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Rooted planar maps. Definition

a planar map = an embedding of a connected graph in the plane.

planar map = planar graph + cyclic order around vertices.

We consider rooted planar maps: a root edge is chosen around the

infinite face and oriented counterclockwise.



Rooted planar maps. Examples

The smallest maps: . * o

A planar map with only

one face is a plane tree.

A planar map with only

one vertex is a cycle of

loops.



Rooted planar maps. On the sphere ?

Sometimes I like to replace the plane by a sphere ...

o

This is equivalent but looks more symmetric:

all faces are simply connected (=disc).

— nicer pictures but that are more difficult to do ...



Rooted planar maps. Example of subfamilies

Triangulations 4-regular maps

Such local restrictions should be irrelevant in the large size limit.

Compare to simple trees: m-ary trees, plane trees, 1-2 trees

= they usually are all the same.



Enumeration of maps in combinatorics

as opposed to physics & enumerative topology

o Tutte (1962): a census of triangulations

Originally to attack the four color theorem via enumeration.

e Counting planar maps (70’s): Tutte, Brown, Mullin, Cori, Liu ...
Results for more than twenty subfamilies of planar maps.

... Gao-Wormald (2001) 5-connected triangulations

e Maps on surfaces (80's), random planar maps (90's):
Bender, Canfield, Arqués, Gao, Richmond, Wormald, . ..

For instance, Bender-Compton-Richmond (1999):

0-1 laws for FO logic properties of random maps on surfaces.



Enumeration via generating functions

just one step away from plane trees...



Tutte's root deletion method. (i) plane trees

Usual plane trees are exactly maps with one face.

=\

/ 1!
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12

Thus the equation t(z) —1 = 2t(2).

Plane trees (and in general simple trees) have algebraic GF.



Tutte's root deletion method. (ii) loops

A map with only one vertex is a cycle of loops.

w;o w
Lizou)—1 = 25L(zu) — 2450z)

A linear equation in L(z,u) with polynomial coeffs in z, u and £(z):

(u— 1+ 2u”)L(z,u) =u— 1 — zul(2).
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Tutte's root deletion method. (iii) all maps

The two previous cases generalize:

Vu=99

F(z,u) — 1= 20’F(z,u)* + 2% (uF (2,u) — f(2))

or equivalently (dependences in z hidden)
(uw — Dzu*Fu)* + (u— 14+ 2u*)F(u) + (u — 1 — zuf) =0

a quadratic equation in F'(u) with polynomial coeffs in z, u and f.
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Linear equations with a catalytic variable. The kernel method.

The kernel method for K (u)L(u) = q(z,u,¥):

o Look for a root ug of K(u) such that L(ug) makes sense.

Here L(u) € Clu][[z]] and the roots of K (u) are

up = =2 = 1/2 4+ 0(1) and we = 02 = 2 + O(27).

L(u1) is not ok but L(uz) converges as a formal power series.

The substitution u < ug in the linear equation gives

0=wus — 1+ zus ¥, so that £(z) = 1= V21Z_4Z

(See also Cyril Banderier’s talk)
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Polynomial equations with a catalytic variable.

Bousquet-Melou’s method — (extends kernel & Tutte's quadratic methods)

F(z,u) and f(z) such that there is a polynomial P(a,b, c) with

P(F(u),u, f) =0 (dependence in z hidden)

e Differentiate with respect to u:
Fo(u)Po(F(u),u, f) + Py (F(u),u, f) = 0
e Suppose we find up = uo(z) such that F(ug) is well defined and

Py(F(uo), uo, f) = 0.
Then P.(F(uo),u0, f) =0 and P(F(uo),uo,f)=0.

A polynomial system in F(ug), uo, f: algebraic solutions !
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Rooted planar maps. The solution

e We obtain an algebraic generating function f(z):

f(z):ZZIMI 1 1 — 18z — (1 —122)3/2

5422
M

(remark that F'(z,u) is also algebraic — face degree)

e Transfert theorems (e.g.) yield an asymptotic expansion:

#{rooted maps with n edges} ¢-n=5/2.12"

The exponent 5/2 is characteristic of planar map emunerations

(compare to 3/2 for various simple trees).
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A first summary.

e Polynomial equations with one catalytic variable should have

algebraic solutions (cf. Mireille Bousquet-Mélou):

P(F(z,u), 2, u, f1(2),..., fe(z)) =0

(if you know examples, we are interested in collecting them !)

e Root deletion applies to many families of maps and yields

“universal” asymptotic behavior:

#{rooted F-maps of size n} = O

where ¢ and p depend on the family F.

e In some cases the explicit formulas are nice.
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Nice formulas, random maps and

why planar maps are almost Galton-Watson trees
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Tutte's formulas for rooted planar maps. (60's)

The root deletion method provides surprisingly nice formulas in
several cases, among which:

2 2" (3 n
#{triangulations with 2n faces} = n 159 1 1 <:> ~ nc51/2 (27/2)
2 3" (2
#{4-regular maps with n vert.} = T S ( :) ~ ni2/2 12"

All families should behave the same

= concentrate on those simpler models !

(like binary trees in tree enumeration, bernoulli walks, ... )
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Tutte's formulae. A bijective proof (i).

2 3" <2n>

#{ 4-regular maps with n vertices } is =5 - ;25

There are

1 2n
n+1\n

binary trees with n nodes.

Such trees have n (internal) nodes and n + 2 leaves (root included).
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Tutte's formulae. A bijective proof (ii).

2 3" <2n>

#{ 4-regular maps with n vertices } is =5 - ;25

On each node, a bud can be added

in three ways, giving rise to

3" 2n
n+1\n

blossom trees with n nodes.

Blossom trees have n buds and n + 2 leaves around the tree.

Upon matching them counterclockwise, two leaves remain unmatched.
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Tutte's formulae. A bijective proof (iii).

#{ 4-regular maps with n vertices } is —2= - =2_ (2n)

n+2 n+l

The matching procedure does not
depend on which leaf is the root.
A blossom tree is balanced if its root

remains unmatched.

Each conjugacy class of trees contains n + 2 blossom trees, 2 of

which are balanced: the number of balanced blossom tree is thus
2 3" [(2n
n+2 n+1\n/
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Tutte's formulae. A bijective proof (iv).

#{ 4-regular maps with n vertices } is —2= - =2_ (2n)

n+2 n+l

Theorem (S. 1998):

Closure is one-to-one between

e balanced blossom trees with

n nodes

e and 4-regular maps with

n vertices.

The converse bijection is based on a bfs traversal of the dual graph.
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Random planar maps
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The random planar map.

Random planar maps are defined by:
the uniform distribution on rooted planar maps with n edges.

But we can as well use a subfamily:
e uniform on 4-regular maps with n vertices
e uniform on balanced blossom trees with n nodes
e uniform on blossom trees with n nodes

o G.W. trees with 3 types of offspring 2, conditioned to have n nodes

= map parameters lead to fancy parameters on trees.
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Random planar maps as random lattices

In physics papers, they would rather take:

random 4-regular maps (¢* lattice model).

Hg

or random triangulations (dual ¢> model).

=3
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Why random maps in physics ? (a naive point of view)

Consider a 2d universe...

e Conventional gravity: the universe is flat.

= discretised by a regular grid.

e Quantum gravity: a distribution of proba on possible universes.

= discretised by a random map.

e planar case is easier = assume spherical topology to start with.

This lead some physicists to rediscover many formulas of Tutte using

“perturbative expansion of matrix integrals”.
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A gallery of random maps
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What is the typical geometry of a random map 7

(or triangulations or 4-regular maps, ... )
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The random planar map. Profile and diameter (i).

° quk) 1s the number of vertices at distance k of the root
e the profile is then X,, = (Xﬁbl), X7g2), . ,qu,,k), o)

dst 4 3 2 1 0 4 6 5 4= X%
h=4

® h,, is the height (maximal distance from the root)
e [, is the diameter of a random n-triangulation
In particular h,, < D, < 2h,.
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The random planar map. Distances and diameter (ii).

Experimentation using random sampling algorithms:

Six random profiles: Averaged profiles:

00000
00000

00000

All for maps of size n = 100,000. For various n (100 to 100, 000).

= Conjecture (S. 1998) The correct scaling is k = tn'/4.

For this scaling I expect normalised X,gk) to converge to a random

process X (t) supported on R,
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The random planar map. Distances and diameter (iii).

In particular this “should” imply

e Two beautyful heuristic calculations by physicists Watabiki,
Ambjgrn et al. (1994:) The Hausdorff dimension is 1/4 :

meaning for k < n'/?, E(fok XY ~ Kk,
for k> n*/*, E(X ") is exp. decreasing

e Conjecture (S. 2001):
E(hn) ~ n1/4 ea—a(e/n)1/4 Where o = \/2 + 16—3\/§

(constant « given here for loopless cubic maps).
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The random planar map. A tentative picture of distances.
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The random planar map. A tentative picture of cuts.

AR mother universe of size scaling
in n/2 + xn** with stable law 3/2

(BaFIScSo000)

\ logarithmic a —separator ?
. (Conjecture: Gao, S. 01)

Q \
hadl|
cte size cuts baby universes of size
(linear number) each O( 23 )

but summing to®@ (n)
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A second summary

e The random planar maps model has many variants

(triangulations, bipartite maps, convex polyhedra, ... )

e Parameters of interests have similar flavor as for simple trees

(profile, height, maximal degree, 0-1 laws, ... )

e All knows results satisfy the expected “universality”: critical

exponents agree for different families.
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An application to knot theory:

the asymptotic number of prime alternating links

join work with Sébastien Kunz-Jacques.
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Knots and links.

The unknot is the simplest knot ...
A knot is made of one lace, a link may have more.

A planar diagram of a link: a generic projection.

The size of a link is its minimal number of crossings in a

planar diagram.

The 3 Reidemeister moves connect all its diagrams.
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Knots and links. Prime factor decomposition

D& - 3

Knots and links have a unique decomposition in prime factors.

Prime links cannot be decomposed:

no 2-cut in their minimal diagrams

Example of defect of primality —
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Knots and links. Enumerative knot theory ?

Count prime knots and links w.r.t. number of crossings !

or equivalently

Count equivalence classes of diagrams under Reidemeister moves.

This seems to be a very difficult problem...

We shall restrict our attention to easier subclasses.
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Knots and links. Alternating links

Alternating diagrams: each edge is undercrossing at one end,

and overcrossing at the other.

)

I 1T

Find which one is alternating !

An alternating link is one that admits an alternating diagram.

Not all knots are alternating,

but these have nicer properties than general knots...
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Knots and links. Flype and Tait's conjecture

A flype transforms one diagram into another:

Theorem (Menasco and Thistlethwaite, 1993)

Any two prime alternating diagrams of a prime alternating link are
connected by a sequence of flypes.

Corollary. All prime alternating diagrams of a prime alternating link
have the same size (= number of crossings).
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The number of prime alternating links

A simpler problem ? Count prime alternating links

or equivalently

Count equivalence classes of diagrams under the action of flypes.

Theorem (Sundberg and Thistlethwaite, 1998)

The number A,, of prime alternating links of size n satisfies

cl)\”n_7/2 <A,< 02)\”77,_5/2.

Our aim: the exact asymptotic behavior.

Our means: analytic combinatorics of random planar maps.
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Diagrams and planar maps.

Proposition. There is a one-to-one correspondence between
e rooted (prime) alternating diagrams with n nodes,

e rooted 4-reqular planar maps (without 2-cut) with n vertices.

Idea: The over-undercrossing structure of the root vertex can be
consistently propagated to all others.
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Rooted diagrams. Enumeration.

We have seen that

#{rooted diagrams of size n} = HLH n3:2 (27:")
Similarly
#{rooted prime diagrams of size n} = 2ni2 2n1+1 (37;1)

(proof by root deletion or bijection with ternary blossom trees).

But we need to take flypes into account.

Flypes act inside “Conway circles” i.e. 4-cuts.
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Rooted diagrams. Conway circle decomposition.

Look for maximal Conway circles.

= they define a tree like decomposition.
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Rooted diagrams. Tree-like structure.

@ “Nodes” of this tree are 4-regular

maps of two type:

OO e indecomposable (4-cut free),

e vertical or horizontal sums.

Node degree is number of circles.

Leaves are the original crossings.
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Rooted diagrams. Equations for rooted diagrams.

Let I(z), V(z), H(z) be GF of “trees” according to the root node
(indecomposable, v- or h-sum). Then

D(z) = z+4+1(2)+V(z)+ H(z)
1) = Y pD(2) = P(D(2)
V) = HE = EHIEEVE)

T 1-(GEHIE V()
P(z) = ppz* is GF of indecomposable nodes (4-cut free maps).

But D(z) is GF of rooted diagrams (known and algebraic)

= all series (including P) are algebraic.
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Articulated trees

Theorem (adapted from Sundberg & Thistlethwaite):

There s a one-to-one correspondence between

e rooted prime alternating links of size n, and

e articulated trees with n leaves.

To count articulated tree, put them in normal form !
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Articulated trees. Equations

Let I1(z), V(2), H(z) be GF of articulated trees.

Then
D(z) = z2+1(z)+V(z)+H(2)
I(z) = P(D(2))
V(z) = H(z) = +—L1 _—1—z2—(T+V).

l—z 1—(I4V)

The series P is still the same

= all series (including P) are algebraic.
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Articulated trees. Asymptotic number.

Theorem (Sundberg & Thistlethwaite, 1998):

The asymptotic number of rooted prime alternating links

satisfies
a, ~ co\"n">%/?
with

101 + v/21001
- 40

and cy another known algebraic constant.

A ~ 6.15
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Prime alternating links. Unrooting

From the point of view of knot theory, rooting is not natural:

we really want the number of unrooted links

Tight bounds on the number of rootings for links give:

Theorem (Sundberg and Thistlethwaite, 1998)

The number A,, of prime alternating links of size n satisfies

Cl)\”n_7/2 <A,< C’g)\”n_5/2.

Can we do better by estimating the number of rootings of a

random link 7
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Prime alternating links. Unrooting

For random planar maps, unrooting is trivial:

Theorem (Wormald, 1994)
A random planar map with n edges has almost surely 8n

rootings (with exponential bounds).

In other terms, symmetric maps are exponentially
negligible among large random maps.

As now usual, a “universal” result.

But for links the situation is more complicated.
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Prime alternating links. Unrooting

There is an interference between:

possible rootings and flype equivalence
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Prime alternating links. Unrooting

The following steps allow to circumvent this difficulty:

e The parameter number of rootings is compatible with the

tree-like decomposition.

= marking in GF + singularity analysis

Theorem (S., Kunz-Jacques 2000)

The expected number of rootings i1s cn with concentration

e Global symmetries can be proved exponentially neglegible.
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Prime alternating links. Final result

Theorem(S., Kunz-Jacques 2000)

The number of prime alternating links of size n satisfies
for n going to infinity:
79

An o~ _n C/)\7’1,”—7/2
8cn

where

~ 101 + v/21001 1 < 371

~ 6.15 and cC= —
v/21001

A 40 2

— 1) ~ 0.78.

and c' is a known algebraic constant.

Corollaries: parameters of random links.
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