Algebraic decompositions of corner triangulations

ongoing work with Schutzenberger methodology
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based on joined work with C. Dervieux and D. Poulalhon
on the enumeration and realization of graphs of corner polyhedra



Enumeration and Schutzenberger
methodology for algebraic generating series



Schutzenberger methodology (for algebraic gf)

Let A, be a class of combinatorial objects enumerated by the integer a, and
suppose that the corresponding generating function f(1) =%, a,t" is algebraic. An
old idea, dear to M.P. Schiitzenberger, is to explain this algebraicity by expliciting
a bijection between A, and the words of a certain algebraic ( context-free) language
L defined on the alphabet X by a non-ambiguous grammar.
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The coding with words sheds more light upon the combinatorial comprehension
of" A,. Each equation of the noncommutative algebraic system is in fact a com-
binatorial property of the objects of A,

Ultimate goal is to see the algebraic structure of the combinatorial objects themselves !
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Schutzenberger methodology (for algebraic gf)

The coding with words sheds more light upon the combinatorial comprehension
of" A,. Each equation of the noncommutative algebraic system is in fact a com-

binatorial property of the objects of A,
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Fits in general trend from 60’s, with many incarnations:
geometric interpretation of special functions (Foata-Schiitzenberger),

Viennotique (Viennot), Symbolic method (Flajolet),...
now 'common knowledge” in enumerative combinatorics?



Schutzenberger methodology (for algebraic gf)

Mireille has exposed monday some limitations of the methodology: algebraic gfs
without (known/any) associated N-algebraic structure, and she has shown to us
other " natural sources” of algebraic gfs.

Instead in this talk, | will present some recent developments on the enumeration
of planar maps that follow the original idea.

Apart from obvious spiritual satisfaction, one reason to insist on Schutzenberger
methodology is that among the " natural sources” of algebraic gfs, an algebraic
decomposition is still the most likely to be algorithmically useful.



And now for something completely different



Corner polyhedra

Definition (Eppstein & Munford, 2014)

A polyhedron P in R? is corner if
Vo = (0,0,0) c P

edges are parallel to axes

3 edges meet at each vertex

all vertices but vg are visible
from infinity in direction (1,1,1)
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Corner polyhedra

Definition (Eppstein & Munford, 2014) [

A polyhedron P in R? is corner if
Vo = (0,0,0) c P

edges are parallel to axes

3 edges meet at each vertex

all vertices but vg are visible
from infinity in direction (1,1,1)

The skeleton of a polyhedra is the graph made of its vertices and edges.

For corner polyhedra the skeleton is:
3-regular, 3-connected, and planar
bipartite, with black symmetric vertices, white asymmetric vertices.



Obstruction to being corner

For corner polyhedra the skeleton is:
3-regular, 3-connected, and planar

bipartite, with black symmetric vertices, white assymetric vertices.

Are all such graphs realizable as skeletons of corner polyhedra?
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Corner triangulations

Consider the dual triangulation

Eulerian triangulation:
all faces are triangles
and they are bicolored.
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Definition: A corner triangulation is a simple Eulerian triangulation
such that all clockwise triangles are white faces.



Corner triangulations

Bad guy

...

Canonical orientation:
counterclockwise
around black faces.
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counterclockwise triangles,
not inside clockwise triangles.

Definition: A corner triangulation is a simple Eulerian triangulation
such that all clockwise triangles are white faces.



Eppstein and Munford's theorem

Theorem (Eppstein-Munford)
A graph is the skeleton of a corner polyhedron if and only if
it is planar and 3-connected, and its dual is a corner triangulation.

This result is a remarkable analog of the classic Steinitz theorem:

A graph is the skeleton of a convex 3d polyhedron if and
only if it is planar and 3-connected.



Eppstein-Munford realization algorithm

Problem: Given a bicubic planar graph dual to a corner triangulation,
draw it as a corner polyhedron.
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Eppstein-Munford realization algorithm

Problem: Given a bicubic planar graph dual to a corner triangulation,
draw it as a corner polyhedron.

Starting from
the corner triangulation:

1. First endow it with
a EM-structure.

2. Then use the EM-structure
to compute coordinates.

Surprisingly, the second step is easily done in linear time
(thanks to a beautiful construction, see Eppstein slides).

Instead the first step requires a decomposition of the triangulation
into 4-connected components, and reductions rules.



Algebraic decomposition of maps



Decompositions for triangulations

The family of corner triangulations is a " natural” family of planar maps

For bicolored triangulations (or bicubic maps) several
decompositions have been found since the 60'’s.

Indeed:
Theorem (Tutte, 62) The number of rooted planar bicolored
triangulations with n black triangles is E,, = ni2 n2+1 (2”)

The gf E(z2) =3, 5, En2" satisfies E(z) = B(z) — B(z)* where
B(z) is the unique power series solution of B(z) = z(1 + 2B(z))>.

These are bipartite maps in disguise, for which a variant of Cori-Vauquelin bijection
was given by D. Arques (85).



An algebraic generating function

Applying Tutte's composition approach, one can extract the gf
of corner triangulations from the gf of bicolored triangulations:

Let £ denote the number of corner triangulations with n black
faces, and let E°(z) be their generating function:

Ec(z):ZEsz”:z+z4+326+4z7+15z8+...

n>1

Theorem (Dervieux, Poulalhon, S. 2015)

E°(2)

:1—|—z B

2 2A(2) + 22 A(2)* 22A(2)% + 222 A(2)°
(1 i 142 (14 2)° )

where A(z) = 1_V21z_4z is the Catalan gf, solution of A(z) = 1+ zA(2)>.



According to Schutzenberger methodology...

Theorem (Dervieux, Poulalhon, S. 2015)

. (1 L FAR) + AR AR+ 2z3A(z)3)

T 142 1+ 2 N (1+ 2)2

E°(2)

where A(z) = 1_V21Z_4Z is the Catalan gf, solution of A(2) = 1+ 2A(2)?.

There should be a bijection between corner triangulations and words
of (the difference of two) algebraic languages generated by some
explicit non ambiguous grammar.

Equivalently one can look directly for an "algebraic” decomposition
of the combinatorial structures.



Playing with pieces of triangulations

To obtain an algebraic structure, one needs a natural interpretation of
the cartesian product.

For words: concatenation of words in codes wjws

For tree: joining root of independant subtrees.
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Playing with pieces of triangulations

To obtain an algebraic structure, one needs a natural interpretation of
the cartesian product.

For words: concatenation of words in codes wjws

For tree: joining root of independant subtrees.

Just gluing independant pieces does not work for maps:

Local properties are not necessarily
preserved: corner + corner = coner ?

Knowing the root is not enough to cut (‘
back into pieces: we need a cut path!



Playing with pieces of triangulations

A cure to this problem is to use geodesics (shortest paths to
a fixed point) and in particular leftmost geodesics

v
T7 has a leftmost 15 has a geodesic
geodesic as right as left boundary
boundary
ol If 17 and I5 are pieces of corner

triangulations then

17 e I> has no double edges.

11 e I5 has no ccw triangles.

= it is a piece of corner triangulation!

Finally T and I5 can be recovered from T e I5 because the cut path can be
characterized as the leftmost geodesic from the root to the basepoint v...



Almond triangulations

So what should be our intepretation of Catalan equation? A =1+4+2xA4x A
In order to be able to glue on left and right hand side, need " geodesic” boundaries

e : . t
Definition: an almond triangulation is a
simple bicolored triangulation of a polygon
without non facial clockwise triangles and

with an apex vertex t such that:

The right boundary is the unique geodesic
from r to t. Let £ denote its length.

The left boundary is an almost geodesic
path from r to t, of length ¢ 4 3.

-
Some almonds:

The smallest almond is the clockwise triangle, which is also the unique with £ = 0.

, @ + 4 more




he decomposition of almond triangulations

/<L

(Y-

leftmost shortest path fro s1 to ¢t
¢ —2X
L+ 1

A = 1 4+ zxAxA

t

if £ =20




Almond triangulations and Catalan numbers

Theorem (Dervieux, Poulalhon, S. 2015)

The generating function of almond triangulations according to the
number of black triangles is the Catalan gf, that is, the unique fps
satisfying

A(z) =14 z- A(2)?

and the number of almond triangulations with n black faces is the
nth Catalan number.



Corner triangulations are not almonds... but almost

Corner triangulations are essentially slices of height 1...
(14 2)E%(2) = 2+ 251 (2)

Slices of arbitrary height are essentially pairs of almonds...
(14 2)S(2) = 2A(2) + 22 A(2)?

Slices of height at least 2 are essentially triples of almonds...
(14 2)2ST = 22A(2)%(1 + 2A(2))
Hence the difference | Theorem (Dervieux, Poulalhon, S. 2015)
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Corner triangulations are not almonds... but almost

Corner triangulations are essentially slices of height 1...
(14 2)E%(2) = 2+ 251 (2)

Slices of arbitrary height are essentially pairs of almonds...
(14 2)S(2) = zA(2) + 22 A(2)?

Slices of height at least 2 are essentially triples of almonds...
(14 2)2ST = 22A(2)%(1 + 2A(2))
Hence the difference | Theorem (Dervieux, Poulalhon, S. 2015)

c S(z ST (z
(14+2)E —z—|—z(1iz) (1+(z))2)

Build on ideas of Cori-Vauquelin, Fusy, Chapuy, Bouttier, Guitter, Albenque...
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Reformulation in terms of trees

Binary tree Triangular cactus
A
n nodes n black triangles
n + 1 leaves n + 1 white triangles

The number of such cacti is the nth Catalan number.
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Reformulation in terms of trees

Fold compatible edge around the cactus

No possible folding
AN

£+ 3 14 \

Theorem. This is a bijection between
binary trees with n nodes and almond triangulations with n black faces.




Back to the realization of corner polyhedra graphs
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Returning to corner polyhedra

Can we use the algebraic decomposition to endow a corner
triangulation with a EM-structure ?

Recall: Starting from

the corner triangulation:

1. First endow it with
a EM-structure.

2. Then use the EM-structure
to compute coordinates.

Alternative algorithm for Step 1

Decomposition the triangulation in two almonds and get two cactus from
their algebraic decompositions.

Endow the two cacti with local EM-structure and refold them.

Glue the two almond back into a corner triangulation, now with a
EM-structure !



Random corner polyhedra

Outline of a linear time random generation algorithm:

Pick your favorite random binary tree
(I get mine with Rémy’s algo but it's admittingly a waste of random bits).

Make it into a cactus (pretending is enough).
Fold the cactus into a corner triangulation with EM-structure.

Use EM-structure to compute vertex coordinates

As coordinates are given by rank in topological sorting, they are all integers
smaller than 2n for a corner polyhedra with 2n vertices.
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Conclusion

In this talk we have
Counted graphs of corner polyhedra: gf is rational in Catalan gf.
|dentified a nice subfamily of Almond triangulations, counted by C),
Obtained direct algebraic decompositions and bijections.
Used the decomposition to give an alternative realization algorithm.

Some open questions...

Perform the algebraic decomposition in linear time (need update of
distances in the two subtriangulations)

Enumeration and random generation of non-equivalent corner
polyhedra (instead of graphs of corner polyhedra)

In this talk we have not

Discussed how Cori-Vauquelin's bijection underlies recent furious
developments around the Brownian Random Planar Map.



Distant echoes of Schiitzenberger 's suggestion to
Robert Cori to study Tutte work on maps!
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