Random triangulations,
planar maps,

and a Brownian snake

PART 1

Gilles Schaeffer ~ CNRS - Loria

http://www.loria.fr/~schaeffe



An overview of the talk

A combinatorial model
Planar maps and triangulations

Random planar maps
as a discrete model of random geometries

Encoding the distance

From quadrangulations to embedded trees

Quadrangulations and Brownian snakes

Toward a continuum random map ?



A combinatorial model

Planar maps and triangulations



Planar maps. Definition

planar map = proper embedding of a connected graph in the sphere,
considered up to homeomorphisms of the sphere.

o

Rooted planar map = one edge is distinguished and oriented.

When making pictures in the plane we can always choose the
infinite face so that the root goes counterclockwise around the map.



Planar maps. Maps vs graphs

Distinct planar maps may share the same underlying planar graph.

+

planar map = planar graph + cyclic order around vertices.

— Planar maps are combinatorial objects.

— The number of planar maps with n edges is finite.

Unlike graphs, rooted maps are trivial to test for isomorphisms:
one can decide if M7 = M5 in linear time in the size.



Planar maps. Labels and root.

R,,: rooted; L,,: labelled; M, : unrooted.

Rooted = labelled:
— A rooted map with n edges has (2n — 1)! distinct %—edge labellings.

Rooted ~ unrooted:
— A planar map M with n edges has +— t?M) possible roots.

In other terms

‘Rn‘ — (2n 1)! |£ | — ZMEM Aut?M)



Planar maps. Example of subfamilies

3-regular (or cubic) maps 4-regular maps




Enumerative questions.

— What is the number of rooted planar maps with n edges ?
1, 2, 9, 54, 378,...

— What is the number of rooted triangulations with n triangles 7
1, 3, 13, 68, 399, ...

Questions raised by Tutte (60’s) in relation with the four color theorem.

The smallest maps: Ro={*}, Ri={ o> Q 1
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Enumerative questions. “Universal” asymptotic results

Theorem (Tutte’62, Bender—Canfield’92...)

Let D be a set of acceptable vertex degrees and F,, the set
of rooted maps with n edges and vertex degrees in D.

Then, (for coherent values of n)

Fal ~ cop™n2

n—aoo

for cp and p some positive constants that depend on D.

Examples:
— D = {3}, cubic maps (or triangulations by duality)
— D = {4}, 4-regular maps (or quadrangulations by duality)



Enumerative questions. “Universal” asymptotic results

Theorem (Tutte’62, Bender—Canfield’92...)

Let D be a set of acceptable vertex degrees and F,, the set
of rooted maps with n edges and vertex degrees in D.

Then, (for coherent values of n)

Fal ~ cop™n2

n—aoo

for cp and p some positive constants that depend on D.

Compare to similar results for trees:
plane trees, binary trees, Cayley trees with n nodes — p"n=3/2

(# shapes of GW trees conditioned to total progeny of size n)
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Enumerative questions. Some exact results

Theorem (Tutte’62)

. . 2”+1(3n)' C1 n
#{triangulations, 2n faces} ot 2l ~ =T (27/2)
~2.37(2n)! e
#{4-regular maps, n vert.} = (1 2! ~ T 12

Of course such nice formulas are not the rule...

However for about twenty families of maps, generating functions
(partition functions) are known and algebraic.

— Planar constellations. Bousquet-Mélou & S. ’99.

— b-connected triangulations. Gao & Wormald ’01.
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Enumeration. Terminology in Combinatorics / Physics

Up to differencies of terminology, many results of Tutte were rediscovered

in physics via “perturbative expansion of matrix integrals” a la Feynman.

In combinatorics. Planar maps, or: fat graphs, hypermaps, rotation

systems, “triangulations”, “2d-polyhedra’...

In physics. Dynamical triangulations, or: “fluid lattices”, discretised

euclidean two dimensional quantum geometry, ¢*-model...
— edges, vertices, loops = links, nodes, tadpoles...

— Generating function < Partition function
f(2) = Zrer 2™ & Zu=Tyrep gie ™M, where Car = Aut(ar).
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Planar maps in physics 7 (a naive point of view)
Consider a toy model of statistical physics (Ising) in a 2d universe...

e Conventional gravity: the universe is flat.

= discretised by a regular grid: Ising on ZZ.

e Quantum gravity: a distribution of proba on possible universes.

= discr. by a random map: Ising on 4-reg. maps (¢?).

e planar case is easier = assume spherical topology to start with.

The emphasis is on random maps; enumeration appears as a

by-product here.
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Which random maps 7

What is the distribution that should be taken on maps 7
— the uniform distribution on rooted maps with n edges,
— Delaunay triangulations of a random set of points,

— anything else 77

We take the first distribution, which leads to the dynamical
triangulations studied in the physics litterature.

There is an a posteriori “justification” of this choice:
For all reasonable toys models that are “solved” on both type of lattices,
critical exponents on random maps and on Z? are related according to

the predictions of the KPZ relation (Knizhnik, Polyakov, Zamolodchikov).
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Random planar maps

ete model of random geometries

as a discr




Random planar maps. Definition.

Let R, be a family of rooted planar maps (say 4-regular maps with n vertices).

Consider a r.v. X,, with uniform distribution on R,,:

1 (n+2)n!
R,  2-37(2n)V

Pr(X, =R) = for all R € R,,.

In the terminology of physics, this corresponds to the canonical

distribution, as opposed to the grand canonical distribution which is:

e PR
Pr(X,=R) = 7 for all R € Uy, Rn, 1 > phe.
W
Rooting correspond to the combinatorial factors = arising from

Cr
Feynman type expansion.
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How do we sample a true random map ?
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Random 4-regular maps.

Recall Tutte’s formula

2 3" (2n
4-regul | - |
#{4-regular maps, n vert.} n+2n+1(n>

— Tutte, 1962: through recursions and algebra on

generating functions.

— Bessis-Itzykson-Parisi-Zuber, 1978: through perturbative
expansions of matrix integral with quadratic potentials.

These two approaches lead to quadratic algorithms for sampling.
We shall consider instead a direct combinatorial approach.
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Tutte's formula. A bijective proof.

2 . 3" (2n)

#{ 4-regular maps with n vertices } is =5 - ;25

Our tactic will be to construct simple combinatorial objects that
are clearly counted successively by
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Finally we shall exhibit a simple one-to-one correspondence
between the latter objects and 4-regular maps with n vertices.
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Tutte's formula. A bijective proof (i).

2 3" (2n).

#{ 4-regular maps with n vertices } is =5 - ;25

The number of bridges of

length 2n with increments @W&VAW@L

{+1,-1}is (27).
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Tutte's formula. A bijective proof (i).

n—2|—2 ) n3—:1 (21‘1).

#{ 4-regular maps with n vertices } is

The number of bridges of

length 2n with increments @Wf\ﬂvﬂm

{+1,-1}is (27).

Add a last down step.
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Tutte's formula. A bijective proof (i).

#{ 4-regular maps with n vertices } is

The number of “bridges”
of length 2n + 1 is

(%)

Cyclic shifts at down steps
define classes of n + 1

conjugate paths.

n—2|—2 ) n3—:1 (21‘1).

@Wf\vﬂ%
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Tutte's formula. A bijective proof (i).

n—2|—2 ) n3—:1 (21‘1).

#{ 4-regular maps with n vertices } is

The number of “bridges”

of length 2n 4 1 is N SN
o A N TYE

Cyclic shifts at down steps S N N S W WS N

define classes of n + 1 N

conjugate paths.
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Tutte's formula. A bijective proof (i).

#{ 4-regular maps with n vertices } is

The number of “bridges”
of length 2n + 1 is

(%)

Exactly one of the n + 1
conjugate has the positive

prefix property.

n—2|—2 ) n3—:1 (21‘1).

@Wf\vﬂ%
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Tutte's formula. A bijective proof (i).

#{ 4-regular maps with n vertices } is

The number of “bridges”
of length 2n + 1 is

(%)

Exactly one of the n + 1
conjugates has the positive

prefix property.

n—2|—2 ) n3—:1 (21‘1).
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Tutte's formula. A bijective proof (i).

#{ 4-regular maps with n vertices } is

The number of “bridges”
of length 2n + 1 is

(%)

Exactly one of the n + 1
conjugates has the positive

prefix property.

n—2|—2 ) n3—:1 (21‘1).

@Wf\v&%
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Tutte's formula. A bijective proof (i).

#{ 4-regular maps with n vertices } is

The number of Dyck paths
of length 2n+1 (excursion,
or bridges with the posi-
tive prefix property) is

1 (2
a1 (n )
(Exactly one of the n + 1
conjugates has the positive

prefix property.)

n—2|—2 ' n3—:1 (2n)'

@Wf\v&%
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Tutte's formula. A bijective proof (i).

n—2|—2 ' n3—:1 (2n)'

#{ 4-regular maps with n vertices } is

The number of Dyck paths

of length 2n + 1 is
1 2n SENRS
.

n—+1

This proof of the cyclic lemma is due to Dvoretzky-Motzkin’47.

Vervaat’s method to construct the brownian excursion is its

continuum analog.
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Tutte's formula. A bijective proof (i).

2 3" (2n).

#{ 4-regular maps with n vertices } is =5 - Z5

Dyck paths are prefix T
codes of binary trees.
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Tutte's formula. A bijective proof (i).

n—2|—2 ' n3—:1 (2n)'

#{ 4-regular maps with n vertices } is

There are

1 2n
n+1\n

binary trees with n nodes.

Such trees have n (internal) nodes and n + 2 leaves (root included).

48



Tutte's formula. A bijective proof (ii).

n—2|—2 ' n3—:1 (2n)'

#{ 4-regular maps with n vertices } is

On each node, a bud can be added

in three ways, giving rise to

3" 2n
n+1\n

blossom trees with n nodes.

Blossom trees have n buds and n + 2 leaves around the tree.
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Tutte's formula. A bijective proof (ii).

2  3"° (2n).

#{ 4-regular maps with n vertices } is =5 - =5

On each node, a bud can be added

in three ways, giving rise to

3" 2n
n+1\n

blossom trees with n nodes.

Blossom trees have n buds and n + 2 leaves around the tree.

Upon matching them counterclockwise, two leaves remain unmatched.
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Tutte's formula. A bijective proof (iii).

2 3" (2n).

#{ 4-regular maps with n vertices } is

n+2 n+1l

A blossom tree is unbalanced if its
root 1s matched.
It is balanced if its root remains un-

matched.

Let us call conjugacy class an equivalence class of blossom trees

obtained one from another by moving the root.
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Tutte's formula. A bijective proof (iii).

#{ 4-regular maps with n vertices } is =25 - 2= (*™).

n+2 n+1l

The number of balanced blossom

trees with n nodes is

2 3" 2n
n+2 n+1\n/

Indeed each conjugacy class of blossom trees contains n + 2 blossom

trees, 2 of which are balanced.
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Tutte's formula. A bijective proof (iv).

#{ 4-regular maps with n vertices } is =25 - 2= (*™).

n+2 n+1l

Theorem (S. 1998):

This closure is one-to-one between

e balanced blossom trees with

n nodes

e and rooted 4-regular maps with

n vertices.

The converse bijection is based on a bfs traversal of the dual graph.
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Random sampling for X,

To generate a random 4-regular map with n vertices,

1. sample a uniform “bridge” with 2n + 1 steps,

conjugation yields a uniform random tree with n nodes,
2. add independantly random buds on all nodes,

3. perform the matching and add the root,

conjugation yields a uniform random 4-reg. map with n vert.

The number of operations is linear in the size n

— generation speed ~ 100.000 vertices per second.
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A gallery of random maps
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First summary and observations

— A model of random surfaces with spherical topology (fixed genus).
— Various techniques are available to study it analytically.

— Large random instances can be effectively generated.

Experimentally these random surfaces appear quite different from
regular lattices.

— fat tree structure ?

— branchings into baby universes ?

— Hausdorf dimension 7

— short separators 7
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What is the typical geometry of a random map 7

Some results from the combinatorial litterature.
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The random planar map. Vertex or face degree.

Let (x = (x(n) be the number of vertices of degree k in a random

triangulation with n vertices.

Tutte et al. (60’s). For fixed k,

E((x) ~ nug,  with pp =

8(k —2)(=3/4)F (—3/2 4(3/4)k
noo 4k? — 1 ( ) -~

k VT .

(Similar results hold for other families).
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The random planar map. Maximal degree.

Let A, be the maximal degree in a random n-triangulation.

Gao-Wormald (2000). For any Q(n) — oo,

logn — 2 loglo
Pr ’An_ gn — 5108 gn|§9(n) 1
log4/3
For k > =, (= near max degree), (x,Cxt1,... “are” independant

Poisson variables of mean afti—7n.

(Proven for two families.)
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The random planar map. Submaps and 0-1 laws.

Let Ty be a fixed triangulation and 7, (7Ty) be the number of copies

of Ty in a random n-triangulation.

Gao-Wormald (2000). For a fixed Ty, 1, (Tp) is sharply

concentrated around cn for some constant c.

Bender-Compton-Richmond (1999). First order sentences on planar
maps or triangulations have 0-1 laws.

Any property expressible in first order logic on maps (with edges, vertices
and faces variables, and adjacency relations) is true with probability

tending either to 0 or to 1 as the size of maps goes to infinity.

73



The random planar map. Minimal cycles.

A cycle is separating if it cuts the map in two.

Minimal separating cycles (for the length) play a special role:

they allow “baby universe decomposition”.

For instance separating triangles in triangulations:

Separating triangles 4 spherical topology = Tree decomposition.
Nodes are triangulations without separating triangles.
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The random planar map. Minimal cycles.

Remark. A random triangulation has ©(n) separating triangles

= a linear number of “branchings into baby universe”.

Bender-Richmond (1995) “baby universes” are of size at most n?/3

and there is one “mother universe” which is a.s. of size cn.

Banderier-Flajolet-S.-Soria (2000) In the scaling cn + n?/3z, the size
of the “mother universe” converges to a stable law of index 3/2.
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The random planar map. Separators.

Fixed length cycles a.s. separate only n?/3 vertices.

What if the cycles get larger 7 When can we get true separators ?

The average number of separator of length &k in a n-triangulation
e tends to 0 if k£ < ¢qlogn.

e tends to infinity if k> ¢ logn.

Maybe false conjecture (Gao-S., 2001):
for ¢/ > ¢, there exists a. s. separators of length at most ¢’ logn.

(This would have interesting algorithmic consequences)
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The random planar map. A tentative picture of cuts.

mother universe of size scaling

in n/2 + xn?® with stable law 3/2
(BaF1ScSo000)

\ logarithmic o —separator ?
. - (Conjecture: Gao, S. 01)
Q ' \ ‘
cte size cuts baby universes of size

(linear number) each O(n?* )

but summing to © (n)
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A second summary

e The random planar maps model R,, has many variants

(triangulations, regular maps, convex polyhedra,...)

e But all knows results satisty some “universality”: critical
exponents agree for different families; for a functional ¢,

if E(¢(Rn)) ~cin®, then E(¢d(7,)) ~ con®.

e This situation is reminiscent, e.g. of
— simple random walks: universality with respect to increments,

— Galton-Watson trees: universality w.r.t. progeny distribution.
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A continuum random map ?
What is hidden behind these universalities ?

e “regardless” of increments:

normalised simple random walk W, (¢t) — Brownian motion W,

e “regardless” of progeny distribution:
normalised simple trees T,, — Aldous’ Continuum Random Tree S,

Vo,  O(Tn) — 6(S).

A central (open) question is thus that of a Continuum Random Map R
such that, Vo, d(R,) — ¢(R).
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