Arbres, cartes et nombres de Hurwitz

Gilles Schaeffer
CNRS & École Polytechnique
ERC Research Starting Grant 208471 ”ExploreMaps”

Colloquium du LAREMA, Angers, juin 2013
Plan de l’exposé

Revêtements ramifiés et cartes

Cartes et arbres

Énumération d’arbres et formule d’Hurwitz

Revêtements et cartes aléatoires
Plan de l’exposé

Revêtements ramifiés et cartes

Cartes et arbres

Énumération d’arbres et formule d’Hurwitz

Revêtements et cartes aléatoires
Ramified coverings of the sphere by itself

Let $B = \{ z \mid |z| < 1 \} \subset \mathbb{C}$ and let \sim denote equivalence up to homeomorphisms.

A mapping $\phi : D \to I$ is a covering if, for all x in I there exists $n \geq 1$ and a neighborhood V of x such that $\phi^{-1}(V) \sim B \times \{1, \ldots, n\}$,

and the restriction of ϕ to each sheet B_i (connected component of the preimage)
is an homeomorphism $\phi_{|B_i} : B_i \simto B$.

Ramified coverings of the sphere by itself

Let $B = \{ z \mid |z| < 1 \} \subset \mathbb{C}$ and let \sim denote equivalence up to homeomorphisms.

A mapping $\phi : \mathcal{D} \to \mathcal{I}$ is a covering if, for all x in \mathcal{I} there exists $n \geq 1$ and a neighborhood V of x such that $\phi^{-1}(V) \sim B \times \{1, \ldots, n\}$, and the restriction of ϕ to each sheet B_i (connected component of the preimage) is an homeomorphism $\phi|_{B_i} : B_i \sim \to B$.

Example:
Let A_r be the annulus $\{ z \mid r < |z| < 1 \} \subset \mathbb{C}$. Consider $\phi_k : A_r \to A_{r^k}$ with $\phi_k(z) = z^k$.
Ramified coverings of the sphere by itself

Let $B = \{z \mid |z| < 1\} \subset \mathbb{C}$ and let \sim denote equivalence up to homeomorphisms.

A mapping $\phi : \mathcal{D} \to \mathcal{I}$ is a covering if, for all x in \mathcal{I} there exists $n \geq 1$ and a neighborhood V of x such that $\phi^{-1}(V) \sim B \times \{1, \ldots, n\}$,

and the restriction of ϕ to each sheet B_i (connected component of the preimage) is an homeomorphism $\phi|_{B_i} : B_i \xrightarrow{\sim} B$.

Example:

Let A_r be the annulus $\{z \mid r < |z| < 1\} \subset \mathbb{C}$.

Consider $\phi_k : A_r \to A_{r,k}$ with $\phi_k(z) = z^k$.
Let $B = \{z \mid |z| < 1\} \subset \mathbb{C}$ and let \sim denote equivalence up to homeomorphisms.

A mapping $\phi : D \to I$ is a covering if, for all x in I there exists $n \geq 1$ and a neighborhood V of x such that $\phi^{-1}(V) \sim B \times \{1, \ldots, n\}$, and the restriction of ϕ to each sheet B_i (connected component of the preimage) is an homeomorphism $\phi|_{B_i} : B_i \sim \rightarrow B$.

Example:
Let A_r be the annulus $\{z \mid r < |z| < 1\} \subset \mathbb{C}$.
Consider $\phi_k : A_r \rightarrow A_{r^k}$ with $\phi_k(z) = z^k$.
Ramified coverings of the sphere by itself

Let \(B = \{ z \mid |z| < 1 \} \subset \mathbb{C} \) and let \(\sim \) denote equivalence up to homeomorphisms.

A mapping \(\phi : D \to \mathcal{I} \) is a covering if, for all \(x \) in \(\mathcal{I} \) there exists \(n \geq 1 \) and a neighborhood \(V \) of \(x \) such that \(\phi^{-1}(V) \sim B \times \{1, \ldots, n\} \),

and the restriction of \(\phi \) to each sheet \(B_i \) (connected component of the preimage)

is an homeomorphism \(\phi|_{B_i} : B_i \simto B \).

Example:

Let \(A_r \) be the annulus \(\{ z \mid r < |z| < 1 \} \subset \mathbb{C} \).

Consider \(\phi_k : A_r \to A_{r^k} \) with \(\phi_k(z) = z^k \).
Ramified coverings of the sphere by itself

Let $B = \{z \mid |z| < 1\} \subset \mathbb{C}$ and let \sim denote equivalence up to homeomorphisms.

A mapping $\phi : D \to I$ is a covering if, for all x in I there exists $n \geq 1$ and a neighborhood V of x such that $\phi^{-1}(V) \sim B \times \{1, \ldots, n\}$, and the restriction of ϕ to each sheet B_i (connected component of the preimage) is an homeomorphism $\phi|_{B_i} : B_i \xrightarrow{\sim} B$.

Example:

Let A_r be the annulus $\{z \mid r < |z| < 1\} \subset \mathbb{C}$.

Consider $\phi_k : A_r \to A_{r,k}$ with $\phi_k(z) = z^k$.
Ramified coverings of the sphere by itself

Let $B = \{z \mid |z| < 1\} \subset \mathbb{C}$ and let \sim denote equivalence up to homeomorphisms.

A mapping $\phi : \mathcal{D} \rightarrow \mathcal{I}$ is a covering if, for all x in \mathcal{I} there exists $n \geq 1$ and a neighborhood V of x such that $\phi^{-1}(V) \sim B \times \{1, \ldots, n\}$, and the restriction of ϕ to each sheet B_i (connected component of the preimage) is an homeomorphism $\phi|_{B_i} : B_i \sim B$.

Example:

Let A_r be the annulus $\{z \mid r < |z| < 1\} \subset \mathbb{C}$.

Consider $\phi_k : A_r \rightarrow A_{r^k}$ with $\phi_k(z) = z^k$.

[Diagram showing ramified coverings of the sphere by itself]
Ramified coverings of the sphere by itself

Let $B = \{ z \mid |z| < 1 \} \subset \mathbb{C}$ and let \sim denote equivalence up to homeomorphisms.

A mapping $\phi : \mathcal{D} \rightarrow \mathcal{I}$ is a covering if, for all x in \mathcal{I} there exists $n \geq 1$ and a neighborhood V of x such that $\phi^{-1}(V) \sim B \times \{1, \ldots, n\}$, and the restriction of ϕ to each sheet B_i (connected component of the preimage) is an homeomorphism $\phi|_{B_i} : B_i \xrightarrow{\sim} B$.

Example:

Let A_r be the annulus $\{ z \mid r < |z| < 1 \} \subset \mathbb{C}$.

Consider $\phi_k : A_r \rightarrow A_{r,k}$ with $\phi_k(z) = z^k$.

By continuity, the number $n = |\phi^{-1}(x)|$ of sheets of a covering ϕ does not depend on x: for instance $n = k$ for ϕ_k.
Ramified coverings of the sphere by itself

Let \(B = \{ z \mid |z| < 1 \} \subset \mathbb{C} \) and let \(\sim \) denote equivalence up to homeomorphisms.

A mapping \(\phi : D \rightarrow I \) is a covering if, for all \(x \) in \(I \) there exists \(n \geq 1 \) and a neighborhood \(V \) of \(x \) such that \(\phi^{-1}(V) \sim B \times \{1, \ldots, n\} \),

and the restriction of \(\phi \) to each sheet \(B_i \) (connected component of the preimage)
is an homeomorphism \(\phi|_{B_i} : B_i \simto B \).

Example:
Let \(A_r \) be the annulus \(\{ z \mid r < |z| < 1 \} \subset \mathbb{C} \).

Consider \(\phi_k : A_r \rightarrow A_{r,k} \) with \(\phi_k(z) = z^k \).

By continuity, the number \(n = |\phi^{-1}(x)| \) of sheets of a covering \(\phi \) does not depend on \(x \): for instance \(n = k \) for \(\phi_k \).

The number \(n \) of sheets is called the **degree** of the covering.
Ramified coverings of the sphere by itself

Let \(B = \{ z \mid |z| < 1 \} \subset \mathbb{C} \) and let \(\sim \) denote equivalence up to homeomorphisms.

A mapping \(\phi : D \to I \) is a covering if, for all \(x \) in \(I \) there exists \(n \geq 1 \) and a neighborhood \(V \) of \(x \) such that \(\phi^{-1}(V) \sim B \times \{1, \ldots, n\} \),

and the restriction of \(\phi \) to each sheet \(B_i \) (connected component of the preimage) is an homeomorphism \(\phi|_{B_i} : B_i \sim B \).

Example:
Let \(A_r \) be the annulus \(\{ z \mid r < |z| < 1 \} \subset \mathbb{C} \).
Consider \(\phi_k : A_r \to A_{r,k} \) with \(\phi_k(z) = z^k \).

By continuity, the number \(n = |\phi^{-1}(x)| \) of sheets of a covering \(\phi \) does not depend on \(x \): for instance \(n = k \) for \(\phi_k \).

The number \(n \) of sheets is called the degree of the covering.

What is we try to extend from \(A_r \) to \(B \)?
Recall $\phi_k : A_r \to A_{r,k}$ with $\phi_k(z) = z^k$.

Extend from A_r to B?

The mapping $\phi_k : B^* \to B^*$ is a covering, but not $\phi_k : B \to B$.
Recall $\phi_k : A_r \to A_{r,k}$ with $\phi_k(z) = z^k$.

Extend from A_r to B?

The mapping $\phi_k : B^* \to B^*$ is a covering, but not $\phi_k : B \to B$.

What happens at $x = 0$?
Recall $\phi_k : A_r \to A_{r^k}$ with $\phi_k(z) = z^k$.

Extend from A_r to B?

The mapping $\phi_k : B^* \to B^*$ is a covering, but not $\phi_k : B \to B$.

What happens at $x = 0$?

The mapping $\phi_k : B \to B$ has a connected ramification of degree k at $x = 0$.
Ramified coverings of the sphere by itself

Recall $\phi_k : A_r \to A_{r,k}$ with $\phi_k(z) = z^k$.

Extend from A_r to B?

The mapping $\phi_k : B^* \to B^*$ is a covering, but not $\phi_k : B \to B$.

What happens at $x = 0$?

The mapping $\phi_k : B \to B$ has a connected ramification of degree k at $x = 0$.

A mapping ϕ is ramified at $x = 0$ if

- there is a neighborhood V of the origin such that $\phi^{-1}(V) \sim B \times [1, \ldots, p]$ and,

- the restriction of ϕ to each component of $\phi^{-1}(V)$ is homeomorphic to ϕ_k for some k.
Ramified coverings of the sphere by itself

Recall $\phi_k : A_r \to A_{r,k}$ with $\phi_k(z) = z^k$.

Extend from A_r to B?

The mapping $\phi_k : B^* \to B^*$ is a covering, but not $\phi_k : B \to B$.

What happens at $x = 0$?

The mapping $\phi_k : B \to B$ has a connected ramification of degree k at $x = 0$.

A mapping ϕ is ramified at $x = 0$ if

- there is a neighborhood V of the origin such that $\phi^{-1}(V) \sim B \times [1, \ldots, p]$ and,

- the restriction of ϕ to each component of $\phi^{-1}(V)$ is homeomorphic to ϕ_k for some k.
Ramified coverings of the sphere by itself

Recall $\phi_k : A_r \to A_{r,k}$ with $\phi_k(z) = z^k$.

Extend from A_r to B?
The mapping $\phi_k : B^* \to B^*$ is a covering, but not $\phi_k : B \to B$.

What happens at $x = 0$?
The mapping $\phi_k : B \to B$ has a connected ramification of degree k at $x = 0$.

A mapping ϕ is ramified at $x = 0$ if

- there is a neighborhood V of the origin such that $\phi^{-1}(V) \sim B \times [1, \ldots, p]$ and,
- the restriction of ϕ to each component of $\phi^{-1}(V)$ is homeomorphic to ϕ_k for some k.

Regular (aka unramified) value = ramified with ϕ_1 on each component.
Ramified coverings of the sphere by itself

Recall $\phi_k : A_r \to A_{r,k}$ with $\phi_k(z) = z^k$.

Extend from A_r to B?

The mapping $\phi_k : B^* \to B^*$ is a covering, but not $\phi_k : B \to B$.

What happens at $x = 0$?

The mapping $\phi_k : B \to B$ has a connected ramification of degree k at $x = 0$.

A mapping ϕ is ramified at $x = 0$ if

- there is a neighborhood V of the origin such that $\phi^{-1}(V) \sim B \times [1, \ldots, p]$ and,

- the restriction of ϕ to each component of $\phi^{-1}(V)$ is homeomorphic to ϕ_k for some k.

Regular (aka unramified) value $=$ ramified with ϕ_1 on each component.
A mapping ϕ is a ramified covering of \mathbb{S} by \mathbb{S} if there exists a finite subset $X = \{x_1, \ldots, x_p\}$ such that:

- $\phi_{\mathbb{S}\setminus \phi^{-1}(X)}$ is a covering, and
- ϕ is ramified over each x_i
A mapping ϕ is a **ramified covering** of S by S if there exists a finite subset $X = \{x_1, \ldots, x_p\}$ such that:

- $\phi_{S \setminus \phi^{-1}(X)}$ is a covering, and
- ϕ is ramified over each x_i

On each component V_j of $\phi^{-1}(V(x_i))$, $\phi \sim \phi_{\lambda_j^{(i)}}$ for some integer $\lambda_j^{(i)}$.
A mapping ϕ is a **ramified covering** of \mathbb{S} by \mathbb{S} if there exists a finite subset $X = \{x_1, \ldots, x_p\}$ such that:

- $\phi_{\mathbb{S}\setminus\phi^{-1}(X)}$ is a covering, and
- ϕ is ramified over each x_i

On each component V_j of $\phi^{-1}(V(x_i))$, $\phi \sim \phi_{\lambda_{j}^{(i)}}$ for some integer $\lambda_{j}^{(i)}$.
A mapping ϕ is a \textbf{ramified covering} of \mathbb{S} by \mathbb{S} if there exists a finite subset $X = \{x_1, \ldots, x_p\}$ such that:

- $\phi_{\mathbb{S}\setminus\phi^{-1}(X)}$ is a covering, and
- ϕ is ramified over each x_i

On each component V_j of $\phi^{-1}(V(x_i))$, $\phi \sim \phi_{\lambda_j^{(i)}}$ for some integer $\lambda_j^{(i)}$.

The \textbf{ramification type} over a critical value x_i is the partition $\lambda^{(i)}$

The \textbf{passport} of a ramified covering is the list $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(p)})$

\[
\lambda^{(1)} = 1^5 \quad \lambda^{(2)} = 1, 2^2 \quad \lambda^{(2)} = 2, 3
\]

the passport $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(p)})$ of a ramified covering
Ramified coverings of the sphere by itself (Cont’d)

\[\lambda^{(1)} = 1^5 \quad \lambda^{(2)} = 1, 2^2 \quad \lambda^{(2)} = 2, 3 \]

the passport \(\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(p)}) \) of a ramified covering
Ramified coverings of the sphere by itself (Cont’d)

The passport $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(p)})$ of a ramified covering
Ramified coverings of the sphere by itself (Cont’d)

To understand the "shape" of the covering, draw paths on \mathcal{I} and study its preimages.

\[\mathcal{D} = \mathbb{S} \]
\[\mathcal{I} = \mathbb{S} \]

generically n sheets

\[\lambda(1) = 1^5 \]
\[\lambda(2) = 1, 2^2 \]
\[\lambda(2) = 2, 3 \]

the passport $\Lambda = (\lambda(1), \ldots, \lambda(p))$ of a ramified covering

regular value critical value critical value

ϕ_3

ϕ_2

ϕ_2

ϕ_2

ϕ_2

ϕ_2

ϕ_2
Ramified coverings of the sphere by itself (Cont’d)

To understand the "shape" of the covering, draw paths on \mathcal{I} and study its preimages.

$\mathcal{D} = \mathbb{S}$

$\mathcal{I} = \mathbb{S}$

regular value	critical value	critical value
$\lambda^{(1)} = 1^5$ | $\lambda^{(2)} = 1, 2^2$ | $\lambda^{(2)} = 2, 3$

the passport $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(p)})$ of a ramified covering
Ramified coverings of the sphere by itself (Cont’d)

To understand the "shape" of the covering, draw paths on \mathcal{I} and study its preimages.

- n independant preimages as long as we stay away from critical points

The passport $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(p)})$ of a ramified covering
Ramified coverings of the sphere by itself (Cont’d)

To understand the "shape" of the covering, draw paths on \mathcal{I} and study its preimages.

- n independant preimages as long as we stay away from critical points
- a contractible loop on \mathcal{I}

\[
\begin{align*}
\lambda^{(1)} &= 1^5 \\
\lambda^{(2)} &= 1, 2^2 \\
\lambda^{(2)} &= 2, 3
\end{align*}
\]

the passport $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(p)})$ of a ramified covering
Ramified coverings of the sphere by itself (Cont’d)

To understand the "shape" of the covering, draw paths on \mathcal{I} and study its preimages.

- n independent preimages as long as we stay away from critical points
- A contractible loop on \mathcal{I} yields n contractible loops on \mathcal{D}

$\mathcal{D} = S$

$\mathcal{I} = S$

<table>
<thead>
<tr>
<th>regular value</th>
<th>critical value</th>
<th>critical value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda^{(1)} = 1^5$</td>
<td>$\lambda^{(2)} = 1, 2^2$</td>
<td>$\lambda^{(2)} = 2, 3$</td>
</tr>
</tbody>
</table>

The passport $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(p)})$ of a ramified covering
Ramified coverings of the sphere by itself (Cont’d)

To understand the "shape" of the covering, draw paths on \mathcal{I} and study its preimages.

- n independant preimages as long as we stay away from critical points
- a contractible loop on \mathcal{I} yields n contractible loops on \mathcal{D}

\[\mathcal{D} = \mathbb{S} \]
\[\mathcal{I} = \mathbb{S} \]

regular value	critical value	critical value
$\lambda^{(1)} = 1^5$ | $\lambda^{(2)} = 1, 2^2$ | $\lambda^{(2)} = 2, 3$

the passport $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(p)})$ of a ramified covering
Ramified coverings of the sphere by itself (Cont’d)

To understand the ”shape” of the covering, draw paths on \mathcal{I} and study its preimages.

- n independant preimages as long as we stay away from critical points
- A contractible loop on \mathcal{I} yields n contractible loops on \mathcal{D} but if we wind around critical points

$\mathcal{D} = \mathbb{S}$

$\mathcal{I} = \mathbb{S}$

<table>
<thead>
<tr>
<th>regular value</th>
<th>critical value</th>
<th>critical value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda^{(1)} = 1^5$</td>
<td>$\lambda^{(2)} = 1, 2^2$</td>
<td>$\lambda^{(2)} = 2, 3$</td>
</tr>
</tbody>
</table>

the passport $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(p)})$ of a ramified covering
Ramified coverings of the sphere by itself (Cont’d)

To understand the "shape" of the covering, draw paths on \mathcal{I} and study its preimages.

- n independent preimages as long as we stay away from critical points
- A contractible loop on \mathcal{I} yields n contractible loops on \mathcal{D}
 but if we wind around critical points
 some sheets may get permuted

\[
\begin{align*}
\mathcal{D} &= \mathbb{S} \\
\mathcal{I} &= \mathbb{S} \\
\end{align*}
\]

regular value critical value critical value

$\lambda^{(1)} = 1^5$ $\lambda^{(2)} = 1, 2^2$ $\lambda^{(2)} = 2, 3$

the passport $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(p)})$ of a ramified covering
Ramified coverings of the sphere by itself (Cont’d)

To understand the ”shape” of the covering, draw paths on \(\mathcal{I} \) and study its preimages.

- \(n \) independant preimages as long as we stay away from critical points
- a contractible loop on \(\mathcal{I} \) yields \(n \) contractible loops on \(\mathcal{D} \)
 - but if we wind around critical points some sheets may get permuted
- visiting critical points create multiple values or ”vertices”

\[
\begin{align*}
\lambda^{(1)} &= 1^5 \\
\lambda^{(2)} &= 1, 2^2 \\
\lambda^{(2)} &= 2, 3
\end{align*}
\]

the passport \(\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(p)}) \) of a ramified covering
Ramified coverings of the sphere by itself (Cont’d)

To understand the "shape" of the covering, draw paths on \mathcal{I} and study its preimages.

- n independent preimages as long as we stay away from critical points
- a contractible loop on \mathcal{I} yields n contractible loops on \mathcal{D} but if we wind around critical points some sheets may get permuted
- visiting critical points create multiple values or "vertices"

$\mathcal{D} = \mathbb{S}$

$\mathcal{I} = \mathbb{S}$

<table>
<thead>
<tr>
<th>regular value</th>
<th>critical value</th>
<th>critical value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda^{(1)} = 1^5$</td>
<td>$\lambda^{(2)} = 1, 2^2$</td>
<td>$\lambda^{(2)} = 2, 3$</td>
</tr>
</tbody>
</table>

the passport $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(p)})$ of a ramified covering
Ramified coverings of the sphere by itself (Cont’d)

To understand the "shape" of the covering, draw paths on \mathcal{I} and study its preimages.

- n independent preimages as long as we stay away from critical points.
- A contractible loop on \mathcal{I} yields n contractible loops on \mathcal{D} but if we wind around critical points some sheets may get permuted.
- Visiting critical points create multiple values or "vertices".

$\mathcal{D} = \mathbb{S}$

$\mathcal{I} = \mathbb{S}$

regular value critical value critical value

$\lambda^{(1)} = 1^5$ $\lambda^{(2)} = 1, 2^2$ $\lambda^{(2)} = 2, 3$

The partitions $\lambda^{(i)}$ are partitions of n, degree of the covering.

The passport $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(p)})$ of a ramified covering.
Monodromy, and permutations

Let us label \(\{1, \ldots, n\} \) the preimages of a regular point. Loop \(\Rightarrow \) permutation of sheet labels

Example: \((1, 2)(3, 4)(5)\) in cyclic notation
Monodromy, and permutations

Let us label \(\{1, \ldots, n\} \) the preimages of a regular point.

Loop \(\Rightarrow \) permutation of sheet labels

Example: \((1, 2)(3, 4)(5)\) in cyclic notation

The permutation is invariant under continuous deformation of the loop provided it stays in \(S \setminus \{X\} \)
Monodromy, and permutations

Let us label \(\{1, \ldots, n\} \) the preimages of a regular point.

Loop \(\Rightarrow \) permutation of sheet labels

Example: \((1, 2)(3, 4)(5)\) in cyclic notation

The permutation is invariant under continuous deformation of the loop provided it stays in \(\mathbb{S} \setminus \{X\} \)

Contractible loop in \(\mathbb{S} \setminus X \) \(\Rightarrow \) identity permutation
Monodromy, and permutations

Let us label \(\{1, \ldots, n\} \) the preimages of a regular point.

Loop \(\Rightarrow \) permutation of sheet labels

Example: \((1, 2)(3, 4)(5)\) in cyclic notation

The permutation is invariant under continuous deformation of the loop provided it stays in \(S \setminus \{X\} \)

Contractible loop in \(S \setminus X \) \(\Rightarrow \) identity permutation

Concatenation of two loops \(\Rightarrow \) product of the permutations

Example: \((1)(2, 3, 4, 5) \cdot (1, 2)(3, 4)(5)\)
Monodromy, and permutations

Let us label \(\{1, \ldots, n\} \) the preimages of a regular point.

Loop \(\Rightarrow \) permutation of sheet labels

Example: \((1, 2)(3, 4)(5)\) in cyclic notation

The permutation is invariant under continuous deformation of the loop provided it stays in \(S \setminus \{X\} \)

Contractible loop in \(S \setminus X \) \(\Rightarrow \) identity permutation

Concatenation of two loops \(\Rightarrow \) product of the permutations

Example: \((1)(2, 3, 4, 5) \cdot (1, 2)(3, 4)(5)\)
Monodromy, and permutations

Let us label \(\{1, \ldots, n\} \) the preimages of a regular point.

Loop \(\Rightarrow \) permutation of sheet labels

Example: \((1, 2)(3, 4)(5)\) in cyclic notation

The permutation is invariant under continuous deformation of the loop provided it stays in \(S \setminus \{X\} \)

Contractible loop in \(S \setminus X \) \(\Rightarrow \) identity permutation

Concatenation of two loops \(\Rightarrow \) product of the permutations

Example: \((1)(2, 3, 4, 5) \cdot (1, 2)(3, 4)(5)\)
Monodromy, and permutations

Let us label \(\{1, \ldots, n\} \) the preimages of a regular point.

- **Loop** \(\Rightarrow \) permutation of sheet labels

 Example: \((1, 2)(3, 4)(5)\) in cyclic notation

 The permutation is invariant under continuous deformation of the loop provided it stays in \(\mathbb{S} \setminus \{X\} \)

- **Contractible loop in** \(\mathbb{S} \setminus X \) \(\Rightarrow \) identity permutation

- **Concatenation of two loops** \(\Rightarrow \) product of the permutations

 Example: \((1)(2, 3, 4, 5) \cdot (1, 2)(3, 4)(5)\)

 \(\Rightarrow \) Equivalence classes of ramified coverings \(\equiv \) factorizations of permutations
Monodromy, and permutations

Let us label \(\{1, \ldots, n\} \) the preimages of a regular point.

Loop \(\Rightarrow \) permutation of sheet labels

Example: \((1, 2)(3, 4)(5) \) in cyclic notation

The permutation is invariant under continuous deformation of the loop provided it stays in \(S \setminus \{X\} \)

Contractible loop in \(S \setminus X \) \(\Rightarrow \) identity permutation

Concatenation of two loops \(\Rightarrow \) product of the permutations

Example: \((1)(2, 3, 4, 5) \cdot (1, 2)(3, 4)(5) \)

\(\Rightarrow \) Equivalence classes of ramified coverings \(\equiv \) factorizations of permutations but geometric intuition is lost
coverings with 3 critical values and bipartite maps

\[\mathcal{D} = S \]

\[\mathcal{I} = S \]

3 critical values

\[\lambda^\bullet = 2^31^2 \quad \lambda^o = 3^22 \quad \lambda^{\square} = 62 \]
coverings with 3 critical values and bipartite maps

$\mathcal{D} = \mathcal{S}$

$I = \mathcal{S}$

3 critical values $\lambda^\bullet = 2^3 1^2$ $\lambda^o = 3^2 2$ $\lambda^\square = 62$

1 regular value with labeled preimages
coverings with 3 critical values and bipartite maps

\[D = S \]

\[I = S \]

3 critical values
\[\lambda^\bullet = 2^3 1^2 \quad \lambda^\circ = 3^2 2 \quad \lambda^\square = 62 \]

1 regular value with labeled preimages

On \(I \), draw an edge between \(\bullet \) and \(\circ \) via the basepoint
coverings with 3 critical values and bipartite maps

3 critical values \(\lambda^\bullet = 2^3 1^2 \) \(\lambda^\circ = 3^2 2 \) \(\lambda^\square = 62 \)
1 regular value with labeled preimages

On \(\mathcal{I} \), draw an edge between \(\bullet \) and \(\circ \) via the basepoint.

We get a planar map:
that is, a graph embedded on the sphere with simply connected faces.

\[\mathcal{D} = \mathbb{S} \]

\[\mathcal{I} = \mathbb{S} \]
coverings with 3 critical values and bipartite maps

\[D = \mathbb{S} \]

\[I = \mathbb{S} \]

On \(I \), draw an edge between \(\bullet \) and \(\circ \) via the basepoint.

We get a planar map:

that is, a graph embedded on the sphere with simply connected faces.

Proof. Faces are simply connected because a loop around the edge in \(I \) can be deformed to a loop around \(\square \).

3 critical values
\[\lambda^\bullet = 2^3 1^2 \quad \lambda^\circ = 3^2 2 \quad \lambda^\square = 62 \]

1 regular value with labeled preimages
coverings with 3 critical values and bipartite maps

\[D = \mathbb{S} \]

\[I = \mathbb{S} \]

3 critical values
\[\lambda^\bullet = 2^3 \cdot 1^2 \quad \lambda^\circ = 3^2 \cdot 2 \quad \lambda^\square = 62 \]

1 regular value with labeled preimages

On \(I \), draw an edge between \(\bullet \) and \(\circ \) via the basepoint

We get a planar map:

that is, a graph embedded on the sphere with simply connected faces

Proof. Faces are simply connected because a loop around the edge in \(I \) can be deformed to a loop around \(\square \)
coverings with 3 critical values and bipartite maps

\[D = S \]

\[I = S \]

3 critical values
\[\lambda^\bullet = 2^3 1^2 \quad \lambda^\circ = 3^2 2 \quad \lambda^\square = 62 \]

1 regular value with labeled preimages

On \(I \), draw an edge between \(\bullet \) and \(\circ \) via the basepoint

We get a planar map:
that is, a graph embedded on the sphere with simply connected faces

Proof. Faces are simply connected because a loop around the edge in \(I \) can be deformed to a loop around \(\square \)
coverings with 3 critical values and bipartite maps

On \mathcal{I}, draw an edge between \bullet and \circ via the basepoint

We get a planar map:

that is, a graph embedded on the sphere with simply connected faces

Proof. Faces are simply connected because a loop around the edge in \mathcal{I} can be deformed to a loop around \square

Proposition. This is a bijection between bipartite planar maps and ramified coverings of \mathbb{S} by \mathbb{S} with 3 critical values.

3 critical values

$\lambda^\bullet = 2^31^2$ $\lambda^\circ = 3^22$ $\lambda^\square = 62$

1 regular value with labeled preimages
3 critical values, bipartite maps and permutations

\[\mathcal{D} = \mathcal{S} \]

A loop around a critical value yields a permutation

\[\mathcal{I} = \mathcal{S} \]

3 critical values
\[\lambda^\bullet = 2^3 1^2 \quad \lambda^\circ = 3^2 2 \quad \lambda^\Box = 62 \]

1 regular value with labeled preimages
A loop around a critical value yields a permutation

\[\sigma = (1, 3, 6)(2, 5, 4)(7, 8) \]
with cyclic type \(\lambda^\circ \)

3 critical values

\[\lambda^\bullet = 2^3 1^2 \]

1 regular value with labeled preimages

\[\lambda^\square = 62 \]
A loop around a critical value yields a permutation

\[\sigma_\circ = (1, 3, 6)(2, 5, 4)(7, 8) \]
with cyclic type \(\lambda_\circ \)

\[\sigma_\bullet = (1)(2, 6)(3, 5)(4, 7)(8) \]
with cyclic type \(\lambda_\bullet \)

Cycle types \(\Leftrightarrow \) degree distributions

3 critical values

1 regular value with labeled preimages
3 critical values, bipartite maps and permutations

A loop around a critical value yields a permutation

\[\sigma = (1, 3, 6)(2, 5, 4)(7, 8) \]
with cyclic type \(\lambda^o \)

\[\sigma = (1)(2, 6)(3, 5)(4, 7)(8) \]
with cyclic type \(\lambda^\bullet \)

Cycle types \(\leftrightarrow \) degree distributions

\[\lambda^\bullet = 2^3 1^2 \quad \lambda^o = 3^2 2 \quad \lambda^{\square} = 62 \]

3 critical values
1 regular value with labeled preimages
A loop around a critical value yields a permutation

\[\sigma \circ = (1, 3, 6)(2, 5, 4)(7, 8) \]

with cyclic type \(\lambda^\circ \)

\[\sigma \bullet = (1)(2, 6)(3, 5)(4, 7)(8) \]

with cyclic type \(\lambda^\bullet \)

Cycle types \(\leftrightarrow \) degree distributions

What about \(\sigma \square \) and \(\lambda \square \)?

3 critical values

\[\lambda^\bullet = 2^3 1^2 \quad \lambda^\circ = 3^2 2 \quad \lambda \square = 62 \]

1 regular value with labeled preimages
3 critical values, bipartite maps and permutations

A loop around a critical value yields a permutation

$\sigma_\circ = (1, 3, 6)(2, 5, 4)(7, 8)$
with cyclic type λ_\circ

$\sigma_\bullet = (1)(2, 6)(3, 5)(4, 7)(8)$
with cyclic type λ_\bullet

Cycle types \leftrightarrow degree distributions

What about σ_\square and λ_\square?

$\sigma_\square = (2, 3)(1, 5, 7, 8, 4, 6)$
loops around $\square = \text{faces}$

3 critical values

$\lambda_\bullet = 2^3 1^2$
$\lambda_\circ = 3^2 2$
$\lambda_\square = 62$

1 regular value with labeled preimages
3 critical values, bipartite maps and permutations

A loop around a critical value yields a permutation
\[\sigma \circ = (1, 3, 6)(2, 5, 4)(7, 8) \]
with cyclic type \(\lambda^\circ \)
\[\sigma \bullet = (1)(2, 6)(3, 5)(4, 7)(8) \]
with cyclic type \(\lambda^\bullet \)

Cycle types \(\leftrightarrow \) degree distributions

What about \(\sigma \square \) and \(\lambda \square \)?
\[\sigma \square = (2, 3)(1, 5, 7, 8, 4, 6) \]
loops around \(\square = \) faces

But loop around \(\square = \) concatenate loop around \(\circ \) and \(\bullet \)

D = S

I = S

3 critical values

1 regular value with labeled preimages

\[\lambda^\bullet = 2^3 1^2 \]

\[\lambda^\circ = 3^2 2 \]

\[\lambda \square = 62 \]
3 critical values, bipartite maps and permutations

A loop around a critical value yields a permutation

\[\sigma_\circ = (1, 3, 6)(2, 5, 4)(7, 8) \]
with cyclic type \(\lambda_\circ \)

\[\sigma_\bullet = (1)(2, 6)(3, 5)(4, 7)(8) \]
with cyclic type \(\lambda_\bullet \)

Cycle types \(\leftrightarrow \) degree distributions

What about \(\sigma_\square \) and \(\lambda_\square \)?

\[\sigma_\square = (2, 3)(1, 5, 7, 8, 4, 6) \]
loops around \(\square = \text{faces} \)

But loop around \(\square = \text{concatenate loop around } \circ \text{ and } \bullet \)

Proposition: \(\sigma_\circ \sigma_\bullet = \sigma_\square \).
$m + 1$ critical values, m-constellations, permutations

$m + 1$ critical values

1 regular value with labeled preimages
The preimage of the \(m \)-star is called a star-constellation.

Proposition. Planar star-constellations with:
- \(n \) labelled \(m \)-stars,
- \(\lambda_j \) faces of degree \(j \),
- \(\lambda^{(i)}_j \) color \(i \) vertices of degree \(j \)
are in bijection with minimal transitive factorizations \(\sigma_1 \cdots \sigma_m = \sigma_\square \) with \(\sigma_i \) of cyclic type \(\lambda^{(i)} \).
Theorem. There is a bijection between

- Labelled ramified covering of \mathcal{S} of type $\Lambda = (\lambda_0, \ldots, \lambda_m)$
- Factorizations $(\sigma_1 \cdots \sigma_m = \sigma_0)$ of type Λ
- labelled m-star-constellations of type Λ.

$\mathcal{D} = \mathcal{S} \iff$ minimality \iff planarity.
Monodromy, permutations, constellations: a summary

Theorem. There is a bijection between

- Labelled ramified covering of \mathbb{S} of type $\Lambda = (\lambda_0, \ldots, \lambda_m)$
- Factorizations $(\sigma_1 \cdots \sigma_m = \sigma_0)$ of type Λ
- labelled m-star-constellations of type Λ.

$\mathcal{D} = \mathbb{S} \iff$ minimality \iff planarity.

Specializations.

— $m = 2$: bipartite maps with n edges

— $m = 2$, $\lambda_0 = 4^n$, all faces have degree 4: quadrangulations
 \Rightarrow Jean-François Le Gall’s last year talk at this seminar
Monodromy, permutations, constellations: a summary

Theorem. There is a bijection between

- Labelled ramified covering of \(S \) of type \(\Lambda = (\lambda_0, \ldots, \lambda_m) \)
- Factorizations \((\sigma_1 \cdots \sigma_m = \sigma_0)\) of type \(\Lambda \)
- labelled \(m \)-star-constellations of type \(\Lambda \).

\(\mathcal{D} = S \iff \text{minimality} \iff \text{planarity.} \)

Specializations.

— \(m = 2 \): bipartite maps with \(n \) edges
— \(m = 2, \lambda_0 = 4^n \), all faces have degree 4: quadrangulations
 \(\Rightarrow \) Jean-François Le Gall’s last year talk at this seminar
— for all \(i \geq 1 \), \(\lambda^{(i)} = 21^{n-2} \): factorizations in transpositions.
 coverings with only **simple** branch points
Monodromy, permutations, constellations: a summary

Theorem. There is a bijection between

- Labelled ramified covering of \mathcal{S} of type $\Lambda = (\lambda_0, \ldots, \lambda_m)$
- Factorizations $(\sigma_1 \cdots \sigma_m = \sigma_0)$ of type Λ
- labelled m-star-constellations of type Λ.

$\mathcal{D} = \mathcal{S} \iff$ minimality \iff planarity.

Specializations.

- $m = 2$: bipartite maps with n edges
- $m = 2$, $\lambda_0 = 4^n$, all faces have degree 4: quadrangulations
 \Rightarrow Jean-François Le Gall’s last year talk at this seminar
- for all $i \geq 1$, $\lambda^{(i)} = 21^{n-2}$: factorizations in transpositions.
 coverings with only **simple** branch points
A ramified cover is simple if its m ramifications have type 21^{n-2}.

Then each face of degree 2 on the image has $n - 2$ preimages that are faces of degree 2, and 1 that is a quadrangle.
A ramified cover is simple if its m ramifications have type 2^{n-2}.

Then each face of degree 2 on the image has $n-2$ preimages that are faces of degree 2, and 1 that is a quadrangle.

Upon contracting multiple edges, only quadrangle remains.
A ramified cover is simple if its m ramifications have type 21^{n-2}.

Then each face of degree 2 on the image has $n - 2$ preimages that are faces of degree 2, and 1 that is a quadrangle.

Upon contracting multiple edges, only quadrangle remains.

Then the faces of the preimage have distinct labels 1, ..., m that are increasing in ccw direction around black vertices and in cw direction around white vertices.
A ramified cover is **simple** if its m ramifications have type 21^{n-2}.

Then each face of degree 2 on the image has $n-2$ preimages that are faces of degree 2, and 1 that is a quadrangle.

Upon contracting multiple edges, only quadrangle remains.

Then the faces of the preimage have distinct labels $1, \ldots, m$ that are increasing in ccw direction around black vertices and in cw direction around white vertices.

Such a map is called an increasing labelled quadrangulation.
Simple ramified covers, increasing quadrangulations

Theorem. Simple ramified covers of S by itself with m ramifications points are in bijection with increasing labelled quadrangulations with m faces.

A ramified cover is simple if its m ramifications have type 21^{n-2}.

Then each face of degree 2 on the image has $n - 2$ preimages that are faces of degree 2, and 1 that is a quadrangle.

Upon contracting multiple edges, only quadrangle remains.

Then the faces of the preimage have distinct labels 1, ..., m that are increasing in ccw direction around black vertices and in cw direction around white vertices.

Such a map is called an increasing labelled quadrangulation.
Compter des classes d’équivalence de revêtements ramifiés ⇔ compter certaines plongements de graphes
Plan de l’exposé

Revêtements ramifiés et cartes

Cartes et arbres

Énumération d’arbres et formule d’Hurwitz

Revêtements et cartes aléatoires
Planar maps, spanning trees and duality

A planar map is a proper embedding of a connected graph on the sphere (considered up to homeomorphisms).

From now on, map means rooted planar map.
A planar map is a proper embedding of a connected graph on the sphere (considered up to homeomorphisms).

From now on, map means rooted planar map.

A spanning tree is a subgraph which is a tree and visits every vertices. A tree-rooted map is a map with a spanning tree.
A **planar map** is a proper embedding of a connected graph on the sphere (considered up to homeomorphisms).

From now on, **map** means **rooted planar map**.

A **spanning tree** is a subgraph which is a tree and visits every vertices. A **tree-rooted map** is a map with a spanning tree.

The **dual** map of a map is the map of incidence between faces.
Planar maps, spanning trees and duality

A planar map is a proper embedding of a connected graph on the sphere (considered up to homeomorphisms).

From now on, map means rooted planar map.

A spanning tree is a subgraph which is a tree and visits every vertices. A tree-rooted map is a map with a spanning tree.

The dual map of a map is the map of incidence between faces.
Planar maps, spanning trees and duality

A planar map is a proper embedding of a connected graph on the sphere (considered up to homeomorphisms).

From now on, map means rooted planar map.

A spanning tree is a subgraph which is a tree and visits every vertices. A tree-rooted map is a map with a spanning tree.

The dual map of a map is the map of incidence between faces.

The dual map of a tree-rooted map is a tree-rooted map: it is naturally endowed with a dual spanning tree.
A planar map is a proper embedding of a connected graph on the sphere (considered up to homeomorphisms).

From now on, map means rooted planar map.

A spanning tree is a subgraph which is a tree and visits every vertices.
A tree-rooted map is a map with a spanning tree.

The dual map of a map is the map of incidence between faces.

The dual map of a tree-rooted map is a tree-rooted map: it is naturally endowed with a dual spanning tree.
A **planar map** is a proper embedding of a connected graph on the sphere (considered up to homeomorphisms).

From now on, **map** means **rooted planar map**.

A **spanning tree** is a subgraph which is a tree and visits every vertices.

A **tree-rooted map** is a map with a spanning tree.

The **dual** map of a map is the map of incidence between faces.

The dual map of a tree-rooted map is a tree-rooted map: it is naturally endowed with a dual spanning tree.

Euler's relation:

\[
(#\text{vertices}-1) + (#\text{faces}-1) = #\text{edges}
\]
Planar maps, spanning trees and duality

A **planar map** is a proper embedding of a connected graph on the sphere (considered up to homeomorphisms).

From now on, **map** means **rooted planar map**.

A **spanning tree** is a subgraph which is a tree and visits every vertices.

A **tree-rooted map** is a map with a spanning tree.

The **dual** map of a map is the map of incidence between faces.

The dual map of a tree-rooted map is a tree-rooted map: it is naturally endowed with a **dual spanning tree**.

Euler’s relation:
\[
(#\text{vertices}-1) + (#\text{faces}-1) = #\text{edges}
\]
Encoding and counting tree-rooted maps

Starting at a root corner, turn around the tree
Encoding and counting tree-rooted maps

Starting at a root corner, turn around the tree
Rooted tree ≡ balanced parenthesis word

uduuduuddd
Encoding and counting tree-rooted maps

Starting at a root corner, turn around the tree
Rooted tree \equiv balanced parenthesis word
\[uduududuuddd \]
Non visited edges \equiv balanced parenthesis word
Encoding and counting tree-rooted maps

Starting at a root corner, turn around the tree
Rooted tree \equiv balanced parenthesis word
$uduuduuddd$

Non visited edges \equiv balanced parenthesis word
$uuduudddddud$
Encoding and counting tree-rooted maps

Starting at a root corner, turn around the tree
Rooted tree \equiv balanced parenthesis word
\[uduududdd \]
Non visited edges \equiv balanced parenthesis word
\[uuududdddddud \]

Code of the tree-rooted map $= \text{tree decorated by a balanced parenthesis word}$
Encoding and counting tree-rooted maps

Starting at a root corner, turn around the tree
Rooted tree \equiv balanced parenthesis word
$uduuddudd$

Non visited edges \equiv balanced parenthesis word
$uuuduuddddud$

Writing the two codes during the walk:
$uuuududuuudududdddudd$

Code of the tree-rooted map $=$ tree decorated by a balanced parenthesis word
Encoding and counting tree-rooted maps

Starting at a root corner, turn around the tree
Rooted tree \equiv balanced parenthesis word
\[uduududddd \]
Non visited edges \equiv balanced parenthesis word
\[uuuududdddud \]

Writing the two codes during the walk:
\[uuuududuuudududddddudd \]

Code of the tree-rooted map $=$ tree decorated by a balanced parenthesis word
$=$ shuffle of two balanced parenthesis words
Encoding and counting tree-rooted maps

Starting at a root corner, turn around the tree

Rooted tree \equiv balanced parenthesis word

$ududududd$

Non visited edges \equiv balanced parenthesis word

$uuuduudddddud$

Writing the two codes during the walk:

$uuuduudddddududd$

Code of the tree-rooted map $=$ tree decorated by a balanced parenthesis word

$=$ shuffle of two balanced parenthesis words

The number of tree rooted planar maps with n edges is $\sum_{i=0}^{n} \binom{2n}{i} C_i C_{n-i}$ where

$C_n = \frac{1}{n+1} \binom{2n}{n}$

denotes Catalan numbers, counting balanced parenthesis words.
Encoding and counting tree-rooted maps

Starting at a root corner, turn around the tree
Rooted tree \equiv balanced parenthesis word $ududdudddd$

Non visited edges \equiv balanced parenthesis word $uuudduddduud$

Writing the two codes during the walk: $uuuddudduddudduddudddd$

Observe that closure edges turn clockwise around the tree.

Code of the tree-rooted map $=$ tree decorated by a balanced parenthesis word
$=$ shuffle of two balanced parenthesis words

The number of tree rooted planar maps with n edges is $\sum_{i=0}^{n} \binom{2n}{i} C_i C_{n-i}$ where $C_n = \frac{1}{n+1} \binom{2n}{n}$ denotes Catalan numbers, counting balanced parenthesis words.
but we want rooted (not tree-rooted) maps

Let us recycle the idea used for tree-rooted maps, using a canonical spanning tree
but we want rooted (not tree-rooted) maps

Let us recycle the idea used for tree-rooted maps, using a canonical spanning tree.

Then write the code of the primal tree on the chosen canonical tree.
but we want rooted (not tree-rooted) maps

Let us recycle the idea used for tree-rooted maps, using a canonical spanning tree

Then write the code of the primal tree on the chosen canonical tree

The map is recovered from the code by closure.
but we want rooted (not tree-rooted) maps

Let us recycle the idea used for tree-rooted maps, using a canonical spanning tree.

Then write the code of the primal tree on the chosen canonical tree.

The map is recovered from the code by closure.

Our code of the map will be a canonical decorated tree.

Question is How do we choose the canonical spanning tree so that the resulting decorated trees can be described and counted?
From tree-rooted maps to minimal accessible maps

Orient the tree edges away from the root
From tree-rooted maps to minimal accessible maps

Orient the tree edges away from the root
Orient the other edges counterclockwise around the tree
From tree-rooted maps to minimal accessible maps

Orient the tree edges away from the root
Orient the other edges counterclockwise around the tree

The resulting orientation has no clockwise circuit.
From tree-rooted maps to minimal accessible maps

Orient the tree edges away from the root
Orient the other edges counterclockwise around the tree

The resulting orientation has no clockwise circuit.

It is called a minimal orientation (for the order induced by circuit reversal).
From tree-rooted maps to minimal accessible maps

Orient the tree edges away from the root
Orient the other edges counterclockwise around the tree

The resulting orientation has no clockwise circuit.

It is called a **minimal** orientation (for the order induced by circuit reversal).

A oriented map is **accessible** if every vertex can be reach by an oriented path from the root.
From tree-rooted maps to minimal accessible maps

Orient the tree edges away from the root
Orient the other edges counterclockwise around the tree

The resulting orientation has no clockwise circuit.

It is called a minimal orientation (for the order induced by circuit reversal).

A oriented map is accessible if every vertex can be reach by an oriented path from the root.

Theorem (Bernardi 2005) This is a bijection between tree-rooted maps with n edges and minimum accessible maps with n edges.
From tree-rooted maps to minimal accessible maps

Orient the tree edges away from the root
Orient the other edges counterclockwise around the tree

The resulting orientation has no clockwise circuit.

It is called a minimal orientation (for the order induced by circuit reversal).

A oriented map is accessible if every vertex can be reach by an oriented path from the root.

Theorem (Bernardi 2005) This is a bijection between tree-rooted maps with n edges and minimum accessible maps with n edges

The tree is recovered by reconstructing its contour.
Minimal orientations and canonical spanning trees

Idea:
Choose a minimal accessible orientation to get a spanning tree

Our pb becomes:
How to choose a canonical accessible minimal orientation?
Minimal orientations and canonical spanning trees

Idea:
Choose a minimal accessible orientation to get a spanning tree

Our pb becomes:
How to choose a canonical accessible minimal orientation?

A function $\alpha : V \to \mathbb{N}$ is feasible on a plane map M if there exists an orientation of M such that for each vertex v the outdegree of v is $f(v)$.
Minimal orientations and canonical spanning trees

Idea:

Choose a minimal accessible orientation to get a spanning tree

Our pb becomes:

How to choose a canonical accessible minimal orientation?

A function \(\alpha : V \to \mathbb{N} \) is feasible on a plane map \(M \) if there exists an orientation of \(M \) such that for each vertex \(v \) the outdegree of \(v \) is \(f(v) \).

Theorem (Felsner 2004). Let \(\alpha \) be a feasible function on a plane map \(M \). Then the map \(M \) has a unique minimal \(\alpha \)-orientation.
Minimal orientations and canonical spanning trees

Idea:

Choose a minimal accessible orientation to get a spanning tree

Our pb becomes:

How to choose a canonical accessible minimal orientation?

A function $\alpha : V \rightarrow \mathbb{N}$ is feasible on a plane map M if there exists an orientation of M such that for each vertex v the outdegree of v is $f(v)$.

Theorem (Felsner 2004). Let α be a feasible function on a plane map M. Then the map M has a unique minimal α-orientation.

Our pb becomes: How to choose a canonical α? (and check accessibility)
Minimal orientations and canonical spanning trees

Idea:
Choose a minimal accessible orientation to get a spanning tree

Our pb becomes:
How to choose a canonical accessible minimal orientation?

A function $\alpha : V \to \mathbb{N}$ is feasible on a plane map M if there exists an orientation of M such that for each vertex v the outdegree of v is $f(v)$.

Theorem (Felsner 2004). Let α be a feasible function on a plane map M. Then the map M has a unique minimal α-orientation.

Our pb becomes: How to choose a canonical α? (and check accessibility)

Fact: For many subclasses \mathcal{F} of planar maps, there exists an $\alpha_\mathcal{F}$ s.t.:

A planar map is in \mathcal{F} if and only if it admits an $\alpha_\mathcal{F}$-orientation.
Recall increasing quadrangulations are planar maps with faces of degree 4 such that:

- faces have labels in $\{1, \ldots, 2n - 2\}$
- around labeled vertices, face labels increase in ccw order
- around white vertices, face labels increase in cw order
Recall increasing quadrangulations are planar maps with faces of degree 4 such that:

- faces have labels in \(\{1, \ldots, 2n - 2\} \)

- around labeled vertices, face labels increase in ccw order

- around white vertices, face labels increase in cw order

Orient each edge so that the minimum incident label is on the left
Recall increasing quadrangulations are planar maps with faces of degree 4 such that:

- faces have labels in \(\{1, \ldots, 2n - 2\} \)
- around labeled vertices, face labels increase in ccw order
- around white vertices, face labels increase in cw order

Orient each edge so that the minimum incident label is on the left. This orientation is accessible, in fact strongly connected.
Recall increasing quadrangulations are planar maps with faces of degree 4 such that:

- faces have labels in \(\{1, \ldots, 2n - 2\} \)
- around labeled vertices, face labels increase in ccw order
- around white vertices, face labels increase in cw order

Orient each edge so that the minimum incident label is on the left. This orientation is accessible, in fact strongly connected.

Each black vertex has indegree \(\alpha_h(\text{black}) = m - 1 \), outdegree 1.
Each white vertex has indegree \(\alpha_h(\text{white}) = 1 \).
α-orientations for increasing quadrangulations

Recall increasing quadrangulations are planar maps with faces of degree 4 such that:

- faces have labels in \{1, \ldots, 2n - 2\}
- around labeled vertices, face labels increase in ccw order
- around white vertices, face labels increase in cw order

Orient each edge so that the minimum incident label is on the left.
This orientation is accessible, in fact strongly connected.

Each black vertex has indegree \(\alpha_h(\text{black}) = m - 1 \), outdegree 1.
Each white vertex has indegree \(\alpha_h(\text{white}) = 1 \).

This is our choice of canonical \(\alpha \) to decompose increasing quadrangulations.
opening of an increasing quadrangulation
opening of an increasing quadrangulation

endow with min α_c-orient

(return cycles)
opening of an increasing quadrangulation

endow with min α_c-orient

(return cycles)

find spanning tree
opening of an increasing quadrangulation
opening of an increasing quadrangulation

endow with min α_c-orient
return cycles

find spanning tree

open
opening of an increasing quadrangulation

endow with min α_c-orient

(return cycles)

find spanning tree

open

but forget half-edges
opening of an increasing quadrangulation

endow with min α_C-orient (return cycles)

find spanning tree

open

but forget half-edges
give labels to edges
eliminate root black vertex
Proposition. The resulting simple Hurwitz trees has n unlabelled vertices, $n - 1$ labeled vertices of degree 2, $2n - 2$ edges that increase ccw around labeled vertices.
From simple Hurwitz trees to increasing quadrangulations

A local rule to create increasing half edges

Cas 1:

Cas 2:

Two half-edges with same label \Rightarrow edge and face of degree 4

Iterate the local rules as long as possible...
From simple Hurwitz trees to factorizations
From simple Hurwitz trees to factorizations

vertex label are useless for the bijection
From simple Hurwitz trees to factorizations

vertex label are useless for the bijection
From simple Hurwitz trees to factorizations

vertex label are useless for the bijection

adding buds
From simple Hurwitz trees to factorizations

- Vertex label are useless for the bijection
- Adding buds
- Parings and adding buds again
From simple Hurwitz trees to factorizations

vertex label are useless for the bijection

adding buds

Parings and adding buds again

gain
From simple Hurwitz trees to factorizations

vertex label are useless for the bijection

adding buds

Parings and adding buds again

again

again
Lemma. When it stops, there are only white half-edges left.
Lemma. When it stops, there are only white half-edges left.
We connect them to a new black vertex and reload labels.
Lemma. When it stops, there are only white half-edges left.

We connect them to a new black vertex and reload labels.
From simple Hurwitz trees to factorizations

Theorem [Duchi-Poulalhon-S. 2012] Closure is the reverse bijection between
- simple Hurwitz trees of size \(n \), and
- increasing quadrangulations, and
- simple ramified covers of \(\mathbb{S} \) by itself with \(m = 2n - 2 \) critical values.
From simple Hurwitz trees to factorizations

vertex label are useless for the bijection

adding buds

Parings and adding buds again

again

again

Theorem [Duchi-Poulalhon-S. 2012] Closure is the reverse bijection between
- simple Hurwitz trees of size n, and
- increasing quadrangulations, and
- simple ramified covers of S by itself with $m = 2n - 2$ critical values.
Résumé des 2 premiers épisodes

Compter des classes d’équivalence de revêtements ramifiés

\iff

compter certaines plongements de graphes

\iff

compter certains arbres
Plan de l’exposé

Revêtements ramifiés et cartes

Cartes et arbres

Énumération d’arbres et formule d’Hurwitz

Revêtements et cartes aléatoires
Hurwitz formula for increasing quadrangulations

Theorem [Duchi-Poulalhon-S. 2012] Increasing quadrangulations (size n) are in bijection with simple Hurwitz trees having n unlabelled vertices, $n - 1$ labeled vertices of degree 2, $2n - 2$ edges that increase ccw around labeled vertices.
Theorem [Duchi-Poulalhon-S. 2012] Increasing quadrangulations (size n) are in bijection with simple Hurwitz trees having n unlabelled vertices, $n - 1$ labeled vertices of degree 2, $2n - 2$ edges that increase ccw around labeled vertices.
Hurwitz formula for increasing quadrangulations

Theorem [Duchi-Poulalhon-S. 2012] Increasing quadrangulations (size \(n \)) are in bijection with simple Hurwitz trees having \(n \) unlabelled vertices, \(n - 1 \) labeled vertices of degree 2, \(2n - 2 \) edges that increase ccw around labeled vertices.
Theorem [Duchi-Poulalhon-S. 2012] Increasing quadrangulations (size n) are in bijection with **simple Hurwitz trees** having n unlabelled vertices, $n - 1$ labeled vertices of degree 2, $2n - 2$ edges that increase ccw around labeled vertices.
Hurwitz formula for increasing quadrangulations

Theorem [Duchi-Poulalhon-S. 2012] Increasing quadrangulations (size n) are in bijection with simple Hurwitz trees having n unlabelled vertices, $n - 1$ labeled vertices of degree 2, $2n - 2$ edges that increase ccw around labeled vertices.
Hurwitz formula for increasing quadrangulations

Theorem [Duchi-Poulalhon-S. 2012] Increasing quadrangulations (size n) are in bijection with **simple Hurwitz trees** having n unlabelled vertices, $n - 1$ labeled vertices of degree 2, $2n - 2$ edges that increase ccw around labeled vertices.

The number of simple ramified cover of \mathbb{S} by itself with $m = 2n - 2$ critical points is $n^{n-3}(2n - 2)!$.
Hurwitz formula for factorizations in transpositions

Theorem. Let $\lambda = 1^{\ell_1}, \ldots, n^{\ell_n}$ be a partition of n, and $\ell = \sum_i \ell_i$. The number of m-uples of transpositions (τ_1, \ldots, τ_m) such that

- (product cycle type) $\tau_1 \cdots \tau_m = \sigma$ has cycle type λ
- (transitivity) the associated graph is connected
- (minimality) the number of factors is $m = n + \ell - 2$

is

$$n^{\ell-3} \cdot m! \cdot n! \cdot \prod_{i \geq 1} \frac{1}{\ell_i!} \left(\frac{i^i}{i!} \right)^{\ell_i}$$

Proofs:

(recurrences, Abel identities) (gfs and differential eqns) (geometry of LL mapping) (bijection + inclusion/exclusion)

$\lambda = n$, factorizations of n-cycles: $n^{n-2} \cdot (n-1)!$

$\lambda = 1^n$, factorizations of the identity: $n^{n-3} \cdot (2n-2)!$
Theorem. Let $\lambda = 1^{\ell_1}, \ldots, n^{\ell_n}$ be a partition of n, and $\ell = \sum_i \ell_i$. The number of m-uple of permutations $(\sigma_1, \ldots, \sigma_m)$ such that

- (factorization) $\sigma_1 \cdots \sigma_m = \sigma$ with cycle type λ
- (transitivity) $\langle \sigma_1, \ldots, \sigma_m \rangle$ acts transitively on $\{1, \ldots, n\}$
- (minimality) the total rank of factors is $\sum_i r(\sigma_i) = n + \ell - 2$

is

$$m \frac{((m - 1)n - 1)!}{(mn - (n + \ell - 2))!} \cdot n! \cdot \prod_i \frac{1}{\ell_i!} \left(\frac{mi - 1}{i}\right)^{\ell_i}$$

Proofs:

(Bousquet-Mélou–Schaeffer 2000) (Goulden–Serrano 2009)

(bijection + inclusion/exclusion)(gfs and differential eqns)

$\lambda = n$, factorizations of n-cycles: $\frac{1}{(mn+1)} \binom{mn+1}{n} \cdot (n - 1)!$

$\lambda = 1^n$, identity factorizations: $\frac{m}{(m-2)n+2} \frac{(m-1)^{n-1}}{(m-2)n+1} \binom{(m-1)n}{n} \cdot (n - 1)!$
Résumé des 3 premiers épisodes

Compter des classes d’équivalence de revêtements ramifiés

⇔

compter certaines plongements de graphes

⇔

compter certains arbres

les formules simples appellent des preuves constructives
Plan de l’exposé

Revêtements ramifiés et cartes

Cartes et arbres

Énumération d’arbres et formule d’Hurwitz

Revêtements et cartes aléatoires
Quadrangulations croissantes aléatoires uniformes

\(\bar{Q}_n = \{\text{quadrangulations croissantes à } n \text{ faces}\} \).

Quadrangulation croissante uniforme = variable aléatoire \(Q_n \) à valeur dans \(\bar{Q}_n \) avec

\[
\Pr(Q_n = q) = \frac{1}{|\bar{Q}_n|} = \frac{1}{n^{n-3}(2n-2)!}
\]

pour tout \(q \in \bar{Q}_n \).
Quadrangulations croissantes aléatoires uniformes

\[\tilde{Q}_n = \{ \text{quadrangulations croissantes à n faces} \} . \]

Quadrangulation croissante uniforme = variable aléatoire \(Q_n \) à valeur dans \(\tilde{Q}_n \) avec

\[\Pr(Q_n = q) = \frac{1}{\vert \tilde{Q}_n \vert} = \frac{1}{n^{n-3}(2n - 2)!} \quad \text{pour tout } q \in \tilde{Q}_n \]

- le choix de la distribution uniforme combinatoire est le plus immédiat

Parallèle naturel avec la distribution uniforme sur les quadrangulations enracinées:

\[\Pr(\vec{Q}_n = q) = \frac{1}{\vert \vec{Q}_n \vert} = \frac{1}{2 \cdot 3^n (2n)!} \frac{(2n)!}{(n+2)!n!} \quad \text{pour tout } q \in \vec{Q}_n \]

Comment étudier \(Q_n \) ?
Propriétés des cartes aléatoires uniformes ?
Propriétés des cartes aléatoires uniformes ?

Triangulation uniforme aléatoire d’un disque

Delaunay de points aléatoires dans un disque

on est loin d’une discrétisation aléatoire d’une géométrie euclidienne

en physique on lie cela à la modélisation discrète de la gravité quantique
Quadrangulations uniformes comme surfaces aléatoires

L’allure d’une sphère aléatoire dépend un peu de qui dessine...

Objectif: Choisir une métrique intrinsèque et décrire les surfaces ainsi obtenues
Étudier les quadrangulations aléatoires uniformes

Distribution uniforme sur les quadrangulations à \(n \) faces, pour \(n \) grand

1ère approche: Étudier le comportement asymptotique de paramètres:

- degré d’un sommet aléatoire
- distance entre 2 sommets aléatoires
- loi 0-1 pour les propriétés locales
- longueur d’un plus petit cycle diviseur

⇒ espérance, moments, lois limites discrètes ou continues, qd \(n \to \infty \)

Bender, Canfield et al (90’s →) en combinatoire

Ambjørn, Watabiki et al (90’s →) en physique
Étudier les quadrangulations aléatoires uniformes

Distribution uniforme sur les quadrangulations à n faces, pour n grand

1ère approche: Étudier le comportement asymptotique de paramètres:

- degré d’un sommet aléatoire
- loi 0-1 pour les propriétés locales
- distance entre 2 sommets aléatoires
- longueur d’un plus petit cycle diviseur

⇒ espérance, moments, lois limites discrètes ou continues, qd $n \to \infty$

Bender, Canfield et al (90’s →) en combinatoire
Ambjørn, Watabiki et al (90’s →) en physique

Exemple: $\Delta_n =$ distance entre 2 sommets aléatoires uniformes de Q_n

Théorème (Chassaing-S. 2004) $\mathbb{E}(\Delta_n) \sim c \cdot n^{1/4}$

$(n^{-1/4}\Delta_n) \xrightarrow{d} \max \text{ (serpent Brownien)}$
Étudier les quadrangulations aléatoires uniformes

Distribution uniforme sur les quadrangulations à \(n \) faces, pour \(n \) grand

2ème approche: Définir des surfaces aléatoires limites
Étudier les quadrangulations aléatoires uniformes

Distribution uniforme sur les quadrangulations à n faces, pour n grand

2ème approche: Définir des surfaces aléatoires limites

– convergence vers une limite d’échelle

⇒ la carte Brownienne

(Pb posé au séminaire Hypathie en 2002 à Lyon)

Marckert, Mokkadem, Le Gall, Miermont, …
Étudier les quadrangulations aléatoires uniformes

Distribution uniforme sur les quadrangulations à n faces, pour n grand

2ème approche: Définir des surfaces aléatoires limites

– convergence vers une limite d’échelle

⇒ la carte Brownienne

Marckert, Mokkadem, Le Gall, Miermont, ...
puis Weill, Curien, Benjamini,...

(Pb posé au séminaire Hypathie en 2002 à Lyon)

– convergence vers une limite infinie discrète

⇒ la quadrangulation infinie uniforme (UIPQ)

Angel, Schramm, ...

puis Durhus, Chassaing, Krikun, Bettinelli,...
Conclusions

– L’excursion Brownienne décrit la limite d’échelle de toute sorte d’excursions aléatoires discrètes plus ou moins complexes.

– L’arbre continu aléatoire est limite d’échelle de toute sorte d’arbres aléatoires discrets plus ou moins complexes.

⇒ On pense qu’il en est de même de la carte Brownienne.
Conclusions

– L’excursion Brownienne décrit la limite d’échelle de toute sorte d’excursions aléatoires discrètes plus ou moins complexes.

– L’arbre continu aléatoire est limite d’échelle de toute sorte d’arbres aléatoires discrets plus ou moins complexes.

⇒ On pense qu’il en est de même de la carte Brownienne.

Les résultats de Le Gall et Miermont valent pour des cartes avec des contraintes de degré de faces plus générales (q-angulations, . . .)
Conclusions

– L’excursion Brownienne décrit la limite d’échelle de toute sorte d’excursions aléatoires discrètes plus ou moins complexes.

– L’arbre continu aléatoire est limite d’échelle de toute sorte d’arbres aléatoires discrets plus ou moins complexes.

⇒ On pense qu’il en est de même de la carte Brownienne.

Les résultats de Le Gall et Miermont valent pour des cartes avec des contraintes de degré de faces plus générales (\(q\)-angulations, . . .)

Un challenge est de montrer que des objets \textit{a priori} plus éloignés tels que les graphes planaires (non plongés) ou les revêtements ramifiés, sont en fait dans la même classe d’universalité.
Conclusions

– L’excursion Brownienne décrit la limite d’échelle de toute sorte d’excursions aléatoires discrètes plus ou moins complexes.

– L’arbre continu aléatoire est limite d’échelle de toute sorte d’arbres aléatoires discrets plus ou moins complexes.

⇒ On pense qu’il en est de même de la carte Brownienne.

Les résultats de Le Gall et Miermont valent pour des cartes avec des contraintes de degré de faces plus générales (q-angulations,...)

Un challenge est de montrer que des objets a priori plus éloignés tels que les graphes planaires (non plongés) ou les revêtements ramifiés, sont en fait dans la même classe d’universalité.

On dispose d’un cadre bijectif très général pour la construction de cartes par recollements d’arbres (Bernardi-Chapuy-Fusy 2011, Albenque-Poulalhon 2012)
On obtient ainsi en particulier un codage d’arbres pour les revêtements...
Il reste à utiliser ces constructions pour passer à la limite...