
Figure 2.7: A rooted plane tree, its dual map, the same rotated, and the associated planted flower

The clockwise walk around a rooted plane tree. Consider a rooted planar tree (T, c) with
n edges. The clockwise walk around (T, c) induces a total order c1 ≺ c2 ≺ · · · ≺ c2n on the 2n
corners of T given by the order in which these corner are visited by a 2d little ant, starting at the
root corner and travelling in clockwise direction on the border of the tree T .
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Figure 2.8: The first few corners visited by the clockwise walk, and the complete numbering
according to the ≺ order.

More formally, the order ≺ is defined as follows: c1 = c is the root corner of T ; for all i ≥ 2,
let ei denote the edge that borders c in the clockwise direction around the vertex incident to c;
then ci+1 is the opposite corner on the same side of ei.

Claim 22 The clockwise walk around (T, c) visits each corner once, and each edge twice: first
away from the root, and then toward the root.

The contour of a rooted plane tree The contour encoding of a rooted plane tree with n

edges is the word of length 2n obtained along the clockwise walk around (T, c) upon:

• writing a letter u when an edge is visited for the first time

• writing a letter d when an edge is visited for the second time.

The contour walk is the one-dimensional walk associated to this word, as in Chapter 1.
Assuming that the clockwise walk is perfomed by an ant travelling at constant unit speed,

the contour walk simply gives the distance to the root of the ant as a function of time. The
reconstruction of a plane tree from its contour walk is also nicely describe graphically: cover the
lower part of the Dyck path with glue and smash the path horizontally. Opposite sides get glued
togeter and when the smashing is relaxed the result is a plane tree...

Figure 2.9: The contour of the tree of Figure 2.8 and the inverse “smashing”
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Proposition 23 The contour encoding is a bijection between

• rooted planar trees with n edges, and

• Dyck words on {u, d} with 2n letters.

Flowers, arch diagrams, chord diagrams and trees again Expand the only vertex of a
flower into a small circle, cut at the root corner, and straighten the circle into a line. The result
is a non-intersecting arch diagram with n arches.

Figure 2.10: The arch and chord diagrams associated with a flower.

Close the arch diagram in a circle with arch inside, and straighten arches so that they become
chords. The result is a rooted chord diagram with n chords. Observe that the flower and the
chord diagram are the same when considered on the sphere. The only difference is the point at
infinity used for the drawing in the plane: in the root face for the flower, inside the vertex for the
chord diagram.

Figure 2.11: Folding a chord diagram into a tree.

From the chord diagram, one recover the tree by interpreting chords as strings connected
opposite sides of a 2n-gon. Upon smashing each string, the 2n-gon folds into a tree.

Arch diagrams and balanced parenthesis words Reading from left to right the inital part
of an arch can naturally be interpreted as an opening parenthesis and the end of the arch a closing
one. Upon writing u for opening parenthesis and d for closing ones we recover a correspondance
with Dyck words. However in order to have this construction commute with the previous ones,
the arch diagram should be read from right to left. Equivalently, the third diagram of Figure 2.7
can be used to illustrate the fact that the clockwise walk around the tree crosses dual edges in
counterclockwise order around the dual vertex.

Parentheses and algebraic expressions Upon giving names to vertices, the rightmost tree
of Figure 2.11 is naturally associated to an expression

a(b(c(), d()), e(), f(g())).

Upon forgetting the name of symbols, we recover (the mirror image of) the Dyck code of the tree
((()())()(())). A classical alternative to the encoding of such an expression is the polnish notation:
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Figure 2.12: Dfs degree encoding and bfs degree encoding of the same tree

if the arity of each symbol is known, parentheses are useless, and the expression can be recovered
from the word

a3b2c0d0e0f1g0

Because the arity of a vertex is its degree minus one, except for the root vertex, it is more convenient
to state this encoding result for planted plane trees (i.e. with a root vertex of degree 1), rather
that rooted ones.

This suggest the following procedure to encode a planted plane tree by its depth-first-search
degree code:

• perform the cw walk around T and each time a non-root vertex is visited for the first time,
write its degree.

The degree code of a planted plane tree is a word w on the alphabet N = {1, 2, . . .}. With δ

defined by δ(i) = i − 2 and extended additively on concatenations, this word satisfies δ(w) = 0
(according to Proposition 18), and the �Lukasiewicz property (as defined Section 1.8): any strict
prefix w� of w is such that δ(w�) > δ(w). Indeed during the clockwise walk δ(w�) + 1 is always
equal to the number of non-visited neighbors of already visited vertices: this quantity is positive
until the visit of the last leaf.

Proposition 24 For any finite sequence (ni)i≥1 such that
�

i≥2
(i − 2)ni = n1 − 2, dfs degree

encoding is a bijection between planted plane tree with ni vertices of degree i and words on the

alphabet {1, 2, . . .} with ni letters i that satisfy the �Lukasiewicz property for δ : i → i− 2.

It should be noted that the degree code can be performed with any (deterministic) traversal
policy: one could use for instance breadth first search instead of depth first search. In this case
the quantity δ(w�) is closely related to the width of the tree (the number of vertices at distance i

of the root), since unvisited neighbors of visited vertices all lie almost at the same distance of the
root at any time during bfs.

From degree codes to Dyck words A bijection between degree codes of length n and Dyck
words of lenght 2n consists in replacing each letter i by a factor ui−1d and then removing the final
letter d.

The reverse bijection is simply by iteratively factorizing the word from left to right using at
each step the leftmost factor uid available; there is no ambiguity since the language {uid, i ≥ 0}
is a code: it does not contains a word which is a prefix of another word of the langage.

Degree codes on the alphabet {1, 3} and binary trees Restricting our attention to the
alphabet {1, 3} is equivalent to considering trees with vertices of degree 1 and 3 only, that is,
planted binary trees.

Proposition 25 The degree encoding yields a bijection between planted binary trees with n inner

nodes and words of length 2n+ 1 of the Dyck-�Lukasiewicz language Dd.

Dyck words therefore also encode binary trees. The direct relation between planted binary
trees and rooted plane trees is given by the left rotation correspondance, illustrated by Figure 2.13.
This correspondance can also be nicely described in terms of computer data structures for trees: a
rooted plane tree is naturally described by attaching to each vertex a list of its children from left
to right; but another natural data structure consists in giving to each non-root vertex of the tree,
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a (possibly null) left pointer to its leftmost child and a (possibly null) right pointer to the next
sibbling in the list of its father: this second data structure is reinterpreted as encoding a binary
tree, the left and right pointers giving left and right children of inner nodes and null pointers
corresponding to leaves.

Figure 2.13: The rotation correspondance.

Binary trees and triangulations of a n-gon Duality applied to binary trees with n inner
nodes and n + 2 leaves yields a map with one vertex, n inner faces of degree 3 and n + 2 faces of
degree 1. This correspondance can be made nicer upon expanding each corner incident to faces of
degree 1 into an edge, so as to form a (n + 2)-gon, and redrawing the resulting map with a point
inside the (n+2)-gon at infinity. The result is a triangulation of the (n+2)-gon with n triangles.

This transformation can now be extended to general trees with triangles replaced by general
polygons.

Proposition 26 There is a bijection between rooted plane trees with n edges, ni vertices of degree

i ≥ 2 and k leaves, and dissections of a k-gon with n chords defining ni faces of degree i.

Observe that in this last statement, chords cannot be assumed to be straight, unless there is no
vertex of degree 2 (n2 = 0). Observe also that, as opposed to chords of chord diagrams, several
chords of dissections may share the same endpoint.

Bipartite trees, bicolored chord diagrams and non-crossing partitions The vertices of
a tree can be bicolored in a unique way such that the root is white. The above duality with chord
diagrams allows to transfert this bicoloration into a bicoloration of the faces of a chord diagram.
Observe that the 2n edges of the polygon alternatively border black and white face. Opening the
circle at the middle of the white bordered edge incident to the root corner we get a bicolored arch
diagram. Contracting now black bordered edges of the line this arch diagram is turned into a
bicolored multi-arch diagram (arch are now allowed to share their extremity two by two). Upon
numbering the vertices from 1 to n the black regions define a set partition of {1, 2, . . . , n}. This
partition is non-crossing, meaning that if i ≤ j ≤ k ≤ � then the pairs (i, k) and (j, �) can be
simultaneously be pairs of elements of a same part.

Proposition 27 The above construction is a bijection between rooted plane trees with n edges and

non-crossing partitions of {1, . . . , n}.

2.2.2 Enumeration in the garden

Enumeration, 1st try, Catalan The first properties we get is that all these combinatorial
objects are counted by the same Catalan numbers as Dyck words.

Corollary 28 The number of rooted plane trees with n edges is the Catalan number

1

n+ 1

�

2n

n

�

Mutandis mutandis, the same statement holds for all the other families we have introduced.
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