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A summary of the first part.

e The random planar maps model has many variants
(triangulations, bipartite maps, convex polyhedra,. .. )

e Various parameters of interests can be analytically studied

(maximal degree, baby universes, separators,. .. )

e All knows results satisfy the expected “universality”: critical
exponents agree for different families.

Seek a limit model encoding more than just one parameter...

= concentrate on a simple variant.



Random quadrangulations.

The simple family we choose is that of random quadrangulations.

Why ?



Random quadrangulations. Enumeration.

Theorem (Tutte 62). The number of rooted quadrangulations
2 3" (2n
n+2n+1\n/

this might remind you the formula for 4-regular maps.

with n faces is




Random quadrangulations. As dual 4-regular maps

No surprise, this is just duality on planar graphs:

Add a vertex in each face, and dual edges.
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Random quadrangulations. As dual 4-regular maps

No surprise, this is just duality on planar graphs:

Add a vertex in each face, and dual edges.

This is one-to-one between quadrangulations and 4-regular maps.
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Random quadrangulations are bipartite graphs.

The vertices of a planar quadrangulation can be colored in two
colors so that all edges join different colors.

Indeed all faces have even length, and so have all cycles.
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Distances in quadrangulations

Yet another parameter 7
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Profile and radius of a quadrangulation with n faces.

o X' is the number of vertices at distance k of the (red) root
e the profile is then X, = (Xé”,XfP, . ,quk), )

e 1, is the radius (maximal distance from the root)

In particular r,, < D,, < 2r,,, where D,, is the diameter.
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Profile and radius of a quadrangulation with n faces.

° Xq(@k) is the number of vertices at distance k of the root
e the profile is then X, = (Xél),Xﬁf), . ,Xék), )

xW =3

e 1, is the radius (maximal distance from the root)

In particular r,, < D,, < 2r,,, where D,, is the diameter.
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Profile and radius of a quadrangulation with n faces.

° Xq(@k) is the number of vertices at distance k of the root
e the profile is then X, = (Xél),Xﬁf), . ,Xék), )

xM =3
X =

e 1, is the radius (maximal distance from the root)

In particular r,, < D,, < 2r,,, where D,, is the diameter.
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Profile and radius of a quadrangulation with n faces.

° Xq(@k) is the number of vertices at distance k of the root
e the profile is then X, = (Xél),Xﬁf), . ,Xék), )

X =3
x2 — g
xB) — ¢

e 1, is the radius (maximal distance from the root)

In particular r,, < D,, < 2r,,, where D,, is the diameter.
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Profile and radius of a quadrangulation with n faces.

° Xq(@k) is the number of vertices at distance k of the root
e the profile is then X, = (Xél),Xﬁf), . ,Xék), )

e 1, is the radius (maximal distance from the root)

In particular r,, < D,, < 2r,,, where D,, is the diameter.
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Profile and radius. On the grid ?

On a grid with n faces (1/n x y/n), the behaviour is clear:

— N
L _ o ®
— —

In particular,
xF = O(k) for k < n'/?2, and r, grows like n'/2.

How do these parameters behave on random quadrangulations ?
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Profile and radius. Experimentaly.

Experimental datas from random sampling;:

Six random profiles: Averaged profiles:

00000

00000
00000

All for maps of size n = 100,000. For various n (100 to 100, 000).

1/4

Conjecture (S. 1998). The correct scaling is k = tn'/*, and

1/4
~p3/axin ) X(t), a process supported on R,

~ the radius satisfies [E(r,) ~ cte-n'/%
n—aoo
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Profile and radius. Heuristic results.

These conjectures agree with previous results from physics.

For random triangulations:

e Two beautyful heuristic calculations by physicists Watabiki,
Ambjgrn et al. (1994). The Hausdorff dimension is 4 :

meaning for k < n1/4, E([* quf) ~ k*,
g 0
for k> n*/*, E(X") is exp. decreasing

They prove that only possible scaling is indeed k = ¢tn'/%.

However their result does not give the radius or the limit process.
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Random quadrangulations. A tentative picture of distances.
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Encoding the distances in a tree

Another encoding by trees
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Rooted planar trees. Catalan again.

A rooted plane tree is made of a root vertex attached to a sequence
of rooted plane trees.

The number of rooted plane trees
with n edges is

1 2n
n+1\n

Proof. The contour walk of a rooted plane tree is a Dyck path.
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Rooted planar trees. Catalan again.

A rooted plane tree is made of a root vertex attached to a sequence
of rooted plane trees.

The number of rooted plane trees
with n edges is

1 2n
n+1\n

Proof. The contour walk of a rooted plane tree is a Dyck path.
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Rooted planar trees. Catalan again.

A rooted plane tree is made of a root vertex attached to a sequence
of rooted plane trees.

The number of rooted plane trees
with n edges is

1 <2n) N\

n+1\n
v

Proof. The contour walk of a rooted plane tree is a Dyck path.
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Rooted planar trees. Catalan again.

A rooted plane tree is made of a root vertex attached to a sequence
of rooted plane trees.

The number of rooted plane trees
with n edges is

1 (Qn) K

n+1\n

V4

Proof. The contour walk of a rooted plane tree is a Dyck path.
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Rooted planar trees. Catalan again.

A rooted plane tree is made of a root vertex attached to a sequence
of rooted plane trees.

The number of rooted plane trees
with n edges is

) .

Proof. The contour walk of a rooted plane tree is a Dyck path.
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Rooted planar trees. Catalan again.

A rooted plane tree is made of a root vertex attached to a sequence
of rooted plane trees.

The number of rooted plane trees
with n edges is

) "

Proof. The contour walk of a rooted plane tree is a Dyck path.

28



Rooted planar trees. Catalan again.

A rooted plane tree is made of a root vertex attached to a sequence
of rooted plane trees.

The number of rooted plane trees
with n edges is
1 2n
n+1\n M

Proof. The contour walk of a rooted plane tree is a Dyck path.
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Rooted planar trees. Catalan again.

A rooted plane tree is made of a root vertex attached to a sequence
of rooted plane trees.

The number of rooted plane trees
with n edges is

n—ll-l(QT?) /\N

Proof. The contour walk of a rooted plane tree is a Dyck path.
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Rooted planar trees. Catalan again.

A rooted plane tree is made of a root vertex attached to a sequence
of rooted plane trees.

The number of rooted plane trees
with n edges is

n—ll-l(QT?) M

Proof. The contour walk of a rooted plane tree is a Dyck path.
= cf. Part I. Catalan numbers.
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Rooted planar trees. Catalan again.

A rooted plane tree is made of a root vertex attached to a sequence
of rooted plane trees.

The number of rooted plane trees
with n edges is

1 2n
n+1\n

Let 7,, be the set of rooted plane trees with n edges.

From now on U,, denote a r.v. uniform on 7,,.
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Well labelled trees. Cori and Vauquelin '84.

Definition. A well labelled tree (T, @) is a rooted plane tree T with
integer labels ¢(v) such that:

(i) the root has label one: ¢(r) = 1.
(ii) labels differ at most by one
along each edge (v, w):

¢(v) — o(w)] <1
(iii) all labels are positive: ¢(v) > 0.

Let (T}, ¢,) be a uniform random well labelled tree with n edges.

Observe that T, is not uniform on 7,,.
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Well labelled trees. Cori and Vauquelin '84.

Definition. A well labelled tree (T, @) is a rooted plane tree T with
integer labels ¢(v) such that:

(i) the root has label one: ¢(r) = 1. @3
(ii) labels differ at most by one ©2
: o1
along each edge (v, w): 5 2 1 92
¢(v) — p(w)| <1 72
(iii) all labels are positive: ¢(v) > 0. 1 1

Let (T}, ¢,) be a uniform random well labelled tree with n edges.

Observe that T, is not uniform on 7,,.
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A distance preserving encoding. Statement

Theorem (S. 1998).

There is a one-to-one correspondence between

— rooted quadrangulations with n faces, and

— well labelled trees with n edges,

that maps the profile onto the label distribution.

Cori and Vauquelin (1984) gave another bijection that proves the

theorem without the last requirement.
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A distance preserving encoding. Proof

Let us label vertices by distances.

I+1 i+1

|+2

I+1 i+1

There are only two possible configurations around a face (up to colors).
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A distance preserving encoding. Local rules

Consider the following two local rules.

Apply these rules to all faces.
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I+1 i+1

|+2

I+1 i+1

Apply these rules to all faces.

43



A distance preserving encoding. Local rules

Consider the following two local rules.

I+1 i+1
|+2

I+1 i+1

Apply these rules to all faces.
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A distance preserving encoding. Local rules

Consider the following two local rules.

I+1 i+1
|+2

I+1 i+1

Proposition: the edges produced by local rules form a tree.
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A distance preserving encoding. Local rules

Proposition: the edges produced by local rules form a tree.

. i
i
I+ I+
i+1 i+1 ! @ !

The root can be only in one of the two regions delimited by a cycle.

Taking 7 + 1 minimal on the cycle, a contradiction is obtained
between rules and labelling by distance.
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A distance preserving encoding. “End” of proof.

By construction, labels in the tree differ at most by one along edges.

The resulting tree is thus a well labelled tree.

Missing edges are recovered by a greedy (¢ — ¢ — 1) matching
around the tree.
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A distance preserving encoding. “End” of proof.

By construction, labels in the tree differ at most by one along edges.

The resulting tree is thus a well labelled tree.

Missing edges are recovered by a greedy (¢ — ¢ — 1) matching
around the tree.
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A first summary

Uniform distribution on quadrangulations with n faces

Uniform distribution on well labelled trees with n edges

The profile (Xq(@k))kzl is the label distribution (L,(f))k>1.

The radius r, = max(k | X > 0) is the largest label of (T},, ¢,)-

These are identities in law, not just asymptotic results.

53



Embedded trees, ISE and Brownian snakes

Aldous model of random mass distribution
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Embedded trees. Aldous ’93

Aldous (’93) introduced a model of random trees embedded in the lattice Z<.

— Start with U,, (uniform on 7).
— Give length one to all edges.
— Embed U,, in Z¢:
— put the root of U,, at the origin,

— uniformly independently map edges

of U,, onto generators of the lattice. i

The result is an embedded tree (U, ¥y, ):
the embedding 1,, maps vertices of U,, into Z2.
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Embedded trees. Aldous ’93

Aldous (’93) introduced a model of random trees embedded in the lattice Z<.

— Start with U,, (uniform on 7).
— Give length one to all edges.
— Embed U,, in Z¢:
— put the root of U,, at the origin,
— uniformly independently map edges ﬁ
of U,, onto generators of the lattice.

The result is an embedded tree (U, ¥y, ):
the embedding 1,, maps vertices of U,, into Z2.
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Embedded trees. Aldous ’93

Aldous (’93) introduced a model of random trees embedded in the lattice Z<.

— Start with U,, (uniform on 7).
— Give length one to all edges.
— Embed U,, in Z¢:
— put the root of U,, at the origin,

— uniformly independently map edges
of U,, onto generators of the lattice. >

The result is an embedded tree (U, ¥y, ):
the embedding 1,, maps vertices of U,, into Z2.
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Embedded trees. Aldous ’93

Aldous (’93) introduced a model of random trees embedded in the lattice Z<.

— Start with U,, (uniform on 7).
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Embedded trees. Aldous ’93

Aldous (’93) introduced a model of random trees embedded in the lattice Z<.

— Start with U,, (uniform on 7).
— Give length one to all edges.
— Embed U,, in Z¢:
— put the root of U,, at the origin,

— uniformly independently map edges
of U,, onto generators of the lattice. ﬂ

The result is an embedded tree (U, ¥y, ):
the embedding 1,, maps vertices of U,, into Z2.
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Embedded trees. Aldous ’93

Aldous (’93) introduced a model of random trees embedded in the lattice Z<.

— Start with U,, (uniform on 7).
— Give length one to all edges.
— Embed U,, in Z¢:
— put the root of U,, at the origin,

— uniformly independently map edges
of U,, onto generators of the lattice. ﬁ

The result is an embedded tree (U, ¥y, ):
the embedding 1,, maps vertices of U,, into Z2.
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Embedded trees. Mass distribution and ISE

Putting masses on vertices yield a random mesure on Z",

1
Tn =~ D Gy

velU,,

Theorem. (Aldous 93, Borgs et al. '99)

There is a random mesure J on RY, called Integrated
SuperBrownian FErcursion such that, upon scaling the

lattice to n~1/*Z?, 7, weakly converges to J.

Intuition: Branches of U,, have typically length or order /n.
The embedding ¢ of a branch of length ¢ is a random walk.
= most vertices are embedded at distance v/ = n'/* from origin.
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Embedded trees. Mass distribution and ISE

Putting masses on vertices yield a random mesure on Z",

1
Tn =~ D Gy

velU,,

Theorem. (Aldous 93, Borgs et al. '99)

There is a random mesure J on RY, called Integrated
SuperBrownian FErcursion such that, upon scaling the

lattice to n~1/*Z?, 7, weakly converges to J.

Derbez & Slade '98: ISE as continuum limit of lattice trees for d > 8.

Hara & Slade ’98: ISE as continuum limit of incipient infinite
cluster in percolation for d > 6.
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Embedded trees. ISE and Brownian snakes

The mesure ISE admit an alternative description in terms of
a Brownian snake (cf. Le Gall’s book ’99).

Let us give an informal description:

An excursion e, describing the vertical At t = 0, a Brownian
extension of the snake as time evolves. motion of length e(0) = 0.
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Embedded trees. ISE and Brownian snakes

The mesure ISE admit an alternative description in terms of
a Brownian snake (cf. Le Gall’s book ’99).

Let us give an informal description:

&

An excursion e, describing the vertical At time ¢, a Brownian
extension of the snake as time evolves. motion of length e(t).
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Embedded trees. ISE and Brownian snakes

The mesure ISE admit an alternative description in terms of
a Brownian snake (cf. Le Gall’s book ’99).

Let us give an informal description:

g

An excursion e, describing the vertical At time ¢, a Brownian
extension of the snake as time evolves. motion of length e(t).
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Embedded trees. ISE and Brownian snakes

The mesure ISE admit an alternative description in terms of
a Brownian snake (cf. Le Gall’s book ’99).

Let us give an informal description:

—2—
An excursion e, describing the vertical At time ¢, a Brownian
extension of the snake as time evolves. motion of length e(t).
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Embedded trees. ISE and Brownian snakes

The mesure ISE admit an alternative description in terms of
a Brownian snake (cf. Le Gall’s book ’99).

Let us give an informal description:

MY

An excursion e, describing the vertical At time ¢, a Brownian
extension of the snake as time evolves. ~motion of length e(%).
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Embedded trees. ISE and Brownian snakes

The mesure ISE admit an alternative description in terms of
a Brownian snake (cf. Le Gall’s book ’99).

Let us give an informal description:

| S
An excursion e, describing the vertical At time ¢, a Brownian
extension of the snake as time evolves. motion of length e(t).
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Embedded trees. ISE and Brownian snakes

The mesure ISE admit an alternative description in terms of
a Brownian snake (cf. Le Gall’s book ’99).

Let us give an informal description:

W
An excursion e, describing the vertical At time ¢, a Brownian
extension of the snake as time evolves. motion of length e(t).
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Embedded trees. ISE and Brownian snakes

The mesure ISE admit an alternative description in terms of
a Brownian snake (cf. Le Gall’s book ’99).

Let us give an informal description:

An excursion e, describing the vertical At time ¢, a Brownian
extension of the snake as time evolves. motion of length e(t).
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Embedded trees. ISE and Brownian snakes

The mesure ISE admit an alternative description in terms of
a Brownian snake (cf. Le Gall’s book ’99).

Let us give an informal description:

An excursion e, describing the vertical The total trace of the

extension of the snake as time evolves. snake (branching r.w.).
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Embedded trees. ISE and Brownian snakes

The mesure ISE admit an alternative description in terms of
a Brownian snake (cf. Le Gall’s book ’99).

Let us give an informal description:

ity &

An excursion e, describing the vertical

extension of the snake as time evolves.

ISE is recovered as: Vg test function, [¢dJ = fol g(Wy) ds.
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Embedded trees. Contour walks and convergences

The contour walks associated to the embedded tree (U,,,,) yields
a discrete analog (F,,V,,) of the Brownian snake.

In the case d = 1, the embedding v,, can be represented by labels.

Let F,(t) be the Dyck path and V,,(¢) describe the head of the snake.
If v(t) is the vertex traversed at time ¢, then v, (v(t)) = V,(t).
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Embedded trees. Contour walks and convergences

The contour walks associated to the embedded tree (U,,,,) yields
a discrete analog (F,,V,,) of the Brownian snake.

3

2
-1 AM g
- 1

In the case d = 1, the embedding v,, can be represented by labels.

Let F,(t) be the Dyck path and V,,(¢) describe the head of the snake.
If v(t) is the vertex traversed at time ¢, then v, (v(t)) = V,(t).
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Embedded trees. Contour walks and convergences

The contour walks associated to the embedded tree (U,,,,) yields
a discrete analog (F,,V,,) of the Brownian snake.

3
2
_1AWM </
N 1

In the case d = 1, the embedding v,, can be represented by labels.

Let F,(t) be the Dyck path and V,,(¢) describe the head of the snake.
If v(t) is the vertex traversed at time ¢, then v, (v(t)) = V,(t).
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Embedded trees. Contour walks and convergences

Theorem (Chassaing & S. ’02, see also Markert & Mokkadem ’02)

E,(tn) V,(tn)
nl/2 0 /4 )Of

(Uy, 1) weakly converges to (e(t), Wy).

The normalised contour encoding (
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Well labelled vs embedded trees

A proof of the radius conjecture for quadrangulations
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Well labelled vs embedded trees. Positivity

Well labelled trees = embedded trees in Z, conditioned to positivity.
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Well labelled vs embedded trees. Statement

Well labelled trees = embedded trees in Z, conditioned to positivity.

Theorem. Positivity conditioning can be relieved.

There is a coupling (T}, ) X (Up, ) such that
the largest label r,, of (T}, ¢,) and the support
Ly, R,] C Z of (U,,1,) satify

7 — (R, — Lyp)| < 2.

Intuition: a “Vervaat’s like” construction for embedded trees, using

the conjugation of trees discussed in Part I.
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The radius theorem

Theorem (Chassaing & S. ’02)

The r.v. n~Y4r, weakly converges to (8/9)!/4r,
where r =R — L is the width of ISE.

Furthermore, convergence of all moments holds true.

In particular  E(r,) ~ cn'/%,  where ¢ = (8/9)4E(r).

Observe that the numerical value of ¢ is not know...
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The radius theorem

Theorem (Chassaing & S. ’02)

The r.v. n~Y4r, weakly converges to (8/9)!/4r,
where r =R — L is the width of ISE.

Furthermore, convergence of all moments holds true.

Remark on the proof: we really needed convegence of contour
encondings to the Brownian snake, because the width r of ISE is
not a continuous functional of the random mesure 7.

Instead r = max(W;) — min(W;) is a continuous functional of W;.
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Conclusion

I hope that the connection with Brownian snakes and ISE will lead
to precise definition, statement and proof of the following guess:

The Continuum Random Map is a Brownian snake conditioned to positivity.

CRM =?= |ISE™

Many thanks for your attention !
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