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An overview of the talk

The enumeration of maps

examples of algebraic functions

Random planar maps

almost sure properties

Enumerative knot theory ?

prime alternating links

Asymptotic enumeration of links

as an application of random maps
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Rooted planar maps. De�nition

a planar map = an embedding of a connected graph in the plane.

planar map = planar graph + cyclic order around vertices.

We consider rooted planar maps: a root edge is chosen around the

in�nite face and oriented counterclockwise.
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Rooted planar maps. Examples

The smallest maps:

A planar map with only

one face is a plane tree.

A planar map with only

one vertex is a cycle of

loops.

4



Rooted planar maps. On the sphere ?

Sometimes I like to replace the plane by a sphere : : :

This is equivalent but looks more symmetric:

all faces are simply connected (=disc).

! nicer pictures but that are more di�cult to do : : :
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Rooted planar maps. Example of subfamilies

Triangulations 4-regular maps

Such local restrictions should be irrelevant in the large size limit.

Compare to simple trees: m-ary trees, plane trees, 1-2 trees

) they usually are all the same.
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Enumeration of maps in combinatorics

as opposed to physics & enumerative topology

� Tutte (1962): a census of triangulations

Originally to attack the four color theorem via enumeration.

� Counting planar maps (70's):Tutte, Brown, Mullin, Cori, Liu : : :

Results for more than twenty subfamilies of planar maps.

: : : Gao-Wormald (2001) 5-connected triangulations

� Maps on surfaces (80's), random planar maps (90's):

Bender, Can�eld, Arquès, Gao, Richmond, Wormald, : : :

For instance, Bender-Compton-Richmond (1999):

0-1 laws for FO logic properties of random maps on surfaces.
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Enumeration via generating functions

just one step away from plane trees...
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Tutte's root deletion method. (i) plane trees

Usual plane trees are exactly maps with one face.

T’’
T’T’ T’’

X
T 6=�

zjT j =

X
T 0;T 00

z1+jT
0j+jT 00j

Thus the equation t(z)� 1 = zt(z)2.

Plane trees (and in general simple trees) have algebraic GF.
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Tutte's root deletion method. (ii) loops

A map with only one vertex is a cycle of loops.

5
1

2

3
4

1
2

3

X
w6=�

zjwjud(w) =

X
w

z1+jwj(u+ u2 + � � �+ ud(w)+1)

L(z; u)� 1 = zu2

u�1L(z; u)� zu
u�1`(z):

A linear equation in L(z; u) with polynomial coe�s in z, u and `(z):

(u� 1 + zu2)L(z; u) = u� 1� zu `(z):
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Tutte's root deletion method. (iii) all maps

The two previous cases generalize:

M’ M’’ M’ M’’

1 2

35
4

6

F (z; u)� 1 = zu2F (z; u)2 + zu
u�1(uF (z; u)� f(z))

or equivalently (dependences in z hidden)

(u� 1)zu2F (u)2 + (u� 1 + zu2)F (u) + (u� 1� zuf) = 0

a quadratic equation in F (u) with polynomial coe�s in z, u and f .
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Linear equations with a catalytic variable. The kernel method.

The kernel method for K(u)L(u) = q(z; u; `):

� Look for a root u0 of K(u) such that L(u0) makes sense.

Here L(u) 2 C [u][[z]] and the roots of K(u) are

u1 = 1+
p

1�4z

2z

= 1=z +O(1) and u2 = 1�p1�4z

2z

= z +O(z2):

L(u1) is not ok but L(u2) converges as a formal power series.

The substitution u u0 in the linear equation gives

0 = u2 � 1 + zu2 `; so that `(z) = 1�p1�4z

2z

(See also Cyril Banderier's talk)
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Polynomial equations with a catalytic variable.

Bousquet-Melou's method � (extends kernel & Tutte's quadratic methods)

F (z; u) and f(z) such that there is a polynomial P (a; b; c) with

P (F (u); u; f) = 0 (dependence in z hidden)

� Di�erentiate with respect to u:

F 0u(u)P
0

a(F (u); u; f) + P 0b(F (u); u; f) = 0

� Suppose we �nd u0 = u0(z) such that F (u0) is well de�ned and

P 0b(F (u0); u0; f) = 0:

Then P 0a(F (u0); u0; f) = 0 and P (F (u0); u0; f) = 0:

A polynomial system in F (u0), u0, f : algebraic solutions !
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Rooted planar maps. The solution

� We obtain an algebraic generating function f(z):

f(z) =
X

M

zjM j = 1� 1� 18z � (1� 12z)3=2

54z2

(remark that F (z; u) is also algebraic ! face degree)

� Transfert theorems (e.g.) yield an asymptotic expansion:

#frooted maps with n edgesg c � n�5=2 � 12n:

The exponent 5=2 is characteristic of planar map emunerations

(compare to 3=2 for various simple trees).
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A �rst summary.

� Polynomial equations with one catalytic variable should have

algebraic solutions (cf. Mireille Bousquet-Mélou):

P (F (z; u); z; u; f1(z); : : : ; fk(z)) = 0

(if you know examples, we are interested in collecting them !)

� Root deletion applies to many families of maps and yields

�universal� asymptotic behavior:

#frooted F-maps of size ng = c��nn�5=2

where c and � depend on the family F .

� In some cases the explicit formulas are nice.
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Nice formulas, random maps and

why planar maps are almost Galton-Watson trees
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Tutte's formulas for rooted planar maps. (60's)

The root deletion method provides surprisingly nice formulas in

several cases, among which:

#ftriangulations with 2n facesg =

2
2n+ 2

2n

2n+ 1
�

3n
n

�
� c1

n5=2
(27=2)
n

#f4-regular maps with n vert.g =

2
n+ 2

3n
n+ 1

�
2n

n
�

� c2
n5=2
12n

All families should behave the same

) concentrate on those simpler models !

(like binary trees in tree enumeration, bernoulli walks, : : : )
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Tutte's formulae. A bijective proof (i).

#f 4-regular maps with n vertices g is 2
n+2
� 3n
n+1
�
2n

n
�

.

There are

1
n+ 1

�
2n

n
�

binary trees with n nodes.

Such trees have n (internal) nodes and n+ 2 leaves (root included).
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Tutte's formulae. A bijective proof (ii).

#f 4-regular maps with n vertices g is 2
n+2
� 3n
n+1
�
2n

n
�

.

On each node, a bud can be added

in three ways, giving rise to

3n
n+ 1

�
2n

n
�

blossom trees with n nodes.

Blossom trees have n buds and n+ 2 leaves around the tree.

Upon matching them counterclockwise, two leaves remain unmatched.
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Tutte's formulae. A bijective proof (iii).

#f 4-regular maps with n vertices g is 2
n+2
� 3n
n+1
�
2n

n
�

.

The matching procedure does not

depend on which leaf is the root.

A blossom tree is balanced if its root

remains unmatched.

Each conjugacy class of trees contains n+ 2 blossom trees, 2 of

which are balanced: the number of balanced blossom tree is thus

2
n+ 2
� 3n

n+ 1
�

2n
n

�
:
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Tutte's formulae. A bijective proof (iv).

#f 4-regular maps with n vertices g is 2
n+2
� 3n
n+1
�
2n

n
�

.

Theorem (S. 1998):

Closure is one-to-one between

� balanced blossom trees with

n nodes

� and 4-regular maps with

n vertices.

The converse bijection is based on a bfs traversal of the dual graph.
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Random planar maps
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The random planar map.

Random planar maps are de�ned by:

the uniform distribution on rooted planar maps with n edges.

But we can as well use a subfamily:

� uniform on 4-regular maps with n vertices

� uniform on balanced blossom trees with n nodes

� uniform on blossom trees with n nodes

� G.W. trees with 3 types of o�spring 2, conditioned to have n nodes

) map parameters lead to fancy parameters on trees.
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Random planar maps as random lattices

In physics papers, they would rather take:

random 4-regular maps (�4 lattice model).

or random triangulations (dual �3 model).
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Why random maps in physics ? (a naive point of view)

Consider a 2d universe...

� Conventional gravity: the universe is �at.

) discretised by a regular grid.

� Quantum gravity: a distribution of proba on possible universes.

) discretised by a random map.

� planar case is easier ) assume spherical topology to start with.

This lead some physicists to rediscover many formulas of Tutte using

�perturbative expansion of matrix integrals�.
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A gallery of random maps
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What is the typical geometry of a random map ?

(or triangulations or 4-regular maps, : : : )
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The random planar map. Pro�le and diameter (i).

� X(k)
n is the number of vertices at distance k of the root

� the pro�le is then Xn = (X
(1)

n ; X
(2)

n ; : : : ; X
(k)

n ; : : : )

6 5 4

D=8

401234dist X(k)=
h=4

� hn is the height (maximal distance from the root)

� Dn is the diameter of a random n-triangulation

In particular hn � Dn � 2hn.
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The random planar map. Distances and diameter (ii).

Experimentation using random sampling algorithms:

Six random pro�les:

0

500

1000

1500

2000

2500

50 100 150 200 250

All for maps of size n = 100; 000.

Averaged pro�les:

0

500

1000

1500

2000

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380
For various n (100 to 100; 000).

)Conjecture (S. 1998) The correct scaling is k = tn1=4.

For this scaling I expect normalised X
(k)

n to converge to a random

process X(t) supported on R
+.
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The random planar map. Distances and diameter (iii).

In particular this �should� imply

� Two beautyful heuristic calculations by physicists Watabiki,

Ambjørn et al. (1994:) The Hausdor� dimension is 1=4 :

meaning for k � n1=4; E (
R k

0

X
(i)

n ) � k4;

for k � n1=4; E (X(k)

n ) is exp. decreasing

� Conjecture (S. 2001):

E (hn) � n1=4 e���(e=n)
1=4

where � =
q

2 + 13
6
p

3.

(constant � given here for loopless cubic maps).
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The random planar map. A tentative picture of distances.

n1/4

n1/42

n3/4

k3

0

exp

>>

>>
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The random planar map. A tentative picture of cuts.

n2/3

n2/3

O(       )

in n/2 + x 

baby universes of sizecte size cuts
(linear number)

(Conjecture: Gao, S. 01)
logarithmic     −separator ?

mother universe of size scaling 

with stable law 3/2

(BaFlScSo00)

α

each

but summing to      (n)Θ
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A second summary

� The random planar maps model has many variants

(triangulations, bipartite maps, convex polyhedra, : : : )

� Parameters of interests have similar �avor as for simple trees

(pro�le, height, maximal degree, 0-1 laws, : : : )

� All knows results satisfy the expected �universality�: critical

exponents agree for di�erent families.
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An application to knot theory:

the asymptotic number of prime alternating links

join work with Sébastien Kunz-Jacques.
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Knots and links.

� The unknot is the simplest knot : : :

A knot is made of one lace, a link may have more.

� A planar diagram of a link: a generic projection.

� The size of a link is its minimal number of crossings in a

planar diagram.

� The 3 Reidemeister moves connect all its diagrams.
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Knots and links. Prime factor decomposition

The product of two knots.

+ =

Knots and links have a unique decomposition in prime factors.

Prime links cannot be decomposed:

no 2-cut in their minimal diagrams

Example of defect of primality �!
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Knots and links. Enumerative knot theory ?

Count prime knots and links w.r.t. number of crossings !

or equivalently

Count equivalence classes of diagrams under Reidemeister moves.

This seems to be a very di�cult problem...

We shall restrict our attention to easier subclasses.
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Knots and links. Alternating links

Alternating diagrams: each edge is undercrossing at one end,

and overcrossing at the other.

I II

Find which one is alternating !

An alternating link is one that admits an alternating diagram.

Not all knots are alternating,

but these have nicer properties than general knots...
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Knots and links. Flype and Tait's conjecture

A �ype transforms one diagram into another:

Theorem (Menasco and Thistlethwaite, 1993)

Any two prime alternating diagrams of a prime alternating link are

connected by a sequence of �ypes.

Corollary. All prime alternating diagrams of a prime alternating link

have the same size (= number of crossings).
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The number of prime alternating links

A simpler problem ? Count prime alternating links

or equivalently

Count equivalence classes of diagrams under the action of �ypes.

Theorem (Sundberg and Thistlethwaite, 1998)

The number An of prime alternating links of size n satis�es

c1�
nn�7=2 � An � c2�
nn�5=2:

Our aim: the exact asymptotic behavior.

Our means: analytic combinatorics of random planar maps.
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Diagrams and planar maps.

R

Proposition. There is a one-to-one correspondence between

� rooted (prime) alternating diagrams with n nodes,

� rooted 4-regular planar maps (without 2-cut) with n vertices.

Idea: The over-undercrossing structure of the root vertex can be

consistently propagated to all others.
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Rooted diagrams. Enumeration.

We have seen that

#frooted diagrams of size ng = 2
n+2

3n
n+2
�
2n

n
�

:

Similarly
#frooted prime diagrams of size ng = 4
2n+2

1
2n+1
�
3n

n
�

:

(proof by root deletion or bijection with ternary blossom trees).

But we need to take �ypes into account.

Flypes act inside �Conway circles� i.e. 4-cuts.
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Rooted diagrams. Conway circle decomposition.

Look for maximal Conway circles.

) they de�ne a tree like decomposition.
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Rooted diagrams. Tree-like structure.

�Nodes� of this tree are 4-regular

maps of two type:

� indecomposable (4-cut free),

� vertical or horizontal sums.

Node degree is number of circles.

Leaves are the original crossings.
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Rooted diagrams. Equations for rooted diagrams.

Let I(z), V (z), H(z) be GF of �trees� according to the root node

(indecomposable, v- or h-sum). Then

D(z) = z + I(z) + V (z) +H(z)

I(z) =

X
k�3
pkD(z)k = P (D(z))

V (z) = H(z) =

(z + I(z) + V (z))2

1� (z + I(z) + V (z))
;

P (z) =
P

pkz
k is GF of indecomposable nodes (4-cut free maps).

But D(z) is GF of rooted diagrams (known and algebraic)

) all series (including P ) are algebraic.
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Flypes act on the decomposition.
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Articulated trees

Theorem (adapted from Sundberg & Thistlethwaite):

There is a one-to-one correspondence between

� rooted prime alternating links of size n, and

� articulated trees with n leaves.

To count articulated tree, put them in normal form !
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Articulated trees. Equations

Let ^I(z), ^V (z), ^H(z) be GF of articulated trees.

Then

^D(z) = z + ^I(z) + ^V (z) + ^H(z)

^I(z) = P ( ^D(z))

^V (z) = ^H(z) = 1
1�z

1

1�(^I+^V )
� 1� z � (^I + ^V ):

The series P is still the same
) all series (including P ) are algebraic.
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Articulated trees. Asymptotic number.

Theorem (Sundberg & Thistlethwaite, 1998):

The asymptotic number of rooted prime alternating links

satis�es

an � c0�
nn�5=2

with

� =
101 +
p

21001

40

� 6:15

and c0 another known algebraic constant.
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Prime alternating links. Unrooting

From the point of view of knot theory, rooting is not natural:

we really want the number of unrooted links

Tight bounds on the number of rootings for links give:

Theorem (Sundberg and Thistlethwaite, 1998)

The number An of prime alternating links of size n satis�es

C1�
nn�7=2 � An � C2�
nn�5=2:

Can we do better by estimating the number of rootings of a

random link ?
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Prime alternating links. Unrooting

For random planar maps, unrooting is trivial:

Theorem (Wormald, 1994)

A random planar map with n edges has almost surely 8n

rootings (with exponential bounds).

In other terms, symmetric maps are exponentially

negligible among large random maps.

As now usual, a �universal� result.

But for links the situation is more complicated.
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Prime alternating links. Unrooting

There is an interference between:

possible rootings and �ype equivalence
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Prime alternating links. Unrooting

The following steps allow to circumvent this di�culty:

� The parameter number of rootings is compatible with the

tree-like decomposition.
) marking in GF + singularity analysis

Theorem (S., Kunz-Jacques 2000)

The expected number of rootings is cn with concentration

� Global symmetries can be proved exponentially neglegible.
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Prime alternating links. Final result

Theorem(S., Kunz-Jacques 2000)

The number of prime alternating links of size n satis�es

for n going to in�nity:

An � an
8cn
� c0�nn�7=2

where

� =
101 +
p

21001

40

� 6:15 and c =
1

2
�

371p
21001
� 1
�

� 0:78:

and c0 is a known algebraic constant.

Corollaries: parameters of random links.
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