Random triangulations,

planar maps,

and a Brownian snake

Part II

Gilles Schaeffer – CNRS – Loria

http://www.loria.fr/~schaeffe

#### An overview of the talk

#### A combinatorial model

Planar maps and triangulations

# Random planar maps

as a discrete model of random geometries

\_\_\_\_

# Encoding the distance

From quadrangulations to embedded trees

# Quadrangulations and Brownian snakes

Toward a continuum random map?

### A summary of the first part.

- The random planar maps model has many variants (triangulations, bipartite maps, convex polyhedra,...)
- Various parameters of interests can be analytically studied (maximal degree, baby universes, separators,...)
- All knows results satisfy the expected "universality": critical exponents agree for different families.

Seek a limit model encoding more than just one parameter...

 $\Rightarrow$  concentrate on a simple variant.

# Random quadrangulations.

The simple family we choose is that of random quadrangulations.





Why?

### Random quadrangulations. Enumeration.



Theorem (Tutte 62). The number of rooted quadrangulations with n faces is

$$\frac{2}{n+2} \frac{3^n}{n+1} \binom{2n}{n}.$$

this might remind you the formula for 4-regular maps.

No surprise, this is just duality on planar graphs:





No surprise, this is just duality on planar graphs:





No surprise, this is just duality on planar graphs:





No surprise, this is just duality on planar graphs:





No surprise, this is just duality on planar graphs:





Add a vertex in each face, and dual edges.

This is one-to-one between quadrangulations and 4-regular maps.

## Random quadrangulations are bipartite graphs.

The vertices of a planar quadrangulation can be colored in two colors so that all edges join different colors.



Indeed all faces have even length, and so have all cycles.

# Distances in quadrangulations

Yet another parameter?

- $X_n^{(k)}$  is the number of vertices at distance k of the (red) root
- the *profile* is then  $X_n = (X_n^{(1)}, X_n^{(2)}, \dots, X_n^{(k)}, \dots)$



- $X_n^{(k)}$  is the number of vertices at distance k of the root
- the *profile* is then  $X_n = (X_n^{(1)}, X_n^{(2)}, \dots, X_n^{(k)}, \dots)$



$$X_n^{(1)} = 3$$

- $X_n^{(k)}$  is the number of vertices at distance k of the root
- the *profile* is then  $X_n = (X_n^{(1)}, X_n^{(2)}, \dots, X_n^{(k)}, \dots)$



$$X_n^{(1)} = 3$$
  
 $X_n^{(2)} = 8$ 

- $X_n^{(k)}$  is the number of vertices at distance k of the root
- the *profile* is then  $X_n = (X_n^{(1)}, X_n^{(2)}, \dots, X_n^{(k)}, \dots)$



$$X_n^{(1)} = 3$$
  
 $X_n^{(2)} = 8$   
 $X_n^{(3)} = 6$ 

- $X_n^{(k)}$  is the number of vertices at distance k of the root
- the *profile* is then  $X_n = (X_n^{(1)}, X_n^{(2)}, \dots, X_n^{(k)}, \dots)$



$$X_n^{(1)} = 3$$
  
 $X_n^{(2)} = 8$   
 $X_n^{(3)} = 6$   
 $X_n^{(4)} = 1$   
 $r_n = 4$ .

### Profile and radius. On the grid?

On a grid with n faces  $(\sqrt{n} \times \sqrt{n})$ , the behaviour is clear:



In particular,

$$X_n^{(k)} = \Theta(k)$$
 for  $k < n^{1/2}$ , and  $r_n$  grows like  $n^{1/2}$ .

How do these parameters behave on random quadrangulations?

### Profile and radius. Experimentaly.

Experimental datas from random sampling:

Six random profiles:



Averaged profiles:



All for maps of size n = 100,000.

For various n (100 to 100, 000).

Conjecture (S. 1998). The correct scaling is  $k = tn^{1/4}$ , and

- $-n^{-3/4}X_n^{(tn^{1/4})} \xrightarrow{\text{law}} X(t)$ , a process supported on  $\mathbb{R}^+$ ,
- the radius satisfies  $\mathbb{E}(r_n) \underset{n \to \infty}{\sim} cte \cdot n^{1/4}$ .

### Profile and radius. Heuristic results.

These conjectures agree with previous results from physics.

For random triangulations:

• Two beautyful heuristic calculations by physicists Watabiki, Ambjørn et al. (1994). The Hausdorff dimension is 4:

meaning for 
$$k \ll n^{1/4}$$
,  $\mathbb{E}(\int_0^k X_n^{(i)}) \sim k^4$ , for  $k \gg n^{1/4}$ ,  $\mathbb{E}(X_n^{(k)})$  is exp. decreasing

They prove that only possible scaling is indeed  $k = tn^{1/4}$ .

However their result does not give the radius or the limit process.

Random quadrangulations. A tentative picture of distances.



# Encoding the distances in a tree

Another encoding by trees

A rooted plane tree is made of a root vertex attached to a sequence of rooted plane trees.

The number of rooted plane trees with n edges is

$$\frac{1}{n+1} \binom{2n}{n}$$



A rooted plane tree is made of a root vertex attached to a sequence of rooted plane trees.

The number of rooted plane trees with n edges is

$$\frac{1}{n+1} \binom{2n}{n}$$



A rooted plane tree is made of a root vertex attached to a sequence of rooted plane trees.

The number of rooted plane trees with n edges is

$$\frac{1}{n+1} \binom{2n}{n}$$



A rooted plane tree is made of a root vertex attached to a sequence of rooted plane trees.

The number of rooted plane trees with n edges is

$$\frac{1}{n+1} \binom{2n}{n}$$



A rooted plane tree is made of a root vertex attached to a sequence of rooted plane trees.

The number of rooted plane trees with n edges is

$$\frac{1}{n+1} \binom{2n}{n}$$



A rooted plane tree is made of a root vertex attached to a sequence of rooted plane trees.

The number of rooted plane trees with n edges is

$$\frac{1}{n+1} \binom{2n}{n}$$



A rooted plane tree is made of a root vertex attached to a sequence of rooted plane trees.

The number of rooted plane trees with n edges is

$$\frac{1}{n+1} \binom{2n}{n}$$



A rooted plane tree is made of a root vertex attached to a sequence of rooted plane trees.

The number of rooted plane trees with n edges is

$$\frac{1}{n+1} \binom{2n}{n}$$



A rooted plane tree is made of a root vertex attached to a sequence of rooted plane trees.

The number of rooted plane trees with n edges is

$$\frac{1}{n+1} \binom{2n}{n}$$



Proof. The contour walk of a rooted plane tree is a Dyck path.

 $\Rightarrow$  cf. Part I: Catalan numbers.

A rooted plane tree is made of a root vertex attached to a sequence of rooted plane trees.

The number of rooted plane trees with n edges is

$$\frac{1}{n+1} \binom{2n}{n}$$



Let  $\mathcal{T}_n$  be the set of rooted plane trees with n edges. From now on  $U_n$  denote a r.v. uniform on  $\mathcal{T}_n$ .

### Well labelled trees. Cori and Vauquelin '84.

Definition. A well labelled tree  $(T, \phi)$  is a rooted plane tree T with integer labels  $\phi(v)$  such that:

- (i) the root has label one:  $\phi(r) = 1$ .
- (ii) labels differ at most by one along each edge (v, w):

$$|\phi(v) - \phi(w)| \le 1$$

(iii) all labels are positive:  $\phi(v) > 0$ .



Let  $(T_n, \phi_n)$  be a uniform random well labelled tree with n edges. Observe that  $T_n$  is not uniform on  $\mathcal{T}_n$ .

### Well labelled trees. Cori and Vauquelin '84.

Definition. A well labelled tree  $(T, \phi)$  is a rooted plane tree T with integer labels  $\phi(v)$  such that:

- (i) the root has label one:  $\phi(r) = 1$ .
- (ii) labels differ at most by one along each edge (v, w):

$$|\phi(v) - \phi(w)| \le 1$$

(iii) all labels are positive:  $\phi(v) > 0$ .



Let  $(T_n, \phi_n)$  be a uniform random well labelled tree with n edges. Observe that  $T_n$  is not uniform on  $\mathcal{T}_n$ .

### A distance preserving encoding. Statement

Theorem (S. 1998).

There is a one-to-one correspondence between

- rooted quadrangulations with n faces, and
- well labelled trees with n edges, that maps the profile onto the label distribution.

Cori and Vauquelin (1984) gave another bijection that proves the theorem *without* the last requirement.

## A distance preserving encoding. Proof

Let us label vertices by distances.



There are only two possible configurations around a face (up to colors).

Consider the following two local rules.



**Proposition:** the edges produced by local rules form a tree.

**Proposition:** the edges produced by local rules form a tree.



The root can be only in one of the two regions delimited by a cycle. Taking i + 1 minimal on the cycle, a contradiction is obtained between rules and labelling by distance.

By construction, labels in the tree differ at most by one along edges.



The resulting tree is thus a well labelled tree.

By construction, labels in the tree differ at most by one along edges.



The resulting tree is thus a well labelled tree.

By construction, labels in the tree differ at most by one along edges.



The resulting tree is thus a well labelled tree.

By construction, labels in the tree differ at most by one along edges.



The resulting tree is thus a well labelled tree.

By construction, labels in the tree differ at most by one along edges.



The resulting tree is thus a well labelled tree.

By construction, labels in the tree differ at most by one along edges.



The resulting tree is thus a well labelled tree.

## A first summary

Uniform distribution on quadrangulations with n faces

\_

Uniform distribution on well labelled trees with n edges

The profile  $(X_n^{(k)})_{k\geq 1}$  is the label distribution  $(L_n^{(k)})_{k\geq 1}$ .

The radius  $r_n = \max(k \mid X_n^{(k)} > 0)$  is the largest label of  $(T_n, \phi_n)$ .

These are *identities in law*, not just asymptotic results.

Aldous model of random mass distribution

Aldous ('93) introduced a model of random trees embedded in the lattice  $\mathbb{Z}^d$ .

- Start with  $U_n$  (uniform on  $\mathcal{T}_n$ ).
- Give length one to all edges.
- Embed  $U_n$  in  $\mathbb{Z}^d$ :
  - put the root of  $U_n$  at the origin,
  - uniformly independently map edges of  $U_n$  onto generators of the lattice.





Aldous ('93) introduced a model of random trees embedded in the lattice  $\mathbb{Z}^d$ .

- Start with  $U_n$  (uniform on  $\mathcal{T}_n$ ).
- Give length one to all edges.
- Embed  $U_n$  in  $\mathbb{Z}^d$ :
  - put the root of  $U_n$  at the origin,
  - uniformly independently map edges of  $U_n$  onto generators of the lattice.





Aldous ('93) introduced a model of random trees embedded in the lattice  $\mathbb{Z}^d$ .

- Start with  $U_n$  (uniform on  $\mathcal{T}_n$ ).
- Give length one to all edges.
- Embed  $U_n$  in  $\mathbb{Z}^d$ :
  - put the root of  $U_n$  at the origin,
  - uniformly independently map edges of  $U_n$  onto generators of the lattice.





Aldous ('93) introduced a model of random trees embedded in the lattice  $\mathbb{Z}^d$ .

- Start with  $U_n$  (uniform on  $\mathcal{T}_n$ ).
- Give length one to all edges.
- Embed  $U_n$  in  $\mathbb{Z}^d$ :
  - put the root of  $U_n$  at the origin,
  - uniformly independently map edges of  $U_n$  onto generators of the lattice.





Aldous ('93) introduced a model of random trees embedded in the lattice  $\mathbb{Z}^d$ .

- Start with  $U_n$  (uniform on  $\mathcal{T}_n$ ).
- Give length one to all edges.
- Embed  $U_n$  in  $\mathbb{Z}^d$ :
  - put the root of  $U_n$  at the origin,
  - uniformly independently map edges of  $U_n$  onto generators of the lattice.





Aldous ('93) introduced a model of random trees embedded in the lattice  $\mathbb{Z}^d$ .

- Start with  $U_n$  (uniform on  $\mathcal{T}_n$ ).
- Give length one to all edges.
- Embed  $U_n$  in  $\mathbb{Z}^d$ :
  - put the root of  $U_n$  at the origin,
  - uniformly independently map edges of  $U_n$  onto generators of the lattice.





Aldous ('93) introduced a model of random trees embedded in the lattice  $\mathbb{Z}^d$ .

- Start with  $U_n$  (uniform on  $\mathcal{T}_n$ ).
- Give length one to all edges.
- Embed  $U_n$  in  $\mathbb{Z}^d$ :
  - put the root of  $U_n$  at the origin,
  - uniformly independently map edges of  $U_n$  onto generators of the lattice.





### Embedded trees. Mass distribution and ISE

Putting masses on vertices yield a random mesure on  $\mathbb{Z}^n$ ,

$$\mathcal{J}_n = \frac{1}{n} \sum_{v \in U_n} \delta_{\psi_n(v)}.$$

Theorem. (Aldous '93, Borgs et al. '99)

There is a random mesure  $\mathcal{J}$  on  $\mathbb{R}^d$ , called *Integrated* SuperBrownian Excursion such that, upon scaling the lattice to  $n^{-1/4}\mathbb{Z}^d$ ,  $\mathcal{J}_n$  weakly converges to  $\mathcal{J}$ .

Intuition: Branches of  $U_n$  have typically length or order  $\sqrt{n}$ . The embedding  $\phi$  of a branch of length  $\ell$  is a random walk.  $\Rightarrow$  most vertices are embedded at distance  $\sqrt{\ell} = n^{1/4}$  from origin.

### Embedded trees. Mass distribution and ISE

Putting masses on vertices yield a random mesure on  $\mathbb{Z}^n$ ,

$$\mathcal{J}_n = \frac{1}{n} \sum_{v \in U_n} \delta_{\psi_n(v)}.$$

Theorem. (Aldous '93, Borgs et al. '99)

There is a random mesure  $\mathcal{J}$  on  $\mathbb{R}^d$ , called *Integrated* SuperBrownian Excursion such that, upon scaling the lattice to  $n^{-1/4}\mathbb{Z}^d$ ,  $\mathcal{J}_n$  weakly converges to  $\mathcal{J}$ .

Derbez & Slade '98: ISE as continuum limit of lattice trees for d > 8. Hara & Slade '98: ISE as continuum limit of incipient infinite cluster in percolation for d > 6.

The mesure ISE admit an alternative description in terms of a *Brownian snake* (cf. Le Gall's book '99).

Let us give an informal description:



An excursion e, describing the vertical extension of the snake as time evolves.

At t = 0, a Brownian motion of length e(0) = 0.

The mesure ISE admit an alternative description in terms of a *Brownian snake* (cf. Le Gall's book '99).

Let us give an informal description:



An excursion e, describing the vertical extension of the snake as time evolves.

The mesure ISE admit an alternative description in terms of a *Brownian snake* (cf. Le Gall's book '99).

Let us give an informal description:





An excursion e, describing the vertical extension of the snake as time evolves.

The mesure ISE admit an alternative description in terms of a *Brownian snake* (cf. Le Gall's book '99).

Let us give an informal description:



An excursion e, describing the vertical extension of the snake as time evolves.



The mesure ISE admit an alternative description in terms of a *Brownian snake* (cf. Le Gall's book '99).

Let us give an informal description:





An excursion e, describing the vertical extension of the snake as time evolves.

The mesure ISE admit an alternative description in terms of a *Brownian snake* (cf. Le Gall's book '99).

Let us give an informal description:



An excursion e, describing the vertical extension of the snake as time evolves.



The mesure ISE admit an alternative description in terms of a *Brownian snake* (cf. Le Gall's book '99).

Let us give an informal description:



An excursion e, describing the vertical extension of the snake as time evolves.



The mesure ISE admit an alternative description in terms of a *Brownian snake* (cf. Le Gall's book '99).

Let us give an informal description:



An excursion e, describing the vertical extension of the snake as time evolves.

The mesure ISE admit an alternative description in terms of a *Brownian snake* (cf. Le Gall's book '99).

Let us give an informal description:



An excursion e, describing the vertical extension of the snake as time evolves.



The total trace of the snake (branching r.w.).

### Embedded trees. ISE and Brownian snakes

The mesure ISE admit an alternative description in terms of a *Brownian snake* (cf. Le Gall's book '99).

Let us give an informal description:



An excursion e, describing the vertical extension of the snake as time evolves.



ISE is recovered as:  $\forall g$  test function,  $\int g d\mathcal{J} = \int_0^1 g(\hat{W}_s) ds$ .

The contour walks associated to the embedded tree  $(U_n, \psi_n)$  yields a discrete analog  $(E_n, V_n)$  of the Brownian snake.



In the case d=1, the embedding  $\psi_n$  can be represented by labels.

The contour walks associated to the embedded tree  $(U_n, \psi_n)$  yields a discrete analog  $(E_n, V_n)$  of the Brownian snake.



In the case d=1, the embedding  $\psi_n$  can be represented by labels.

The contour walks associated to the embedded tree  $(U_n, \psi_n)$  yields a discrete analog  $(E_n, V_n)$  of the Brownian snake.



In the case d=1, the embedding  $\psi_n$  can be represented by labels.

The contour walks associated to the embedded tree  $(U_n, \psi_n)$  yields a discrete analog  $(E_n, V_n)$  of the Brownian snake.



In the case d=1, the embedding  $\psi_n$  can be represented by labels.

The contour walks associated to the embedded tree  $(U_n, \psi_n)$  yields a discrete analog  $(E_n, V_n)$  of the Brownian snake.



In the case d=1, the embedding  $\psi_n$  can be represented by labels.

The contour walks associated to the embedded tree  $(U_n, \psi_n)$  yields a discrete analog  $(E_n, V_n)$  of the Brownian snake.



In the case d=1, the embedding  $\psi_n$  can be represented by labels.

The contour walks associated to the embedded tree  $(U_n, \psi_n)$  yields a discrete analog  $(E_n, V_n)$  of the Brownian snake.



In the case d=1, the embedding  $\psi_n$  can be represented by labels.

The contour walks associated to the embedded tree  $(U_n, \psi_n)$  yields a discrete analog  $(E_n, V_n)$  of the Brownian snake.



In the case d=1, the embedding  $\psi_n$  can be represented by labels.

Theorem (Chassaing & S. '02, see also Markert & Mokkadem '02)

The normalised contour encoding  $(\frac{E_n(tn)}{n^{1/2}}, \frac{V_n(tn)}{n^{1/4}})$  of  $(U_n, \psi_n)$  weakly converges to  $(e(t), \hat{W}_t)$ .

# Well labelled vs embedded trees

A proof of the radius conjecture for quadrangulations

# Well labelled vs embedded trees. Positivity

Well labelled trees = embedded trees in  $\mathbb{Z}$ , conditioned to positivity.



#### Well labelled vs embedded trees. Statement

Well labelled trees = embedded trees in  $\mathbb{Z}$ , conditioned to positivity.

Theorem. Positivity conditioning can be relieved.

There is a coupling  $(T_n, \phi_n) \times (U_n, \psi_n)$  such that the largest label  $r_n$  of  $(T_n, \phi_n)$  and the support  $[L_n, R_n] \subset \mathbb{Z}$  of  $(U_n, \psi_n)$  satisfy

$$|r_n - (R_n - L_n)| \le 2.$$

Intuition: a "Vervaat's like" construction for embedded trees, using the conjugation of trees discussed in Part I.

#### The radius theorem

Theorem (Chassaing & S. '02)

The r.v.  $n^{-1/4}r_n$  weakly converges to  $(8/9)^{1/4}r$ ,

where r = R - L is the width of ISE.

Furthermore, convergence of all moments holds true.

In particular  $\mathbb{E}(r_n) \sim c \, n^{1/4}$ , where  $c = (8/9)^{1/4} \mathbb{E}(r)$ .

Observe that the numerical value of c is not know...

#### The radius theorem

Theorem (Chassaing & S. '02)

The r.v.  $n^{-1/4}r_n$  weakly converges to  $(8/9)^{1/4}r$ ,

where r = R - L is the width of ISE.

Furthermore, convergence of all moments holds true.

Remark on the proof: we really needed convegence of contour encondings to the Brownian snake, because the width r of ISE is not a continuous functional of the random mesure  $\mathcal{J}$ .

Instead  $r = \max(\hat{W}_t) - \min(\hat{W}_t)$  is a continuous functional of  $\hat{W}_t$ .

#### Conclusion

I hope that the connection with Brownian snakes and ISE will lead to precise definition, statement and proof of the following guess:

The Continuum Random Map is a Brownian snake conditioned to positivity.

$$CRM =?= ISE^+$$

Many thanks for your attention!