the (union of) non-Perron branches C at u. Use ‘shifting’ and replace C by \tilde{C} s.t. $B[C] \leq B[\tilde{C}]$.

Minimizing μ in graphs with restricted blocks

- **Theorem.** Let G be connected with blocks having at most two points of articulations. Then there is a graph H such that
 (i) blocks of H are precisely that of G,
 (ii) the block structure of H is a path,
 (iii) and $\mu(H) \leq \mu(G)$.

- **Proof sketch:** Assume Case A. Consider the ch.block. Take a point of articulation u. Consider the (union of) non-Perron branches C at u. Use ‘shifting’ and replace C by \tilde{C} s.t. $B[C] \leq B[\tilde{C}]$, the block structure \tilde{C} is a path and blocks of \tilde{C} are blocks of C.
Minimizing μ in graphs with restricted blocks

Theorem. Let G be connected with blocks having at most two points of articulations. Then there is a graph H such that

(i) blocks of H are precisely that of G,
(ii) the block structure of H is a path,
(iii) and $\mu(H) \leq \mu(G)$.

Proof sketch: Assume Case A. Consider the ch.block. Take a point of articulation u. Consider the (union of) non-Perron branches C at u. Use ‘shifting’ and replace C by \tilde{C} s.t. $B[C] \leq B[\tilde{C}]$, the block structure \tilde{C} is a path and blocks of \tilde{C} are blocks of C. By ‘replacement lemma’ μ cannot increase.
Minimizing μ in graphs with restricted blocks

- **Theorem.** Let G be connected with blocks having at most two points of articulations. Then there is a graph H such that
 (i) blocks of H are precisely that of G,
 (ii) the block structure of H is a path,
 (iii) and $\mu(H) \leq \mu(G)$.

- **Proof sketch:** Assume Case A. Consider the ch.block. Take a point of articulation u. Consider the (union of) non-Perron branches C' at u. Use 'shifting' and replace C by \tilde{C} s.t. $B[C] \leq B[\tilde{C}]$, the block structure \tilde{C} is a path and blocks of \tilde{C} are blocks of C. By 'replacement lemma' μ cannot increase.

- If ch.block had only one point of articulation we are done.
Theorem. Let G be connected with blocks having at most two points of articulations. Then there is a graph H such that

(i) blocks of H are precisely that of G,

(ii) the block structure of H is a path,

(iii) and $\mu(H) \leq \mu(G)$.

Proof sketch:

- Otherwise, let v be the other point of articulation in ch.block.
Theorem. Let G be connected with blocks having at most two points of articulations. Then there is a graph H such that

(i) blocks of H are precisely that of G,

(ii) the block structure of H is a path,

(iii) and $\mu(H) \leq \mu(G)$.

Proof sketch:

Otherwise, let v be the other point of articulation in ch.block.

Note that the branch B that contains C was a Perron branch at v in G.

Laplacian matrix of a graph – p.24/28
Minimizing μ in graphs with restricted blocks

• **Theorem.** Let G be connected with blocks having at most two points of articulations. Then there is a graph H such that

 (i) blocks of H are precisely that of G,
 (ii) the block structure of H is a path,
 (iii) and $\mu(H) \leq \mu(G)$.

 ![Diagram](Laplacian_matrix_of_a_graph.png)

• **Proof sketch:**

 • Otherwise, let v be the other point of articulation in ch.block.

 Note that the branch B that contains C was a Perron branch at v in G. So \tilde{B} is a Perron branch at v in \tilde{G}.
Minimizing μ in graphs with restricted blocks

Theorem. Let G be connected with blocks having at most two points of articulations. Then there is a graph H such that

(i) blocks of H are precisely that of G,

(ii) the block structure of H is a path,

(iii) and $\mu(H) \leq \mu(G)$.

Proof sketch:

- Otherwise, let v be the other point of articulation in ch.block.

 Note that the branch B that contains C was a Perron branch at v in G. So \tilde{B} is a Perron branch at v in \tilde{G}.

- Hence in \tilde{G}, we can continue with ‘shifting’ and ‘replacement’ at v for the remaining branches.
Maximizing μ in graphs with restricted blocks
• **Theorem.** Let G be connected whose blocks have at most two points of articulations.
Theorem. Let G be connected whose blocks have at most two points of articulations. Then there is a graph H such that
Theorem. Let G be connected whose blocks have at most two points of articulations. Then there is a graph H such that

(i) blocks of H are precisely that of G,

Maximizing μ in graphs with restricted blocks
Theorem. Let G be connected whose blocks have at most two points of articulations. Then there is a graph H such that

(i) blocks of H are precisely that of G,

(ii) the block structure of H is a tree of diameter 3,
Theorem. Let G be connected whose blocks have at most two points of articulations. Then there is a graph H such that

(i) blocks of H are precisely that of G,

(ii) the block structure of H is a tree of diameter 3,

(iii) and $\mu(H) \geq \mu(G)$.
Theorem. Let G be connected whose blocks have at most two points of articulations. Then there is a graph H such that

(i) blocks of H are precisely that of G,

(ii) the block structure of H is a tree of diameter 3,

(iii) and $\mu(H) \geq \mu(G)$.

A block graph is a graph with each block complete.

Maximizing μ in graphs with restricted blocks
Theorem. Let G be connected whose blocks have at most two points of articulations. Then there is a graph H such that

(i) blocks of H are precisely that of G,

(ii) the block structure of H is a tree of diameter 3,

(iii) and $\mu(H) \geq \mu(G)$.

A block graph is a graph with each block complete.

Let G be the complete graph on vertices $1, \ldots, n$. Then

$B[G - n]_{ij} = 1/n$ if $i \neq j$ and $2/n$ if $i = j$.
Theorem. Let G be connected whose blocks have at most two points of articulations. Then there is a graph H such that

(i) blocks of H are precisely that of G,
(ii) the block structure of H is a tree of diameter 3,
(iii) and $\mu(H) \geq \mu(G)$.

A block graph is a graph with each block complete.

Let G be the complete graph on vertices $1, \ldots, n$. Then

$B[G - n]_{ij} = 1/n$ if $i \neq j$ and $2/n$ if $i = j$.
Extremizing μ in block graphs with restricted blocks
Proposition. Let \(s_1 \leq s_2 \). Then \(B[G_{s_1,s_2,H-1}] \geq B[G_{s_2,s_1,H-1}] \).
Extremizing μ in block graphs with restricted blocks

- Proposition. Let $s_1 \leq s_2$. Then $B[G_{s_1,s_2,H-1}] \geq B[G_{s_2,s_1,H-1}]$.

- Proposition. End blocks of $G_{s_1,...,s_k}$, $k > 3$ are not characteristic blocks.
Extremizing μ in block graphs with restricted blocks

- **Proposition.** Let $s_1 \leq s_2$. Then $B[G_{s_1,s_2,H - 1}] \geq B[G_{s_2,s_1,H - 1}]$.

- **Proposition.** End blocks of $G_{s_1,...,s_k}$, $k > 3$ are not characteristic blocks.

- **Theorem.** Consider all connected block graphs made of restricted blocks K_{s_1}, \ldots, K_{s_k}.

Laplacian matrix of a graph – p.26/28
Proposition. Let \(s_1 \leq s_2 \). Then \(B[G_{s_1,s_2,H} - 1] \geq B[G_{s_2,s_1,H} - 1] \).

Proposition. End blocks of \(G_{s_1,\ldots,s_k}, k > 3 \) are not characteristic blocks.

Theorem. Consider all connected block graphs made of restricted blocks \(K_{s_1}, \ldots, K_{s_k} \).

Then among all such graphs the algebraic connectivity is minimized for a graph \(H \) whose block structure is a path.
Extremizing μ in block graphs with restricted blocks

• Proposition. Let $s_1 \leq s_2$. Then $B[G_{s_1, s_2}, H - 1] \geq B[G_{s_2, s_1}, H - 1]$.

• Proposition. End blocks of G_{s_1, \ldots, s_k}, $k > 3$ are not characteristic blocks.

• Theorem. Consider all connected block graphs made of restricted blocks K_{s_1}, \ldots, K_{s_k}.
 • Then among all such graphs the algebraic connectivity is minimized for a graph H whose block structure is a path.
 • Furthermore, the sizes of the blocks in H increase as we move away from the characteristic set.
Proposition. Let $s_1 \leq s_2$. Then $B[G_{s_1,s_2},H - 1] \geq B[G_{s_2,s_1},H - 1]$.

Proposition. End blocks of $G_{s_1,...,s_k}$, $k > 3$ are not characteristic blocks.

Theorem. Consider all connected block graphs made of restricted blocks K_{s_1}, \ldots, K_{s_k}.

- Then among all such graphs the algebraic connectivity is minimized for a graph H whose block structure is a path.
- Furthermore, the sizes of the blocks in H increase as we move away from the characteristic set.
- The maximum algebraic connectivity is 1 and it is attained by the graphs whose block structure is a star.
Graphs with path bundles as blocks
• We want to compare the Perron values of $B[G - 1]$ and $B[H - 1]$.

\[G \quad \quad H \]
Graphs with path bundles as blocks

- We want to compare the Perron values of $B[G - 1]$ and $B[H - 1]$.

- Problem: there is no direct domination in the matrices.
• We want to compare the Perron values of $B[G - 1]$ and $B[H - 1]$.

$$B[G - 1]$$

$\lambda_1(\hat{L}(G - 1))$

• The Perron value of $B[G - 1]$ is $1/\lambda_1(\hat{L}(G - 1))$.

$B[H - 1]$
We want to compare the Perron values of $B[G - 1]$ and $B[H - 1]$.

\[\lambda_1(\hat{L}(G - 1)) \text{ is } \lambda_1 \text{ of } L_G = \begin{bmatrix}
2 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -3 & 6 & -3 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -3 & 3 \\
\end{bmatrix} \text{ (compressed)}. \]
• We want to compare the Perron values of $B[G - 1]$ and $B[H - 1]$.

• $\lambda_1(\hat{L}(G - 1))$ is λ_1 of $L_G = \begin{bmatrix} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -3 & 6 & -3 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -3 & 3 \end{bmatrix}$ (compressed).

• Let x be the corresponding eigenvector.

Graphs with path bundles as blocks
• We want to compare the Perron values of $B[G - 1]$ and $B[H - 1]$.

\[\begin{bmatrix}
2 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -3 & 6 & -3 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -3 & 3
\end{bmatrix} \] (compressed).

• Let x be the corresponding eigenvector. Note: $x(c) > x(b)$.

Laplacian matrix of a graph -- p.27/28
We want to compare the Perron values of $B[G - 1]$ and $B[H - 1]$.

\[L_G = \begin{bmatrix} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -3 & 6 & -3 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -3 & 3 \end{bmatrix} \]

\[L_H = \begin{bmatrix} 2 & -1 & 0 & 0 & 0 \\ -3 & 6 & -3 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -3 & 3 \end{bmatrix} \]
We want to compare the Perron values of $B[G - 1]$ and $B[H - 1]$.

Their inverses:

$$
\begin{pmatrix}
1 & 1 & 1/3 & 1 & 1/3 \\
1 & 2 & 2/3 & 2 & 2/3 \\
1 & 2 & 1 & 3 & 1 \\
1 & 2 & 1 & 4 & 4/3 \\
1 & 2 & 1 & 4 & 5/3 \\
\end{pmatrix}
\quad \quad
\begin{pmatrix}
1 & 1/3 & 1 & 1 & 1/3 \\
1 & 2/3 & 2 & 2 & 2/3 \\
1 & 2/3 & 3 & 3 & 1 \\
1 & 2/3 & 3 & 4 & 4/3 \\
1 & 2/3 & 3 & 4 & 5/3 \\
\end{pmatrix}
$$
We want to compare the Perron values of $B[G - 1]$ and $B[H - 1]$.

Their inverses:

For G:

$$
\begin{bmatrix}
1 & 1 & 1/3 & 1 & 1/3 \\
1 & 2 & 2/3 & 2 & 2/3 \\
1 & 2 & 1 & 3 & 1 \\
1 & 2 & 1 & 4 & 4/3 \\
1 & 2 & 1 & 4 & 5/3
\end{bmatrix}
$$

For H:

$$
\begin{bmatrix}
1 & 1/3 & 1 & 1 & 1/3 \\
1 & 2/3 & 2 & 2 & 2/3 \\
1 & 2/3 & 3 & 3 & 1 \\
1 & 2/3 & 3 & 4 & 4/3 \\
1 & 2/3 & 3 & 4 & 5/3
\end{bmatrix}
$$

Right − Left:

$$
\begin{bmatrix}
0 & -2/3 & 2/3 & 0 & 0 \\
0 & -4/3 & 4/3 & 0 & 0 \\
0 & -4/3 & 2 & 0 & 0 \\
0 & -4/3 & 2 & 0 & 0 \\
0 & -4/3 & 2 & 0 & 0
\end{bmatrix}
$$

Laplacian matrix of a graph – p.27/28
• We want to compare the Perron values of $B[G - 1]$ and $B[H - 1]$.

Their inverses:

$$
\begin{pmatrix}
1 & 1 & 1/3 & 1 & 1/3 \\
1 & 2 & 2/3 & 2 & 2/3 \\
1 & 2 & 1 & 3 & 1 \\
1 & 2 & 1 & 4 & 4/3 \\
1 & 2 & 1 & 4 & 5/3
\end{pmatrix}
\quad
\begin{pmatrix}
1 & 1/3 & 1 & 1 & 1/3 \\
1 & 2/3 & 2 & 2 & 2/3 \\
1 & 2/3 & 3 & 3 & 1 \\
1 & 2/3 & 3 & 4 & 4/3 \\
1 & 2/3 & 3 & 4 & 5/3
\end{pmatrix}
\quad
\begin{pmatrix}
0 & -2/3 & 2/3 & 0 & 0 \\
0 & -4/3 & 4/3 & 0 & 0 \\
0 & -4/3 & 2 & 0 & 0 \\
0 & -4/3 & 2 & 0 & 0 \\
0 & -4/3 & 2 & 0 & 0
\end{pmatrix}
$$

• Now $x^T [L_H^{-1} - L_G^{-1}]x > 0$.
We want to compare the Perron values of $B[G - 1]$ and $B[H - 1]$.

Their inverses:

$$
\begin{align*}
\begin{bmatrix}
1 & 1 & 1/3 & 1 & 1/3 \\
1 & 2 & 2/3 & 2 & 2/3 \\
1 & 2 & 1 & 3 & 1 \\
1 & 2 & 1 & 4 & 4/3 \\
1 & 2 & 1 & 4 & 5/3 \\
\end{bmatrix} & \quad \begin{bmatrix}
1 & 1/3 & 1 & 1 & 1/3 \\
1 & 2/3 & 2 & 2 & 2/3 \\
1 & 2/3 & 3 & 3 & 1 \\
1 & 2/3 & 3 & 4 & 4/3 \\
1 & 2/3 & 3 & 4 & 5/3 \\
\end{bmatrix} & \quad \begin{bmatrix}
0 & -2/3 & 2/3 & 0 & 0 \\
0 & -4/3 & 4/3 & 0 & 0 \\
0 & -4/3 & 2 & 0 & 0 \\
0 & -4/3 & 2 & 0 & 0 \\
0 & -4/3 & 2 & 0 & 0 \\
\end{bmatrix}
\end{align*}
$$

Now $x^T[L_H^{-1} - L_G^{-1}]x > 0$. So $\rho(L_H^{-1}) > \rho(L_G^{-1})$.

Graphs with path bundles as blocks

Laplacian matrix of a graph – p.27/28
We want to compare the Perron values of $B[G - 1]$ and $B[H - 1]$.

Their inverses:

\[
\begin{bmatrix}
1 & 1 & 1/3 & 1 & 1/3 \\
1 & 2 & 2/3 & 2 & 2/3 \\
1 & 2 & 1 & 3 & 1 \\
1 & 2 & 1 & 4 & 4/3 \\
1 & 2 & 1 & 4 & 5/3
\end{bmatrix}
\begin{bmatrix}
1 & 1/3 & 1 & 1 & 1/3 \\
1 & 2/3 & 2 & 2 & 2/3 \\
1 & 2/3 & 3 & 3 & 1 \\
1 & 2/3 & 3 & 4 & 4/3 \\
1 & 2/3 & 3 & 4 & 5/3
\end{bmatrix}
\begin{bmatrix}
0 & -2/3 & 2/3 & 0 & 0 \\
0 & -4/3 & 4/3 & 0 & 0 \\
0 & -4/3 & 2 & 0 & 0 \\
0 & -4/3 & 2 & 0 & 0 \\
0 & -4/3 & 2 & 0 & 0
\end{bmatrix}
\]

Now $x^T[L_H^{-1} - L_G^{-1}]x > 0$. So $\rho(L_H^{-1}) > \rho(L_G^{-1})$.

So $\rho(B[H - 1]) > \rho(B[G - 1])$.
Which one has better connectivity?
Connectivity of the sunflowers

- Which one has better connectivity?

- Picture on the left has smaller algebraic connectivity!!