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Ramified coverings of the sphere by itself

A mapping φ : D → I is a covering if, for all x in I there
exists n ≥ 1 and a neighborhood V of x such that
φ−1(V ) ∼ B × {1, . . . , n},

and the restriction of φ to each sheet Bi (connected
component of the preimage)

is an homeomorphism φ|Bi : Bi
∼→ B.

Let B = {z | |z| < 1} ⊂ C and let ∼ denote equivalence up to homeomorphisms
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Ramified coverings of the sphere by itself (Cont’d)

λ(1) = 15 λ(2) = 1, 22 λ(2) = 2, 3

the passport Λ = (λ(1), . . . , λ(p)) of a ramified covering

regular value critical value critical value

To understand the ”shape” of the covering,

draw paths on I and study its
preimages.

• n independant preimages as long
as we stay away from critical points

some sheets may get permuted

• visiting critical points create
multiple values or ”vertices”

⇒ The partitions λ(i)

are partitions of n,
degree of the covering.

• a contractible loop on I
yields n contractible loops on D

D = S

I = S

but if we wind around critical points
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Monodromy, and permutations

Loop ⇒ permutation of sheet labels

Example: (1, 2)(3, 4)(5) in cyclic notation

Contractible loop in S \X
⇒ identity permutation

Concatenation of two loops ⇒ product of the permutations

1

2

3

4

5

Example: (1)(2, 3, 4, 5) · (1, 2)(3, 4)(5)

The permutation is invariant under
continuous deformation of the loop
provided it stays in S \ {X}

Let us label {1, . . . , n} the preimages of a regular point.

D = S

I = S

but geometric intuition is lost

⇒ Equivalence classes of ramified coverings ≡ factorizations of permutations
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that is, a graph embedded on
the sphere with simply
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around �

Proposition. This is a bijection
between bipartite planar maps

and ramified coverings of S by S
with 3 critical values.
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A loop around a critical value yields a
permutation

σ◦ = (1, 3, 6)(2, 5, 4)(7, 8)
with cyclic type λ◦

σ• = (1)(2, 6)(3, 5)(4, 7)(8)
with cyclic type λ•

Cycle types ⇔ degree
distributions

What about σ� and λ� ?

σ� = (2, 3)(1, 5, 7, 8, 4, 6)

loops around � = faces
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D = S

I = S

1 regular value with labeled preimages
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σ◦ = (1, 3, 6)(2, 5, 4)(7, 8)
with cyclic type λ◦

σ• = (1)(2, 6)(3, 5)(4, 7)(8)
with cyclic type λ•

Cycle types ⇔ degree
distributions

What about σ� and λ� ?

But loop around � = concatenate loop
around ◦ and •
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A loop around a critical value yields a
permutation

σ◦ = (1, 3, 6)(2, 5, 4)(7, 8)
with cyclic type λ◦

σ• = (1)(2, 6)(3, 5)(4, 7)(8)
with cyclic type λ•

Cycle types ⇔ degree
distributions

What about σ� and λ� ?

But loop around � = concatenate loop
around ◦ and •

σ� = (2, 3)(1, 5, 7, 8, 4, 6)

loops around � = faces

Proposition: σ◦σ• = σ�.

3 critical values λ• = 2312 λ◦ = 322

D = S

I = S

1 regular value with labeled preimages

λ� = 62
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The preimage of the m-star is called a
star-constellation.

Proposition. Planar star-constellations
with:
– n labelled m-stars,
– λ�

j faces of degree j,

– λ
(i)
j color i vertices of degree j

are in bijection with minimal transitive
factorizations σ1 · · ·σm = σ�

with σi of cyclic type λ(i).
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m+ 1 critical values
1 regular value with labeled preimages

1 2 3 4
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Monodromy, permutations, constellations: a summary

Theorem. There is a bijection between

• Labelled ramified covering of S of type Λ = (λ0, . . . , λm)

• Factorizations (σ1 · · ·σm = σ0) of type Λ

• labelled m-star-constellations of type Λ.

Specializations.

— m = 2: bipartite maps with n edges

D = S ⇔ minimality ⇔ planarity.

— m = 2, λ0 = 4n, all faces have degree 4: quadrangulations

— for all i ≥ 1, λ(i) = 21n−2: factorizations in transpositions.

coverings with only simple branch points

⇒ Jean-François Le Gall’s last year talk at this seminar

Today’s topic
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Simple ramified covers, increasing quadrangulations
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Theorem. Simple ramified covers of S by itself with m ramifications points
are in bijection with increasing labelled quadrangulations with m faces.
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Then the faces of the preimage have
distinct labels 1, . . . ,m that are

increasing in ccw direction around
black vertices and in cw direction

around white vertices.

Such a map is called an increasing labelled quadrangulation.

Then each face of degree 2 on the
image has n− 2 preimages that are

faces of degree 2, and 1 that is a
quadrangle.

A ramified cover is simple if its m
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Résumé du 1er épisode

Compter des classes d’équivalence de revêtements ramifiés

compter certaines plongements de graphes

⇔



Plan de l’exposé

Revêtements ramifiés et cartes

Cartes et arbres

Énumération d’arbres et formule d’Hurwitz

Revêtements et cartes aléatoires



Planar maps, spanning trees and duality

From now on, map means rooted planar map.

A planar map is a proper embedding of a connected graph on the sphere
(considered up to homeomorphisms).



Planar maps, spanning trees and duality

From now on, map means rooted planar map.

A spanning tree is a subgraph which is a tree and visits every vertices.
A tree-rooted map is a map with a spanning tree.

A planar map is a proper embedding of a connected graph on the sphere
(considered up to homeomorphisms).



Planar maps, spanning trees and duality

From now on, map means rooted planar map.

A spanning tree is a subgraph which is a tree and visits every vertices.
A tree-rooted map is a map with a spanning tree.

The dual map of a map is the map of incidence between faces.

A planar map is a proper embedding of a connected graph on the sphere
(considered up to homeomorphisms).



Planar maps, spanning trees and duality

From now on, map means rooted planar map.

A spanning tree is a subgraph which is a tree and visits every vertices.
A tree-rooted map is a map with a spanning tree.

The dual map of a map is the map of incidence between faces.

A planar map is a proper embedding of a connected graph on the sphere
(considered up to homeomorphisms).



Planar maps, spanning trees and duality

From now on, map means rooted planar map.

A spanning tree is a subgraph which is a tree and visits every vertices.
A tree-rooted map is a map with a spanning tree.

The dual map of a tree-rooted map is a tree-rooted map:
it is naturally endowed with a dual spanning tree.

The dual map of a map is the map of incidence between faces.

A planar map is a proper embedding of a connected graph on the sphere
(considered up to homeomorphisms).



Planar maps, spanning trees and duality

From now on, map means rooted planar map.

A spanning tree is a subgraph which is a tree and visits every vertices.
A tree-rooted map is a map with a spanning tree.

The dual map of a tree-rooted map is a tree-rooted map:
it is naturally endowed with a dual spanning tree.

The dual map of a map is the map of incidence between faces.

Proof ?

A planar map is a proper embedding of a connected graph on the sphere
(considered up to homeomorphisms).



Planar maps, spanning trees and duality

From now on, map means rooted planar map.

A spanning tree is a subgraph which is a tree and visits every vertices.
A tree-rooted map is a map with a spanning tree.

The dual map of a tree-rooted map is a tree-rooted map:
it is naturally endowed with a dual spanning tree.

The dual map of a map is the map of incidence between faces.

Euler’s relation:
(#vertices-1)+(#faces-1)

= #edges

Proof ?

A planar map is a proper embedding of a connected graph on the sphere
(considered up to homeomorphisms).



Planar maps, spanning trees and duality

From now on, map means rooted planar map.

A spanning tree is a subgraph which is a tree and visits every vertices.
A tree-rooted map is a map with a spanning tree.

The dual map of a tree-rooted map is a tree-rooted map:
it is naturally endowed with a dual spanning tree.

The dual map of a map is the map of incidence between faces.

Euler’s relation:
(#vertices-1)+(#faces-1)

= #edges

Proof ?

Proof?

A planar map is a proper embedding of a connected graph on the sphere
(considered up to homeomorphisms).
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Writing the two codes during the walk:
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Encoding and counting tree-rooted maps

Rooted tree ≡ balanced parenthesis word

Writing the two codes during the walk:

Non visited edges ≡ balanced parenthesis word

Code of the tree-rooted map = tree decorated by a balanced parenthesis word

= shuffle of two balanced parenthesis words

The number of tree rooted planar maps with n edges is
Pn
i=0

`2n
i

´
CiCn−i where

Cn = 1
n+1

`2n
n

´
denotes Catalan numbers, counting balanced parenthesis words.

uuuududuuudududddddudd

Starting at a root corner, turn around the tree

Observe that closure edges turn
clockwise around the tree.

uduuduuddd

uuuduuddddud
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but we want rooted (not tree-rooted) maps

Let us recycle the idea used for tree-rooted maps, using a canonical spanning tree

Then write the code of the primal tree on the chosen canonical tree

Our code of the map will be a canonical decorated tree

Question is How do we choose the canonical spanning tree

The map is recovered from the code by closure.

so that the resulting decorated trees can be described and counted ?
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From tree-rooted maps to minimal accessible maps

Orient the tree edges away from the root

Orient the other edges couterclockwise around the tree

The tree is recovered by reconstructing its contour .

It is called a minimal orientation (for the order induced by circuit reversal).

The resulting orientation has
no clockwise circuit.

Theorem (Bernardi 2005) This is a bijection between tree-rooted maps with n edges
and minimum accessible maps with n edges

A oriented map is accessible if every vertex can be reach by an oriented path
from the root.
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Minimal orientations and canonical spanning trees

Idea:

Theorem (Felsner 2004). Let α be a feasible function on a plane map M .
Then the map M has a unique minimal α-orientation.

A function α : V → N is feasible on a plane map M if there exists an
orientation of M such that for each vertex v the outdegree of v is f(v).

Choose a minimal accessible orientation to get a spanning tree

Our pb becomes:
How to choose a canonical accessible minimal orientation?

Our pb becomes: How to choose a canonical α? (and check accessibility)

Fact: For many subclasses F of planar maps, there exists an αF s.t.:

A planar map is in F if and only if it admits an αF -orientation.
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Recall increasing quadrangulations are planar maps with faces of degree 4 such that:

– faces have labels in {1, . . . , 2n− 2}

– around labeled vertices, face labels
increase in ccw order

– around white vertices, face labels
increase in cw order
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α-orientations for increasing quadrangulations

Recall increasing quadrangulations are planar maps with faces of degree 4 such that:

– faces have labels in {1, . . . , 2n− 2}

– around labeled vertices, face labels
increase in ccw order

– around white vertices, face labels
increase in cw order

Orient each edge so that the minimum incident label is on the left

Each black vertex has indegree αh(black) = m− 1, outdegree 1

Each white vertex has indegree αh(white) = 1.

This orientation is accessible, in fact strongly connected.
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This is our choice of canonical α to decompose increasing quadrangulations.
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opening of an increasing quadrangulation

endow with min αc-orient

(return cycles)
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7
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11

but forget half-edges

give labels to edges

eliminate root black
vertex

Proposition. The resulting simple Hurwitz trees has n unlabelled vertices, n− 1
labeled vertices of degree 2, 2n− 2 edges that increase ccw around labeled vertices.



From simple Hurwitz trees to increasing quadrangulations
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A local rule to create increasing half edges

Two half-edges with same label ⇒ edge and face of degree 4

Iterate the local rules as long as possible...
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– simple ramified covers of S by itself with m = 2n− 2 critical values.
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Résumé des 2 premiers épisodes

Compter des classes d’équivalence de revêtements ramifiés

compter certaines plongements de graphes

⇔
⇔

compter certains arbres



Plan de l’exposé

Plan de l’exposé

Revêtements ramifiés et cartes

Cartes et arbres

Énumération d’arbres et formule d’Hurwitz

Revêtements et cartes aléatoires



Hurwitz formula for increasing quadrangulations

Theorem[Duchi-Poulalhon-S. 2012] Increasing quadrangulations (size n) are in
bijection with simple Hurwitz trees having n unlabelled vertices, n− 1 labeled
vertices of degree 2, 2n− 2 edges that increase ccw around labeled vertices.
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Hurwitz formula for increasing quadrangulations

Theorem[Duchi-Poulalhon-S. 2012] Increasing quadrangulations (size n) are in
bijection with simple Hurwitz trees having n unlabelled vertices, n− 1 labeled
vertices of degree 2, 2n− 2 edges that increase ccw around labeled vertices.
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The number of simple ramified cover of S by itself with m = 2n− 2 critical points is
nn−3(2n− 2)!.
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Hurwitz formula for factorizations in transpositions

Theorem. Let λ = 1`1 , . . . , n`n be a partition n, and ` =
P
i `i.

The number of m-uples of transpositions (τ1, . . . , τm) such that

• (product cycle type) τ1 · · · τm = σ has cycle type λ

• (transitivity) the associated graph is connected

• (minimality) the number of factors is m = n+ `− 2

is

n`−3 ·m! · n! ·
Y
i≥1

1

`i!

„
ii

i!

«`i

λ = n, factorizations of n-cycles: nn−2 · (n− 1)!

λ = 1n, factorizations of the identity: nn−3 · (2n− 2)!

(Hurwitz 1891, Strehl 1996) (Goulden–Jackson 1997) (Lando–Zvonkine 1999) (Bousquet-Mélou–Schaeffer 2000)

(recurrences, Abel identities) (gfs and differential eqns) (geometry of LL mapping) (bijection + inclusion/exclusion)

Proofs:



A formula for general factorizations [BMS00]

Theorem. Let λ = 1`1 , . . . , n`n be a partition of n, and ` =
P
i `i.

The number of m-uple of permutations (σ1, . . . , σm) such that

• (factorization) σ1 · · ·σm = σ with cycle type λ

• (transitivity) 〈σ1, . . . , σm〉 acts transitively on {1, . . . , n}

• (minimality) the total rank of factors is
P
i r(σi) = n+ `− 2

is

m
((m− 1)n− 1)!

(mn− (n+ `− 2))!
· n! ·

Y
i

1

`i!

“mi− 1

i

”`i
Proofs:

(Bousquet-Mélou–Schaeffer 2000) (Goulden–Serrano 2009)

(bijection + inclusion/exclusion)(gfs and differential eqns)

λ = n, factorizations of n-cycles: 1
(mn+1)

`mn+1
n

´
· (n− 1)!

λ = 1n, identity factorizations: m
(m−2)n+2

(m−1)n−1

(m−2)n+1

`(m−1)n
n

´
· (n− 1)!



Résumé des 3 premiers épisodes

Compter des classes d’équivalence de revêtements ramifiés

compter certaines plongements de graphes

⇔
⇔

les formules simples appellent des preuves constructives

compter certains arbres



Plan de l’exposé

Plan de l’exposé

Revêtements ramifiés et cartes

Cartes et arbres

Énumération d’arbres et formule d’Hurwitz

Revêtements et cartes aléatoires



Quadrangulations croissantes aléatoires uniformes

Q̄n = {quadrangulations croissantes à n faces}.

Quadrangulation croissante uniforme = variable aléatoire Qn à valeur dans Q̄n avec

Pr(Qn = q) =
1

|Q̄n|
=

1

nn−3(2n− 2)!
pour tout q ∈ Q̄n



Quadrangulations croissantes aléatoires uniformes

Q̄n = {quadrangulations croissantes à n faces}.

Quadrangulation croissante uniforme = variable aléatoire Qn à valeur dans Q̄n avec

Pr(Qn = q) =
1

|Q̄n|
=

1

nn−3(2n− 2)!
pour tout q ∈ Q̄n

Comment étudier Qn ?

• le choix de la distribution uniforme combinatoire est le plus immédiat

Parallèle naturel avec la distribution uniforme sur les quadrangulations enracinées:

Pr( ~Qn = q) =
1

| ~Qn|
=

1
2·3n(2n)!
(n+2)!n!

pour tout q ∈ ~Qn



Propriétés des cartes aléatoires uniformes ?



Propriétés des cartes aléatoires uniformes ?

on est loin d’une discrétisation aléatoire d’une géométrie euclidienne

Delaunay de points aléatoires dans un disqueTriangulation uniforme aléatoire d’un disque

en physique on lie cela à la modélisation discrète de la gravité quantique



Quadrangulations uniformes comme surfaces aléatoires

Chapuy

Schaeffer

Marckert

L’allure d’une sphère aléatoire dépend un peu
de qui dessine...

Objectif: Choisir une métrique intrinsèque et
décrire les surfaces ainsi obtenues



Étudier les quadrangulations aléatoires uniformes

Distribution uniforme sur les quadrangulations à n faces, pour n grand

1ère approche: Étudier le comportement asymptotique de paramètres:

- degré d’un sommet aléatoire

- loi 0-1 pour les propriétés locales

- distance entre 2 sommets aléatoires

- longueur d’un plus petit cycle diviseur

⇒ espérance, moments, lois limites discrètes ou continues, qd n→∞
Bender, Canfield et al (90’s→) en combinatoire Ambjørn, Watabiki et al (90’s→) en physique
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Distribution uniforme sur les quadrangulations à n faces, pour n grand

1ère approche: Étudier le comportement asymptotique de paramètres:

- degré d’un sommet aléatoire

- loi 0-1 pour les propriétés locales

- distance entre 2 sommets aléatoires

- longueur d’un plus petit cycle diviseur

⇒ espérance, moments, lois limites discrètes ou continues, qd n→∞
Bender, Canfield et al (90’s→) en combinatoire Ambjørn, Watabiki et al (90’s→) en physique

Exemple: ∆n = distance entre 2 sommets aléatoires uniformes de Qn

Théorème (Chassaing-S. 2004) E(∆n) ∼ c · n1/4

(n−1/4∆n)
d−→ max (serpent Brownien)
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Étudier les quadrangulations aléatoires uniformes

Distribution uniforme sur les quadrangulations à n faces, pour n grand

2ème approche: Définir des surfaces aléatoires limites

– convergence vers une limite d’échelle

– convergence vers une limite infinie discrète

(Pb posé au séminaire Hypathie en 2002 à Lyon)

Angel, Schramm, . . .

⇒ la carte Brownienne Marckert, Mokkadem, Le Gall, Miermont, . . .

⇒ la quadrangulation infinie uniforme (UIPQ)

puis Weill, Curien, Benjamini,...

puis Durhus, Chassaing, Krikun, Bettinelli,...



Conclusions

– L’excursion Brownienne décrit la limite d’échelle de toute sorte d’excursions
aléatoires discrètes plus ou moins complexes.

– L’arbre continu aléatoire est limite d’échelle de toute sorte d’arbres aléatoires discrets
plus ou moins complexes.

⇒ On pense qu’il en est de même de la carte Brownienne.
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Conclusions

– L’excursion Brownienne décrit la limite d’échelle de toute sorte d’excursions
aléatoires discrètes plus ou moins complexes.

– L’arbre continu aléatoire est limite d’échelle de toute sorte d’arbres aléatoires discrets
plus ou moins complexes.

⇒ On pense qu’il en est de même de la carte Brownienne.

Les résultats de Le Gall et Miermont valent pour des cartes avec des contraintes de
degré de faces plus générales (q-angulations,. . . )

Un challenge est de montrer que des objets a priori plus éloignés tels que les graphes
planaires (non plongés) ou les revêtements ramifiés, sont en fait dans la même classe
d’universalité.

On dispose d’un cadre bijectif très général pour la construction de cartes par
recollements d’arbres
On obtient ainsi en particulier un codage d’arbres pour les revêtements...
Il reste à utiliser ces constructions pour passer à la limite...

(Bernardi-Chapuy-Fusy 2011, Albenque-Poulalhon 2012)
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