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The enumerative theory of planar maps is born in the early sixties with the seminal
work of William T. Tutte on the enumeration of planar triangulations. Over 50 years
it has led several parallel lives in combinatorics, statistical physics, quantum gravity,
enumerative topology and probability theory, that have started to interact intensely
only in the last ten to fifteen years. Writing a fair survey of this whole story appears
to be a great challenge. We concentrate instead in this text on the combinatorial point
of view on map enumeration, and only review very tangentially the physics, topology
and probability literature.
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Figure 1.1
Three planar maps. The first has 10 vertices, 14 edges and 6 faces. The second is a
tetravalent triangulation with 8 triangles. The third is a trivalent quadrangulation with
6 quadrangles, it is usually called the cube. On the first map the corner c is incident
to the vertex v = v(c), to the face f = f (c), and the edges e = cw(c) and e′ = ccw(c).

1.1 What is a map?
1.1.1 A few definitions

Combinatorial maps usually arise from one of two settings: either the study of some
planar graph drawings, or the construction of surfaces via polygon gluings. Accord-
ingly we give two definitions of maps and discuss how duality reconciles them.

The graph drawing point of view. An embedding (or drawing) of a graph G =
(V,E) on the oriented sphere S, is proper if the vertices are represented by distinct
points and the edges are represented by arcs that only intersect at their endpoints and
in agreements with the incidence relation of G.

Definition 1.1 A planar map M is a proper embedding of a connected graph G in
the sphere S, considered up to orientation preserving homeomorphisms of S.

Loops and multiple edges are allowed, and the map is instead said to be simple
if it contains nor multiple edges or loops. A face is a connected component of S\G.
A corner is the angular sector delimited by two consecutive edges around a vertex.
Each corner c is incident to a vertex v(c), to a face f (c), and to two edges: in coun-
terclockwise direction around v(c), let cw(c) denote the edge preceding c and ccw(c)
denote the edge following c. The degree of a vertex or face is the number of incident
corners. A map is Eulerian if all its vertices have even degrees. It is m-valent if all
its vertices have degree m, it is a m-angulation if all its faces have degree m. In the
special cases m = 3,4 we use the standard terminology trivalent maps and tetravalent
maps, triangulations and quadrangulations. Observe that with these definitions, tri-
angulations and quadrangulations are allowed to have multiple edges or loops. Some
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Figure 1.2
The cube as a cellular decomposition of the sphere. To make the picture more read-
able, the side identifications are performed in two stages.

examples are given in Figure 1.1. Observe that the leftmost map is not simple because
the edge e′ has a parallel edge.

The polygon gluing point of view. A cellular decomposition of the sphere is a
collection of oriented polygons with labeled corners, and a complete set of coherent
side identifications such that the resulting surface is the sphere. An example of cel-
lular decomposition of the sphere is given by Figure 1.2. More precisely, a cellular
decomposition can be given by the associated rotation system (σ ,ρ), consisting of
a permutation σ whose cycles describe the clockwise arrangement of corner labels
around polygons and a matching (or fix point free involution) ρ describing side iden-
tifications: if ρ(i) = j then the polygon side (i,σ(i)) is identified with the polygon
side ( j,σ( j)).

Definition 1.2 A planar map is a cellular decompositions of the sphere considered
up to relabeling of the corners of the polygons.

Equivalence between Definitions 1.1 and 1.2 follows from standard results in
surface topology: the faces of a proper embedding of a connected graph G in S are
simply connected, so that the components of S \G can be identified with polygons,
and conversely, in a cellular decomposition the sides of the original polygons define
a proper embedding of a connected graph on the resulting surface. In particular the
numbers v(M) of vertices, f (M) of faces and e(M) of edges of a planar map M satisfy
Euler’s formula:

v(M)+ f(M) = e(M)+2. (1.1)

The dual of a map. There is a natural symmetry between the role of vertices in
Definition 1.1 and the role of polygons in Definition 1.2. This observation directly
leads to the fundamental idea of duality, illustrated by Figure 1.3. The dual of a map
M, denoted M∗, is the map obtained by drawing a vertex f ∗ of M∗ in each face f of
M and an edge e∗ of M∗ across each edge e of M (see Figure 1.3). By construction
each face of M∗ then contains exactly one vertex of M. The superimposition of a map
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M∗ Q(M) R(M)

M

∆(M)

Figure 1.3
The cube map M, and in the first line, the construction of its dual, incidence map and
edge map. The resulting maps ∆(M), M∗, Q(M) and R(M) appear on the second line.
The underlying spheres are omitted.

M and its dual M∗ (with tetravalent vertices created at the intersection of dual edges)
is a quadrangulation ∆(M) which is called the derived map of M. Observe that faces
of ∆(M) are in one-to-one correspondence with corners of M.

Theorem 1 Duality is an involution on the set of planar maps. It preserves the
number of edges, and exchanges the numbers of vertices and faces: M∗∗ = M,
e(M∗) = e(M), and v(M∗) = f(M).

Let M be a map with vertex set V and edge set E, and let M∗ be its dual with vertex
set V ∗ and edge set E∗. The incidence map (or quadrangulation) Q(M) of the map M
is the map whose vertex set is V ∪V ∗ and with one edge per corner c connecting v(c)
and f (c)∗. The edge map R(M) of M is instead the map with vertex set E and with one
edge per corner c connecting cw(c) and ccw(c). The mapping Q and R are bijections
from maps with n edges respectively onto vertex-bicolored quadrangulations with n
faces, and onto face-bicolored tetravalent maps with n vertices. Moreover Q(M) =
Q(M∗), R(M) = R(M∗) and Q(M) = R(M)∗, where the bar denotes the exchange of
colors.

The transformation between M, M∗, ∆(M), Q(M) and R(M) should be viewed
as mere changes of representations for a same underlying object: In the language
of computer science, one would say that they represent different data structures that
can be used to encode a same cellular decomposition of the sphere. Alternatively
this statement can be made precise using the language of topology, and in particular
branched covers of the sphere (see [127, Chapter 1] for an exposition, which requires
too many definitions to be reproduced here).
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Figure 1.4
The superimposition of a map M and its dual M∗, and two dual spanning trees.

Duality, spanning trees and Euler’s formula revisited. A spanning tree of a pla-
nar map M is a subset T of the set of edges of M that forms a tree and that is incident
to every vertex of M. Figure 1.4.b illustrates the following fundamental property of
duality and spanning trees for planar maps:

Theorem 2 Let (T1,T2) be a partition of the edges of a planar map M. Then T1 is a
spanning tree of M if and only if T ∗2 is a spanning tree of M∗.

The trees T1 and T ∗2 are usually called dual spanning trees, although this terminol-
ogy is somewhat improper since the edges of T ∗2 are not the duals of the edges of
T1, but rather the duals of the edges not in T1. The proposition can be viewed as a
consequence of the characterization of the sphere by Jordan’s lemma (S\T1 is con-
nected if and only if there is no simple cycle in T1), together with the fact that S\T1
is connected if and only if T ∗2 is connected.

Observe that the above proposition, together with the facts that every map admits
a spanning tree, and that any tree with v vertices has v− 1 edges, gives an inter-
pretation of Euler’s formula (1.1): the e(M) edges of a map are partitioned into the
v(M)−1 edges of a spanning tree and the f (M)−1 edges of the dual spanning tree.

1.1.2 Plane maps, rooted maps and orientations

Rather than drawing maps on the sphere, we usually draw maps on the plane. This
naturally leads to the notion of rooted maps, and to the discussion of orientations.

Plane maps, rooted planar maps. In order to represent a planar map M in the
plane, we choose a point x0 of S in a face of M and identify the punctured sphere
S2 \{x0} with the plane, sending x0 at infinity. In such a representation, all faces are
homeomorphic to discs, except for the face containing x0, which is usually called
the exterior or outer face. Depending on the choice of x0 we a priori get different
drawings, but up to homeomorphisms of the plane only the choice of the face in
which x0 is taken matters. Accordingly, let a plane map (M, f ) be a planar map M
with a marked face f , so that plane maps are in one-to-one correspondence with
equivalence classes of proper embeddings of connected graphs in the plane up to
homeomorphisms of the oriented plane.

Given a planar map M, the choice of a marked face does however not fix in
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Figure 1.5
Three roots for a planar map: the corresponding plane maps, and the plane embed-
ding of the derived map of the first and third one.

general the embedding of the dual map M∗ and of the derived map ∆M up to home-
omorphisms of the plane. As illustrated by Figure 1.5, what is needed for this is the
choice of a face of ∆M, or equivalently of a corner of M. Accordingly, let a rooted
planar map (M,c) be a planar map with a marked corner c. The root face, root vertex
and root edge of (M,c) are then defined to be respectively f (c) and v(c) and ccw(c).
(In the literature, a rooted map is sometimes defined as a map with a marked and
oriented edge, or with a marked half-edge. This definition is equivalent to ours: to
each oriented edge~e is associated the unique corner c such that v(c) is the origin of
~e and ccw(c) = e.)

Upon setting (M,c)∗ = (M∗,c), duality extends into an involution on rooted pla-
nar maps. The derived map of a rooted map (M,c) is instead naturally endowed with
a marked face (the face of ∆(M) that corresponds to c). The incidence map of a rooted
map (M,c) is a bicolored quadrangulation with a marked edge (the edge e of Q(M)
that corresponds to c), or equivalently a rooted quadrangulation (taking as root the
unique corner c′ incident to the root vertex of M and such that ccw(c′) = e). Similarly
the edge map of a rooted map can be considered as a rooted tetravalent map.

Proposition 1 The incidence map Q and edge map R are one-to-one correspon-
dences between rooted planar maps with n edges and respectively rooted planar
quadrangulations with n faces, and rooted tetravalent planar maps with n vertices.

Orientations. Let (M,c) be a rooted map, and O an orientation of the edges of
M. A circuit is a directed cycle of oriented edges, it is simple if it visits each vertex
at most once. Any simple circuit C divides the sphere into a left component, which
borders the left hand side of every edge of C, and a right component, which borders
the right hand side of every edge of C.

Let us say that a simple circuit C in a rooted planar map is clockwise if the root
corner lies in its left component, counterclockwise otherwise. With the convention
that the outer face of a rooted plane map is its root face, these notions of clockwise
and counterclockwise circuits coincide with the usual definitions: a simple circuit is
clockwise if the unbounded component it defines is on its left hand side, counter-
clockwise otherwise.

A function α : V → N is feasible on the planar map M if there exists an orienta-
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Figure 1.6
A Eulerian orientation, the t-orientation induced by the dual spanning trees of Fig-
ure 1.4, and a s-orientation of a triangulation.

tion O of M such that for every vertex v of M, α(v) is the out-degree of v. Such an
orientation is then called an α-orientation.

A classical example of feasible function is the half-degree function h(v) =
deg(v)/2 on a Eulerian map (recall that a map is Eulerian if all its vertices have
even degree). The h-orientations are precisely Eulerian orientations, that is, orienta-
tions such that the in- and out-degree are equal on each vertex. Another example is
given by the orientation induced by spanning trees on derived maps: let (M,c) be
a rooted planar map and for each vertex v of the derived map ∆(M) let t(v) = 0 if
v is the root vertex of M or M∗, t(v) = 1 if v is a non-root vertex of M or M∗, and
t(v) = 3 if v is a dual edge intersection vertex. Then t is feasible since each pair of
dual spanning trees on M and M∗ induces a t-orientation of ∆(M) by selecting as
unique out-going edge on each non-root vertex of M or M′ the edge going toward its
father in the tree it belongs to. Finally a third example is Schnyder’s orientations of
triangulations [161]: Let T be a plane triangulation and s(v) = 1 if v is incident to
the outer-face, s(v) = 3 otherwise. Then s is feasible and the s-orientations are called
3-orientations.

Let α be a feasible function on a plane map (M, f ), and let O be an α-orientation
of M. Observe that simultaneously changing the orientation of all the edges of a
circuit in (M,O) yields another orientation O ′ that is still an α-orientation. Moreover
two α-orientations O and O ′ of a planar map M always differ on a set of edges that
form a collection of Eulerian submaps: since any Eulerian graph admits a Eulerian
tour (that is, a circuit that visit every edge once), it is possible to go from one α-
orientation to any other by a sequence of circuit reversals.

The clockwise or counterclockwise orientation of simple circuits can now be used
to endow the set of α-orientations of a plane map (M, f ) with an even nicer structure:
let us say that a circuit reversal is increasing if it consists in returning a ccw-circuit
into the opposite cw-circuit. We admit the following theorem, which gives a first
illustration of the rich combinatorial properties enjoyed by planar maps.

Theorem 3 (Felsner [102]) Let α be a feasible function on a planar map (M, f ).
Then increasing circuit reversals endow the set of α-orientation of a plane map
(M, f ) with a lattice structure. In particular there exists a unique minimal α-
orientation in this lattice, which is the unique α-orientation without cw-circuit.
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n = 1 n = 2n = 0

Figure 1.7
The 1, 2 and 9 rooted planar maps with 0, 1 and 2 edges, and the corresponding 1, 2
and 4 unrooted planar maps

1.1.3 Which maps shall we count?

Let M u, M r and M ` denote the sets of (unrooted) planar maps, rooted planar maps
and corner labeled planar maps respectively. Then the following four counting prob-
lems are the most commonly considered:

1. Count rooted planar maps with n edges, or compute the ordinary generating
function (gf)

Mr(z) = ∑
M∈M r

ze(M) = 1+2z+9z2 +O(z3)

2. Count planar maps with 2n labeled corners, or compute the exponential gener-
ating function

M`(z) = ∑
M∈M `

ze(M)

(2e(M))!
= 1+2

z
2!

+9 ·3!
z2

4!
+O(z3)

3. Count unrooted planar maps with n edges with a weight 1/|aut(M)| per map
M with automorphism group aut(M), or compute

Ma(z) = ∑
M∈M u

ze(M)

|aut(M)| = 1+( 1
2 + 1

2 )z+( 1
2 + 1

1 + 1
4 + 1

2 )z2 +O(z3)

4. Count unrooted planar maps with n edges, or compute

Mu(z) = ∑
M∈M u

ze(M) = 1+2z+4z2 +O(z3)

Observe that we classify maps according to their number of edges (or corners, equiv-
alently): in view of duality this is the most natural size parameter to consider, but we
shall see that most results can later be refined to take into account the numbers of
vertices and faces.
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Automorphisms of maps.
Let (M,r) be a rooted map and assume once again that its corners are labeled with
{1, . . . ,2n}, with (σ ,ρ) the corresponding rotation system. By definition of rotation sys-
tems, two corners are neighboring in M if their labels can be mapped one onto the other by
σ or ρ: as a consequence, the connexity of M implies that for any two corners (c,c′) there
exists a sequence (τ1, . . . ,τk) of elements of {σ ,ρ} such that the labels i and i′ of c and c′
satisfy i′ = τ1 ◦ τ2 ◦ · · · ◦ τk(i).
By definition an automorphism of the map M is a relabeling π : {1, . . . ,2n} → {1, . . . ,2n}
of its corners that preserves the map M, or equivalently, that commutes with σ and ρ:
σ ◦π = π ◦σ , and ρ ◦π = π ◦ρ . An automorphism π of the rooted map (M,c) is an au-
tomorphism of M that also preserves the label i0 of the root corner c: π(i0) = i0. Now ac-
cording to the previous discussion, π(i) = π ◦τ1 ◦· · ·◦τk(i0) for some sequence (τ1, . . . ,τk)
in {σ ,ρ}∗. Using the commutation relations between π and σ or ρ , and the equality
π(i0) = i0, this shows that π(i) = i: the only automorphism of a rooted map is the triv-
ial one.
An important consequence of this discussion is that the number of different labeling of
the corners of a rooted map with 2n edges is always (2n)!, and the number of such la-
beling where the root corner has label 1 is (2n− 1)!. A more detailed discussion of map
automorphisms can be found in [90], or [146].

The first three problems are in fact essentially equivalent: On the one hand, rooted
maps have no nontrivial automorphisms (see above), so that each rooted map admits
(2e(M)− 1)! distinct labeling such that the root corner has label 1. On the other
hand, each unrooted map corresponds by definition of aut(M) to (2e(M))!

|aut(M)| labeled
maps. Therefore:

Mr(z) =
2zd
dz

M`(z) =
2zd
dz

Ma(z). (1.2)

As illustrated by Figure 1.7 the fourth problem is not equivalent to the other three.
Observe that we could have considered a fifth problem, namely to count plane maps
(i.e. unrooted planar maps with a marked face). This problem is less advertised in
the literature but it arises as an intermediary step while counting classes of unrooted
maps. The literature overwhelmingly concentrates on the rooted (or labeled) case: it
is technically simpler, and most of the results for rooted maps can a posteriori be
transferred to unrooted maps.

1.2 Counting tree-rooted maps
We start this exposition with rooted planar maps with a marked spanning tree, called
tree-rooted maps: these maps are the main characters of some simple extensions of
classical bijections between rooted plane trees, balanced parenthesis words and non-
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crossing (aka planar) arch diagrams. There are at least two reasons to discuss at once
these bijections: First it is a gentle way to get the reader used to manipulating planar
maps, by building on the more standard combinatorics of plane trees. Second the
bijections for tree-rooted planar maps are useful tools to simplify the later description
of bijections for rooted planar maps. This section is largely inspired by the seminal
work [28].

1.2.1 Mullin’s decomposition

Our first series of results dates back to the work of Tutte and Mullin in the 60’s.

Walking around a spanning tree. Let a tree-rooted planar map be a rooted planar
map (M,c) with n edges, endowed with a spanning tree T1. The counterclockwise
walk around (T1,c) induces a total order on the 2n corners of M given by the order
in which these corner are visited by a 2d little ant traveling on the border of the tree
T1 in counterclockwise direction. This process is illustrated by Figure 1.8.

Each edge is visited twice during the walk and four symbols can be used to record
the four types of moves of the ant during the walk: • and •̄ for the first and second
time it goes across an edge, and ◦ and ◦̄ for the first and second time it goes along
an edge. The counterclockwise contour code is then the word w on the alphabet
{◦, ◦̄,•, •̄} whose ith letter is the type wi of the ith move of the ant.

The restriction of the ccw contour code w to the letters {◦, ◦̄} is the standard
counterclockwise contour code of the rooted plane tree (T1,c) (see [infra, Chapter
on Trees]): in particular it is a balanced parenthesis word, that is, |w|◦ = |w|◦̄ and
for all prefix w′ of w, |w′|◦ ≥ |w′|◦̄, where |w|x denotes the number of letters x in the
word w. The restriction of the ccw contour code w to the letters {•, •̄} is instead a
direct encoding of the arch diagram formed around T1 by the edges not in T1: it is in
particular again a balanced parenthesis word, |w|• = |w|•̄ and for all prefix w′ of w,
|w′|• ≥ |w′|•̄.

The word w is thus composed of the shuffle of two balanced parenthesis words
on the alphabet {◦, ◦̄} and {•, •̄} respectively. Mullin’s result is essentially that this
encoding is one-to-one.

Theorem 4 (Mullin’s encoding [147]) The contour code is a bijection between

• tree-rooted planar maps (M,c) with n edges, and

• shuffles of balanced words on {◦, ◦̄} and {•, •̄} of length 2n.

As a consequence, the number of tree-rooted planar maps with n edges derives
from the number of ways to shuffle two balanced words of respective length i and j
with i+ j = n.

Corollary 1 The number of tree-rooted planar maps with n edges is

∑
i+ j=n
i, j≥0

(
2n
2i

)
CiC j = CnCn+1
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Figure 1.8
The eight first corners visited during a ccw walk around a spanning tree, and the
full induced numbering of corners. The transition from one corner to the next are

1 •→2 ◦→3 •→4 ◦→5 •→6 ◦→7 ◦→8 •̄→9 •̄→10 •̄→11 •→12 •→13 ◦̄→14 •̄→15 ◦→16•̄→17 •→18 •̄→19 •→20 ◦̄→21 •→22 •→23 ◦̄→24 •̄→25 ◦̄→26 •̄→27 ◦̄→28 •̄→
so that the contour code is: •◦•◦•◦◦•̄•̄•̄ • •◦̄•̄ ◦ •̄ • •̄ • ◦̄ • •◦̄•̄◦̄•̄◦̄•̄
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Figure 1.9
(i) The contour walk between a spanning tree and its dual. (ii) The associated cubic
map with a rooted Hamiltonian cycle.

Figure 1.10
A shuffle of two arc diagrams
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where Cn = 1
n+1

(2n
n

)
denotes the nth Catalan number, and the second expression

follows from the Chu-Vandermonde identity [15]

Duality and cubic maps with a rooted Hamiltonian cycle. It is worth observing
that the contour code is compatible with duality. Let (M,c) be a rooted planar map,
T1 be a spanning tree of M and T ∗2 the dual spanning tree of M∗. Then, as illustrated
by Figure 1.9, an ant performing a counterclockwise walk around T1 simultaneously
performs a clockwise walk around T ∗2 . Using the same symbol as for the ccw contour
code, one can define the clockwise contour code of the rooted map (M∗,c) endowed
with the tree T ∗2 , and state the following proposition:

Proposition 2 The total order induced by the counterclockwise walk around T1 start-
ing from c in M is identical to the total order induced by the clockwise walk around
T ∗2 starting from c in M∗. In particular the counterclockwise contour code of (M,c)
endowed with T1 and the clockwise contour code of (M∗,c) endowed with T ∗2 are
mapped one onto the other by the exchanges ◦↔ •, ◦̄ ↔ •̄.

From this primal/dual point of view, it is natural to draw the contour walk as a
curve C traveling between the spanning tree T1 and the dual spanning tree T ∗2 in the
superimposition of M and M∗, as illustrated by Figure 1.9. The intersections of the
curve C with edges of M \T1 and M∗ \T ∗2 create tetravalent vertices in the middle
of every half-edge of M and M∗ that is not in T1 or T ∗2 . In the superimposition of
M \ T1, M∗ \ T ∗2 and C , each of these new vertices is adjacent to three others new
vertices (two along C and one along an edge of M \T or M∗ \T ∗2 ) and to one vertex
of M or M∗. Upon keeping only the new vertices and the induced map, one obtains
a cubic planar map endowed with a rooted Hamiltonian cycle C (that is a rooted
cycle that visit every vertex exactly once). Again this construction is bijective. Upon
straightening the rooted cycle C it yields a direct geometric interpretation of the
contour code as the shuffle of two arch diagrams above and below C .

Theorem 5 (Mullin [147]) There is a bijection between tree-rooted planar maps
with n edges and cubic planar maps endowed with a rooted Hamiltonian cycle of
length 2n.

Corollary 2 (Tutte [163]) The number of cubic planar maps endowed with a rooted
Hamiltonian cycle of length 2n is ∑i+ j=n

(2n
2i

)
CiC j = CnCn+1.

Breaking the symmetry, balanced trees. The previous constructions were sym-
metric with respect to duality. Let us now consider an alternative construction that
breaks this symmetry. The idea is to break during the ccw walk the edges that are
crossed into pairs of half-edges. More precisely, in view of the previous discussion,
it is natural to distinguish for each edge the half-edge that corresponds to the first
visit and the half-edge that corresponds to the second visit: this is done by using out-
going half-edges for the first ones, and incoming half-edges for the second ones. The
resulting operation, called the opening, turns a tree-rooted map M into a rooted deco-
rated plane tree, that is, a rooted plane tree with two types of dangling half-edges, as
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(i) (ii)

(iii)

Figure 1.11
(i) The opening of the tree-rooted map of Figure 1.8. (ii) The resulting balanced tree.
(iii) The first few steps of the closure of the previous balanced tree. .

illustrated by Figure 1.11. In view of the previous discussion, the decorated tree that
are produced in this way are characterized by the fact that the number of outgoing
and incoming half-edges are equal, and that the sequence of outgoing and incom-
ing half-edges that are met during a counterclockwise walk around the tree forms a
balanced parenthesis word. These rooted decorated trees are called balanced trees.

Conversely the fact that the outgoing and incoming half-edges of a balanced tree
form by definition a balanced parenthesis word ensures that there is a unique way
to close any balanced tree into a tree-rooted planar map such that the root corner
stays in the outer face. In particular this can be done by repeating the following local
closure rule: Starting from the root corner and walking counterclockwise around the
current map, let h be the first outgoing half-edge that is followed by an incoming
half-edge h′, and glue the pair (h,h′) into an edge in the unique way that leaves the
root corner in the outer face.

Theorem 6 (Walsh and Lehman [172]) Opening and closure are inverse bijections
between tree-rooted planar maps with n edges, v vertices and f faces, and balanced
trees with v vertices and f +1 outgoing half edges.

A balanced tree should be viewed as a rooted plane tree that carries on its border
the contour code of another tree. We will reuse this idea several times.

1.2.2 Spanning trees and orientations

Mullin’s encoding explains his convolution formula for the number of tree-rooted
planar maps, but not the simple product form CnCn+1 arising from the Chu-
Vandermonde formula. In preparation of an explanation of this formula, we first
“forget about the spanning trees” and reformulate the result in terms of orientations.
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Figure 1.12
The orientation induced by a spanning tree, and the ccw-exploration.

The orientation induced by a spanning tree. Let (M,c) be a rooted map, and let T
be a spanning tree of M. The orientation of (M,c) induced by T is the orientation OT
such that each edge of T is oriented toward the root, and each edge e of M \T turns
counterclockwise around T , that is, the unique simple circuit formed by e and edges
of T is counterclockwise (see Figure 1.12). Equivalently, the map (M,c) endowed
with OT can be constructed using the closure of Theorem 6, upon orienting the edges
of the balanced tree toward the root and keeping the orientation of the matched half-
edges.

It is instructive to perform the closure incrementally: Starting from the oriented
balanced tree, close one edge at a time, and observe that at each step no cw-circuit
can be created. Finally in view of the orientation of the edges of T , the orientation OT
is root-accessible, i.e. there is an oriented path from each vertex to the root vertex.

Proposition 3 Let T be a spanning tree of a rooted map (M,c). Then the orientation
OT induced by T is root-accessible and has no cw-circuit.

The ccw-exploration of an oriented map. A key observation now is that on the
rooted oriented map (M,c,OT ), the ccw walk around T can be performed without
knowing T . Indeed in the ccw walk, each edge is reached for the first time from its
endpoint if it is an edge of T , and from its origin if is not an edge of T . This implies
that the orientation alone allows us to decide at the first visit of each edge whether it
belongs to T or not, and whether the walk should follows the edge or cross it. The
resulting ccw walk around the initially unknown tree T is called the ccw-exploration
of the oriented map M.

Conversely an elementary case analysis allows us to characterize the rooted ori-
ented maps on which ccw-exploration produces a spanning tree.

Proposition 4 The ccw exploration of a rooted planar map (M,c) endowed with an
orientation O without cw-circuit outputs a tree T , and this tree is a spanning tree of
M if and only if the orientation O is root-accessible.

Summarizing these results yields the following theorem, first explicitly stated in this
general form in Bernardi’s PhD thesis.
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Theorem 7 (Bernardi [29]) Let (M,c) be a rooted planar map. The ccw-
exploration and induced orientation are inverse bijections between accessible ori-
entations without cw-circuit of (M,c) and spanning trees of (M,c).

Earlier instances of the result in the special case of triangulations and 3-connected
planar maps appears in [151, 107], extensions were proposed in [29, 6]. Observe that
ccw-exploration is just leftmost oriented depth first search, it might thus be the case
that this result is known already in other contexts.

Corollary 3 The number of rooted planar map with n edges endowed with a root-
accessible orientation without cw-circuit is ∑i+ j=n

(2n
2i

)
CiC j = CnCn+1.

Again in this corollary only the convolution formula is obtained bijectively.
In view of Theorem 3, it is tempting to define a root-accessible feasible function

on the set V of vertices of a rooted planar map (M,c) as a feasible function α : V →
N such that α-orientations are root-accessible (observe that if one α-orientation is
accessible then all are since circuit reversal preserves accessibility).

Corollary 4 The number of rooted planar maps with n edges endowed with a root-
accessible feasible function is ∑i+ j=n

(2n
2i

)
CiC j = CnCn+1.

Further reformulations and extensions of these results in terms for instance of recur-
rent sand pile configurations, and relations to Tutte polynomials are given in [29].

Ccw-exploration and opening. As already observed, the orientation induced by
a spanning tree of a map coincides with the orientation induced by the closure of
Theorem 6. As a consequence, Theorems 6 and 7 can be combined to obtain the
following corollary, which will be useful when we turn to the problem of enumerating
rooted planar maps.

Corollary 5 Ccw-exploration followed by opening is a bijection between rooted pla-
nar maps with i vertices and j faces endowed with an accessible orientation without
cw-circuit and balanced trees with i vertices and j outgoing half-edges. Moreover,
this bijection preserves in- and out-degrees of every vertex.

1.2.3 Vertex blowing and polyhedral nets.

The last result we shall present in this section is a construction that was first used
in a particular case by Cori and Vauquelin in the 80’s [92] and that was shown by
Bernardi 30 years later to finally explain the product formula CnCn+1 [28].

Vertex blowing and split trees. Let (M,c) be a rooted planar map and O an orien-
tation of M. The blowing of a vertex v with out-degree k is the operation replacing v
by a white polygon with k nodes each carrying one outgoing edge and the incoming
edges that precede it the cw direction, as illustrated by Figure 1.13. The complete
blowing Σ(M,O) of an oriented rooted map (M,O) consists in blowing each vertex
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Figure 1.13
The blowing of a vertex, a map M, its complete blowing with the split tree.

of M independently (the blowing of the root vertex is performed as if there was an
outgoing half-edge at the root corner). The map Σ(M,O) naturally inherits from O
a partial orientation which we continue to denote O: the edges inherited from M are
oriented while the edges of the white polygons created by blowings are not.

A key observation here is that, if (M,O) is accessible, then the oriented edges of
Σ(M,O) cannot form ccw circuits: Indeed if they would form a ccw circuit then this
circuit would also be a ccw circuit in M. In view of the blowing rule, the vertices
of M on this circuit would only have outgoing edges on the left hand side of the
circuit. But in a ccw circuit the root lies in the right hand side of the circuit, so this
contradicts accessibility.

Assuming moreover that O is an orientation without cw-circuit, then Σ(M,O) is
an accessible oriented map without circuit, that is a tree.

Proposition 5 Let (M,c) be a rooted planar map and O a root-accessible orien-
tation without cw-circuit. Then the oriented edges of the complete blowing Σ =
Σ(M,O) form a spanning tree of Σ oriented toward c, called the split tree of M.

Polyhedral nets. Let us use the split tree to cut the sphere on which the map Σ is
drawn. As illustrated by Figure 1.14, this splitting construction yields a polyhedral
net. In order to be able to reconstruct the map Σ from the polyhedral net one needs
to specify the way edges should be glued together. This can be done by explicitly
recording a planar arch diagram as in Figure 1.2, but it turns out to be more conve-
nient to just keep track of the orientation of the edges of the split tree on the sides of
the polyhedral net, as shown in Figure 1.14. The folding of the polyhedral net then
just consist in iteratively gluing pairs of oriented border edges that originate from a
same vertex until all boundary edges have been matched.

Let us describe more precisely the oriented polyhedral nets that arise from this
construction: they consist of an outface and a collection of black and white simple
faces called polygons, such that the sides of white polygons are incident only to black
polygons, and the boundary of each black polygon consists of an alternating sequence
of sides incident to white polygons and super-edges formed of a ccw edge incident
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Figure 1.14
(i) Cutting along the split tree to get a polyhedral net, another representation of the
same polyhedral net, and its skeleton.

to the outerface, followed by a (possibly empty) sequence of cw edges incident to
the outerface.

An oriented polyhedral net is rooted if a corner incident to a white node in the
outerface is marked, and balanced if moreover, starting from the root corner and
turning clockwise around the polyhedral net, its boundary edges form the contour
code of a planted planar tree (equivalently if there are always strictly more already
seen ccw edges than cw edges during the tour).

Theorem 8 Splitting and folding are inverse bijections between rooted planar maps
with i vertices and j faces and n = i+ j−2 edges endowed with an accessible orien-
tation without cw-circuit, and balanced polyhedral nets with i white bounded faces
and j black bounded faces and 2n+2 boundary edges.

Let the skeleton of a balanced polyhedral net be the bicolored tree obtained by
putting a (black or white) vertex in each (black or white) polygon and joining vertices
corresponding to adjacent polygons by an edge. In particular the degree of a black
(resp. white) vertex in the skeleton corresponds to the out-degree of the associated
vertex of the initial map (resp. to the number of ccw oriented edges around the as-
sociated face). Now observe that in a balanced polyhedral net with 2n+2 boundary
edges, the 2n+2 symbols forming the contour code of the planted split tree are writ-
ten sequencially on the 2n+2 boundary edges of the polyhedral net in a deterministic
way: the kth opening parenthesis of the code is preceded by `k closing parenthesis
if and only if, in cw order around the polyhedral net, the kth super-edge consists of
a ccw edge preceded by `k cw edges. As a consequence a balanced polyhedral net
2n + 2 boundary edges is determined by the pair formed by its skeleton and its split
tree. Conversely any pair formed of a rooted bicolored plane tree with n+2 vertices
and a rooted plane tree with n edges yields a balanced polyhedral net with 2n + 2
boundary edges.

Corollary 6 (Bernardi [28]) There is a bijection between tree-rooted maps M with i
vertices and j faces and n = i+ j−2 edges, and pairs (t1, t2) where t1 is a (bipartite)
rooted plane tree with i black and j white vertices and n+1 edges, and t2 is a rooted
plane tree with n edges. In particular the number of tree-rooted maps with n edges is
CnCn+1.
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A nice feature of the above result is that it not only explains the univariate product
formula Cn+1Cn, but also give an alternate proof of the bivariate formula as Ni, jCn,
where Ni, j = n!(n+1)!

i!(i+1)! j!( j+1)! is the Narayana number of rooted bipartite trees with

i black and j white vertices. Or conversely, combined with the formula
(2n

2i

)
CiC j

obtained by Mullin’s encoding, it allows us to recover Naranaya’s formula.

1.2.4 A summary and some observations

In this section we have successively shown that tree-rooted maps are in one-to-one
correspondence with shuffle of parenthesis words, cubic maps endowed a rooted
Hamiltonian cycle, balanced trees, root-accessible oriented maps without cw-circuit,
balanced polyhedral nets and finally pairs of rooted plane trees.

On the one hand, these results form a coherent and nice chapter of bijective com-
binatorics that relies on and extends several extremely classical results of the Catalan
garden [168]. These constructions may seem intrinsically planar: for instance on a
surface of genus g, the dual of the edges that are not in a spanning tree of a map
do not form a spanning tree of the dual, and the combinatorics of higher genus tree-
rooted maps is not very satisfying. Instead a remarkable observation of Bernardi and
Chapuy is the fact that many of these constructions extend to higher genus maps
upon considering covered maps rather than tree-rooted maps: a covering of a map is
a spanning subset of edges C such that the local cyclic arrangements of edges around
T forms a map with one face (recall that a planar map is a tree if and only if it
has one face). This approach leads to various elegant enumerative consequences, as
explained in [36].

On the other hand, these bijections are some of the most fundamental ingredi-
ents in the search of bijections for rooted planar maps: indeed a natural approach
to the enumeration of rooted planar maps is to endow each map with a canonical
spanning tree such that the family of balanced trees arising from Theorem 6 or the
family of balanced polyhedral net arising from Theorem 8 are simple to describe and
enumerate.

1.3 Counting planar maps
1.3.1 The exact number of rooted planar maps

Rooted planar maps. The most striking result about planar maps is certainly the
fact that the number of rooted planar maps with n edges has a simple closed formula

|M r
n |=

2 ·3n · (2n)!
n!(n+2)!

=
2

n+2
· 3n

n+1

(
2n
n

)
, (1.3)
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and in particular satisfies the following linear recurrence

(n+2)|M r
n |= 6(2n−1)|M r

n−1|, with |M r
0 |= 1. (1.4)

Equivalently, the ordinary generating function (gf) of rooted planar maps with respect
to the number of edges Mr(z) = ∑M∈M r ze(M) satisfies

Mr(z) = T (z)− zT (z)3 (1.5)

where T (z) is the unique power series solution of

T (z) = 1+3zT (z)2. (1.6)

(The equivalence of Formula (1.3) and Equations (1.5)-(1.6) follows from a direct
application of Lagrange inversion formula [infra, Chapter on Tree].) Another way to
write the relation between Mr(z) and T (z) is

∂

∂ z
(z2Mr(z)) = 2T (z). (1.7)

More blandly, Mr(z) is the unique power series root of the polynomial

P(M,z) = 1−16z+18zM−27z2M2. (1.8)

In particular Mr(z) is an algebraic function over the field Q(z).
Formula (1.3) was first discovered by W. T. Tutte in a series of papers written

between January 1961 and February 1962 where he deals with the enumeration of
various subfamilies of planar maps. Using little more than the simple idea of root-
edge deletion, Tutte established in [164] a recurrence for the number E(d1,d2, . . .)
of rooted Eulerian planar maps with di vertices of degree 2i and e = ∑i≥1 idi edges,
then guessed that these numbers admit the following simple form

E(d1,d2, . . .) =
2(e!)

(e−∑i≥1 di +2)! ∏
i≥1

1
di!

(
2i−1

i

)di

. (1.9)

He then checked that this formula satisfies his recursion by an incredible computa-
tional tour de force. Quickly after this, Tutte observed in [165] that the special case
d2 = n and di = 0 for all i 6= 2 of Formula (1.9), that counts rooted tetravalent planar
maps with n vertices, gives Formula (1.3) for the number of rooted planar maps with
n edges in view of the edge map transformation (see page 6).

A few years later, in [166], Tutte proposed a streamlined version of the root edge
deletion method he uses to establish recursive decompositions and to translate them
into functional equation for gfs: he is literally applying there what is now known as
the symbolic method for combinatorial enumeration [104, Chapter 1]. Let M j(z,y)
denote the gf of rooted planar maps with a root face of degree j, counted by number
of edges (variable z) and by number of non-root faces with degree i (variable yi) for
all i≥ 1, and let M(z,y;u) = ∑ j≥0 u jM j(z,y). Then Tutte’s equation reads

M(z,y;u) = 1+ zu2M(z,y;u)2 + z ∑
i≥1

yi
M(z,y;u)−∑

i−2
j=0 u jM j(z,y)

ui−2 , (1.10)
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Figure 1.15
Tutte’s root edge deletion.

where each terms has a clear interpretation in terms of a decomposition by deletion
of the root edge, as illustrated by Figure 1.15:

• The quadratic term accounts for planar maps whose root edge is a separating
edge: such a map can be uniquely obtained from a pair of rooted planar maps
by joining their root corners with a new root edge.

• The ith term in the sum instead corresponds to planar maps whose root edge
has a face of degree i on its left-hand side: such a map can be uniquely ob-
tained from a rooted planar map whose outerface has degree at least i− 1.
Hence the truncated M series.

Iterating Equation (1.10) as a fixed point equation in the space of formal power
series, one obtains the first coefficients:

M(z,y,u) = 1+ zu2(1+O(z))2 + zy1
1+O(z)

u−1 = 1+ z(u2 +uy1)+O(z2)

= 1+ zu2(1+ z(u2 +uy1))2 + zy1
1+z(u2+uy1)

u−1

+zy2
1+ z(u2 +uy1)−1

u0 + zy3
1+ z(u2 +uy1)− (1+ zuy1)

u
+O(z3)

= 1+ z(u2 +uy1)+ z2(2u4 +3u3y1 +u2y2
1 +u2y2 +uy2y1 +uy3)+O(z3)

One can check that these first terms agree with what can be seen on Figure 1.7, and
for u = 1 and yi = 1 for all i, with the first values of Formula (1.3).

In the case yi = 0 for all odd i, Equation (1.10) is essentially equivalent to the
recurrence used by Tutte to conjecture and prove Formula (1.9), but no such simple
formula is known to enumerate generic (i.e. non necessarily Eulerian) rooted planar
maps with a fixed vertex degree distribution, and Tutte was unable in the 70’s to
guess the general solution. Instead he observed that for yi = y, his equation rewrites
as

M(z,y;u) = 1+ zu2M(z,y;u)2 + zyu ∑
j≥0

(
j

∑
i=0

u j−i

)
M j(z,y)

= 1+ zu2M(z,y;u)2 + zyu
M(z,y;1)−uM(z,y;u)

1−u
, (1.11)

and using again a guess and check approach, he was able to solve this equation
to count maps by number of edges and faces. The resulting number of rooted pla-
nar maps with k vertices and ` faces and n = k + `− 2 edges is a not particu-
larly appealing triple summation of binomial coefficients [13] but the bivariate gf
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Mr(x,y) = ∑M∈M r xv(M)y f (M) = xy(1 + M(x,y/x;1)) satisfies an elegant variant of
Formula (1.5):

Mr(x,y) = N(x,y)P(x,y)(1−2N(x,y)−2P(x,y)) (1.12)

where N(x,y) and P(x,y) are given by the bivariate analog of (1.6){
N(x,y) = x+N(x,y)2 +2N(x,y)P(x,y),
P(x,y) = y+P(x,y)2 +2N(x,y)P(x,y). (1.13)

Equivalently, the bivariate analog of Equation (1.7) reads

∂

∂x
Mr(x,y) = P(x,y). (1.14)

Solving Tutte’s equations. The difficulty in deriving the explicit expressions (1.3)-
(1.6) or their refinement (1.12)-(1.13) from Equation (1.11) lies in the particular rôle
played by variable u: observe indeed that variable y can be considered as an optional
parameter (setting y = 1 yields a valid equation that allows us to compute M(z,1;u)
order by order in z by iteration as above), whereas variable u appears to be necessary
to get a non trivial equation (setting u = 1 yields instead an a priori useless equation
involving M(z,y;u) and d

du M(z,y;u)|u=1 because of the discrete derivative appearing
in the last summand). Following Zeilberger, the variable u is called a catalytic vari-
able (in analogy with the catalytic ingredients that are sometime added to allow for a
chemical reaction to take place), and Equations (1.10) and (1.11) are equations with
one catalytic variable.

Starting with Brown [77, 76], methods to solve quadratic equation with one cat-
alytic variable without guessing were developed, that allowed in particular Bender
and Canfield [21], almost 30 years later, to give an essentially complete solution
to Tutte’s equation. Brown’s method was later turned into a systematic approach to
polynomial equations with one catalytic variable by Bousquet-Mélou and Jehanne
[56]. Let us quote here their main general statement.

Let K be a field of characteristic 0. Let F(u)≡ F(z;u) be an element of K[u][[z]],
that is, a power series in z with coefficients that are polynomial in u over K. Then the
following divided difference is well-defined:

∆F(u) =
F(u)−F(0)

u
,

and limu→0 ∆F(u) = F ′(0) (from now on in this section derivatives are taken with
respect to the variable u unless explicitly mentioned). More generally the iterated
application of ∆ yields

∆
(i)F(u) =

F(u)−F(0)−uF ′(0)− . . .− ui−1

(i−1)! F(i−1)(0)

ui

Then the main result of [56] is the following theorem (see also [91] for an earlier
derivation of the case k = 1).
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Theorem 9 Let Q(w0,w1,w2, . . . ,wk;z) be a polynomial in u, z and the wi with co-
efficients in a field K with characteristic 0. Then the unique formal power series
solution F(u) of the equation

F(u)≡ F(z,u) = zQ
(

F(u),∆F(u),∆(2)F(u), . . . ,∆(k)F(u),u;z
)

(1.15)

is algebraic over K(z,u).

For any i0 ≥ 2, this theorem directly applies to the specialization yi = 0, i > i0 of
Equation (1.10) and proves that the corresponding series are algebraic.

The proof of the theorem is in fact constructive, and in principle gives a method
to derive a system of algebraic equations that determines F(u) and all the ∆iF(u), as
well as the specializations F(i−1)(0). We content ourselves here with the case k = 1,
which is sufficient to derive Equation (1.8) from Equation (1.11), and refer to [54]
for a gentle introduction to the general case and to [56] for the full details (see also
[35, Section 9] for a slight extension allowing F and Q to be rational in u).

A derivation of Formula (1.3). The first observation is that up to a slight change
of variable F(u) = (1+u)(M(1+u)−1), the simplified Tutte’s equation (1.11) can
be recast into the form (1.15) with k = 1, and

Q(w0,w1,w2;z) = (1+w2)(1+w2 +w0)2 +(1+w2)2(1+w1).

The initial trick is to differentiate Equation (1.15) with respect to u to get

F ′(u) = zF ′(u)Q′0(F(u),∆F(u),u;z)+
zF ′(u)

u
Q′1(F(u),∆F(u),u;z)

− z∆F(u)
u2 Q′1(F(u),∆F(u),u;z)+ zQ′2(F(u),∆(F(u),u;z) (1.16)

Now observe that since Q(w0,w1,w2;z) is a polynomial and F(u) is a power series
in z with polynomial coefficients in u, the equation

U = zUQ′0(F(U),∆F(U),U ;z)+ zQ′1(F(U),∆F(U),U ;z)) (1.17)

is contracting on the space of power series in z and has a unique power series solution
U(z) = zQ′1(0,0,0;0)+ O(z2). Upon multiplying by u and substituting u = U(z) in
Equation (1.16), all terms in the first line cancel and we obtain a second equation

∆F(U)Q′1(F(U),∆F(U),U ;z) = U2Q′2(F(U),∆F(U),U ;z)

which can be rewritten, using Equation (1.17) to eliminate Q′1, as

∆F(U)(1− zQ′0(F(U),∆F(U),U ;z)) = zUQ′2(F(U),∆F(U),U ;z).

Summarizing, the triple of unknown functions (F(U(z)),∆F(U(z)),U(z)) is a solu-
tion of the system of algebraic equations in the variables w0, w1 and w2: w0 = zQ(w0,w1,w2;z)

w1 = z(w1Q′0(w0,w1,w2;z)+Q′2(w0,w1,w2;z))
w2 = z(w2Q′0(w0,w1,w2;z)+Q′1(w0,w1,w2;z)).

(1.18)
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In particular the series F(U(z)), ∆F(U(z)) and U(z) are algebraic series over K(z),
and so is

F(0) = F(U(z))−U(z)∆F(U(z)). (1.19)

Finally, returning to Equation (1.15), F(u) is seen to be algebraic on K(z,u). Observe
moreover that if Q has positive coefficients then the system (1.18) is N-algebraic in
the sense of [54].

Eliminating the unknown functions F(V (z)), ∆F(V (z)) and V (z) in the system of
equations (1.18)-(1.19) result in an algebraic equation for F(0) which directly yields
Equation 1.8 for M(z,0) = 1+F(0).

The complete solution of Tutte’s equation. Let us finally state the complete so-
lution of Equation (1.10), as taken from [21, 60, 56]: the gf M(z,y) = M(z,y,1) of
rooted planar maps with respect to the number of edges (variable z), and the number
of faces of degree i (variable yi) for all i≥ 1 satisfies

∂

∂ z
(zM(z,y)) =

1
z2 S2(9S2−4S1) (1.20)

where S1 and S2 are the unique formal power series in z with coefficients in
Q[y1,y2, . . .] solutions of the system

S1 = t[v0]∑
i≥1

yi(v+S1 +S2/v)i−1

S2 = t + t[v−1]∑
i≥1

yi(v+S1 +S2/v)i−1 (1.21)

These expressions may look complicated at first sight, and maybe one could be
tempted to argue that Tutte’s equation (1.10) is more compact. However Equa-
tions (1.20)-(1.21) should be considered as much more explicit: They have a clear
tree-gf structure, directly amenable for instance to bivariate Lagrange inversion, or
to singularity analysis, and they imply that for any non-degenerate finite set D of
allowed degrees, the gf of rooted planar maps with vertex degrees in D with respect
to the number of edges (variable z) are given by the specialization yi = δi∈D of the
above system, and in particular this gf is algebraic over Q(z).

Tutte equations and matrix integrals. Remarkably Tutte’s results were repro-
duced in the physics literature [74, 42] using an ingenious representation of the
all-genus map gf using Hermitian matrix integrals. We shall not discuss here this
alternative approach because various accessible texts already exists. We only stress
the fact that there are (at least) two point of views regarding matrix integral represen-
tations.

On the one hand they can be used as a convenient short-hand notation for the all
genus gf of maps viewed as a formal power series, and this point of view leads to
the derivation of loop equations or Schwinger-Dyson equations that are essentially
equivalent to Tutte equations (see [98]). These equations are dealt with using clever
changes of variables and more or less detailed discussions of the possible singulari-
ties of the resulting expressions. These approaches appear to be analytic variants of
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Brown’s more algebraic approach (a rigorous discussion of this is still missing in the
literature however). From there many explicit formulas have appeared in the physics
literature, culminating with Eynard and Orantin’s topological recurrence [97, 101].
All these results are closely related to the present enumerative approach and we re-
fer to [127, Chapter Matrix] for an elementary introduction, and [99, 59] for more
detailed discussions.

On the other hand one can try to give a bona fide matrix integral representation to
the all genus gf viewed as an analytic function. This is the original point of view of
[74, 42], which allows them to use more analytic tools to derive explicit expressions,
like saddle point approximations and orthogonal polynomials. However the validity
of these representations requires careful discussion [96, 120, 154, 123] and involve
deep relations with matrix integral theory which makes this approach less elementary
to follow from an enumerative point of view. Finally let us refer to older but very
complete surveys [8, 94] for discussions of the motivations for the study of maps in
physics.

1.3.2 Unrooted planar maps

For unrooted maps on the oriented sphere, the formulas are still explicit, although
somewhat more involved. In particular the number of unrooted planar maps with n
edges is

|M u
n |=

1
2n
|M r

n |+ ∑
d<n
d|n

φ( n
d )

2n

(
d +2

2

)
|M r

d |+
(

n+1
4
− (−1)n

2

)
|M r
b n

2 c| (1.22)

where φ(x) is Euler’s totient function, giving the number of non-trivial divisors of x.
The form of this formula admits a nice explanation. Generically there are 2n

choices of root corner for an unrooted map, hence the first term in the right hand side.
But in this first attempt, maps with non trivial automorphisms are undercounted since
they correspond to less than 2n rooted maps each: according to Burnside lemma, to
obtain the correct formula, one has to introduce a correction term for each pair (M,ω)
where ω is an automorphism of M.

The exact correction terms to be used arise from a classification of the possible
automorphisms of planar maps. This classification is best understood in geometric
terms, using the (non-trivial, but very appealing) fact that any symmetric map admits
a drawing on standard unit sphere in R3 that realizes its automorphisms as isome-
tries of the oriented sphere, i.e. rotations. Rotations acting on maps are then simply
classified according to their order, and to the type of cells (vertex, edge, or face) that
they leave invariant (a rotation fixes exactly the two cells intersecting its axis).

Once the classification is established, the idea is that each pair (M,ω) with ω

a rotation of order n/d can be constructed from its quotient map M/ω which is
identified as a map with d edges and 2 marked cells as illustrated by Figure 1.16.
The construction slightly differs depending whether the rotation fixes an edge or not:
if not, the two fixed cells are chosen among the v(M)+ f (M) = e(M)+ 2 vertices
or faces of M, and this yields the first correcting term; otherwise, depending on the
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Figure 1.16
A symmetric map and the construction of the quotient map associated with the rota-
tion of order 4 with vertical axis.

parity of n either one or two fixed cells are edges, and this explains the alternating
second correcting term.

This elegant approach of unrooted map enumeration via the study of quotient
maps was pioneered by Liskovets [134] (see also [169]) and extends to count planar
maps up to sense reversing automorphisms [135] (see also the more recent [137, 139]
for a streamlined presentation). An alternative approach based on multiply rooted
maps is due to Wormald [174, 175], building on earlier work of Brown [75] but
yields less attractive formulas.

1.3.3 Two bijections between maps and trees

The series T (z) given by Formula (1.6) is closely related to the classical Catalan
numbers gf, and as a consequence it admits dozens of combinatorial interpretations
in terms for instance of plane trees, lattice paths or non crossing arch diagrams. A nat-
ural question that was raised very soon after the publication of Tutte’s results is to use
such a classical interpretation of T (z) to explain Formulas (1.3), (1.5) or (1.7). Two
main interpretations have lead to particularly elegant answers: Cori and Vauquelin’s
well labeled trees [92] and my blossoming trees [156].

Curiously, neither of these two interpretations directly deal with rooted planar
maps, but rather with quadrangulations and tetravalent maps: recall indeed again that,
thanks to the incidence map and edge map constructions of Page 6, all the above for-
mulas apply to rooted planar quadrangulations with n faces, or to rooted tetravalent
maps with n vertices.

The blossoming tree approach. This first approach builds on a variant of binary
trees to interpret Formula (1.6) and to arrive at a direct explanation of Formulas (1.3)
and (1.5) in terms of tetravalent maps.

More specifically, let a blossoming tree of size n be a rooted planar map with one
face (i.e. a plane tree) with n vertices of degree 4 (the nodes) and 2n + 2 vertices of
degree one (the leaves) that are colored in black and white in such a way that every
node is incident to exactly one black leaf. As illustrated by Figure 1.17, the standard
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=
(i) (ii)

(iii)

(iv)

(v)

Figure 1.17
(i) An unrooted blossoming tree T . (ii) The decomposition of white and black trees.
(iii) The canonical matching of the black and white leaves of T . (iv) The iterative
closure of a balanced blossoming tree into a 2-leg tetravalent map. (v) The associated
2-oriented tetravalent maps, and the underlying non-oriented rooted tetravalent map.
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decomposition of rooted plane trees applied to blossoming trees rooted at a white
leaf matches Equation (1.6), so that the gf of these white trees is T (z). Similarly, the
gf of black trees (blossoming trees rooted at a black leaf) is zT (z)3.

Now the right hand side T (z)− zT (z)3 of Formula (1.5) can be interpreted as
the gf of balanced blossoming trees: select for each unrooted blossoming tree with
n nodes a canonical way to match its n black leaves to n of its n + 2 white leaves,
and declare balanced the white trees that are rooted on an unmatched leaf of the
underlying unrooted blossoming tree. The gf of balanced blossoming trees is then
the difference of the gf of white and black trees. Equivalently the right hand side
of Formula (1.3) can be interpreted as follows: a fraction 2

n+2 of the 3n

n+1

(2n
n

)
white

trees with n nodes are balanced because among the n + 2 leaves of any unrooted
blossoming tree, exactly 2 are unmatched.

The bottom line of this approach is that the requested canonical matching can
be performed in a greedy iterative way that preserves planarity and maintains un-
matched leaves in the outer face, as illustrated by Figure 1.17: in particular the clo-
sure of Theorem 6 describes how to do this. In view of Corollary 5, closure yields
in fact a one-to-one correspondence between balanced blossoming trees and some
oriented almost tetravalent maps with 2 vertices of degree 1 in the outer face. Upon
gluing these two vertices to form a root edge, the correspondence is easily recast as
a bijection between balanced blossoming trees with n nodes and rooted tetravalent
planar maps with n vertices endowed with a Eulerian orientation without cw-circuit.

Now according to Theorem 3, each rooted tetravalent planar map has a unique
Eulerian orientation without cw-circuit, and any Eulerian orientation is accessible.
The bijection is therefore between balanced blossoming trees with n nodes and rooted
tetravalent planar maps with n vertices. This proves that Formulas (1.3) and (1.5)
count rooted tetravalent planar maps with n vertices, and, via the edge map construc-
tion, rooted planar maps with n edges.

The well labeled tree approach. This second approach builds instead on some la-
beled plane trees to interpret Formula (1.6) and involves a double pointing argument
to explain Formula (1.7) in terms of rooted planar quadrangulations.

Let a plane tree be well labeled if its vertices carry positive integer labels that
differ at most by one along each edge, and the minimal label is 1 (see Figure 1.18(i)).
Rooted well labeled trees are in one-to-one correspondence with rooted embedded
trees that have integer labels that differ at most by one and root label 0: given a rooted
well labeled tree with root label k, decrease by k all labels to get a rooted embedded
tree, and vice-versa, given a rooted embedded tree with minimal label −` ≤ 0, add
`+1 to all labels to get a rooted well labeled tree with root label `+1.

As illustrated by Figure 1.18(ii), T (z) is the gf of rooted embedded trees counted
by their number of edges, or, equivalently, since there are 3 possible variations of
labels along each edge, the number of rooted embedded trees with n edges is 3n times
the nth Catalan number 3n

n+1

(2n
n

)
. Consequently, this is also the number of rooted well

labeled trees with n edges.
Consider now a planar quadrangulation Q with a marked vertex v0 and label

each vertex v of Q by the number of edges in a shortest path from v to v0 (see Fig-
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Figure 1.18
(i) A rooted well labeled tree and the associated rooted embedded tree. (ii) The
decomposition of rooted embedded trees. (iii) A planar quadrangulation Q with a
marked vertex endowed with distance labels, and the associated geodesic orienta-
tion. (iv) The local rules defining T . (v) Local configurations in the geodesic split-
ting. (vi) The construction of T (Q,v0). (vii) The resulting tree T (Q,v0). (viii) The
polyhedral net encoded by T (Q,v0).
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ure 1.18(iii)). In each face of this labeled quadrangulation, draw a new edge accord-
ing the rules of Figure 1.18(iv). As suggested by the example in Figure 1.18(vi)-(vii),
these new edges form a well labeled tree T (Q) spanning all vertices of Q except v0:
the fact that these edges form a tree follows immediately from the facts that the rules
are not compatible with the existence of a cycle of new edges (because v0 can only be
on one side of the cycle), and that there are n new edges and n+1 non-root vertices
in Q.

Theorem 10 The construction T is a bijection between planar quadrangulations
with n faces and a marked vertex and well labeled trees with n edges.

The fact that construction T is a bijection can be deduced from Theorem 8. More
precisely, when (Q,c) is endowed with the geodesic orientation (which is obviously
acyclic and accessible), the splitting of Theorem 8 yields a polyhedral net with quad-
rangular black polygons, each of which is incident to exactly two white polygons
(see Figure 1.18(viii)). The local rules of Figure 1.18(iv) are seen to describe the two
possible local configurations in the construction of the polyhedral net, as shown in
Figure 1.18(v). These observations are sufficient to prove that T , as a special case of
splitting, is injective. To conclude the proof of Theorem 10, one needs to check that
folding the polyhedral net described by any well labeled tree yields a quadrangulation
endowed with the geodesic orientation from one of its vertices. This follows from the
fact that the labels of the vertices of the well labeled trees coincide with the natural
geodesic labels on the nodes of the folding tree, as shown by Figure 1.18(vi)-(v).

Since each edge of T (Q) is drawn in a different face of Q, any local convention
allows us to map the 4n corners of Q onto the 2n corners of T (Q) canonically to
obtain:

Corollary 7 There is a 2-to-1 correspondence between rooted planar quadrangula-
tions with n faces and a marked vertex and rooted well labeled trees with n edges. In
particular this proves Formula (1.7).

If v0 is taken instead to be the root vertex of the rooted quadrangulation Q, then
the degree of v0 is equal to the number of corners with label 1 in T (Q), and

Corollary 8 There is a bijection between rooted planar quadrangulations with n
faces and rooted well labeled trees with n edges and root label 1 (or non-negative
embedded trees).

This implies that the number of rooted well labeled trees with n edges and root label
1 is given by Formula (1.3), but it is not immediate to use the corollary the other way
round because counting directly these rooted well labeled trees with root label 1 is
not trivial (a direct proof appears however along with the original description of the
bijection in [92]). Our presentation follows the reformulation of [157].

Going further with bijections. The blossoming tree and well labeled tree ap-
proaches have grown from the status of nice bijective alternatives to Tutte’s computa-
tional method into powerful tools that have led for instance to results about distances



32 Handbook of enumerative combinatorics

Figure 1.19
A rooted planar map and its decomposition into its non-separable core and submaps
attached to corners.

in maps that are currently out of reach of the other methods: see Section 1.3.6 for
these developments, and Section 1.4.2 for a further discussion of the combinatorial
properties underlying these bijections.

In the meantime, let us conclude this paragraph with the remark that the recur-
rence formula (1.4) also admits a elegant bijective proof [44], akin to Rémi’s bijec-
tive proof [152] of the recurrence (n+1)Cn = 2(2n−1)Cn−1 for the Catalan numbers
Cn = 1

n+1

(2n
n

)
.

1.3.4 Substitution relations

The non-separable core of a map and 2-connected planar maps. Following
Tutte [165], let us call a planar map non-separable if it is either reduced to a sin-
gle edge (which can be a bridge or a loop), or if it is loopless and 2-connected. Let C
denote the set of rooted 2-connected planar maps. The non-separable core of a rooted
planar map is the largest non-separable submap containing the root. As illustrated by
Figure 1.19, any rooted planar map decomposes bijectively into its non-separable
core and a collection of rooted submaps attached to each corner of the core. This
immediately yields the substitution equation

Mr(z) = 1+C(zMr(z)2), (1.23)

where C(t) is the gf of rooted non-separable planar maps counted by edges with
variable t (recall that the number of corners in a map is twice the number of edges,
hence the substitution t→ zMr(z)2).

Equation (1.23) allows us to determines C(t) from our knowledge of M(z): Re-
call that M(z) is an algebraic function, and consider the polynomial P such that
P(M(z),z) = 0 as given by Formula (1.8). Then the series H(z) = zM(z)2 is a root
of the polynomial Q(t,z) = Resultantx(P(x,z), t− zx2). Moreover, H(z) = z+O(z2)
clearly admits a compositional inverse Y (t) in the space of formal power series (that
is, the unique formal power series Y (t) such that H(Y (t)) = t). This series is alge-
braic as well as it satisfies Q(t,Y (t)) = 0. Finally letting z = Y (t) in P(M(z),z) = 0
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yields P(C(t),Y (t)) = 0, from which we deduce that C(t) is a root of the polynomial
R(x, t) = Resultantz(P(x,z),Q(t,z),z): explicit computations give R(C(t), t) = 0 with

R(C, t) = C3 +2C2 +(1−18t)C +27t2−2t

Alternatively the computation can be made using the parametrization (1.5)-(1.6) to
obtain directly a parametrization of C(t) as

C(t) = 2B(t)−3B(t)2 where B(t) = 1/(1−B(t))2. (1.24)

The number of rooted non-separable planar maps with n edges follows using La-
grange inversion formula,

|Cn|= 4
2n
· 1

2n−1

(
3n−3
n−1

)
.

The previous discussion is easily adapted to take into account the number of
vertices, and this yields the refined formula

|Ci+1, j+1|= (2i+ j−2)!(i+2 j−2)!
(2i−1)!(2 j−1)!i! j!

,

for the number of rooted non-separable planar maps with i + 1 vertices and j + 1
faces.

Polyhedral graphs and 3-connected maps. Following Tutte’s steps [165], one
can go further and define the 3-connected core of a map: this requires however some
extra care to classify maps without a 3-connected core. The outcome of his analysis,
which we do not reproduce here (see also [infra, Chapter on Planar Graphs, Section
2]), is that any 2-connected map belongs to one of the following three subsets S ,
P , or H , where

• the set S of maps that are serial product of maps of P or H ,

• the set P of maps that are parallel product of maps of S or H

• the set H of maps that have a non-trivial 3-connected core.

Then, by definition of S and P , the gfs S(t), P(t) and H(t) are determined as
rational functions of C(t) by the system of equations

C(t) = S(t)+P(t)+H(t)
S(t) = P(t)+H(t)

1−P(t)−H(t)

P(t) = S(t)+H(t)
1−S(t)−H(t) .

(1.25)

Finally, rooted non-separable maps that have a non-trivial 3-connected core can be
related to rooted 3-connected maps by a substitution scheme: each such map is indeed
uniquely obtained from a rooted 3-connected map in which each non-root edge is
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Ten steps to planar graphs
By substitution we went from 1-connected to 2-connected and to 3-connected
maps. The enumeration of 3-connected planar maps is a great achievement from
the point of view of enumerative graph theory because of Whitney’s theorem: a
vertex labeled 3-connected planar graph essentially has only one embedding as
a vertex labeled 3-connected planar map. We already argued that the exponential
generating series of edge labeled planar maps is, up to a derivative, the ordinary
generating series of rooted planar maps. In the 3-connected case, a similar relation
can be devised for vertex-labeled planar maps so that Equation (1.28) essentially
yields an exponential generating series for labeled 3-connected planar graphs.
As shown in [infra, Chapter on Planar Graphs], substitution relations, now written
for planar graphs instead of planar maps, can be used the other way round to ob-
tain successively from (1.28) the generating series of labeled 2-connected planar
graphs, of labeled connected planar graphs, and of planar graphs.
This up and down approach to the enumeration of planar graphs was first explic-
itly proposed by Liskovets and Walsh [138] in the form of a ten step program to
count unlabeled planar graphs.

replaced by a rooted 2-connected map (the replacement operation of an oriented
edge e by a rooted map N in a map M consists in identifying the endpoints of e and
of the root of N and removing these two edges). If G(z) denotes the gf of rooted
planar 3-connected maps counted by non-root edges (variable z), then the resulting
substitution equation reads

H(t) = G(C†(t)) (1.26)

where C†(t) = 1
t C(t)− 2 is the generating function of rooted planar 2-connected

maps counted by non-root edges, C(t) given by Formula (1.24) and H(t) by Equa-
tions (1.25). As for Equation (1.23), this substitution equation determines G(z) in
terms of C(z). Again, as shown by Mullin and Schellenberg [148], the system of
equations can be refined to take into account the number of vertices, and we directly
state the bivariate result as

Theorem 11 (Mullin-Schellenberg [148]) Let U(z,x) and V (z,x) denote the unique
pair of formal power series solutions of the system

U = x(1+V )2 and V = y(1+U)2. (1.27)

Then

G(x,y) = x2y2
(

1
1+ x

+
1

1+ y
−1− (1+U)2(1+V )2

(1+U +V )3

)
(1.28)

1.3.5 Asymptotic enumeration and uniform random planar maps

Asymptotic formulas. From the asymptotic counting perspective, the exact results
of Sections 1.3.1 and 1.3.4 have direct simple consequences: when n goes to infinity,
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the number of rooted planar maps with n edges satisfies

|Mn|= c ·ρn
0 n−5/2 · (1+O(1/n)) (1.29)

where ρ0 = 12 and c is an explicit positive constant, and for any fixed δ ∈ (− 1
2 , 1

2 ),
the number of rooted planar maps with n edges and k vertices satisfies

|Mn,k|= cδ ρ
n
δ

n−3(1+o(1)), for k = dn( 1
2 −δ )e (1.30)

where again cδ and ρδ are positive constants that have explicit expressions in term
of δ [22], with ρδ < ρ0 = 12 for all δ 6= 0. Asymptotic enumerative results on rooted
planar maps are intimately related to the study of the random variable Mn with uni-
form distribution on the set of rooted planar maps with n edges. From this point of
view Formula (1.30) can be restated as a Gaussian local limit law with linear variance
for the number of vertices of Mn, using the expansion lnρδ /ρ0 = −αδ 2(1 + o(1))
near δ = 0, where α is a positive constant (see [infra, Chapter on Planar Graphs,
Section 3] for similar results in the case of planar graphs).

Random maps and face degrees. The root face degree is a natural parameter of
Mn to study: as shown by Equations (1.10)-(1.11), the root face degree d f (M) plays
a distinguished role in Tutte’s decomposition, and it follows from his approach that
the series

Mr(z,u) = ∑
M∈M r

ze(M)ud f (M),

is algebraic and in fact fairly explicit. As a consequence d f (Mn), and by duality
dv(Mn), are quite well known: as n goes to infinity, the degree has a discrete limit law,
D f (k) = limn→∞ Pr(d f (Mn) = k) > 0, with exponential decay with k. More precisely,
as k goes to infinity,

D f (k) ∼
k→∞

c′(k/π)1/2(5/6)k

where c′ =
√

10/20 [110]. Upon selecting uniformly a second root corner at random
in Mn, one realizes that the root face degree distribution is the distribution of the
degree of the face bordering any random edge in Mn. This rerooting trick makes it
possible to derive results about the general local structure of large uniform random
maps: for instance [113], the maximum face degree satisfies for large n,

E(max deg(Mn)) =
lnn− 1

2 ln lnn
ln(6/5)

+O(1)

with a variance of order O(lnn). More precisely, for values of k close to the above
expected value, the numbers of faces of degree k behave like independent Poisson
random variables.

Submaps and asymmetry. Another example is the number nH(M) of induced
copies of a plane submap H in Mn (by an induced copy of H in M we mean a simple
cycle C such the vertices, faces and edges inside and on C form exactly a copy of
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H). In general for a given H there exists a constant c such that the probability that
nH(Mn) < cn is exponentially small: in other terms, the number of copies of H in
Mn is almost surely linear. Under further technical restrictions on H, the random vari-
able nH(Mn) is expected to linear expectation and variance and Gaussian fluctuation
(but this is only proved for restricted classes of maps like 3-connected triangulations
[114]). The almost sure linearity property implies in turn by a remarkably elegant
argument [153] that among rooted planar maps with n edges, the proportion of maps
having a non trivial automorphism (of unrooted planar map) is exponentially small
(essentially because an automorphism must fix the relative orientations of a large
number of copies of any given asymmetric submap H). In particular this allows us to
recover independently of Formula (1.22) the asymptotic number of unrooted planar
maps as

|M u
n |= |M r

n |/(2n) · (1+o(εn)) (1.31)

for some positive constant ε < 1. It implies furthermore that the random variable Un
with uniform distribution on unrooted planar maps with n edges behaves asymptoti-
cally like Mn at least for parameters that are independent of the root and polynomi-
ally bounded. More precisely if p is an integer-valued parameter of unrooted planar
maps such that p(M) < c · e(M)α for some α > 0 and c > 0, then the total variation
distance between the distribution of p(Un) and p(Mn) is small:

∑
k
|Pr(p(Un) = k)−Pr(p(Mn) = k)|−→

n→∞
0.

This gives an a posteriori further justification of the fact that the literature focuses
on the slightly easier problem of enumeration of rooted maps.

Another interesting consequence of the submap density results is the possibility
to prove a 0-1 law for the first order logic on planar maps, as pioneered by Bender,
Compton and Richmond [23]: roughly speaking one proves that any property ex-
pressible in this framework has a probability to be true on Mn which tends to 0 or to
1 as n goes to infinity.

Separation properties. Continuing with properties that are accessible via explicit
bivariate enumeration, another fundamental problem is that of the existence of small
cuts in random maps. This problem was first raised in mathematical physics, where
Mn appears as a relevant model of 2d quantum geometry: in this context, the random
map is viewed as a random discretized surface, a 2-dimensional quantum universe
[8], and a natural question is whether this random universe is expected to branch
into several almost independent parts. One way to formalize the question (with two
variants) is to ask about the existence of a vertex v in Mn whose removal produces at
least two components and (i) one of the components is a tree of size at least k, or (ii)
both components have size at least k.

In the first variant (i) the probability that there is such a tree-cutting vertex is
bounded by the expected number of tree-cutting vertices, itself bounded by

n−1

∑
i=k

2nTiMn−i

Mn
≈

n−1

∑
i=k

n7/2

i5/2(n− i)5/2

4i12n−i

12i ≈ 3−k,
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where we have used the asymptotic formula (1.29) and the classic approximation
Cn ≈ 4nn−3/2 for the number of rooted plane trees with n edges. In particular the
above bound is exponentially decreasing with k and one can prove that the size of
the largest induced subtree in Mn is Θ(lnn). The precise analysis is made possible
by the existence of a substitution scheme analog to those of Section 1.3.4: Removing
all induced subtrees from a map M (or equivalently removing iteratively all vertices
of degree one that are not incident to the root edge) yields its 1-core C1(M), which is
a rooted planar maps without non-root vertex of degree 1. This decomposition yields
the gf of rooted planar maps counted by number of edges (variable z) and by number
of edges in the 1-core (variable u)

MT (z,u) = 1+C1(uzT (z)2), (1.32)

where C1(z) is the gf of rooted planar maps without non-root vertex of degree 1, and
this equation for u = 1 determines the gf C1(z). Then the singular analysis of the
bivariate substitution scheme (1.32) in the sense of [104] makes it possible to show
that C1(Mn) has expected size αn for some constant α with Gaussian fluctuations in
the range n1/2. In the quantum gravity literature, this situation received the evocative
description of that of a unique mother quantum universe from which logarithmic size
tree-like baby universes emerge.

In the second variant (ii) the probability that the separation is possible is bounded
by

n−k

∑
i=k

2nMiMn−i

Mn
≈

n/2

∑
i=k

n7/2

i5/2(n− i)5/2 ≈ n · k−3/2.

This suggests, and it can actually be proved [112], that at most one 2-connected com-
ponent of Mn has linear size (the mother universe) and the second largest component
(the largest baby universe) has size k = Θ(n2/3). The substitution Equation (1.23)
refines into the bivariate equation

M(z,u) = 1+Cns(uzM(z)2) (1.33)

whose analysis show more precisely [16] that the largest non-separable component
Cns(Mn) has expected size n/3 with fluctuations in the range n2/3 given by a stable
law of index 2/3.

The qualitative difference between variants (i) and (ii) is directly explained by the
fact that plane trees have a strictly lower growth constant than planar maps. Equiv-
alently, at the technical level, the difference is between subcritical and critical com-
positions of gfs (see [104, Chapter VI.9]). In both cases, the existence of a bivariate
substitution scheme to describe the decomposition of Mn into a mother universe and
baby universes, implies that the mother universe, conditionally to its size, is itself
uniformly chosen among the corresponding set of maps: Cns(Mn) is a uniform ran-
dom 2-connected map with m edges, where the number m of edges is a concentrated
random variable.

The above discussion concentrate on submaps that can be separated by a unique
cut vertex, but it can be extended to consider 2-vertex separators, and, qualitatively,
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the results is expected to hold for fixed separating cycles of fixed length (although in
that case there is some ambiguity in the definition of the mother universe). A natural
next step is to ask about the length of a shortest cycle allowing to separate a random
planar map into two big regions (i.e. so that there are at least αn edges on each side of
the cycle). The answer to this question requires a detour via the study of the intrinsic
geometry of random planar maps.

1.3.6 Distances in planar maps

The intrinsic geometries of planar quadrangulations and planar maps. Given
two vertices x and y in a map M, let dM(x,y) denote their distance, that is the minimal
number of edges in a path from x to y. The intrinsic geometry of M is the metric space
(VM,dM), where VM denotes the set of vertices of M. In order to study the intrinsic
geometry of Mn a natural first step is to consider the distances between two random
vertices, or between the root vertex and a random vertex.

This can be done thanks to the two above mentioned bijections between maps and
trees. In particular our presentation of the bijection T of Theorem 10 clearly shows
that all the distances to the marked point in a rooted quadrangulation with a marked
vertex are encoded in the labels of the associated rooted well labeled tree. This gives
access to the intrinsic geometry of Qn, the r.v. with uniform distribution on the set
of rooted planar quadrangulations with n faces. As a consequence most of the results
on distances in the literature are stated for this related but a priori different model of
random map. Let us temporarily ignore this problem and discuss the results in terms
of Qn.

From a probabilistic point of view the sole fact that labels of rooted well labeled
trees can be interpreted in terms of distances in quadrangulations is already extremely
fruitful: let Tn denote a random variable taken uniformly at random in the set of
rooted well labeled trees with n edges. The random well labeled tree Tn is obtained
by shifting the labels of a random rooted embedded tree En by their minimum. The
tree En can be constructed in two steps, first taking a uniform random plane tree
with n edges, and then choosing the label increment on each edge in {−1,0,+1}
uniformly and independently. As a consequence a uniform random vertex v in En is
typically at distance ` = Θ(n1/2) of the root in the tree (by standard results on the
height profile of trees) and its label λTn(v) is a sum of ` i.i.d. random variables taken
uniformly in {−1,0,1}: it is thus almost surely of order n1/4, as n goes to infinity. It
can be proved that this is also almost surely the case for the minimal label, so that the
statement remains true for Tn [87]. In terms of distances in Qn, we conclude that the
typical distance between two random vertices is of order n1/4. This combinatorial
derivation of the typical distance in Qn, proposed in [87], confirms earlier semi-
rigorous prediction of the physics literature (see [9] and reference therein).

Exact counting results for labeled trees and distances in quadrangulations. At
the enumerative level, results can be made even much more precise. For all i ≥ 0,
let Ti be the gf of rooted embedded trees with label strictly larger than −i. Then the
standard recursive decomposition of rooted plane trees can be refined to write the
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following system of equations for the infinite family of gfs (Ti)i≥0:

Ti = 1+ zTi(Ti−1 +Ti +Ti+1) for i≥ 0, and T0 = 0. (1.34)

A true miracle is that the system of equations (1.34) can actually be solved exactly.
As first shown by Bouttier, Di Francesco and Guitter in [63],

Ti(z) = T
(1−Y i)(1−Y i+3)

(1−Y i+1)(1−Y i+2)
(1.35)

where Y ≡ Y (z) and T ≡ T (z) are the unique power series solutions of

Y = zT 2(1+Y +Y 2) and T = 1+3zT 2. (1.36)

Observe that the series T in this expression is the same as in Equation (1.6): ac-
cordingly the limit when i goes to infinity of Ti is just T . While Formula (1.35) was
guessed and checked in [63], it was recently observed by Eynard and Guitter that the
system of equations (1.34) belongs to a family of equations known to admit explicit
computable solution in a different context [100].

The bijection between rooted well labeled trees with root label 1 (or non negative
rooted embedded trees) and rooted quadrangulations implies that M(z) = T1(z) and

M(z) = T
(1−Y )(1−Y 4)
(1−Y 2)(1−Y 3)

= T − Y
1+Y +Y 2 T = T − zT 3.

in agreement with Formula (1.5). The general explicit expression (1.35) has far
reaching implications for distance statistics on quadrangulations, as discussed in
[63, 64, 67, 69, 68, 122] (see also the results mentioned below for distances in Mn).

Finally, let us mention that the combinatorial structure of Formula (1.35) is still
not completely clear: from the point of view of quadrangulations, an appealing inter-
pretation of Y and Ti(z) was given in [71] (see also [3]) in terms of slices of quadran-
gulations, from which the explicit expressions can be understood. However we still
miss a direct explanation of Formula (1.35) in terms the natural interpretation of Y/z
as gf of well labeled trees with a marked branch whose labels form an excursion.

Exact results for distances in planar maps. Quite unexpectedly, many of the ex-
act results for quadrangulations can be easily transferred to planar maps: as already
indicated above, the classical incidence map transformation does not help much for
this, but the solution is provided by another bijection between marked quadrangula-
tions and marked planar maps that was recently discovered by Ambjørn and Budd
[7] (see also [66] for a broader discussion of the relation between this bijection and
well labeled tree approach). As illustrated by Figure 1.20 this bijection consists in
applying to a quadrangulation Q with a marked vertex v0 the rules opposite to those
of Figure 1.18(iv).

The two key properties of this bijection for our purpose are that (i) it preserves the
distance to v0 of the common vertices of the two maps, namely if (M, v̄0) = AB(Q,v0)
then dQ(v,v0) = dM(v̄, v̄0), and (ii) the vertices of Q that do not appear in M are local
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Figure 1.20
A quadrangulation Q with distances to a marked v0, the Ambjørn-Budd rules, and
their applications to (Q,v0).

maxima of the distance to v0 in Q, and they correspond to vertices whose labels
are local maxima in the associated well labeled tree. As a consequence of these two
properties the labels of a random well labeled tree that are not local maxima describe
the distances to a random marked vertex in a random planar map.

Let us illustrate by an example the very explicit results on the intrinsic geometry
of random planar maps that are derived in [66]. Let us say that the root edge of a
vertex-pointed rooted planar map M has type (i, j) if the root vertex is at distance
i of the pointed vertex, and the other extremity of the root edge is at distance j of
the pointed vertex (by definition |i− j| ≤ 1). Let then Ri(z) denote the gf of pointed
rooted maps with a root edge of type ( j− 1, j) for j ≤ i. Upon reverting the root,
R j+1(z) is the gf of such maps with a root edge of type ( j + 1, j) for j ≥ i, and
let S2

j(z) denote the gf of such maps with a root edge of type ( j, j) for j ≤ i (for
consistency with the literature this gf is written as a square). Then the combination
of the well labeled tree approach and the AB bijection is that Ri and S2

i can be written
for all i≥ 0 as

Ri = zTiTi+1 and S2
i = tT 2

i ,

where the Ti are given by the system of equation (1.35). For completeness let us state
the explicit expressions for the Ri and Si,

Ri(z) = (1+ z(1+T )2)
(1−Y i+1)(1−Y i+3)

(1−Y i+2)2 (1.37)

S2
i (z) = z(1+T )2

(
(1−Y i)(1−Y i+3)

(1−Y i+1)(1−Y i+2)

)2

(1.38)

In particular these explicit expressions allow to compute distance statistics for Mn:
for instance, for any fixed i ≥ 1, the expected number of vertices at distance i of a
uniformly chosen vertex in Mn is

lim
n→∞

E(|{v | dMn(v,v0)}= i|) =
3

280
(2i+3)(10i2 +30i+9). (1.39)

Similarly the limit for large n of the expected number of vertices in the ball of radius
i around a uniform random vertex of Mn grows like i4.
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1.3.7 Local limit, continuum limit

Local limits. A nice way to subsume the above results on the local structure of
random planar maps is the following statement: Large uniform random rooted pla-
nar maps have a local limit, the uniform infinite planar map, which has Hausdorff
dimension 4. The first part of this statement means that, as n goes to infinity, for any
fixed k, the submap of radius k around the root of Mn converges in distribution to a
random planar map Pk with radius k, and the family of random planar map (Rk)k≥1
coherently defines an random infinite (but locally finite) planar map P. The second
part means that in the random infinite planar map P the number of vertices at distance
at most i of the root roughly grows like i4. This statement was first stated and proved
in the case of random triangulations and quadrangulations [11, 10, 86], leading to the
definition of the Uniform Infinite Planar Triangulation and Quadrangulation (UIPT,
UIPQ), but again, the Ambjørn-Budd bijection makes it possible to transfer the re-
sults to general planar maps to define the UIPM.

A natural way to continue the study of the local properties of large planar maps
is to concentrate on these limit uniform infinite planar maps. We will however not
discuss further this direction for at least two reasons: many of the methods involved
there escape from the strict range of enumerative combinatorics, and the topic is
currently evolving at a very fast pace. We refer the reader to the elegant presentations
of Nicolas Curien.

The continuum limit. Instead of concentrating on local properties, one can return
to the observation that the distance between the root and a random vertex of Mn is
of order n1/4. The correspondence between quadrangulations and well labeled trees
makes it possible to show more precisely that the rescaled profile (average num-
ber of vertices at distance k of the pointed vertex) and radius (maximal distance to
the pointed vertex) of uniform random rooted planar quadrangulation with a ran-
dom marked vertex converge upon renormalizing the distances by a factor n−1/4 to
functionals of a well studied continuum random process called the Integrated Super-
Brownian Excursion (ISE) or of its variant the Brownian snake [87].

The example of the convergence of rescaled simple random walks to the Brow-
nian motion and that of rescaled simple trees to the Continuum Random Tree then
suggest that after rescaling distances by such a factor n−1/4, one should look for a
continuum limit of random planar quadrangulations. This question has attracted a lot
of attention in the last few years, that has culminated with the proof of the existence
and uniqueness of such a continuum limit, the Brownian planar map [131, 142]. A
key ingredient underlying these results is the fact that the bijective correspondence
between well labeled trees and pointed rooted maps is robust enough to go through
the process of taking a continuum limit: the only currently known explicit construc-
tion of the Brownian planar map consists indeed in starting from the continuum limit
of rescaled uniform random well labeled trees of size n when n→∞, the above men-
tioned Brownian snake, and applying a continuum analog of the discrete bijection to
define a metric on this embedded continuum tree. Again the initial constructions of
[131, 142] were done for quadrangulations, but the Ambjørn-Budd correspondence
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makes it possible to transfer most of these results to the intrinsic geometry of uniform
random planar maps with n edges [45].

Remarkably it has been proved that the Brownian planar map is a random metric
space with the topology of the sphere [133, 140]: a consequence of this last state-
ment is the fact that for any positive α < 1/2, the shortest cycle on Mn with at least
αn edges on each side has almost surely length Θ(n1/4) when n goes to infinity. Al-
though, as discussed above, the enumerative results and in particular the bijections
between maps and trees are fundamental ingredients of construction of the Brownian
planar map, these consequences about shortest α-separating cycles currently appears
to be out of reach with purely enumerative methods (see however [68] for a tractable
variant of the problem). Further discussion of these results is thus largely out of
scope here and we refer to the [132, 143, 144] for a survey of these developments, or
to [129, 130] for short reviews.

1.4 Beyond planar maps, an even shorter account
At this point we are more or less done with general planar maps, and there are (at
least) four ways to go further: universality, master theorems, maps on surfaces, and
decorated maps.

1.4.1 Patterns and universality

A first direction to explore is the observation that literally all of the above results
admit variants for various natural subfamilies of planar maps. In the combinatorial
literature, patterns in the asymptotic behavior have been observed, and equivalently,
in the physics and probabilistic literature some critical exponents are expected to be
universal.

Pattern in the asymptotic behavior and universality. A first example is the fact
that for a large collection of subfamilies F of maps for which the asymptotic number
of rooted planar maps with n edges in F is known, the polynomial growth exponent
takes the same value γ = − 5

2 : let M F
n denote the set of rooted planar maps with n

edges in the subfamily F , then

|M F
n | ∼n→∞

cF ρ
n
F n−5/2 (1.40)

for all admissible values of n, where cF and ρF are constants depending on F . This
asymptotic behavior holds in particular for various families of planar maps defined
by combinations of a finite restriction on the allowed vertex or face degrees (but not
restrictions on both), a finite restriction on the girth (length of the shortest simple
cycle), or an irreducibility condition (a map is irreducible it the length of the shortest
non-facial cycle is strictly larger than its girth), and for some of these families, with a
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further bipartiteness constraint [26, 27, 18, 109, 81, 31]. Similar patterns or universal
exponents hold for each of the asymptotic/probabilistic statements of the previous
section about degree distribution [136], absence of non-trivial automorphisms [24],
separation properties [155, 112, 16], distances [70]...

A quite natural way to unify these results is to state the universality of the Brow-
nian planar map as a continuum limit: for all “reasonable” family F of planar maps,
there should exists a constant αF and a definition of the size such that uniform ran-
dom planar maps of size n in F with distances rescaled by a factor αF n−1/4 con-
verge to the Brownian map in the sense of [131, 142]. The collection of families
of “reasonable” maps for which this statement has actually been proved is more re-
stricted than for the previous ones but it has recently grown fastly to include planar
quadrangulations and more generally 2p-angulations, general, simple, and bipartite
planar maps, and simple triangulations [1, 2, 4, 45], and all the above mentioned
families are expected to belong to the same universality class.

A common point of these families is that they are defined by constraints that
can be checked locally (at finite distance in the derived map). From this point of
view examples of “non-reasonable” subfamilies are outerplanar maps because the
existence of a large outerface is not a local constraint, series-parallel maps or stack
triangulations whose characterization needs to be checked recursively. And indeed
these families lead to other continuum limits [5, 78]. A different example is that of
planar maps with a global rotation or reflection symmetry whose continuum limit is
expected to conserve the initial symmetry: they do not even satisfy the initial asymp-
totic pattern because, in view of Section 1.3.2, they are in bijection quotient maps,
that are multiply rooted planar maps. Finally let us observe that too stringent re-

strictions on both vertex and face degrees cannot either lead to the same universality
class due to rigidity constraints: for instance triangulations with too many vertices of
degree 6 have to be constituted of patches of regular triangular lattices. The question
of whether a family of maps belongs or not to some universality class is a key issue
in the physics literature on maps, and in particular on decorated maps: accordingly
we shall return briefly to this question in Section 1.4.4.

Parametric families and meta theorems. A different kind of recurrent statements
in the theory of maps is illustrated by the observation that many families of rooted
planar maps defined by local restrictions have algebraic gfs. Here the universality
is more questionable and it is in fact not difficult to design “reasonable” families of
rooted planar maps that most likely do not have algebraic gfs and yet will satisfy most
other universality properties: the family of rooted planar maps with only prime vertex
degrees seems an obvious candidate, and several families of non-critical decorated
maps, as discussed in Section 1.4.4, provide other examples.

One way to circumvent the difficulty of defining universality is to obtain general
parametric results of the form of Equation (1.20)-(1.21). Tutte’s equation can be
generalized to bicolored maps counted by number of faces of degree i of each color
[56]. Similar parametric equations have also been written for families of rooted non-
separable planar maps [173]. However for 3-connected maps and other families of
maps defined by girth restrictions, equations with catalytic variables are harder to
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establish from the root edge deletion approach (see for instance [46] for the already
quite intricate case of 3-connected maps counted by edges and root face degree).

General parametric results have instead been obtained by Bouttier and Guitter via
a far reaching and beautiful extension of the substitution schemes of Section 1.3.4 to
the gfs of maps with girth g and d-irreducible maps with respect to the distribution of
face degrees [73, 72]. Through standard transformations like duality, incidence map,
edge map, and a few others, their theorem encompass all the known critical substitu-
tion schemes summarized in [16] and allows us to recover easily the enumeration of
rooted planar 5-connected triangulations of [111].

Another way to assert some form of universality could be to resort on logic and
prove a meta theorem: Let f be a formula of the first order logic on maps (with quan-
tifiers on vertices, faces, edges and corner, and adjacency/incidence predicates). It is
tempting to conjecture that the family M f of rooted planar maps M such that f (M)
is true has an algebraic gf, and that the number of such maps satisfy the universal
asymptotic pattern above. (The second part of the statement is actually more likely
to be true than the first, but probably hard to prove independently.) This approach is
reminiscent of the 0-1 laws briefly discussed in Page 36, but appears to requires new
technical ingredients.

1.4.2 The bijective canvas and master bijections

The initial motivation for looking for bijective proofs for the formulas of Tutte was
closely related to Schützenberger’s methodology according to which combinatorial
structures with algebraic gfs should admit natural encodings by words of context free
languages (or equivalently, they should be in natural correspondence with simple
families of trees). Accounts of early attempts in this directions are [88, 89]. A recent
discussion (and partial refutation) of the statement that algebraic gfs should be the
trace of such natural encodings can be found in [53].

In the case of planar maps, most of the known gf algebraicity results do admit
derivations by bijections with some trees. Rather than universality results, master
bijections have been proposed [6, 38, 39, 40], that allow to derive these bijections
in a unified way. A beautiful outcome of these results is that they make explicit the
structural properties of maps that make the existence of such bijections possible.

Blossoming trees and well labeled trees made parametric. The first extensions
of the original two bijections of Section 1.3.3 that were proposed were rather ad-
hoc variants for specific subclasses like bipartite maps [12, 157], loopless, simple
or irreducible triangulations or quadrangulations [157, 150, 151, 107, 105, 106] (see
also [93] for an independently found recursive variant for non-separable maps). In all
these cases, known formulas were instrumental to help guessing an adequate family
of balanced trees, which was then used to design a bijection.

A first parametric extension of the blossoming tree approach was to the case of
planar constellations in [57]: although no previous enumerative results were available
for this case, conjecturing a formula was again a preliminary to the design of the
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right family of trees. It is yet a first example of a result that is actually much harder
to derive from Tutte’s root deletion approach [56] than from bijections.

Similarly, while basic blossoming trees and well labeled trees are natural combi-
natorial interpretations of Equation (1.6), parametric extensions were build as inter-
pretations of the system (1.21). This approach was then extended further to bicolored
maps counted by number of faces of degree i of each color [58], building on the enu-
merative indications given by partial enumerative results for trivalent and tetravalent
maps [61]. With this example the paradigm started to change and the bijective ap-
proach yields new formulas that were not even conjectured before.

A structural result about orientations. This shift of paradigm lead to the question
of understanding under what conditions bijections between maps and trees can work.
In view of Section 1.2, the bijections of Section 1.3.3 are seen to rely on identifying
an easy to enumerate family of decorated trees whose closure yields the expected
family of maps by a specialization of the bijections of Theorems 6 and 8. Conversely,
given a family of planar maps, these bijections rely on identifying the right notion of
canonical spanning tree for which these theorems lead to a simple family of decorated
trees. A first step is Theorem 7 which suggests that in order to find the right canonical
spanning trees, one should look for accessible orientations without cw-circuit. This
in turn is made easier by Theorem 3, that assert that it is sufficient to look for an
accessible feasible function on our family of maps.

The key structural result is now the fact that the existence of feasible and acces-
sible α-functions is a natural graph theoretic property, expressible in terms of girth
conditions. A most general result of this type is given by Bernardi and Fusy in [40]
for what they call fittingly charged hypermaps. We only quote here a subcase of their
classification taken from [38, 39]:

Theorem 12 A planar d-angulation has girth d if and only if it admits an accessible
(d +2)/d-fractional orientation.

The exact definition of fractional orientation is out of the scope of this text, but the
key point is that the theory of α-orientations extends to these fractional orientations,
and in particular the fact that there is a unique such orientation without cw-circuit. It
suggests that, at least for those classes of maps, the quest is over: instead of guessing
the right family of tree from enumerative formulas, one can start from the naturally
associated feasible α function and work the other way round.

The bijective canvas. The resulting canvas for bijection between maps and trees is
the following: start with a subfamily F of rooted planar maps defined by degree and
girth conditions.

1. Reformulate the degree and girth conditions in terms of the existence of some
generalized α-orientations (using e.g. Theorem 12).

2. For a given α , the set of generalized α-orientations on a given map has a lattice
structure, and in particular there is a unique such orientation without cw-circuit
(Theorem 3).
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At this point there are two options: The first option generalizes the blossoming tree
approach and was formalized in [6] (see also [158]).

3a. Use ccw-exploration as in Section 1.2.2 to obtain a canonical spanning tree T of
the map M, and check that external edges can be encoded as decorations of this
tree T in such a way that the resulting set of decorated trees can be described
by local rules, directly inherited from the degree and α-constraints.

In the case of tetravalent maps, we have already seen that this approach directly yields
the blossoming trees of Section 1.3.3: a planar map is tetravalent if and only if it
admits a 2-orientation (as particular case of Euler characterization of Eulerian maps);
in particular a tetravalent map admits a unique 2-orientation without cw-circuit; the
cw-exploration of this orientation yields a spanning tree whose opening has vertices
of degree 4 with in and out-degree 2; by construction, apart from the root vertex, each
vertex has one outgoing edge toward the root, so that the other outgoing edge must
be a dangling half-edge, and each vertex has two incoming edges or half-edges: this
provides, without guessing, the definition of blossoming trees of Section 1.3.3.

Another example is the case of simple triangulations (that is, triangulations with
girth three): as first shown by Schnyder [161] a planar map is a simple triangulation
if and only if it admits a 3-orientation ; in particular a simple triangulation admits a
unique 3-orientation without cw-circuit; the cw-exploration of this orientation yields
a spanning tree whose opening has two dangling outgoing half-edges per vertices;
the face degree condition implies that incoming half-edges are not necessary to per-
form the closure; the resulting family of blossoming tree is exactly the family of
plane trees such that each inner vertex is incident to two leaves and this allows us to
recover the bijection first proposed in [149].

The second option generalizes the well labeled approach and was formalized in
[38, 39, 40].

3b. Use vertex blowing and splitting as in Section 1.2.3 to obtain a balanced poly-
hedral net M, and again, check that, apart from the fact of being balanced, all
the constraint on the resulting set of polyhedral nets can be described by local
rules inherited from the degree and α-constraints.

In the case of quadrangulations, we have already seen that using the geodesic dis-
tance to orient the map directly yields the bijection of Section 1.3.3 with well labeled
trees. The extension of the bijection to general bicolored maps, known as Bouttier,
Di Francesco, Guitter’s bijection [60] is recovered as well using the orientation in-
duced by oriented geodesics and a similar local analysis of the possible configura-
tions around black and white polygons: the mobiles of [60] naturally arise as simpli-
fied descriptions of the resulting polyhedral nets.

This second approach yields the currently most general master theorem [40]: It
extends in particular to hypermaps with ingirth d (that naturally generalize maps
with girth d) and in this context gives a very general set of parametric equations for
hypermaps with ingirth d and outerface of degree d counted by degrees of black and
white faces, that extends Equations (1.20)-(1.21). As already mentioned the most
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general statement involves some fittingly charged hypermaps that arise as the natural
setting to which the techniques of proof underlying Theorem 12 apply.

Finally we should mention that a third bijective canvas arises from the extension
of the substitution scheme approach proposed in [73]: this last approach has the ad-
vantage that it yields non-trivial but directly N-algebraic decompositions for planar
maps with a boundary, as first proposed in [71, 3].

Bijections with other combinatorial structures. Tutte’s formula (1.3) for the
number of rooted planar maps with n edges, and its variants for rooted non-separable
planar or triangulations have such a simple closed form that one should expect a pri-
ori unrelated combinatorial structures to be counted by the same numbers. This is in-
deed the case and bijections have been devised to explain some of these coincidences,
in particular in the study of permutations with forbidden pattern (see [119] and ref-
erences therein). A higher level “explanation” is that pattern avoiding permutation
tend to admit natural decompositions leading to polynomial equations with catalytic
variables, and we have seen that the simplest of those equations count maps... Ex-
hibiting structurally identical recursive decompositions for two equinumerous fami-
lies of combinatorial structures is a natural way to get a (recursive) bijection and this
approach has been fruitful in this context (see [47] and ref therein). Another remark-
able example is that of Baxter permutations and intervals in the Catalan and Tamari
orders (see [108] and reference therein).

1.4.3 Maps on surfaces

The third way to go is to move to maps on surfaces, that is, map on the torus, or
more generally on an oriented or non oriented surface of genus g. The main idea is
that, mutatis mutandis, many results have analogs for maps on oriented and also on
non-oriented surfaces but actual statements are more complicated, and proofs much
more technical.

Exact and asymptotic counting. A particularly nice result is that Formula (1.29)
is replaced for rooted map on orientable surfaces of genus g by the more general

|M g
n |= c · τg ·12nn

5
2 (g−1) · (1+O(1/

√
n)), (1.41)

where the limit is to be taken at g fixed and n going to infinity [19] (for similar
results in the physics literature see references in the survey [94]). This result is a
consequence of a more technical statement giving the general form of the gf of these
maps [19, 20, 14]: there exists a family of polynomials Pg(x) such that

Mg(z) =
Pg(T )

(2−T (z))3g , where T (z) = 1+3zT (z)2 (1.42)

As usual, this statement can be refined to take into account the number of vertices
[22]. Earlier statements for small values of g were already given in [74, 42], and
probably the general form of the result was known to the physics community in the
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early 80’s as well but we could not trace the reference yet. Recently, Eynard and
Orantin have proposed a more explicit expression of the series Mg(z) as a finite sum
of resultants of rational functions in T (z) indexed by some simple trivalent graphs,
which they derive from an explicit topological recurrence [97, 101]. The statement
of this results requires however too many notations to be reproduced here.

But maybe the most surprising result is the following simple quadratic recurrence
recently discovered by Carrell and Chapuy [80]:

(n+1)Mg
n = 4(2n−1)Mg

n−1 +
(2n−3)(2n−2)(2n−1)

2
Mg−1

n−2

+3 ∑
k+`=n
k,`≥1

∑
i+ j=g
i, j≥0

(2k−1)(2`−1)Mi
k−1M j

`−1, (1.43)

for n≥ 0, g≥ 0, with initial condition M0
0 = 1, and Mg

n = 0 for n < 0 or g < 0. This
recurrence even admits a barely more complicated refinement for the number Mg

i, j of
rooted planar maps with i vertices and j faces on a surface of genus g:

(n+1)Mg
i, j = 2(2n−1)(Mg

i−1, j +Mg
i, j−1)+

(2n−3)(2n−2)(2n−1)
2

Mg−1
i, j

+3 ∑
i1+i2=i
i1,i2≥1

∑
j1+ j2= j,
j1, j2≥1

∑
g1+g2=g
g1,g2≥0

(2n1−1)(2n2−1)Mg1
i1, j1

Mg2
i2, j2

, (1.44)

for i, j ≥ 1, with the initial conditions that Mg
i, j = 0 if i + j + 2g < 2, that if i + j +

2g = 2 then Mg
i, j = 1{(i, j)=(1,1)}, and where we use the notation n = i + j + 2g− 2,

n1 = i1 + j1 +2g1−1, and n2 = i2 + j2 +2g2−1.
While Formula (1.41) arises from (non-trivial) refinements of the gf techniques

traditionally used to study planar maps, it is worth observing that the proof of For-
mula (1.43) requires more algebraic ingredients based on the encoding of maps in
terms of permutations briefly used in formalizing Definition 1.2 (see [116, 80], the
earliest reference we could found is [125] in the combinatorial literature and [42,
Appendix 6] in the physics literature, both in the case of unicellular maps). Another
remarkable outcome of the approach of [116, 80] is the possibility to derive from it
detailed asymptotics for the constant τg [25]. Analogous results for non-orientable
surfaces have also appeared [19, 109, 79].

Unrooted maps in higher genus surfaces have also been considered, see [170]
and reference therein for exact results, and asymptotic asymmetry results like For-
mula (1.31) are in fact valid on higher genus surfaces as well [24].

Universality again. As in the planar case, the asymptotic result are valid not only
for the family of all rooted planar maps but the pattern holds for various subfamilies:

|M F
g;n|= cF · τg · (ρF )n · (αF n)

5
2 (g−1) · (1+O(1/n)) (1.45)

where cF , ρF and αF depend on the family, but the dependency in the genus is
entirely controlled by the constants τg and γg = 5

2 (g−1) that already appear in For-
mula (1.41). All the families of maps satisfying the pattern (1.40) are expected to
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satisfy (1.45) as well on higher genus surfaces, but this is currently proved only for
fewer families (in particular for those defined by one of the aforementioned restric-
tions: degrees, girth, or irreducibility) [109, 81].

Another general observation is the claim by Eynard, that map gfs should in
general satisfy a topological recurrence parameterized by the so-called spectral
curve [99]. This statement is more general than the algebraicity and asymptotic pat-
tern (1.45) since the topological recurrence can be written for gfs of critical decorated
maps as well as for series arising from algebraic geometry problems. For the numer-
ous developments around this recurrence we refer to the forthcoming book [99].

Bijection for maps on surfaces. Regarding bijective proofs, only the approach
via well labeled trees currently extends to higher genus maps: it yields in particu-
lar a correspondence between rooted maps on a surface of genus g and well labeled
unicellular maps of genus g (a map is unicellular if it has only one face). Com-
bined with decompositions à la Wright, it yields a combinatorial explanation [85] of
the occurrence of the exponent 5

2 (g− 1) in Formula (1.41). A closer relation with
well labeled trees with several marked points was given by Chapuy in [82] using
a remarkable bijective decomposition of unicellular maps [83]. Another remarkable
extension to higher genus is Miermont’s result for maps with several marked points
[141]: in particular as discussed in [66], this result unifies the well labeled tree and
the Ambjørn-Budd results.

As in the planar case, the bijective approach allows us to keep track of distances in
quadrangulations. Until now exact distance enumeration results like Formulas (1.37)-
(1.38) have been obtained only in the case g = 1, [121], but the approach has allowed
to show that in general typical distances remain in the order n1/4, [85, 82], and it has
opened the way to the construction of continuum limits of random quadrangulations
on surfaces [43].

It is instead an open problem to give combinatorial interpretation of the Eynard-
Orantin topological recurrence, or of the Carrell-Chapuy recurrences (1.43) or (1.44).
The later problem is particularly intriguing: each term in the recurrence has a clear
combinatorial interpretation, and the special case j = 1 is the celebrated Harer-Zagier
recurrence for the number εg(n) = Mg

n+1−2g,1 of rooted unicellular maps with n edges
and genus g, for which an elegant bijective proof was recently proposed by Chapuy,
Feray and Fusy in [84], building on the earlier construction of Chapuy [83].

It is worth mentioning the fact that there is a parallel story of unicellular maps,
starting with the root deletion method [171, 172, 173], continuing with characters
of the symmetric group [125, 118, 149] and matrix integrals [124] to arrive to more
combinatorial methods [128, 117, 159, 41, 33, 83, 32].

1.4.4 Decorated maps

Finally the fourth direction to discuss is the study of decorated maps. The decoration
of a map can be a coloring of its vertices, a spanning tree, a spin or loop configuration,
an orientation, etc. Of interest is then the gf of maps endowed with such a structure,
or more generally the weighted gf where each decoration is given a weight and the
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weights are summed over all pairs (map,decoration). We briefly discuss at the end
of this section some motivations for this study arising from physics and probability,
but we concentrate on counting results that have been obtained in the combinatorial
literature, either in the form of explicit counting formula or of equations for gfs.

Exact counting results by direct decompositions. As discussed in Section 1.2,
probably the first model to have been dealt with is that of cubic maps endowed
with a Hamiltonian cycle, which were enumerated by Tutte in [163] even before
counting planar maps. Spanning trees on general maps were counted later by Mullin
[147] who realized that there is a simple correspondence between these two models
(see also Theorem 5). Other models like bipolar orientations [17, 49, 108], realiz-
ers [48, 34, 108] or Schnyder decompositions [37] share with spanning trees and
Hamiltonian cycles the property that they enjoy quite explicit formulas and bijec-
tive proofs, even though their generating series are non algebraic. We include in this
list the bijection of [30] although it deals a priori with the family of cubic planar
map without decoration but the proof here uses the fact that each such a map admits
2n spanning trees and then deals with tree-rooted maps. We believe that all these
results await for a unifying master bijection mapping rooted planar maps with an
α-orientation onto some bidimensional walks, maybe extending the master bijection
between rooted planar maps endowed with a minimal α-orientation onto decorated
trees as discussed in Section 1.4.2.

Trees and Tutte’s equations for decorated maps. Another family of results is that
of dimer models, hard particles, and Ising models on planar maps which admit bijec-
tive proofs based on the blossoming or well labeled approach [62, 58, 65], and enjoy
algebraic generating series. Most of these results were first obtained via the matrix
model formalism, and several have been rederived via Tutte root-deletion method
before getting bijective proof with trees.

The enumeration of planar maps weighted by the Tutte polynomial (also known
as the Potts model on random lattices) plays a particular role in this list, as it contains
many of the above previously solved model: as first shown by Tutte for the special
case of well q-colored triangulations in a long series of 10 papers spanning 20 years
of research ([167] and ref. therein), this model is still amenable to the root-deletion
approach but the equation is amazingly difficult to solve. The resulting gf is non-
algebraic but it satisfies an explicit differential algebraic equation of order three.
Tutte’s solution remained as a isolated artifact for almost 25 years until Bernardi and
Bousquet-Mélou were able to distillate and extend his approach to the general Tutte
polynomial on triangulations and to deal with non-trivial variants of the problem on
rooted planar maps (see [35, 54] and reference therein). As opposed to the now well
understood polynomial equations with one catalytic variables that are associated to
standard Tutte equation (see Section 1.3.1), much is still to be understood on the
class of polynomial equations with two catalytic variables that are involved in these
decorated models.
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Exact results from substitution schemes. Other models have been dealt with by
variants and generalizations of Tutte’s substitution schemes that we discussed in Sec-
tion 1.3.4. Using a refinement of this approach Sundberg and Thistlewaite obtained
the gf of diagrams of open prime alternating links [162] and the asymptotic number
of prime alternating links then follows from an asymmetry analysis [126]. Zinn-
Justin and Zuber [176] extended the approach to 2-colored links, in an attempt to
attach the problem of enumerating prime alternating knots (see also [160]). Tutte’s
substitution scheme allows us also to deal with the Ising model on non-separable
maps [35] or with orientations on maps with girth or connectivity constraints [103].
In all those examples, the main idea is that the decomposition follows the structures
of the underlying non-decorated map, and the interactions between the decoration
and the decomposition is local and relatively well controlled.

In the case of the so-called O(n) of colored loops on maps, Borot, Bouttier and
Guitter [52, 51, 50] apply instead the idea of decomposing along the maximal loops
of the model. By a careful analysis of the possible interface between the core (here re-
named gasket) and the submaps along these maximal loops, they obtain a functional
equation that they are not able to solve exactly in general but which is sufficient to
derive remarkably precise non-trivial asymptotic results.

Finally let us quote the recent work of Bousquet-Mélou and Courtiel [55], which
starts this time from a direct, non-recursive, substitution scheme: rooted planar map
with a spanning forest can indeed be obtained from non-decorated maps upon in-
serting spanning trees in vertices with proper weights, as already observed in [65].
This approach yields almost directly an equation, but its study is quite difficult and
leads to remarkable developments involving differentially algebraic gf and to non
standard asymptotic expansions for a particular interpretation of the model in terms
of forested maps weighted by the external activity of the spanning forest.

Decorated maps in physics and probability. To conclude, let us give a Boeo-
tia’s motivation for the study of decorated map in physics. From the physics point of
view, we are considering the annealed partition function of a toy model of statisti-
cal physics coupled to a random lattice. Toy models of statistical physics are usually
defined on a fixed regular lattice (typically the triangular, square or hexagonal lat-
tice) and are viewed as microscopic models of matter. The idea to couple such a toy
model with an irregular lattice arises from quantum geometry: the regular classical
euclidean geometry is to be replaced by a quantum geometry, that is a distribution
of probability on a set of irregular geometries: in the pair (map, decoration), the
map plays the role of the random lattice and it is decorated by the configuration of
the model. Accordingly, non-decorated maps are considered as a model of pure 2d
quantum geometry, while decorated maps correspond to 2d quantum geometry with
matter. We refer to the survey [94] and the book [8] for an introduction to the moti-
vations for the study of these toy models on random lattices in physics.

The physics community has developed a remarkable expertise in classifying the
toy models into universality classes, and in predicting which universality classes and
critical exponents are possible. From this point of view the pattern and universality
statements of Section 1.4.1 are just the tip of the iceberg, corresponding as already
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mentioned to the simplest case of pure 2d quantum geometry without coupling to
matter. The more general situation of quantum geometry with matter is quite com-
parable to that of the study of statistical physics conformally invariant toy models
on regular 2d lattices, and in fact a tight relation exists between these two areas, first
discovered by Knitchik, Polyakov and Zamolochikov and now referred to as the KPZ
relation. Again the interested reader is directed to [94], and to the work of Duplantier
and Sheffield [95] and Miller and Sheffield [145] for recent developments on these
interactions, see [115] for a survey.
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balanced parenthesis word, 12, 15

catalytic variable, see equations
cellular decomposition, 5, 6
circuit, 8, 9, 16–18, 29, 45

clockwise (or cw), 8
counterclockwise (or ccw), 8
simple, 8

constructions
blowing, 17, 46
ccw-exploration, 16, 17, 46
closing, 20
closure, 15–17, 29, 45, 46
contour code, 12, 15, 19
1-core, 37
derived map, 6, 9, 43
dual map, 5, 7, 8, 14, 20, 44
edge map, 6, 8, 21, 27, 29, 44
folding, 18, 20, 31, 38, 45, 46
incidence map, 6, 8, 27, 39, 44
non-separable core, 32, 37, 51
opening, 14, 17, 20, 29, 45, 46
splitting, 18, 20, 31, 38, 45, 46

corner, 4–6, 10–12, 15, 26, 31, 32, 35

edge
root, 8
turning, 16, 19

equation
loop, 25
Schwinger-Dyson, 25
with catalytic variable, 23, 43, 47,

50

face, 4
degree, 4
exterior, 7
outer, 7

root, 8
function

feasible, 8, 17, 45
root-accessible, 17, 45

Hamiltonian cycle, 14, 50

intrinsic geometry, 38, 40, 42, 49

map
automorphism, 11
covered, 20
Eulerian, 4, 9, 21
m-angulation, 4
m-valent, 4
non-separable, 32, 33, 43, 44, 47, 51
planar, 4, 5
plane, 7
quotient, 26, 43
rooted, 8
simple, 4
tree-rooted, 12
unicellular, 49
unrooted, 10, 26, 36, 43, 48

master bijection, 44, 46, 50

orientation
3-orientation, 9, 46
Eulerian, 9, 29, 46
induced by spanning tree, 9, 16
root-accessible, 16

polygon, 18
polyhedral net, 18

balanced, 19, 20, 45, 46
skeleton, 19

rotation system, 5
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super-edges, 18

topological recurrence, 26, 48, 49
tree

balanced, 15–17, 20, 29, 45, 46
blossoming, 27, 46
decorated, 14, 45, 46
embedded, 29, 38, 41
spanning, 7, 9, 11, 14, 16, 18, 20,

31, 45, 50, 51
dual, 7

split, 18, 19
well labeled, 27, 29, 38, 41

vertex
degree, 4
root, 8

walk
counterclockwise (or ccw), 12, 14,
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