
Algebraic decompositions of corner triangulations

Gilles Schaeffer MPS 2016, Bordeaux

ongoing work with Schützenberger methodology
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Schützenberger methodology (for algebraic gf)

Ultimate goal is to see the algebraic structure of the combinatorial objects themselves !

Fits in general trend from 60’s, with many incarnations:
geometric interpretation of special functions (Foata-Schützenberger),
Viennotique (Viennot), Symbolic method (Flajolet),...
now ”common knowledge” in enumerative combinatorics?



Schützenberger methodology (for algebraic gf)

Instead in this talk, I will present some recent developments on the enumeration
of planar maps that follow the original idea.

Apart from obvious spiritual satisfaction, one reason to insist on Schützenberger
methodology is that among the ”natural sources” of algebraic gfs, an algebraic
decomposition is still the most likely to be algorithmically useful.

Mireille has exposed monday some limitations of the methodology: algebraic gfs
without (known/any) associated N-algebraic structure, and she has shown to us
other ”natural sources” of algebraic gfs.



And now for something completely different
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3-regular, 3-connected, and planar
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Obstruction to being corner

For corner polyhedra the skeleton is:

3-regular, 3-connected, and planar

bipartite, with black symmetric vertices, white assymetric vertices.

Are all such graphs realizable as skeletons of corner polyhedra?

Similar insertions cannot be done at white vertices !

Corner triangulations can be composed at black vertices.
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Corner triangulations

Canonical orientation:
counterclockwise
around black faces.

Substitution is allowed inside
counterclockwise triangles,
not inside clockwise triangles.

Definition: A corner triangulation is a simple Eulerian triangulation
such that all clockwise triangles are white faces.

Bad guy



Eppstein and Munford’s theorem

Theorem (Eppstein-Munford)
A graph is the skeleton of a corner polyhedron if and only if
it is planar and 3-connected, and its dual is a corner triangulation.

A graph is the skeleton of a convex 3d polyhedron if and
only if it is planar and 3-connected.

This result is a remarkable analog of the classic Steinitz theorem:
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draw it as a corner polyhedron.
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Eppstein-Munford realization algorithm

Problem: Given a bicubic planar graph dual to a corner triangulation,
draw it as a corner polyhedron.

Instead the first step requires a decomposition of the triangulation
into 4-connected components, and reductions rules.

Starting from
the corner triangulation:

1. First endow it with
a EM-structure.

2. Then use the EM-structure
to compute coordinates.

Surprisingly, the second step is easily done in linear time
(thanks to a beautiful construction, see Eppstein slides).



Algebraic decomposition of maps



Decompositions for triangulations

The family of corner triangulations is a ”natural” family of planar maps

For bicolored triangulations (or bicubic maps) several
decompositions have been found since the 60’s.

Theorem (Tutte, 62) The number of rooted planar bicolored
triangulations with n black triangles is En = 3

n+2
2n

n+1

(
2n
n

)
.

The gf E(z) =
∑

n≥1 Enz
n satisfies E(z) = B(z)−B(z)2 where

B(z) is the unique power series solution of B(z) = z(1 + 2B(z))2.

Indeed:

These are bipartite maps in disguise, for which a variant of Cori-Vauquelin bijection
was given by D. Arquès (85).



An algebraic generating function

Applying Tutte’s composition approach, one can extract the gf
of corner triangulations from the gf of bicolored triangulations:

Theorem (Dervieux, Poulalhon, S. 2015)

Let Ec
n denote the number of corner triangulations with n black

faces, and let Ec(z) be their generating function:

Ec(z) =
∑
n≥1

Ec
nz

n = z + z4 + 3z6 + 4z7 + 15z8 + . . .

Ec(z) =
z

1 + z

(
1 +

zA(z) + z2A(z)2

1 + z
− z2A(z)2 + 2z3A(z)3

(1 + z)2

)
where A(z) = 1−

√
1−4z
2z is the Catalan gf, solution of A(z) = 1 + zA(z)2.



According to Schützenberger methodology...

Theorem (Dervieux, Poulalhon, S. 2015)

Ec(z) =
z

1 + z

(
1 +

zA(z) + z2A(z)2

1 + z
− z2A(z)2 + 2z3A(z)3

(1 + z)2

)
where A(z) = 1−

√
1−4z
2z is the Catalan gf, solution of A(z) = 1 + zA(z)2.

There should be a bijection between corner triangulations and words
of (the difference of two) algebraic languages generated by some
explicit non ambiguous grammar.

Equivalently one can look directly for an ”algebraic” decomposition
of the combinatorial structures.
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Playing with pieces of triangulations

To obtain an algebraic structure, one needs a natural interpretation of
the cartesian product.

Just gluing independant pieces does not work for maps:

Local properties are not necessarily
preserved: corner + corner ⇒ coner ?

Knowing the root is not enough to cut
back into pieces: we need a cut path!

For words: concatenation of words in codes w1w2

For tree: joining root of independant subtrees.

T1
T2



Playing with pieces of triangulations

A cure to this problem is to use geodesics (shortest paths to
a fixed point) and in particular leftmost geodesics

T1 has a leftmost
geodesic as right
boundary

T2 has a geodesic
as left boundary

Finally T1 and T2 can be recovered from T1 • T2 because the cut path can be
characterized as the leftmost geodesic from the root to the basepoint v...

T1 • T2 has no double edges.

If T1 and T2 are pieces of corner
triangulations then

T1 • T2 has no ccw triangles.

⇒ it is a piece of corner triangulation!

v2

v

v1



Almond triangulations

So what should be our intepretation of Catalan equation? A = 1 + z ×A×A
In order to be able to glue on left and right hand side, need ”geodesic” boundaries

Definition: an almond triangulation is a
simple bicolored triangulation of a polygon
without non facial clockwise triangles and
with an apex vertex t such that:

r

t

The right boundary is the unique geodesic
from r to t. Let ` denote its length.

The left boundary is an almost geodesic
path from r to t, of length ` + 3.

The smallest almond is the clockwise triangle, which is also the unique with ` = 0.

Some almonds:

r
t r

t

+ 4 more



The decomposition of almond triangulations

s

s2
s1

`

` + 3

t

s

s2
s1

`

` + 3

t

` − 2

` + 1

s2
s1

t2

leftmost shortest path fro s1 to t

r
t

if ` = 0

t1

A = 1 + z ×A×A



Almond triangulations and Catalan numbers

Theorem (Dervieux, Poulalhon, S. 2015)

The generating function of almond triangulations according to the
number of black triangles is the Catalan gf, that is, the unique fps
satisfying

A(z) = 1 + z ·A(z)2

and the number of almond triangulations with n black faces is the
nth Catalan number.



Corner triangulations are not almonds... but almost

Corner triangulations are essentially slices of height 1...

(1 + z)Ec(z) = z + zS1(z)

Slices of arbitrary height are essentially pairs of almonds...
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Hence the difference !
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Corner triangulations are not almonds... but almost

Corner triangulations are essentially slices of height 1...

(1 + z)Ec(z) = z + zS1(z)

Slices of arbitrary height are essentially pairs of almonds...

(1 + z)S(z) = zA(z) + z2A(z)2

Slices of height at least 2 are essentially triples of almonds...

(1 + z)2S+ = z2A(z)2(1 + 2A(z))

Hence the difference !

(1 + z)Ec = z + z
(

S(z)
1+z −

S+(z)
(1+z)2

)Theorem (Dervieux, Poulalhon, S. 2015)

Build on ideas of Cori-Vauquelin, Fusy, Chapuy, Bouttier, Guitter, Albenque...
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Reformulation in terms of trees

Binary tree

n nodes

n + 1 leaves

Triangular cactus

n black triangles

n + 1 white triangles

The number of such cacti is the nth Catalan number.
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Reformulation in terms of trees

Fold compatible edge around the cactus

No possible folding
⇒

`` + 3

Theorem. This is a bijection between
binary trees with n nodes and almond triangulations with n black faces.



Back to the realization of corner polyhedra graphs
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1. First endow it with
a EM-structure.
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Returning to corner polyhedra

Can we use the algebraic decomposition to endow a corner
triangulation with a EM-structure ?

Starting from
the corner triangulation:

1. First endow it with
a EM-structure.

2. Then use the EM-structure
to compute coordinates.

( )
Recall:

Alternative algorithm for Step 1

Decomposition the triangulation in two almonds and get two cactus from
their algebraic decompositions.

Endow the two cacti with local EM-structure and refold them.

Glue the two almond back into a corner triangulation, now with a
EM-structure !



Random corner polyhedra

Outline of a linear time random generation algorithm:

Pick your favorite random binary tree
(I get mine with Rémy’s algo but it’s admittingly a waste of random bits).

Make it into a cactus (pretending is enough).

Fold the cactus into a corner triangulation with EM-structure.

Use EM-structure to compute vertex coordinates

As coordinates are given by rank in topological sorting, they are all integers
smaller than 2n for a corner polyhedra with 2n vertices.
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Counted graphs of corner polyhedra: gf is rational in Catalan gf.

Obtained direct algebraic decompositions and bijections.

Identified a nice subfamily of Almond triangulations, counted by Cn

Used the decomposition to give an alternative realization algorithm.
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Conclusion

Some open questions...

Perform the algebraic decomposition in linear time (need update of
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In this talk we have not

In this talk we have

Counted graphs of corner polyhedra: gf is rational in Catalan gf.

Obtained direct algebraic decompositions and bijections.

Identified a nice subfamily of Almond triangulations, counted by Cn

Used the decomposition to give an alternative realization algorithm.

Discussed how Cori-Vauquelin’s bijection underlies recent furious
developments around the Brownian Random Planar Map.



Thank you !

Distant echoes of Schützenberger ’s suggestion to
Robert Cori to study Tutte work on maps!


	Sch\"utzenberger methodology
{\small (for algebraic gf)}

